Properties

Label 546.2.j.d.289.1
Level $546$
Weight $2$
Character 546.289
Analytic conductor $4.360$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.447703281.1
Defining polynomial: \(x^{8} - x^{7} - 2 x^{6} + 2 x^{5} + 3 x^{4} + 4 x^{3} - 8 x^{2} - 8 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(1.26359 + 0.635098i\) of defining polynomial
Character \(\chi\) \(=\) 546.289
Dual form 546.2.j.d.529.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +(0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(-1.97513 + 3.42102i) q^{5} +(0.500000 - 0.866025i) q^{6} +(-1.15207 + 2.38175i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(-1.97513 + 3.42102i) q^{5} +(0.500000 - 0.866025i) q^{6} +(-1.15207 + 2.38175i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-1.97513 + 3.42102i) q^{10} +(-2.45689 + 4.25545i) q^{11} +(0.500000 - 0.866025i) q^{12} +(-3.39335 - 1.21869i) q^{13} +(-1.15207 + 2.38175i) q^{14} +(1.97513 + 3.42102i) q^{15} +1.00000 q^{16} +0.140571 q^{17} +(-0.500000 - 0.866025i) q^{18} +(0.388481 + 0.672870i) q^{19} +(-1.97513 + 3.42102i) q^{20} +(1.48662 + 2.18860i) q^{21} +(-2.45689 + 4.25545i) q^{22} +9.53690 q^{23} +(0.500000 - 0.866025i) q^{24} +(-5.30226 - 9.18378i) q^{25} +(-3.39335 - 1.21869i) q^{26} -1.00000 q^{27} +(-1.15207 + 2.38175i) q^{28} +(-0.629759 - 1.09077i) q^{29} +(1.97513 + 3.42102i) q^{30} +(-1.67992 - 2.90971i) q^{31} +1.00000 q^{32} +(2.45689 + 4.25545i) q^{33} +0.140571 q^{34} +(-5.87254 - 8.64551i) q^{35} +(-0.500000 - 0.866025i) q^{36} +11.1368 q^{37} +(0.388481 + 0.672870i) q^{38} +(-2.75209 + 2.32938i) q^{39} +(-1.97513 + 3.42102i) q^{40} +(4.65505 + 8.06279i) q^{41} +(1.48662 + 2.18860i) q^{42} +(-0.541233 + 0.937443i) q^{43} +(-2.45689 + 4.25545i) q^{44} +3.95025 q^{45} +9.53690 q^{46} +(3.33199 - 5.77118i) q^{47} +(0.500000 - 0.866025i) q^{48} +(-4.34548 - 5.48788i) q^{49} +(-5.30226 - 9.18378i) q^{50} +(0.0702857 - 0.121738i) q^{51} +(-3.39335 - 1.21869i) q^{52} +(5.53204 + 9.58177i) q^{53} -1.00000 q^{54} +(-9.70533 - 16.8101i) q^{55} +(-1.15207 + 2.38175i) q^{56} +0.776963 q^{57} +(-0.629759 - 1.09077i) q^{58} +0.431218 q^{59} +(1.97513 + 3.42102i) q^{60} +(4.14057 + 7.17168i) q^{61} +(-1.67992 - 2.90971i) q^{62} +(2.63869 - 0.193156i) q^{63} +1.00000 q^{64} +(10.8715 - 9.20163i) q^{65} +(2.45689 + 4.25545i) q^{66} +(-4.09814 + 7.09819i) q^{67} +0.140571 q^{68} +(4.76845 - 8.25920i) q^{69} +(-5.87254 - 8.64551i) q^{70} +(1.93865 - 3.35783i) q^{71} +(-0.500000 - 0.866025i) q^{72} +(-0.0817820 - 0.141650i) q^{73} +11.1368 q^{74} -10.6045 q^{75} +(0.388481 + 0.672870i) q^{76} +(-7.30493 - 10.7543i) q^{77} +(-2.75209 + 2.32938i) q^{78} +(2.17517 - 3.76751i) q^{79} +(-1.97513 + 3.42102i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(4.65505 + 8.06279i) q^{82} -10.5220 q^{83} +(1.48662 + 2.18860i) q^{84} +(-0.277647 + 0.480898i) q^{85} +(-0.541233 + 0.937443i) q^{86} -1.25952 q^{87} +(-2.45689 + 4.25545i) q^{88} -1.07274 q^{89} +3.95025 q^{90} +(6.81198 - 6.67809i) q^{91} +9.53690 q^{92} -3.35985 q^{93} +(3.33199 - 5.77118i) q^{94} -3.06920 q^{95} +(0.500000 - 0.866025i) q^{96} +(-6.54097 + 11.3293i) q^{97} +(-4.34548 - 5.48788i) q^{98} +4.91377 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 8q^{2} + 4q^{3} + 8q^{4} + 2q^{5} + 4q^{6} - 3q^{7} + 8q^{8} - 4q^{9} + O(q^{10}) \) \( 8q + 8q^{2} + 4q^{3} + 8q^{4} + 2q^{5} + 4q^{6} - 3q^{7} + 8q^{8} - 4q^{9} + 2q^{10} - 6q^{11} + 4q^{12} - 11q^{13} - 3q^{14} - 2q^{15} + 8q^{16} - 8q^{17} - 4q^{18} + 6q^{19} + 2q^{20} - 3q^{21} - 6q^{22} + 20q^{23} + 4q^{24} - 18q^{25} - 11q^{26} - 8q^{27} - 3q^{28} + 2q^{29} - 2q^{30} + 6q^{31} + 8q^{32} + 6q^{33} - 8q^{34} - 18q^{35} - 4q^{36} + 56q^{37} + 6q^{38} - 10q^{39} + 2q^{40} - 3q^{42} - 6q^{43} - 6q^{44} - 4q^{45} + 20q^{46} + q^{47} + 4q^{48} + 5q^{49} - 18q^{50} - 4q^{51} - 11q^{52} + 7q^{53} - 8q^{54} + q^{55} - 3q^{56} + 12q^{57} + 2q^{58} - 4q^{59} - 2q^{60} + 24q^{61} + 6q^{62} + 8q^{64} + 22q^{65} + 6q^{66} - 15q^{67} - 8q^{68} + 10q^{69} - 18q^{70} + 6q^{71} - 4q^{72} + q^{73} + 56q^{74} - 36q^{75} + 6q^{76} - 22q^{77} - 10q^{78} - 12q^{79} + 2q^{80} - 4q^{81} - 32q^{83} - 3q^{84} - 13q^{85} - 6q^{86} + 4q^{87} - 6q^{88} - 50q^{89} - 4q^{90} - 8q^{91} + 20q^{92} + 12q^{93} + q^{94} + 16q^{95} + 4q^{96} - q^{97} + 5q^{98} + 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 1.00000 0.500000
\(5\) −1.97513 + 3.42102i −0.883304 + 1.52993i −0.0356582 + 0.999364i \(0.511353\pi\)
−0.847646 + 0.530563i \(0.821981\pi\)
\(6\) 0.500000 0.866025i 0.204124 0.353553i
\(7\) −1.15207 + 2.38175i −0.435441 + 0.900217i
\(8\) 1.00000 0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −1.97513 + 3.42102i −0.624590 + 1.08182i
\(11\) −2.45689 + 4.25545i −0.740779 + 1.28307i 0.211362 + 0.977408i \(0.432210\pi\)
−0.952141 + 0.305659i \(0.901123\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) −3.39335 1.21869i −0.941145 0.338004i
\(14\) −1.15207 + 2.38175i −0.307903 + 0.636550i
\(15\) 1.97513 + 3.42102i 0.509976 + 0.883304i
\(16\) 1.00000 0.250000
\(17\) 0.140571 0.0340936 0.0170468 0.999855i \(-0.494574\pi\)
0.0170468 + 0.999855i \(0.494574\pi\)
\(18\) −0.500000 0.866025i −0.117851 0.204124i
