Properties

Label 546.2.j.d.289.2
Level $546$
Weight $2$
Character 546.289
Analytic conductor $4.360$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.447703281.1
Defining polynomial: \(x^{8} - x^{7} - 2 x^{6} + 2 x^{5} + 3 x^{4} + 4 x^{3} - 8 x^{2} - 8 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.2
Root \(-0.571299 + 1.29368i\) of defining polynomial
Character \(\chi\) \(=\) 546.289
Dual form 546.2.j.d.529.2

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +(0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(-0.228205 + 0.395262i) q^{5} +(0.500000 - 0.866025i) q^{6} +(-0.369922 - 2.61976i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(-0.228205 + 0.395262i) q^{5} +(0.500000 - 0.866025i) q^{6} +(-0.369922 - 2.61976i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-0.228205 + 0.395262i) q^{10} +(1.91853 - 3.32300i) q^{11} +(0.500000 - 0.866025i) q^{12} +(-3.13422 - 1.78233i) q^{13} +(-0.369922 - 2.61976i) q^{14} +(0.228205 + 0.395262i) q^{15} +1.00000 q^{16} +1.55187 q^{17} +(-0.500000 - 0.866025i) q^{18} +(1.44122 + 2.49627i) q^{19} +(-0.228205 + 0.395262i) q^{20} +(-2.45374 - 0.989520i) q^{21} +(1.91853 - 3.32300i) q^{22} +3.24339 q^{23} +(0.500000 - 0.866025i) q^{24} +(2.39585 + 4.14973i) q^{25} +(-3.13422 - 1.78233i) q^{26} -1.00000 q^{27} +(-0.369922 - 2.61976i) q^{28} +(-2.20552 - 3.82007i) q^{29} +(0.228205 + 0.395262i) q^{30} +(4.80098 + 8.31553i) q^{31} +1.00000 q^{32} +(-1.91853 - 3.32300i) q^{33} +1.55187 q^{34} +(1.11991 + 0.451626i) q^{35} +(-0.500000 - 0.866025i) q^{36} +0.280491 q^{37} +(1.44122 + 2.49627i) q^{38} +(-3.11065 + 1.82315i) q^{39} +(-0.228205 + 0.395262i) q^{40} +(-3.57277 - 6.18822i) q^{41} +(-2.45374 - 0.989520i) q^{42} +(1.21716 - 2.10818i) q^{43} +(1.91853 - 3.32300i) q^{44} +0.456409 q^{45} +3.24339 q^{46} +(-3.93105 + 6.80879i) q^{47} +(0.500000 - 0.866025i) q^{48} +(-6.72632 + 1.93822i) q^{49} +(2.39585 + 4.14973i) q^{50} +(0.775934 - 1.34396i) q^{51} +(-3.13422 - 1.78233i) q^{52} +(0.550397 + 0.953315i) q^{53} -1.00000 q^{54} +(0.875637 + 1.51665i) q^{55} +(-0.369922 - 2.61976i) q^{56} +2.88244 q^{57} +(-2.20552 - 3.82007i) q^{58} -9.36566 q^{59} +(0.228205 + 0.395262i) q^{60} +(5.55187 + 9.61612i) q^{61} +(4.80098 + 8.31553i) q^{62} +(-2.08382 + 1.63024i) q^{63} +1.00000 q^{64} +(1.41973 - 0.832102i) q^{65} +(-1.91853 - 3.32300i) q^{66} +(0.894964 - 1.55012i) q^{67} +1.55187 q^{68} +(1.62170 - 2.80886i) q^{69} +(1.11991 + 0.451626i) q^{70} +(-5.06527 + 8.77331i) q^{71} +(-0.500000 - 0.866025i) q^{72} +(1.40601 + 2.43529i) q^{73} +0.280491 q^{74} +4.79169 q^{75} +(1.44122 + 2.49627i) q^{76} +(-9.41517 - 3.79685i) q^{77} +(-3.11065 + 1.82315i) q^{78} +(2.70966 - 4.69326i) q^{79} +(-0.228205 + 0.395262i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-3.57277 - 6.18822i) q^{82} +1.35738 q^{83} +(-2.45374 - 0.989520i) q^{84} +(-0.354144 + 0.613395i) q^{85} +(1.21716 - 2.10818i) q^{86} -4.41103 q^{87} +(1.91853 - 3.32300i) q^{88} -0.179697 q^{89} +0.456409 q^{90} +(-3.50985 + 8.87023i) q^{91} +3.24339 q^{92} +9.60195 q^{93} +(-3.93105 + 6.80879i) q^{94} -1.31557 q^{95} +(0.500000 - 0.866025i) q^{96} +(4.73894 - 8.20808i) q^{97} +(-6.72632 + 1.93822i) q^{98} -3.83707 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 8q^{2} + 4q^{3} + 8q^{4} + 2q^{5} + 4q^{6} - 3q^{7} + 8q^{8} - 4q^{9} + O(q^{10}) \) \( 8q + 8q^{2} + 4q^{3} + 8q^{4} + 2q^{5} + 4q^{6} - 3q^{7} + 8q^{8} - 4q^{9} + 2q^{10} - 6q^{11} + 4q^{12} - 11q^{13} - 3q^{14} - 2q^{15} + 8q^{16} - 8q^{17} - 4q^{18} + 6q^{19} + 2q^{20} - 3q^{21} - 6q^{22} + 20q^{23} + 4q^{24} - 18q^{25} - 11q^{26} - 8q^{27} - 3q^{28} + 2q^{29} - 2q^{30} + 6q^{31} + 8q^{32} + 6q^{33} - 8q^{34} - 18q^{35} - 4q^{36} + 56q^{37} + 6q^{38} - 10q^{39} + 2q^{40} - 3q^{42} - 6q^{43} - 6q^{44} - 4q^{45} + 20q^{46} + q^{47} + 4q^{48} + 5q^{49} - 18q^{50} - 4q^{51} - 11q^{52} + 7q^{53} - 8q^{54} + q^{55} - 3q^{56} + 12q^{57} + 2q^{58} - 4q^{59} - 2q^{60} + 24q^{61} + 6q^{62} + 8q^{64} + 22q^{65} + 6q^{66} - 15q^{67} - 8q^{68} + 10q^{69} - 18q^{70} + 6q^{71} - 4q^{72} + q^{73} + 56q^{74} - 36q^{75} + 6q^{76} - 22q^{77} - 10q^{78} - 12q^{79} + 2q^{80} - 4q^{81} - 32q^{83} - 3q^{84} - 13q^{85} - 6q^{86} + 4q^{87} - 6q^{88} - 50q^{89} - 4q^{90} - 8q^{91} + 20q^{92} + 12q^{93} + q^{94} + 16q^{95} + 4q^{96} - q^{97} + 5q^{98} + 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 1.00000 0.500000
\(5\) −0.228205 + 0.395262i −0.102056 + 0.176767i −0.912532 0.409006i \(-0.865875\pi\)
0.810475 + 0.585773i \(0.199209\pi\)
\(6\) 0.500000 0.866025i 0.204124 0.353553i
\(7\) −0.369922 2.61976i −0.139817 0.990177i
\(8\) 1.00000 0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −0.228205 + 0.395262i −0.0721647 + 0.124993i
\(11\) 1.91853 3.32300i 0.578460 1.00192i −0.417197 0.908816i \(-0.636987\pi\)
0.995656 0.0931051i \(-0.0296793\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) −3.13422 1.78233i −0.869275 0.494328i
\(14\) −0.369922 2.61976i −0.0988658 0.700161i
\(15\) 0.228205 + 0.395262i 0.0589222 + 0.102056i
\(16\) 1.00000 0.250000
\(17\) 1.55187 0.376383 0.188192 0.982132i \(-0.439737\pi\)
0.188192 + 0.982132i \(0.439737\pi\)
\(18\) −0.500000 0.866025i −0.117851 0.204124i
\(19\) 1.44122 + 2.49627i 0.330639 + 0.572683i 0.982637 0.185537i \(-0.0594025\pi\)
−0.651998 + 0.758220i \(0.726069\pi\)
\(20\) −0.228205 + 0.395262i −0.0510281 + 0.0883833i
\(21\) −2.45374 0.989520i −0.535450 0.215931i
\(22\) 1.91853 3.32300i 0.409033 0.708465i
\(23\) 3.24339 0.676294 0.338147 0.941093i \(-0.390200\pi\)
0.338147 + 0.941093i \(0.390200\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) 2.39585 + 4.14973i 0.479169 + 0.829945i
\(26\) −3.13422 1.78233i −0.614671 0.349543i
\(27\) −1.00000 −0.192450
\(28\) −0.369922 2.61976i −0.0699087 0.495089i
\(29\) −2.20552 3.82007i −0.409554 0.709369i 0.585286 0.810827i \(-0.300982\pi\)
−0.994840 + 0.101459i \(0.967649\pi\)
\(30\) 0.228205 + 0.395262i 0.0416643 + 0.0721647i
\(31\) 4.80098 + 8.31553i 0.862281 + 1.49351i 0.869722 + 0.493542i \(0.164298\pi\)
−0.00744135 + 0.999972i \(0.502369\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.91853 3.32300i −0.333974 0.578460i
\(34\) 1.55187 0.266143
\(35\) 1.11991 + 0.451626i 0.189299 + 0.0763387i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 0.280491 0.0461124 0.0230562 0.999734i \(-0.492660\pi\)
0.0230562 + 0.999734i \(0.492660\pi\)
\(38\) 1.44122 + 2.49627i 0.233797 + 0.404948i
\(39\) −3.11065 + 1.82315i −0.498102 + 0.291938i
\(40\) −0.228205 + 0.395262i −0.0360823 + 0.0624964i
\(41\) −3.57277 6.18822i −0.557973 0.966438i −0.997666 0.0682894i \(-0.978246\pi\)
0.439692 0.898148i \(-0.355087\pi\)
\(42\) −2.45374 0.989520i −0.378621 0.152686i
\(43\) 1.21716 2.10818i 0.185615 0.321494i −0.758169 0.652058i \(-0.773906\pi\)
0.943783 + 0.330564i \(0.107239\pi\)
\(44\) 1.91853 3.32300i 0.289230 0.500961i
\(45\) 0.456409 0.0680375
\(46\) 3.24339 0.478212
\(47\) −3.93105 + 6.80879i −0.573403 + 0.993163i 0.422810 + 0.906218i \(0.361044\pi\)
−0.996213 + 0.0869451i \(0.972290\pi\)
\(48\) 0.500000 0.866025i 0.0721688 0.125000i
\(49\) −6.72632 + 1.93822i −0.960902 + 0.276888i
\(50\) 2.39585 + 4.14973i 0.338824 + 0.586860i
\(51\) 0.775934 1.34396i 0.108653 0.188192i
\(52\) −3.13422 1.78233i −0.434638 0.247164i
\(53\) 0.550397 + 0.953315i 0.0756028 + 0.130948i 0.901348 0.433095i \(-0.142579\pi\)
−0.825745 + 0.564043i \(0.809245\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0.875637 + 1.51665i 0.118071 + 0.204505i
\(56\) −0.369922 2.61976i −0.0494329 0.350081i
\(57\) 2.88244 0.381789
\(58\) −2.20552 3.82007i −0.289599 0.501599i
\(59\) −9.36566 −1.21930 −0.609652 0.792669i \(-0.708691\pi\)
−0.609652 + 0.792669i \(0.708691\pi\)
\(60\) 0.228205 + 0.395262i 0.0294611 + 0.0510281i
\(61\) 5.55187 + 9.61612i 0.710844 + 1.23122i 0.964541 + 0.263934i \(0.0850201\pi\)
−0.253697 + 0.967284i \(0.581647\pi\)
\(62\) 4.80098 + 8.31553i 0.609725 + 1.05607i
\(63\) −2.08382 + 1.63024i −0.262537 + 0.205391i
\(64\) 1.00000 0.125000
\(65\) 1.41973 0.832102i 0.176096 0.103210i
\(66\) −1.91853 3.32300i −0.236155 0.409033i
\(67\) 0.894964 1.55012i 0.109337 0.189378i −0.806165 0.591691i \(-0.798461\pi\)
0.915502 + 0.402314i \(0.131794\pi\)
\(68\) 1.55187 0.188192
\(69\) 1.62170 2.80886i 0.195229 0.338147i
\(70\) 1.11991 + 0.451626i 0.133855 + 0.0539796i
\(71\) −5.06527 + 8.77331i −0.601137 + 1.04120i 0.391512 + 0.920173i \(0.371952\pi\)
−0.992649 + 0.121027i \(0.961381\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) 1.40601 + 2.43529i 0.164561 + 0.285029i 0.936499 0.350669i \(-0.114046\pi\)
−0.771938 + 0.635698i \(0.780712\pi\)
\(74\) 0.280491 0.0326064
\(75\) 4.79169 0.553297
\(76\) 1.44122 + 2.49627i 0.165319 + 0.286342i
\(77\) −9.41517 3.79685i −1.07296 0.432692i
\(78\) −3.11065 + 1.82315i −0.352211 + 0.206431i
\(79\) 2.70966 4.69326i 0.304860 0.528033i −0.672370 0.740215i \(-0.734724\pi\)
0.977230 + 0.212182i \(0.0680570\pi\)
\(80\) −0.228205 + 0.395262i −0.0255141 + 0.0441916i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −3.57277 6.18822i −0.394547 0.683375i
\(83\) 1.35738 0.148992 0.0744959 0.997221i \(-0.476265\pi\)
0.0744959 + 0.997221i \(0.476265\pi\)
\(84\) −2.45374 0.989520i −0.267725 0.107965i
\(85\) −0.354144 + 0.613395i −0.0384123 + 0.0665320i
\(86\) 1.21716 2.10818i 0.131249 0.227330i
\(87\) −4.41103 −0.472912
\(88\) 1.91853 3.32300i 0.204516 0.354233i
\(89\) −0.179697 −0.0190478 −0.00952392 0.999955i \(-0.503032\pi\)
−0.00952392 + 0.999955i \(0.503032\pi\)
\(90\) 0.456409 0.0481098
\(91\) −3.50985 + 8.87023i −0.367933 + 0.929852i
\(92\) 3.24339 0.338147
\(93\) 9.60195 0.995676
\(94\) −3.93105 + 6.80879i −0.405457 + 0.702273i
\(95\) −1.31557 −0.134975
\(96\) 0.500000 0.866025i 0.0510310 0.0883883i
\(97\) 4.73894 8.20808i 0.481166 0.833405i −0.518600 0.855017i \(-0.673547\pi\)
0.999766 + 0.0216122i \(0.00687993\pi\)
\(98\) −6.72632 + 1.93822i −0.679460 + 0.195789i
\(99\) −3.83707 −0.385640
\(100\) 2.39585 + 4.14973i 0.239585 + 0.414973i
\(101\) −3.18107 + 5.50977i −0.316528 + 0.548242i −0.979761 0.200170i \(-0.935850\pi\)
0.663233 + 0.748413i \(0.269184\pi\)
\(102\) 0.775934 1.34396i 0.0768290 0.133072i
\(103\) −8.28934 + 14.3576i −0.816773 + 1.41469i 0.0912754 + 0.995826i \(0.470906\pi\)
−0.908048 + 0.418866i \(0.862428\pi\)
\(104\) −3.13422 1.78233i −0.307335 0.174771i
\(105\) 0.951075 0.744058i 0.0928154 0.0726126i
\(106\) 0.550397 + 0.953315i 0.0534593 + 0.0925942i
\(107\) 16.9205 1.63576 0.817882 0.575386i \(-0.195148\pi\)
0.817882 + 0.575386i \(0.195148\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 3.95108 + 6.84346i 0.378444 + 0.655485i 0.990836 0.135070i \(-0.0431258\pi\)
−0.612392 + 0.790554i \(0.709792\pi\)
\(110\) 0.875637 + 1.51665i 0.0834887 + 0.144607i
\(111\) 0.140245 0.242912i 0.0133115 0.0230562i
\(112\) −0.369922 2.61976i −0.0349543 0.247544i
\(113\) 3.40689 5.90091i 0.320494 0.555111i −0.660096 0.751181i \(-0.729485\pi\)
0.980590 + 0.196070i \(0.0628179\pi\)
\(114\) 2.88244 0.269965
\(115\) −0.740157 + 1.28199i −0.0690200 + 0.119546i
\(116\) −2.20552 3.82007i −0.204777 0.354684i
\(117\) 0.0235697 + 3.60547i 0.00217902 + 0.333326i
\(118\) −9.36566 −0.862179
\(119\) −0.574070 4.06553i −0.0526249 0.372686i
\(120\) 0.228205 + 0.395262i 0.0208321 + 0.0360823i
\(121\) −1.86154 3.22428i −0.169231 0.293117i
\(122\) 5.55187 + 9.61612i 0.502643 + 0.870602i
\(123\) −7.14554 −0.644292
\(124\) 4.80098 + 8.31553i 0.431140 + 0.746757i
\(125\) −4.46902 −0.399721
\(126\) −2.08382 + 1.63024i −0.185641 + 0.145234i
\(127\) 10.9334 + 18.9372i 0.970183 + 1.68041i 0.694993 + 0.719016i \(0.255407\pi\)
0.275190 + 0.961390i \(0.411259\pi\)
\(128\) 1.00000 0.0883883
\(129\) −1.21716 2.10818i −0.107165 0.185615i
\(130\) 1.41973 0.832102i 0.124518 0.0729802i