\(19\) 0.388481 + 0.672870i 0.0891238 + 0.154367i 0.907141 0.420827i \(-0.138260\pi\)
−0.818017 + 0.575194i \(0.804927\pi\)
\(20\) −1.97513 + 3.42102i −0.441652 + 0.764963i
\(21\) 1.48662 + 2.18860i 0.324408 + 0.477591i
\(22\) −2.45689 + 4.25545i −0.523810 + 0.907266i
\(23\) 9.53690 1.98858 0.994291 0.106706i \(-0.0340305\pi\)
0.994291 + 0.106706i \(0.0340305\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) −5.30226 9.18378i −1.06045 1.83676i
\(26\) −3.39335 1.21869i −0.665490 0.239005i
\(27\) −1.00000 −0.192450
\(28\) −1.15207 + 2.38175i −0.217720 + 0.450109i
\(29\) −0.629759 1.09077i −0.116943 0.202552i 0.801612 0.597845i \(-0.203976\pi\)
−0.918555 + 0.395293i \(0.870643\pi\)
\(30\) 1.97513 + 3.42102i 0.360607 + 0.624590i
\(31\) −1.67992 2.90971i −0.301723 0.522600i 0.674803 0.737998i \(-0.264229\pi\)
−0.976526 + 0.215398i \(0.930895\pi\)
\(32\) 1.00000 0.176777
\(33\) 2.45689 + 4.25545i 0.427689 + 0.740779i
\(34\) 0.140571 0.0241078
\(35\) −5.87254 8.64551i −0.992641 1.46136i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 11.1368 1.83088 0.915440 0.402454i \(-0.131843\pi\)
0.915440 + 0.402454i \(0.131843\pi\)
\(38\) 0.388481 + 0.672870i 0.0630200 + 0.109154i
\(39\) −2.75209 + 2.32938i −0.440687 + 0.372999i
\(40\) −1.97513 + 3.42102i −0.312295 + 0.540911i
\(41\) 4.65505 + 8.06279i 0.726997 + 1.25920i 0.958147 + 0.286277i \(0.0924179\pi\)
−0.231150 + 0.972918i \(0.574249\pi\)
\(42\) 1.48662 + 2.18860i 0.229391 + 0.337708i
\(43\) −0.541233 + 0.937443i −0.0825372 + 0.142959i −0.904339 0.426815i \(-0.859636\pi\)
0.821802 + 0.569773i \(0.192969\pi\)
\(44\) −2.45689 + 4.25545i −0.370390 + 0.641534i
\(45\) 3.95025 0.588869
\(46\) 9.53690 1.40614
\(47\) 3.33199 5.77118i 0.486021 0.841813i −0.513850 0.857880i \(-0.671781\pi\)
0.999871 + 0.0160671i \(0.00511454\pi\)
\(48\) 0.500000 0.866025i 0.0721688 0.125000i
\(49\) −4.34548 5.48788i −0.620783 0.783983i
\(50\) −5.30226 9.18378i −0.749852 1.29878i
\(51\) 0.0702857 0.121738i 0.00984197 0.0170468i
\(52\) −3.39335 1.21869i −0.470572 0.169002i
\(53\) 5.53204 + 9.58177i 0.759884 + 1.31616i 0.942910 + 0.333049i \(0.108077\pi\)
−0.183026 + 0.983108i \(0.558589\pi\)
\(54\) −1.00000 −0.136083
\(55\) −9.70533 16.8101i −1.30867 2.26668i
\(56\) −1.15207 + 2.38175i −0.153952 + 0.318275i
\(57\) 0.776963 0.102911
\(58\) −0.629759 1.09077i −0.0826914 0.143226i
\(59\) 0.431218 0.0561399 0.0280699 0.999606i \(-0.491064\pi\)
0.0280699 + 0.999606i \(0.491064\pi\)
\(60\) 1.97513 + 3.42102i 0.254988 + 0.441652i
\(61\) 4.14057 + 7.17168i 0.530146 + 0.918240i 0.999381 + 0.0351665i \(0.0111962\pi\)
−0.469236 + 0.883073i \(0.655470\pi\)
\(62\) −1.67992 2.90971i −0.213351 0.369534i
\(63\) 2.63869 0.193156i 0.332444 0.0243353i
\(64\) 1.00000 0.125000
\(65\) 10.8715 9.20163i 1.34844 1.14132i
\(66\) 2.45689 + 4.25545i 0.302422 + 0.523810i
\(67\) −4.09814 + 7.09819i −0.500668 + 0.867182i 0.499332 + 0.866411i \(0.333579\pi\)
−1.00000 0.000771201i \(0.999755\pi\)
\(68\) 0.140571 0.0170468
\(69\) 4.76845 8.25920i 0.574054 0.994291i
\(70\) −5.87254 8.64551i −0.701903 1.03334i
\(71\) 1.93865 3.35783i 0.230075 0.398502i −0.727755 0.685837i \(-0.759436\pi\)
0.957830 + 0.287336i \(0.0927695\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) −0.0817820 0.141650i −0.00957185 0.0165789i 0.861200 0.508267i \(-0.169714\pi\)
−0.870772 + 0.491688i \(0.836380\pi\)
\(74\) 11.1368 1.29463
\(75\) −10.6045 −1.22450
\(76\) 0.388481 + 0.672870i 0.0445619 + 0.0771834i
\(77\) −7.30493 10.7543i −0.832474 1.22556i
\(78\) −2.75209 + 2.32938i −0.311613 + 0.263750i
\(79\) 2.17517 3.76751i 0.244726 0.423878i −0.717329 0.696735i \(-0.754635\pi\)
0.962055 + 0.272857i \(0.0879687\pi\)
\(80\) −1.97513 + 3.42102i −0.220826 + 0.382482i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 4.65505 + 8.06279i 0.514064 + 0.890386i
\(83\) −10.5220 −1.15494 −0.577472 0.816410i \(-0.695961\pi\)
−0.577472 + 0.816410i \(0.695961\pi\)
\(84\) 1.48662 + 2.18860i 0.162204 + 0.238795i
\(85\) −0.277647 + 0.480898i −0.0301150 + 0.0521607i
\(86\) −0.541233 + 0.937443i −0.0583626 + 0.101087i
\(87\) −1.25952 −0.135035
\(88\) −2.45689 + 4.25545i −0.261905 + 0.453633i
\(89\) −1.07274 −0.113710 −0.0568550 0.998382i \(-0.518107\pi\)
−0.0568550 + 0.998382i \(0.518107\pi\)
\(90\) 3.95025 0.416393
\(91\) 6.81198 6.67809i 0.714090 0.700054i
\(92\) 9.53690 0.994291
\(93\) −3.35985 −0.348400
\(94\) 3.33199 5.77118i 0.343669 0.595252i
\(95\) −3.06920 −0.314893
\(96\) 0.500000 0.866025i 0.0510310 0.0883883i
\(97\) −6.54097 + 11.3293i −0.664135 + 1.15032i 0.315384 + 0.948964i \(0.397867\pi\)
−0.979519 + 0.201351i \(0.935467\pi\)
\(98\) −4.34548 5.48788i −0.438960 0.554359i
\(99\) 4.91377 0.493853
\(100\) −5.30226 9.18378i −0.530226 0.918378i
\(101\) −3.69262 + 6.39580i −0.367429 + 0.636406i −0.989163 0.146823i \(-0.953095\pi\)
0.621734 + 0.783229i \(0.286429\pi\)
\(102\) 0.0702857 0.121738i 0.00695933 0.0120539i
\(103\) −1.99107 + 3.44863i −0.196186 + 0.339804i −0.947289 0.320382i \(-0.896189\pi\)
0.751103 + 0.660185i \(0.229522\pi\)
\(104\) −3.39335 1.21869i −0.332745 0.119502i
\(105\) −10.4235 + 0.763015i −1.01723 + 0.0744626i