\(131\) 4.72554 8.18487i 0.412872 0.715116i −0.582330 0.812952i \(-0.697859\pi\)
0.995202 + 0.0978367i \(0.0311923\pi\)
\(132\) −1.91853 3.32300i −0.166987 0.289230i
\(133\) 6.00649 4.69908i 0.520829 0.407462i
\(134\) 0.894964 1.55012i 0.0773131 0.133910i
\(135\) 0.228205 0.395262i 0.0196407 0.0340187i
\(136\) 1.55187 0.133072
\(137\) 2.44792 0.209140 0.104570 0.994518i \(-0.466653\pi\)
0.104570 + 0.994518i \(0.466653\pi\)
\(138\) 1.62170 2.80886i 0.138048 0.239106i
\(139\) −5.37228 + 9.30505i −0.455670 + 0.789244i −0.998726 0.0504521i \(-0.983934\pi\)
0.543056 + 0.839696i \(0.317267\pi\)
\(140\) 1.11991 + 0.451626i 0.0946497 + 0.0381694i
\(141\) 3.93105 + 6.80879i 0.331054 + 0.573403i
\(142\) −5.06527 + 8.77331i −0.425068 + 0.736240i
\(143\) −11.9358 + 6.99554i −0.998119 + 0.584997i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 2.01324 0.167190
\(146\) 1.40601 + 2.43529i 0.116362 + 0.201546i
\(147\) −1.68461 + 6.79427i −0.138945 + 0.560382i
\(148\) 0.280491 0.0230562
\(149\) −4.65157 8.05676i −0.381072 0.660035i 0.610144 0.792290i \(-0.291112\pi\)
−0.991216 + 0.132255i \(0.957778\pi\)
\(150\) 4.79169 0.391240
\(151\) −10.3722 17.9651i −0.844075 1.46198i −0.886422 0.462878i \(-0.846817\pi\)
0.0423464 0.999103i \(-0.486517\pi\)
\(152\) 1.44122 + 2.49627i 0.116898 + 0.202474i
\(153\) −0.775934 1.34396i −0.0627306 0.108653i
\(154\) −9.41517 3.79685i −0.758696 0.305959i
\(155\) −4.38242 −0.352004
\(156\) −3.11065 + 1.82315i −0.249051 + 0.145969i
\(157\) 3.22701 + 5.58934i 0.257543 + 0.446078i 0.965583 0.260094i \(-0.0837536\pi\)
−0.708040 + 0.706172i \(0.750420\pi\)
\(158\) 2.70966 4.69326i 0.215569 0.373376i
\(159\) 1.10079 0.0872986
\(160\) −0.228205 + 0.395262i −0.0180412 + 0.0312482i
\(161\) −1.19980 8.49692i −0.0945576 0.669651i
\(162\) −0.500000 + 0.866025i −0.0392837 + 0.0680414i
\(163\) −4.35887 7.54979i −0.341413 0.591345i 0.643282 0.765629i \(-0.277572\pi\)
−0.984695 + 0.174284i \(0.944239\pi\)
\(164\) −3.57277 6.18822i −0.278987 0.483219i
\(165\) 1.75127 0.136336
\(166\) 1.35738 0.105353
\(167\) −11.4560 19.8424i −0.886491 1.53545i −0.843995 0.536351i \(-0.819802\pi\)
−0.0424965 0.999097i \(-0.513531\pi\)
\(168\) −2.45374 0.989520i −0.189310 0.0763431i
\(169\) 6.64663 + 11.1724i 0.511280 + 0.859414i
\(170\) −0.354144 + 0.613395i −0.0271616 + 0.0470452i
\(171\) 1.44122 2.49627i 0.110213 0.190894i
\(172\) 1.21716 2.10818i 0.0928073 0.160747i
\(173\) −3.79358 6.57067i −0.288421 0.499559i 0.685012 0.728531i \(-0.259797\pi\)
−0.973433 + 0.228972i \(0.926463\pi\)
\(174\) −4.41103 −0.334400
\(175\) 9.98502 7.81162i 0.754797 0.590503i
\(176\) 1.91853 3.32300i 0.144615 0.250480i
\(177\) −4.68283 + 8.11090i −0.351983 + 0.609652i
\(178\) −0.179697 −0.0134689
\(179\) −6.25205 + 10.8289i −0.467300 + 0.809388i −0.999302 0.0373555i \(-0.988107\pi\)
0.532002 + 0.846743i \(0.321440\pi\)
\(180\) 0.456409 0.0340187
\(181\) −2.26428 −0.168303 −0.0841513 0.996453i \(-0.526818\pi\)
−0.0841513 + 0.996453i \(0.526818\pi\)
\(182\) −3.50985 + 8.87023i −0.260168 + 0.657505i
\(183\) 11.1037 0.820812
\(184\) 3.24339 0.239106
\(185\) −0.0640093 + 0.110867i −0.00470606 + 0.00815113i
\(186\) 9.60195 0.704049
\(187\) 2.97731 5.15686i 0.217723 0.377107i
\(188\) −3.93105 + 6.80879i −0.286702 + 0.496582i
\(189\) 0.369922 + 2.61976i 0.0269079 + 0.190560i
\(190\) −1.31557 −0.0954418
\(191\) 4.58649 + 7.94403i 0.331867 + 0.574810i 0.982878 0.184258i \(-0.0589883\pi\)
−0.651011 + 0.759068i \(0.725655\pi\)
\(192\) 0.500000 0.866025i 0.0360844 0.0625000i
\(193\) 1.21993 2.11297i 0.0878122 0.152095i −0.818774 0.574116i \(-0.805346\pi\)
0.906586 + 0.422021i \(0.138679\pi\)
\(194\) 4.73894 8.20808i 0.340236 0.589306i
\(195\) −0.0107575 1.64557i −0.000770357 0.117842i
\(196\) −6.72632 + 1.93822i −0.480451 + 0.138444i
\(197\) −13.4334 23.2673i −0.957091 1.65773i −0.729510 0.683971i \(-0.760252\pi\)
−0.227581 0.973759i \(-0.573082\pi\)
\(198\) −3.83707 −0.272688
\(199\) −27.9019 −1.97791 −0.988957 0.148206i \(-0.952650\pi\)
−0.988957 + 0.148206i \(0.952650\pi\)
\(200\) 2.39585 + 4.14973i 0.169412 + 0.293430i
\(201\) −0.894964 1.55012i −0.0631259 0.109337i
\(202\) −3.18107 + 5.50977i −0.223819 + 0.387666i
\(203\) −9.19180 + 7.19106i −0.645138 + 0.504713i
\(204\) 0.775934 1.34396i 0.0543263 0.0940959i
\(205\) 3.26129 0.227779
\(206\) −8.28934 + 14.3576i −0.577545 + 1.00034i
\(207\) −1.62170 2.80886i −0.112716 0.195229i
\(208\) −3.13422 1.78233i −0.217319 0.123582i
\(209\) 11.0601 0.765045
\(210\) 0.951075 0.744058i 0.0656304 0.0513449i
\(211\) 10.9871 + 19.0301i 0.756381 + 1.31009i 0.944685 + 0.327979i \(0.106367\pi\)
−0.188305 + 0.982111i \(0.560299\pi\)
\(212\) 0.550397 + 0.953315i 0.0378014 + 0.0654740i
\(213\) 5.06527 + 8.77331i 0.347067 + 0.601137i
\(214\) 16.9205 1.15666
\(215\) 0.555521 + 0.962191i 0.0378862 + 0.0656209i
\(216\) −1.00000 −0.0680414
\(217\) 20.0087 15.6535i 1.35828 1.06263i
\(218\) 3.95108 + 6.84346i 0.267601 + 0.463498i
\(219\) 2.81202 0.190019
\(220\) 0.875637 + 1.51665i 0.0590354 + 0.102252i
\(221\) −4.86389 2.76593i −0.327181 0.186057i
\(222\) 0.140245 0.242912i 0.00941265 0.0163032i
\(223\) −6.87919 11.9151i −0.460664 0.797894i 0.538330 0.842734i \(-0.319055\pi\)
−0.998994 + 0.0448402i \(0.985722\pi\)
\(224\) −0.369922 2.61976i −0.0247164 0.175040i
\(225\) 2.39585 4.14973i 0.159723 0.276648i
\(226\) 3.40689 5.90091i 0.226623 0.392523i
\(227\) 18.8309 1.24985 0.624925 0.780685i \(-0.285129\pi\)
0.624925 + 0.780685i \(0.285129\pi\)
\(228\) 2.88244 0.190894
\(229\) 1.74812 3.02784i 0.115519 0.200085i −0.802468 0.596695i \(-0.796480\pi\)
0.917987 + 0.396610i \(0.129814\pi\)
\(230\) −0.740157 + 1.28199i −0.0488045 + 0.0845319i
\(231\) −7.99576 + 6.25535i −0.526082 + 0.411572i
\(232\) −2.20552 3.82007i −0.144799 0.250800i
\(233\) 9.74031 16.8707i 0.638109 1.10524i −0.347739 0.937592i \(-0.613050\pi\)
0.985847 0.167645i \(-0.0536163\pi\)
\(234\) 0.0235697 + 3.60547i 0.00154080 + 0.235697i
\(235\) −1.79417 3.10759i −0.117039 0.202717i
\(236\) −9.36566 −0.609652
\(237\) −2.70966 4.69326i −0.176011 0.304860i
\(238\) −0.574070 4.06553i −0.0372114 0.263529i
\(239\) 12.5469 0.811592 0.405796 0.913964i \(-0.366994\pi\)
0.405796 + 0.913964i \(0.366994\pi\)
\(240\) 0.228205 + 0.395262i 0.0147305 + 0.0255141i
\(241\) −0.466451 −0.0300467 −0.0150234 0.999887i \(-0.504782\pi\)
−0.0150234 + 0.999887i \(0.504782\pi\)
\(242\) −1.86154 3.22428i −0.119664 0.207265i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 5.55187 + 9.61612i 0.355422 + 0.615609i
\(245\) 0.768874 3.10097i 0.0491215 0.198114i
\(246\) −7.14554 −0.455583
\(247\) −0.0679384 10.3926i −0.00432282 0.661264i
\(248\) 4.80098 + 8.31553i 0.304862 + 0.528037i
\(249\) 0.678689 1.17552i 0.0430102 0.0744959i
\(250\) −4.46902 −0.282646
\(251\) 12.7935 22.1590i 0.807517 1.39866i −0.107062 0.994252i \(-0.534144\pi\)
0.914579 0.404408i \(-0.132522\pi\)
\(252\) −2.08382 + 1.63024i −0.131268 + 0.102696i
\(253\) 6.22256 10.7778i 0.391209 0.677594i
\(254\) 10.9334 + 18.9372i 0.686023 + 1.18823i
\(255\) 0.354144 + 0.613395i 0.0221773 + 0.0384123i
\(256\) 1.00000 0.0625000
\(257\) −3.77611 −0.235547 −0.117774 0.993040i \(-0.537576\pi\)
−0.117774 + 0.993040i \(0.537576\pi\)
\(258\) −1.21716 2.10818i −0.0757768 0.131249i
\(259\) −0.103760 0.734819i −0.00644731 0.0456594i
\(260\) 1.41973 0.832102i 0.0880478 0.0516048i
\(261\) −2.20552 + 3.82007i −0.136518 + 0.236456i
\(262\) 4.72554 8.18487i 0.291945 0.505663i
\(263\) −9.84358 + 17.0496i −0.606981 + 1.05132i 0.384754 + 0.923019i \(0.374286\pi\)
−0.991735 + 0.128303i \(0.959047\pi\)
\(264\) −1.91853 3.32300i −0.118078 0.204516i
\(265\) −0.502413 −0.0308630
\(266\) 6.00649 4.69908i 0.368282 0.288119i
\(267\) −0.0898485 + 0.155622i −0.00549864 + 0.00952392i
\(268\) 0.894964 1.55012i 0.0546686 0.0946888i
\(269\) −8.78165 −0.535427 −0.267713 0.963499i \(-0.586268\pi\)
−0.267713 + 0.963499i \(0.586268\pi\)
\(270\) 0.228205 0.395262i 0.0138881 0.0240549i
\(271\) 28.8027 1.74964 0.874820 0.484448i \(-0.160980\pi\)
0.874820 + 0.484448i \(0.160980\pi\)
\(272\) 1.55187 0.0940959
\(273\) 5.92692 + 7.47474i 0.358713 + 0.452392i
\(274\) 2.44792 0.147884
\(275\) 18.3860 1.10872
\(276\) 1.62170 2.80886i 0.0976146 0.169074i
\(277\) 6.94992 0.417580 0.208790 0.977960i \(-0.433047\pi\)
0.208790 + 0.977960i \(0.433047\pi\)
\(278\) −5.37228 + 9.30505i −0.322208 + 0.558080i
\(279\) 4.80098 8.31553i 0.287427 0.497838i
\(280\) 1.11991 + 0.451626i 0.0669275 + 0.0269898i
\(281\) −12.5116 −0.746381 −0.373190 0.927755i \(-0.621736\pi\)
−0.373190 + 0.927755i \(0.621736\pi\)
\(282\) 3.93105 + 6.80879i 0.234091 + 0.405457i
\(283\) −5.60195 + 9.70287i −0.333001 + 0.576775i −0.983099 0.183075i \(-0.941395\pi\)
0.650097 + 0.759851i \(0.274728\pi\)
\(284\) −5.06527 + 8.77331i −0.300569 + 0.520600i
\(285\) −0.657787 + 1.13932i −0.0389639 + 0.0674875i
\(286\) −11.9358 + 6.99554i −0.705776 + 0.413655i
\(287\) −14.8900 + 11.6490i −0.878931 + 0.687617i
\(288\) −0.500000 0.866025i −0.0294628 0.0510310i
\(289\) −14.5917 −0.858335
\(290\) 2.01324 0.118221
\(291\) −4.73894 8.20808i −0.277802 0.481166i
\(292\) 1.40601 + 2.43529i 0.0822807 + 0.142514i
\(293\) 14.2699 24.7162i 0.833657 1.44394i −0.0614625 0.998109i \(-0.519576\pi\)
0.895119 0.445827i \(-0.147090\pi\)
\(294\) −1.68461 + 6.79427i −0.0982487 + 0.396250i
\(295\) 2.13729 3.70189i 0.124438 0.215532i
\(296\) 0.280491 0.0163032
\(297\) −1.91853 + 3.32300i −0.111325 + 0.192820i
\(298\) −4.65157 8.05676i −0.269458 0.466715i
\(299\) −10.1655 5.78078i −0.587886 0.334311i
\(300\) 4.79169 0.276648
\(301\) −5.97317 2.40880i −0.344288 0.138841i
\(302\) −10.3722 17.9651i −0.596851 1.03378i
\(303\) 3.18107 + 5.50977i 0.182747 + 0.316528i
\(304\) 1.44122 + 2.49627i 0.0826597 + 0.143171i
\(305\) −5.06785 −0.290184
\(306\) −0.775934 1.34396i −0.0443572 0.0768290i
\(307\) −23.1907 −1.32356 −0.661781 0.749698i \(-0.730199\pi\)
−0.661781 + 0.749698i \(0.730199\pi\)
\(308\) −9.41517 3.79685i −0.536479 0.216346i
\(309\) 8.28934 + 14.3576i 0.471564 + 0.816773i
\(310\) −4.38242 −0.248905
\(311\) 11.6740 + 20.2200i 0.661973 + 1.14657i 0.980096 + 0.198522i \(0.0636142\pi\)
−0.318123 + 0.948049i \(0.603052\pi\)
\(312\) −3.11065 + 1.82315i −0.176106 + 0.103215i
\(313\) 7.26499 12.5833i 0.410641 0.711252i −0.584319 0.811524i \(-0.698638\pi\)
0.994960 + 0.100273i \(0.0319715\pi\)
\(314\) 3.22701 + 5.58934i 0.182111 + 0.315425i
\(315\) −0.168836 1.19568i −0.00951282 0.0673692i
\(316\) 2.70966 4.69326i 0.152430 0.264017i
\(317\) 1.64596 2.85089i 0.0924463 0.160122i −0.816094 0.577920i \(-0.803865\pi\)
0.908540 + 0.417798i \(0.137198\pi\)
\(318\) 1.10079 0.0617294
\(319\) −16.9254 −0.947642
\(320\) −0.228205 + 0.395262i −0.0127570 + 0.0220958i
\(321\) 8.46023 14.6536i 0.472204 0.817882i
\(322\) −1.19980 8.49692i −0.0668624 0.473515i
\(323\) 2.23659 + 3.87388i 0.124447 + 0.215549i
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) −0.112939 17.2763i −0.00626472 0.958318i
\(326\) −4.35887 7.54979i −0.241416 0.418144i
\(327\) 7.90215 0.436990
\(328\) −3.57277 6.18822i −0.197273 0.341687i
\(329\) 19.2916 + 7.77971i 1.06358 + 0.428909i
\(330\) 1.75127 0.0964044
\(331\) −8.05285 13.9480i −0.442625 0.766649i 0.555258 0.831678i \(-0.312619\pi\)
−0.997883 + 0.0650290i \(0.979286\pi\)
\(332\) 1.35738 0.0744959
\(333\) −0.140245 0.242912i −0.00768540 0.0133115i
\(334\) −11.4560 19.8424i −0.626844 1.08573i
\(335\) 0.408470 + 0.707490i 0.0223171 + 0.0386543i
\(336\) −2.45374 0.989520i −0.133863 0.0539827i
\(337\) −14.9134 −0.812383 −0.406192 0.913788i \(-0.633143\pi\)
−0.406192 + 0.913788i \(0.633143\pi\)
\(338\) 6.64663 + 11.1724i 0.361529 + 0.607698i
\(339\) −3.40689 5.90091i −0.185037 0.320494i
\(340\) −0.354144 + 0.613395i −0.0192061 + 0.0332660i
\(341\) 36.8433 1.99518
\(342\) 1.44122 2.49627i 0.0779323 0.134983i
\(343\) 7.56588 + 16.9044i 0.408519 + 0.912750i