\(106\) 5.53204 + 9.58177i 0.537319 + 0.930664i
\(107\) −7.07358 −0.683828 −0.341914 0.939731i \(-0.611075\pi\)
−0.341914 + 0.939731i \(0.611075\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −7.42350 12.8579i −0.711042 1.23156i −0.964466 0.264206i \(-0.914890\pi\)
0.253424 0.967355i \(-0.418443\pi\)
\(110\) −9.70533 16.8101i −0.925367 1.60278i
\(111\) 5.56841 9.64476i 0.528530 0.915440i
\(112\) −1.15207 + 2.38175i −0.108860 + 0.225054i
\(113\) −0.785895 + 1.36121i −0.0739308 + 0.128052i −0.900621 0.434606i \(-0.856888\pi\)
0.826690 + 0.562658i \(0.190221\pi\)
\(114\) 0.776963 0.0727692
\(115\) −18.8366 + 32.6259i −1.75652 + 3.04238i
\(116\) −0.629759 1.09077i −0.0584717 0.101276i
\(117\) 0.641255 + 3.54807i 0.0592841 + 0.328019i
\(118\) 0.431218 0.0396969
\(119\) −0.161948 + 0.334806i −0.0148457 + 0.0306916i
\(120\) 1.97513 + 3.42102i 0.180304 + 0.312295i
\(121\) −6.57259 11.3841i −0.597508 1.03491i
\(122\) 4.14057 + 7.17168i 0.374870 + 0.649293i
\(123\) 9.31010 0.839464
\(124\) −1.67992 2.90971i −0.150862 0.261300i
\(125\) 22.1392 1.98019
\(126\) 2.63869 0.193156i 0.235073 0.0172077i
\(127\) −5.42757 9.40083i −0.481619 0.834188i 0.518159 0.855285i \(-0.326618\pi\)
−0.999777 + 0.0210962i \(0.993284\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0.541233 + 0.937443i 0.0476529 + 0.0825372i
\(130\) 10.8715 9.20163i 0.953490 0.807037i
\(131\) −0.961751 + 1.66580i −0.0840285 + 0.145542i −0.904977 0.425461i \(-0.860112\pi\)
0.820948 + 0.571003i \(0.193445\pi\)
\(132\) 2.45689 + 4.25545i 0.213845 + 0.370390i
\(133\) −2.05016 + 0.150075i −0.177772 + 0.0130131i
\(134\) −4.09814 + 7.09819i −0.354026 + 0.613190i
\(135\) 1.97513 3.42102i 0.169992 0.294435i
\(136\) 0.140571 0.0120539
\(137\) 15.8821 1.35690 0.678450 0.734646i \(-0.262652\pi\)
0.678450 + 0.734646i \(0.262652\pi\)
\(138\) 4.76845 8.25920i 0.405917 0.703070i
\(139\) 2.94351 5.09831i 0.249665 0.432433i −0.713768 0.700383i \(-0.753013\pi\)
0.963433 + 0.267950i \(0.0863461\pi\)
\(140\) −5.87254 8.64551i −0.496320 0.730679i
\(141\) −3.33199 5.77118i −0.280604 0.486021i
\(142\) 1.93865 3.35783i 0.162688 0.281783i
\(143\) 13.5231 11.4460i 1.13086 0.957165i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 4.97542 0.413186
\(146\) −0.0817820 0.141650i −0.00676832 0.0117231i
\(147\) −6.92538 + 1.01936i −0.571196 + 0.0840752i
\(148\) 11.1368 0.915440
\(149\) 6.63504 + 11.4922i 0.543564 + 0.941480i 0.998696 + 0.0510562i \(0.0162588\pi\)
−0.455132 + 0.890424i \(0.650408\pi\)
\(150\) −10.6045 −0.865855
\(151\) −8.06783 13.9739i −0.656551 1.13718i −0.981503 0.191449i \(-0.938681\pi\)