\(344\) 1.21716 2.10818i 0.0656246 0.113665i
\(345\) 0.740157 + 1.28199i 0.0398487 + 0.0690200i
\(346\) −3.79358 6.57067i −0.203944 0.353242i
\(347\) 28.8011 1.54612 0.773062 0.634330i \(-0.218724\pi\)
0.773062 + 0.634330i \(0.218724\pi\)
\(348\) −4.41103 −0.236456
\(349\) 2.50740 + 4.34294i 0.134218 + 0.232472i 0.925298 0.379240i \(-0.123814\pi\)
−0.791081 + 0.611712i \(0.790481\pi\)
\(350\) 9.98502 7.81162i 0.533722 0.417549i
\(351\) 3.13422 + 1.78233i 0.167292 + 0.0951335i
\(352\) 1.91853 3.32300i 0.102258 0.177116i
\(353\) 5.78333 10.0170i 0.307816 0.533152i −0.670069 0.742299i \(-0.733735\pi\)
0.977884 + 0.209147i \(0.0670687\pi\)
\(354\) −4.68283 + 8.11090i −0.248890 + 0.431089i
\(355\) −2.31184 4.00422i −0.122700 0.212522i
\(356\) −0.179697 −0.00952392
\(357\) −3.80789 1.53560i −0.201535 0.0812728i
\(358\) −6.25205 + 10.8289i −0.330431 + 0.572324i
\(359\) −14.9173 + 25.8375i −0.787306 + 1.36365i 0.140306 + 0.990108i \(0.455191\pi\)
−0.927612 + 0.373546i \(0.878142\pi\)
\(360\) 0.456409 0.0240549
\(361\) 5.34576 9.25913i 0.281356 0.487323i
\(362\) −2.26428 −0.119008
\(363\) −3.72308 −0.195411
\(364\) −3.50985 + 8.87023i −0.183966 + 0.464926i
\(365\) −1.28343 −0.0671780
\(366\) 11.1037 0.580402
\(367\) −3.63895 + 6.30284i −0.189951 + 0.329006i −0.945234 0.326394i \(-0.894166\pi\)
0.755282 + 0.655400i \(0.227500\pi\)
\(368\) 3.24339 0.169074
\(369\) −3.57277 + 6.18822i −0.185991 + 0.322146i
\(370\) −0.0640093 + 0.110867i −0.00332768 + 0.00576372i
\(371\) 2.29386 1.79456i 0.119091 0.0931690i
\(372\) 9.60195 0.497838
\(373\) −15.5458 26.9261i −0.804932 1.39418i −0.916337 0.400408i \(-0.868868\pi\)
0.111405 0.993775i \(-0.464465\pi\)
\(374\) 2.97731 5.15686i 0.153953 0.266655i
\(375\) −2.23451 + 3.87028i −0.115390 + 0.199861i
\(376\) −3.93105 + 6.80879i −0.202729 + 0.351136i
\(377\) 0.103967 + 15.9039i 0.00535457 + 0.819091i
\(378\) 0.369922 + 2.61976i 0.0190267 + 0.134746i
\(379\) −9.33146 16.1626i −0.479325 0.830215i 0.520394 0.853926i \(-0.325785\pi\)
−0.999719 + 0.0237115i \(0.992452\pi\)
\(380\) −1.31557 −0.0674875
\(381\) 21.8668 1.12027
\(382\) 4.58649 + 7.94403i 0.234665 + 0.406452i
\(383\) −4.48135 7.76192i −0.228986 0.396616i 0.728522 0.685023i \(-0.240208\pi\)
−0.957508 + 0.288407i \(0.906874\pi\)
\(384\) 0.500000 0.866025i 0.0255155 0.0441942i
\(385\) 3.64934 2.85500i 0.185988 0.145504i
\(386\) 1.21993 2.11297i 0.0620926 0.107548i
\(387\) −2.43431 −0.123743
\(388\) 4.73894 8.20808i 0.240583 0.416702i
\(389\) −14.5103 25.1326i −0.735702 1.27427i −0.954415 0.298484i \(-0.903519\pi\)
0.218712 0.975789i \(-0.429814\pi\)
\(390\) −0.0107575 1.64557i −0.000544725 0.0833268i
\(391\) 5.03332 0.254546
\(392\) −6.72632 + 1.93822i −0.339730 + 0.0978947i
\(393\) −4.72554 8.18487i −0.238372 0.412872i
\(394\) −13.4334 23.2673i −0.676765 1.17219i
\(395\) 1.23671 + 2.14205i 0.0622257 + 0.107778i
\(396\) −3.83707 −0.192820
\(397\) 2.17445 + 3.76625i 0.109132 + 0.189023i 0.915419 0.402502i \(-0.131859\pi\)
−0.806287 + 0.591525i \(0.798526\pi\)
\(398\) −27.9019 −1.39860
\(399\) −1.06628 7.55132i −0.0533807 0.378039i
\(400\) 2.39585 + 4.14973i 0.119792 + 0.207486i
\(401\) 9.55124 0.476966 0.238483 0.971147i \(-0.423350\pi\)
0.238483 + 0.971147i \(0.423350\pi\)
\(402\) −0.894964 1.55012i −0.0446367 0.0773131i
\(403\) −0.226316 34.6196i −0.0112736 1.72452i
\(404\) −3.18107 + 5.50977i −0.158264 + 0.274121i
\(405\) −0.228205 0.395262i −0.0113396 0.0196407i
\(406\) −9.19180 + 7.19106i −0.456181 + 0.356886i
\(407\) 0.538131 0.932070i 0.0266741 0.0462010i
\(408\) 0.775934 1.34396i 0.0384145 0.0665358i
\(409\) 1.27024 0.0628094 0.0314047 0.999507i \(-0.490002\pi\)
0.0314047 + 0.999507i \(0.490002\pi\)
\(410\) 3.26129 0.161064
\(411\) 1.22396 2.11996i 0.0603736 0.104570i
\(412\) −8.28934 + 14.3576i −0.408386 + 0.707346i
\(413\) 3.46456 + 24.5358i 0.170480 + 1.20733i
\(414\) −1.62170 2.80886i −0.0797020 0.138048i
\(415\) −0.309760 + 0.536520i −0.0152055 + 0.0263368i
\(416\) −3.13422 1.78233i −0.153668 0.0873857i
\(417\) 5.37228 + 9.30505i 0.263081 + 0.455670i
\(418\) 11.0601 0.540968
\(419\) 5.25472 + 9.10144i 0.256710 + 0.444634i 0.965359 0.260927i \(-0.0840282\pi\)
−0.708649 + 0.705561i \(0.750695\pi\)
\(420\) 0.951075 0.744058i 0.0464077 0.0363063i
\(421\) −1.14121 −0.0556192 −0.0278096 0.999613i \(-0.508853\pi\)
−0.0278096 + 0.999613i \(0.508853\pi\)
\(422\) 10.9871 + 19.0301i 0.534842 + 0.926373i
\(423\) 7.86211 0.382269
\(424\) 0.550397 + 0.953315i 0.0267296 + 0.0462971i
\(425\) 3.71804 + 6.43983i 0.180351 + 0.312378i
\(426\) 5.06527 + 8.77331i 0.245413 + 0.425068i
\(427\) 23.1382 18.1018i 1.11974 0.876007i
\(428\) 16.9205 0.817882
\(429\) 0.0904387 + 13.8344i 0.00436642 + 0.667933i
\(430\) 0.555521 + 0.962191i 0.0267896 + 0.0464010i
\(431\) −15.6637 + 27.1303i −0.754493 + 1.30682i 0.191132 + 0.981564i \(0.438784\pi\)
−0.945626 + 0.325257i \(0.894549\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −7.06113 + 12.2302i −0.339336 + 0.587748i −0.984308 0.176459i \(-0.943536\pi\)
0.644972 + 0.764206i \(0.276869\pi\)
\(434\) 20.0087 15.6535i 0.960450 0.751393i
\(435\) 1.00662 1.74351i 0.0482637 0.0835951i
\(436\) 3.95108 + 6.84346i 0.189222 + 0.327742i
\(437\) 4.67445 + 8.09638i 0.223609 + 0.387302i
\(438\) 2.81202 0.134364
\(439\) −6.46132 −0.308382 −0.154191 0.988041i \(-0.549277\pi\)
−0.154191 + 0.988041i \(0.549277\pi\)
\(440\) 0.875637 + 1.51665i 0.0417443 + 0.0723033i
\(441\) 5.04170 + 4.85605i 0.240081 + 0.231241i
\(442\) −4.86389 2.76593i −0.231352 0.131562i
\(443\) −5.70730 + 9.88534i −0.271162 + 0.469667i −0.969160 0.246434i \(-0.920741\pi\)
0.697998 + 0.716100i \(0.254075\pi\)
\(444\) 0.140245 0.242912i 0.00665575 0.0115281i
\(445\) 0.0410077 0.0710274i 0.00194395 0.00336702i
\(446\) −6.87919 11.9151i −0.325739 0.564196i
\(447\) −9.30314 −0.440024
\(448\) −0.369922 2.61976i −0.0174772 0.123772i