0.324952 0.945731i \(-0.394652\pi\)
\(152\) 0.388481 + 0.672870i 0.0315100 + 0.0545769i
\(153\) −0.0702857 0.121738i −0.00568227 0.00984197i
\(154\) −7.30493 10.7543i −0.588648 0.866603i
\(155\) 13.2723 1.06605
\(156\) −2.75209 + 2.32938i −0.220344 + 0.186499i
\(157\) −8.85322 15.3342i −0.706564 1.22380i −0.966124 0.258077i \(-0.916911\pi\)
0.259561 0.965727i \(-0.416422\pi\)
\(158\) 2.17517 3.76751i 0.173047 0.299727i
\(159\) 11.0641 0.877438
\(160\) −1.97513 + 3.42102i −0.156148 + 0.270455i
\(161\) −10.9872 + 22.7145i −0.865909 + 1.79016i
\(162\) −0.500000 + 0.866025i −0.0392837 + 0.0680414i
\(163\) −1.63571 2.83313i −0.128119 0.221908i 0.794829 0.606833i \(-0.207560\pi\)
−0.922948 + 0.384926i \(0.874227\pi\)
\(164\) 4.65505 + 8.06279i 0.363498 + 0.629598i
\(165\) −19.4107 −1.51112
\(166\) −10.5220 −0.816669
\(167\) −4.42914 7.67150i −0.342737 0.593638i 0.642203 0.766535i \(-0.278021\pi\)
−0.984940 + 0.172896i \(0.944687\pi\)
\(168\) 1.48662 + 2.18860i 0.114695 + 0.168854i
\(169\) 10.0296 + 8.27088i 0.771506 + 0.636221i
\(170\) −0.277647 + 0.480898i −0.0212945 + 0.0368832i
\(171\) 0.388481 0.672870i 0.0297079 0.0514556i
\(172\) −0.541233 + 0.937443i −0.0412686 + 0.0714793i
\(173\) 7.47486 + 12.9468i 0.568303 + 0.984330i 0.996734 + 0.0807555i \(0.0257333\pi\)
−0.428431 + 0.903575i \(0.640933\pi\)
\(174\) −1.25952 −0.0954838
\(175\) 27.9820 2.04832i 2.11524 0.154839i
\(176\) −2.45689 + 4.25545i −0.185195 + 0.320767i
\(177\) 0.215609 0.373446i 0.0162062 0.0280699i
\(178\) −1.07274 −0.0804051
\(179\) 11.6034 20.0977i 0.867281 1.50217i 0.00251612 0.999997i \(-0.499199\pi\)
0.864765 0.502177i \(-0.167468\pi\)
\(180\) 3.95025 0.294435
\(181\) 19.4618 1.44658 0.723291 0.690543i \(-0.242629\pi\)
0.723291 + 0.690543i \(0.242629\pi\)
\(182\) 6.81198 6.67809i 0.504938 0.495013i
\(183\) 8.28114 0.612160
\(184\) 9.53690 0.703070
\(185\) −21.9966 + 38.0993i −1.61722 + 2.80111i
\(186\) −3.35985 −0.246356
\(187\) −0.345368 + 0.598195i −0.0252558 + 0.0437444i
\(188\) 3.33199 5.77118i 0.243010 0.420906i
\(189\) 1.15207 2.38175i 0.0838006 0.173247i
\(190\) −3.06920 −0.222663
\(191\) 7.29819 + 12.6408i 0.528078 + 0.914658i 0.999464 + 0.0327313i \(0.0104206\pi\)
−0.471386 + 0.881927i \(0.656246\pi\)
\(192\) 0.500000 0.866025i 0.0360844 0.0625000i
\(193\) 0.884301 1.53165i 0.0636534 0.110251i −0.832442 0.554111i \(-0.813058\pi\)
0.896096 + 0.443861i \(0.146391\pi\)
\(194\) −6.54097 + 11.3293i −0.469614 + 0.813396i
\(195\) −2.53312 14.0158i −0.181401 1.00369i
\(196\) −4.34548 5.48788i −0.310391 0.391991i