\(449\) −19.8942 + 34.4578i −0.938867 + 1.62617i −0.171278 + 0.985223i \(0.554790\pi\)
−0.767589 + 0.640942i \(0.778544\pi\)
\(450\) 2.39585 4.14973i 0.112941 0.195620i
\(451\) −27.4179 −1.29106
\(452\) 3.40689 5.90091i 0.160247 0.277556i
\(453\) −20.7443 −0.974654
\(454\) 18.8309 0.883778
\(455\) −2.70510 3.41154i −0.126817 0.159935i
\(456\) 2.88244 0.134983
\(457\) −5.25285 −0.245718 −0.122859 0.992424i \(-0.539206\pi\)
−0.122859 + 0.992424i \(0.539206\pi\)
\(458\) 1.74812 3.02784i 0.0816844 0.141481i
\(459\) −1.55187 −0.0724350
\(460\) −0.740157 + 1.28199i −0.0345100 + 0.0597731i
\(461\) 9.59122 16.6125i 0.446707 0.773720i −0.551462 0.834200i \(-0.685930\pi\)
0.998169 + 0.0604800i \(0.0192631\pi\)
\(462\) −7.99576 + 6.25535i −0.371996 + 0.291025i
\(463\) −17.5580 −0.815988 −0.407994 0.912985i \(-0.633772\pi\)
−0.407994 + 0.912985i \(0.633772\pi\)
\(464\) −2.20552 3.82007i −0.102389 0.177342i
\(465\) −2.19121 + 3.79529i −0.101615 + 0.176002i
\(466\) 9.74031 16.8707i 0.451211 0.781520i
\(467\) −1.54111 + 2.66928i −0.0713141 + 0.123520i −0.899477 0.436967i \(-0.856053\pi\)
0.828163 + 0.560487i \(0.189386\pi\)
\(468\) 0.0235697 + 3.60547i 0.00108951 + 0.166663i
\(469\) −4.39202 1.77117i −0.202805 0.0817849i
\(470\) −1.79417 3.10759i −0.0827589 0.143343i
\(471\) 6.45402 0.297385
\(472\) −9.36566 −0.431089
\(473\) −4.67031 8.08921i −0.214741 0.371942i
\(474\) −2.70966 4.69326i −0.124459 0.215569i
\(475\) −6.90589 + 11.9613i −0.316864 + 0.548824i
\(476\) −0.574070 4.06553i −0.0263125 0.186343i
\(477\) 0.550397 0.953315i 0.0252009 0.0436493i
\(478\) 12.5469 0.573882
\(479\) −9.18104 + 15.9020i −0.419493 + 0.726582i −0.995888 0.0905882i \(-0.971125\pi\)
0.576396 + 0.817171i \(0.304459\pi\)
\(480\) 0.228205 + 0.395262i 0.0104161 + 0.0180412i
\(481\) −0.879119 0.499926i −0.0400844 0.0227946i
\(482\) −0.466451 −0.0212463
\(483\) −7.95845 3.20940i −0.362122 0.146033i
\(484\) −1.86154 3.22428i −0.0846155 0.146558i
\(485\) 2.16290 + 3.74625i 0.0982121 + 0.170108i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) 18.0106 0.816138 0.408069 0.912951i \(-0.366202\pi\)
0.408069 + 0.912951i \(0.366202\pi\)
\(488\) 5.55187 + 9.61612i 0.251321 + 0.435301i
\(489\) −8.71775 −0.394230
\(490\) 0.768874 3.10097i 0.0347342 0.140087i
\(491\) −7.98794 13.8355i −0.360491 0.624388i 0.627551 0.778576i \(-0.284057\pi\)
−0.988042 + 0.154187i \(0.950724\pi\)
\(492\) −7.14554 −0.322146
\(493\) −3.42267 5.92824i −0.154149 0.266995i
\(494\) −0.0679384 10.3926i −0.00305669 0.467584i
\(495\) 0.875637 1.51665i 0.0393569 0.0681682i
\(496\) 4.80098 + 8.31553i 0.215570 + 0.373379i
\(497\) 24.8577 + 10.0244i 1.11502 + 0.449655i
\(498\) 0.678689 1.17552i 0.0304128 0.0526765i
\(499\) −4.06656 + 7.04348i −0.182044 + 0.315309i −0.942576 0.333990i \(-0.891605\pi\)
0.760532 + 0.649300i \(0.224938\pi\)
\(500\) −4.46902 −0.199861
\(501\) −22.9120 −1.02363
\(502\) 12.7935 22.1590i 0.571001 0.989002i
\(503\) −18.8326 + 32.6190i −0.839705 + 1.45441i 0.0504368 + 0.998727i \(0.483939\pi\)
−0.890142 + 0.455684i \(0.849395\pi\)
\(504\) −2.08382 + 1.63024i −0.0928207 + 0.0726168i
\(505\) −1.45187 2.51471i −0.0646073 0.111903i
\(506\) 6.22256 10.7778i 0.276626 0.479131i
\(507\) 12.9989 0.169960i 0.577301 0.00754820i
\(508\) 10.9334 + 18.9372i 0.485092 + 0.840203i
\(509\) −27.7558 −1.23025 −0.615127 0.788428i \(-0.710895\pi\)
−0.615127 + 0.788428i \(0.710895\pi\)
\(510\) 0.354144 + 0.613395i 0.0156817 + 0.0271616i
\(511\) 5.85975 4.58428i 0.259220 0.202797i
\(512\) 1.00000 0.0441942
\(513\) −1.44122 2.49627i −0.0636315 0.110213i
\(514\) −3.77611 −0.166557
\(515\) −3.78333 6.55292i −0.166713 0.288756i
\(516\) −1.21716 2.10818i −0.0535823 0.0928073i
\(517\) 15.0837 + 26.1258i 0.663381 + 1.14901i
\(518\) −0.103760 0.734819i −0.00455894 0.0322861i
\(519\) −7.58716 −0.333039
\(520\) 1.41973 0.832102i 0.0622592 0.0364901i
\(521\) −7.66182 13.2707i −0.335671 0.581398i 0.647943 0.761689i \(-0.275630\pi\)
−0.983613 + 0.180291i \(0.942296\pi\)
\(522\) −2.20552 + 3.82007i −0.0965328 + 0.167200i
\(523\) 25.0767 1.09653 0.548263 0.836306i \(-0.315289\pi\)
0.548263 + 0.836306i \(0.315289\pi\)
\(524\) 4.72554 8.18487i 0.206436 0.357558i
\(525\) −1.77255 12.5531i −0.0773605 0.547862i
\(526\) −9.84358 + 17.0496i −0.429201 + 0.743397i
\(527\) 7.45048 + 12.9046i 0.324548 + 0.562134i
\(528\) −1.91853 3.32300i −0.0834934 0.144615i
\(529\) −12.4804 −0.542626
\(530\) −0.502413 −0.0218234
\(531\) 4.68283 + 8.11090i 0.203217 + 0.351983i
\(532\) 6.00649 4.69908i 0.260414 0.203731i
\(533\) 0.168419 + 25.7631i 0.00729502 + 1.11592i
\(534\) −0.0898485 + 0.155622i −0.00388812 + 0.00673443i
\(535\) −3.86133 + 6.68802i −0.166940 + 0.289148i
\(536\) 0.894964 1.55012i 0.0386565 0.0669551i
\(537\) 6.25205 + 10.8289i 0.269796 + 0.467300i
\(538\) −8.78165 −0.378604
\(539\) −6.46398 + 26.0701i −0.278423 + 1.12292i
\(540\) 0.228205 0.395262i 0.00982037 0.0170094i
\(541\) −14.2260 + 24.6402i −0.611624 + 1.05936i 0.379343 + 0.925256i \(0.376150\pi\)
−0.990967 + 0.134107i \(0.957183\pi\)
\(542\) 28.8027 1.23718
\(543\) −1.13214 + 1.96092i −0.0485848 + 0.0841513i
\(544\) 1.55187 0.0665358
\(545\) −3.60662 −0.154490
\(546\) 5.92692 + 7.47474i 0.253649 + 0.319889i
\(547\) 4.99706 0.213659 0.106829 0.994277i \(-0.465930\pi\)
0.106829 + 0.994277i \(0.465930\pi\)
\(548\) 2.44792 0.104570
\(549\) 5.55187 9.61612i 0.236948 0.410406i
\(550\) 18.3860 0.783983
\(551\) 6.35728 11.0111i 0.270829 0.469090i
\(552\) 1.62170 2.80886i 0.0690240 0.119553i
\(553\) −13.2976 5.36252i −0.565471 0.228037i
\(554\) 6.94992 0.295274
\(555\) 0.0640093 + 0.110867i 0.00271704 + 0.00470606i
\(556\) −5.37228 + 9.30505i −0.227835 + 0.394622i
\(557\) −15.8565 + 27.4643i −0.671861 + 1.16370i 0.305514 + 0.952187i \(0.401172\pi\)
−0.977376 + 0.211511i \(0.932162\pi\)
\(558\) 4.80098 8.31553i 0.203242 0.352025i
\(559\) −7.57228 + 4.43811i −0.320274 + 0.187712i
\(560\) 1.11991 + 0.451626i 0.0473249 + 0.0190847i
\(561\) −2.97731 5.15686i −0.125702 0.217723i
\(562\) −12.5116 −0.527771
\(563\) 23.8948 1.00705 0.503523 0.863982i \(-0.332037\pi\)
0.503523 + 0.863982i \(0.332037\pi\)
\(564\) 3.93105 + 6.80879i 0.165527 + 0.286702i
\(565\) 1.55494 + 2.69323i 0.0654167 + 0.113305i
\(566\) −5.60195 + 9.70287i −0.235468 + 0.407842i
\(567\) 2.45374 + 0.989520i 0.103047 + 0.0415559i
\(568\) −5.06527 + 8.77331i −0.212534 + 0.368120i
\(569\) −38.4641 −1.61250 −0.806249 0.591577i \(-0.798506\pi\)
−0.806249 + 0.591577i \(0.798506\pi\)
\(570\) −0.657787 + 1.13932i −0.0275517 + 0.0477209i
\(571\) 15.8854 + 27.5143i 0.664782 + 1.15144i 0.979344 + 0.202199i \(0.0648088\pi\)
−0.314563 + 0.949237i \(0.601858\pi\)
\(572\) −11.9358 + 6.99554i −0.499059 + 0.292498i
\(573\) 9.17297 0.383207
\(574\) −14.8900 + 11.6490i −0.621498 + 0.486219i
\(575\) 7.77067 + 13.4592i 0.324059 + 0.561287i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 10.1750 + 17.6236i 0.423591 + 0.733682i 0.996288 0.0860858i \(-0.0274359\pi\)
−0.572696 + 0.819768i \(0.694103\pi\)
\(578\) −14.5917 −0.606935
\(579\) −1.21993 2.11297i −0.0506984 0.0878122i
\(580\) 2.01324 0.0835951
\(581\) −0.502124 3.55601i −0.0208316 0.147528i
\(582\) −4.73894 8.20808i −0.196435 0.340236i
\(583\) 4.22382 0.174933
\(584\) 1.40601 + 2.43529i 0.0581812 + 0.100773i
\(585\) −1.43049 0.813470i −0.0591433 0.0336328i
\(586\) 14.2699 24.7162i 0.589484 1.02102i
\(587\) −11.7425 20.3386i −0.484664 0.839462i 0.515181 0.857081i \(-0.327725\pi\)
−0.999845 + 0.0176191i \(0.994391\pi\)
\(588\) −1.68461 + 6.79427i −0.0694723 + 0.280191i
\(589\) −13.8385 + 23.9691i −0.570207 + 0.987628i
\(590\) 2.13729 3.70189i 0.0879907 0.152404i
\(591\) −26.8668 −1.10515
\(592\) 0.280491 0.0115281
\(593\) −0.268350 + 0.464796i −0.0110198 + 0.0190869i −0.871483 0.490426i \(-0.836841\pi\)
0.860463 + 0.509513i \(0.170174\pi\)
\(594\) −1.91853 + 3.32300i −0.0787184 + 0.136344i
\(595\) 1.73795 + 0.700864i 0.0712492 + 0.0287326i
\(596\) −4.65157 8.05676i −0.190536 0.330018i
\(597\) −13.9509 + 24.1638i −0.570974 + 0.988957i
\(598\) −10.1655 5.78078i −0.415698 0.236394i
\(599\) 9.68962 + 16.7829i 0.395907 + 0.685731i 0.993217 0.116280i \(-0.0370969\pi\)
−0.597309 + 0.802011i \(0.703764\pi\)
\(600\) 4.79169 0.195620
\(601\) 7.74999 + 13.4234i 0.316129 + 0.547551i 0.979677 0.200583i \(-0.0642835\pi\)
−0.663548 + 0.748134i \(0.730950\pi\)
\(602\) −5.97317 2.40880i −0.243448 0.0981753i
\(603\) −1.78993 −0.0728915
\(604\) −10.3722 17.9651i −0.422038 0.730991i
\(605\) 1.69925 0.0690843
\(606\) 3.18107 + 5.50977i 0.129222 + 0.223819i
\(607\) −7.87631 13.6422i −0.319690 0.553719i 0.660734 0.750620i \(-0.270245\pi\)
−0.980423 + 0.196902i \(0.936912\pi\)
\(608\) 1.44122 + 2.49627i 0.0584492 + 0.101237i
\(609\) 1.63174 + 11.5559i 0.0661214 + 0.468267i
\(610\) −5.06785 −0.205191
\(611\) 24.4562 14.3338i 0.989394 0.579883i
\(612\) −0.775934 1.34396i −0.0313653 0.0543263i
\(613\) −15.5441 + 26.9231i −0.627818 + 1.08741i 0.360170 + 0.932887i \(0.382719\pi\)
−0.987989 + 0.154527i \(0.950615\pi\)
\(614\) −23.1907 −0.935899
\(615\) 1.63065 2.82436i 0.0657540 0.113889i
\(616\) −9.41517 3.79685i −0.379348 0.152980i
\(617\) 9.39918 16.2799i 0.378397 0.655403i −0.612432 0.790523i \(-0.709809\pi\)
0.990829 + 0.135120i \(0.0431421\pi\)
\(618\) 8.28934 + 14.3576i 0.333446 + 0.577545i
\(619\) −10.6461 18.4396i −0.427904 0.741152i 0.568783 0.822488i \(-0.307415\pi\)
−0.996687 + 0.0813361i \(0.974081\pi\)
\(620\) −4.38242 −0.176002
\(621\) −3.24339 −0.130153
\(622\) 11.6740 + 20.2200i 0.468086 + 0.810749i
\(623\) 0.0664738 + 0.470763i 0.00266322 + 0.0188607i
\(624\) −3.11065 + 1.82315i −0.124526 + 0.0729844i
\(625\) −10.9594 + 18.9822i −0.438375 + 0.759288i
\(626\) 7.26499 12.5833i 0.290367 0.502931i
\(627\) 5.53006 9.57835i 0.220849 0.382522i
\(628\) 3.22701 + 5.58934i 0.128772 + 0.223039i
\(629\) 0.435285 0.0173559
\(630\) −0.168836 1.19568i −0.00672658 0.0476372i
\(631\) −4.63522 + 8.02844i −0.184525 + 0.319607i −0.943416 0.331610i \(-0.892408\pi\)
0.758891 + 0.651218i \(0.225741\pi\)
\(632\) 2.70966 4.69326i 0.107784 0.186688i
\(633\) 21.9741 0.873393
\(634\) 1.64596 2.85089i 0.0653694 0.113223i
\(635\) −9.98022 −0.396053
\(636\) 1.10079 0.0436493
\(637\) 24.5363 + 5.91369i 0.972162 + 0.234309i
\(638\) −16.9254 −0.670084
\(639\) 10.1305 0.400758
\(640\) −0.228205 + 0.395262i −0.00902058 + 0.0156241i
\(641\) 43.7593 1.72839 0.864194 0.503158i \(-0.167829\pi\)
0.864194 + 0.503158i \(0.167829\pi\)
\(642\) 8.46023 14.6536i 0.333899 0.578330i
\(643\) 10.6905 18.5165i 0.421593 0.730220i −0.574503 0.818503i \(-0.694805\pi\)
0.996095 + 0.0882825i \(0.0281378\pi\)
\(644\) −1.19980 8.49692i −0.0472788 0.334826i
\(645\) 1.11104 0.0437473
\(646\) 2.23659 + 3.87388i 0.0879973 + 0.152416i
\(647\) 4.06922 7.04810i 0.159978 0.277089i −0.774883 0.632105i \(-0.782191\pi\)
0.934860 + 0.355016i \(0.115524\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) −17.9683 + 31.1221i −0.705318 + 1.22165i
\(650\) −0.112939 17.2763i −0.00442983 0.677633i
\(651\) −3.55197 25.1548i −0.139213 0.985896i
\(652\) −4.35887 7.54979i −0.170707 0.295673i
\(653\) −19.8789 −0.777920 −0.388960 0.921255i \(-0.627166\pi\)
−0.388960 + 0.921255i \(0.627166\pi\)
\(654\) 7.90215 0.308999
\(655\) 2.15678 + 3.73565i 0.0842723 + 0.145964i
\(656\) −3.57277 6.18822i −0.139493 0.241609i
\(657\) 1.40601 2.43529i 0.0548538 0.0950095i
\(658\) 19.2916 + 7.77971i 0.752064 + 0.303285i
\(659\) −4.78352 + 8.28530i −0.186339 + 0.322749i −0.944027 0.329868i \(-0.892996\pi\)
0.757688 + 0.652617i \(0.226329\pi\)
\(660\) 1.75127 0.0681682
\(661\) 5.70934 9.88887i 0.222068 0.384632i −0.733368 0.679832i \(-0.762053\pi\)
0.955436 + 0.295199i \(0.0953861\pi\)
\(662\) −8.05285 13.9480i −0.312983 0.542103i
\(663\) −4.82732 + 2.82929i −0.187477 + 0.109880i
\(664\) 1.35738 0.0526765
\(665\) 0.486660 + 3.44649i 0.0188718 + 0.133649i
\(666\) −0.140245 0.242912i −0.00543440 0.00941265i
\(667\) −7.15336 12.3900i −0.276979 0.479742i
\(668\) −11.4560 19.8424i −0.443246 0.767724i
\(669\) −13.7584 −0.531929
\(670\) 0.408470 + 0.707490i 0.0157806 + 0.0273327i
\(671\) 42.6058 1.64478
\(672\) −2.45374 0.989520i −0.0946552 0.0381716i
\(673\) −7.10491 12.3061i −0.273874 0.474364i 0.695976 0.718065i \(-0.254972\pi\)
−0.969850 + 0.243701i \(0.921639\pi\)
\(674\) −14.9134 −0.574442
\(675\) −2.39585 4.14973i −0.0922161 0.159723i
\(676\) 6.64663 + 11.1724i 0.255640 + 0.429707i
\(677\) 7.31125 12.6635i 0.280994 0.486696i −0.690636 0.723203i \(-0.742669\pi\)
0.971630 + 0.236507i \(0.0760025\pi\)
\(678\) −3.40689 5.90091i −0.130841 0.226623i
\(679\) −23.2563 9.37855i −0.892494 0.359916i
\(680\) −0.354144 + 0.613395i −0.0135808 + 0.0235226i
\(681\) 9.41545 16.3080i 0.360801 0.624925i
\(682\) 36.8433 1.41080
\(683\) −35.1710 −1.34578 −0.672890 0.739743i \(-0.734947\pi\)
−0.672890 + 0.739743i \(0.734947\pi\)
\(684\) 1.44122 2.49627i 0.0551065 0.0954472i
\(685\) −0.558628 + 0.967572i −0.0213441 + 0.0369690i
\(686\) 7.56588 + 16.9044i 0.288866 + 0.645412i
\(687\) −1.74812 3.02784i −0.0666950 0.115519i
\(688\) 1.21716 2.10818i 0.0464036 0.0803734i
\(689\) −0.0259454 3.96888i −0.000988442 0.151202i
\(690\) 0.740157 + 1.28199i 0.0281773 + 0.0488045i
\(691\) 13.8115 0.525413 0.262707 0.964876i \(-0.415385\pi\)
0.262707 + 0.964876i \(0.415385\pi\)
\(692\) −3.79358 6.57067i −0.144210 0.249779i
\(693\) 1.41942 + 10.0522i 0.0539191 + 0.381852i
\(694\) 28.8011 1.09327
\(695\) −2.45196 4.24691i −0.0930080 0.161095i
\(696\) −4.41103 −0.167200
\(697\) −5.54447 9.60331i −0.210012 0.363751i
\(698\) 2.50740 + 4.34294i 0.0949064 + 0.164383i
\(699\) −9.74031 16.8707i −0.368412 0.638109i
\(700\) 9.98502 7.81162i 0.377398 0.295252i
\(701\) −17.6965 −0.668387 −0.334193 0.942504i \(-0.608464\pi\)
−0.334193 + 0.942504i \(0.608464\pi\)
\(702\) 3.13422 + 1.78233i 0.118293 + 0.0672695i
\(703\) 0.404249 + 0.700180i 0.0152465 + 0.0264078i
\(704\) 1.91853 3.32300i 0.0723074 0.125240i
\(705\) −3.58834 −0.135145
\(706\) 5.78333 10.0170i 0.217659 0.376996i
\(707\) 15.6110 + 6.29545i 0.587113 + 0.236765i
\(708\) −4.68283 + 8.11090i −0.175991 + 0.304826i
\(709\) −17.4342 30.1969i −0.654755 1.13407i −0.981955 0.189113i \(-0.939439\pi\)
0.327201 0.944955i \(-0.393895\pi\)
\(710\) −2.31184 4.00422i −0.0867617 0.150276i
\(711\) −5.41931 −0.203240
\(712\) −0.179697 −0.00673443
\(713\) 15.5715 + 26.9705i 0.583155 + 1.01005i
\(714\) −3.80789 1.53560i −0.142507 0.0574686i
\(715\) −0.0412771 6.31417i −0.00154367 0.236137i
\(716\) −6.25205 + 10.8289i −0.233650 + 0.404694i
\(717\) 6.27346 10.8659i 0.234286 0.405796i
\(718\) −14.9173 + 25.8375i −0.556709 + 0.964249i
\(719\) −1.55552 2.69424i −0.0580112 0.100478i 0.835561 0.549397i \(-0.185143\pi\)
−0.893573 + 0.448919i \(0.851809\pi\)
\(720\) 0.456409 0.0170094
\(721\) 40.6798 + 16.4049i 1.51499 + 0.610951i
\(722\) 5.34576 9.25913i 0.198949 0.344589i
\(723\) −0.233225 + 0.403958i −0.00867375 + 0.0150234i
\(724\) −2.26428 −0.0841513
\(725\) 10.5682 18.3046i 0.392491 0.679815i
\(726\) −3.72308 −0.138176
\(727\) 22.0591 0.818128 0.409064 0.912506i \(-0.365855\pi\)
0.409064 + 0.912506i \(0.365855\pi\)
\(728\) −3.50985 + 8.87023i −0.130084 + 0.328752i
\(729\) 1.00000 0.0370370
\(730\) −1.28343 −0.0475020
\(731\) 1.88887 3.27161i 0.0698622 0.121005i
\(732\) 11.1037 0.410406
\(733\) −24.6272 + 42.6555i −0.909626 + 1.57552i −0.0950410 + 0.995473i \(0.530298\pi\)
−0.814585 + 0.580045i \(0.803035\pi\)
\(734\) −3.63895 + 6.30284i −0.134316 + 0.232642i
\(735\) −2.30108 2.21635i −0.0848766 0.0817512i
\(736\) 3.24339 0.119553
\(737\) −3.43403 5.94792i −0.126494 0.219095i
\(738\) −3.57277 + 6.18822i −0.131516 + 0.227792i
\(739\) 17.0688 29.5640i 0.627886 1.08753i −0.360089 0.932918i \(-0.617254\pi\)
0.987975 0.154613i \(-0.0494130\pi\)
\(740\) −0.0640093 + 0.110867i −0.00235303 + 0.00407556i
\(741\) −9.03420 5.13745i −0.331880 0.188729i
\(742\) 2.29386 1.79456i 0.0842101 0.0658804i
\(743\) −20.1806 34.9539i −0.740356 1.28233i −0.952333 0.305060i \(-0.901324\pi\)
0.211977 0.977275i \(-0.432010\pi\)
\(744\) 9.60195 0.352025
\(745\) 4.24604 0.155563
\(746\) −15.5458 26.9261i −0.569173 0.985836i
\(747\) −0.678689 1.17552i −0.0248320 0.0430102i
\(748\) 2.97731 5.15686i 0.108861 0.188553i
\(749\) −6.25925 44.3276i −0.228708 1.61970i
\(750\) −2.23451 + 3.87028i −0.0815928 + 0.141323i
\(751\) −33.8569 −1.23546 −0.617729 0.786391i \(-0.711947\pi\)
−0.617729 + 0.786391i \(0.711947\pi\)
\(752\) −3.93105 + 6.80879i −0.143351 + 0.248291i
\(753\) −12.7935 22.1590i −0.466220 0.807517i
\(754\) 0.103967 + 15.9039i 0.00378625 + 0.579185i
\(755\) 9.46791 0.344573
\(756\) 0.369922 + 2.61976i 0.0134539 + 0.0952799i
\(757\) −10.3752 17.9704i −0.377094 0.653146i 0.613544 0.789660i \(-0.289743\pi\)
−0.990638 + 0.136515i \(0.956410\pi\)
\(758\) −9.33146 16.1626i −0.338934 0.587050i
\(759\) −6.22256 10.7778i −0.225865 0.391209i
\(760\) −1.31557 −0.0477209
\(761\) −0.578590 1.00215i −0.0209739 0.0363278i 0.855348 0.518054i \(-0.173343\pi\)
−0.876322 + 0.481726i \(0.840010\pi\)
\(762\) 21.8668 0.792151
\(763\) 16.4667 12.8824i 0.596133 0.466375i
\(764\) 4.58649 + 7.94403i 0.165933 + 0.287405i
\(765\) 0.708287 0.0256082
\(766\) −4.48135 7.76192i −0.161918 0.280450i
\(767\) 29.3540 + 16.6926i 1.05991 + 0.602737i
\(768\) 0.500000 0.866025i 0.0180422 0.0312500i
\(769\) 16.9810 + 29.4120i 0.612352 + 1.06063i 0.990843 + 0.135020i \(0.0431099\pi\)
−0.378491 + 0.925605i \(0.623557\pi\)
\(770\) 3.64934 2.85500i 0.131513 0.102887i
\(771\) −1.88805 + 3.27020i −0.0679966 + 0.117774i
\(772\) 1.21993 2.11297i 0.0439061 0.0760476i
\(773\) −25.5169 −0.917778 −0.458889 0.888494i \(-0.651753\pi\)
−0.458889 + 0.888494i \(0.651753\pi\)
\(774\) −2.43431 −0.0874995
\(775\) −23.0048 + 39.8455i −0.826357 + 1.43129i
\(776\) 4.73894 8.20808i 0.170118