\(197\) 2.92757 + 5.07070i 0.208581 + 0.361272i 0.951268 0.308366i \(-0.0997823\pi\)
−0.742687 + 0.669639i \(0.766449\pi\)
\(198\) 4.91377 0.349207
\(199\) 13.9227 0.986958 0.493479 0.869758i \(-0.335725\pi\)
0.493479 + 0.869758i \(0.335725\pi\)
\(200\) −5.30226 9.18378i −0.374926 0.649391i
\(201\) 4.09814 + 7.09819i 0.289061 + 0.500668i
\(202\) −3.69262 + 6.39580i −0.259812 + 0.450007i
\(203\) 3.32348 0.243283i 0.233262 0.0170751i
\(204\) 0.0702857 0.121738i 0.00492099 0.00852340i
\(205\) −36.7773 −2.56864
\(206\) −1.99107 + 3.44863i −0.138724 + 0.240277i
\(207\) −4.76845 8.25920i −0.331430 0.574054i
\(208\) −3.39335 1.21869i −0.235286 0.0845010i
\(209\) −3.81782 −0.264084
\(210\) −10.4235 + 0.763015i −0.719290 + 0.0526530i
\(211\) 3.35399 + 5.80929i 0.230898 + 0.399928i 0.958073 0.286525i \(-0.0925002\pi\)
−0.727174 + 0.686453i \(0.759167\pi\)
\(212\) 5.53204 + 9.58177i 0.379942 + 0.658079i
\(213\) −1.93865 3.35783i −0.132834 0.230075i
\(214\) −7.07358 −0.483540
\(215\) −2.13801 3.70314i −0.145811 0.252552i
\(216\) −1.00000 −0.0680414
\(217\) 8.86560 0.648974i 0.601836 0.0440552i
\(218\) −7.42350 12.8579i −0.502783 0.870846i
\(219\) −0.163564 −0.0110526
\(220\) −9.70533 16.8101i −0.654333 1.13334i
\(221\) −0.477008 0.171313i −0.0320870 0.0115238i
\(222\) 5.56841 9.64476i 0.373727 0.647314i
\(223\) −1.02744 1.77957i −0.0688023 0.119169i 0.829572 0.558400i \(-0.188584\pi\)
−0.898374 + 0.439231i \(0.855251\pi\)
\(224\) −1.15207 + 2.38175i −0.0769758 + 0.159137i
\(225\) −5.30226 + 9.18378i −0.353484 + 0.612252i
\(226\) −0.785895 + 1.36121i −0.0522770 + 0.0905463i
\(227\) −25.8298 −1.71438 −0.857190 0.515000i \(-0.827792\pi\)
−0.857190 + 0.515000i \(0.827792\pi\)
\(228\) 0.776963 0.0514556
\(229\) 5.39496 9.34435i 0.356509 0.617492i −0.630866 0.775892i \(-0.717300\pi\)
0.987375 + 0.158400i \(0.0506336\pi\)
\(230\) −18.8366 + 32.6259i −1.24205 + 2.15129i
\(231\) −12.9659 + 0.949124i −0.853096 + 0.0624478i
\(232\) −0.629759 1.09077i −0.0413457 0.0716129i
\(233\) −1.92109 + 3.32742i −0.125855 + 0.217987i −0.922067 0.387031i \(-0.873501\pi\)
0.796212 + 0.605018i \(0.206834\pi\)
\(234\) 0.641255 + 3.54807i 0.0419202 + 0.231945i
\(235\) 13.1622 + 22.7976i 0.858608 + 1.48715i
\(236\) 0.431218 0.0280699
\(237\) −2.17517 3.76751i −0.141293 0.244726i
\(238\) −0.161948 + 0.334806i −0.0104975 + 0.0217023i
\(239\) 10.2560 0.663404 0.331702 0.943384i \(-0.392377\pi\)
0.331702 + 0.943384i \(0.392377\pi\)
\(240\) 1.97513 + 3.42102i 0.127494 + 0.220826i
\(241\) −0.632854 −0.0407657 −0.0203829 0.999792i \(-0.506489\pi\)
−0.0203829 + 0.999792i \(0.506489\pi\)
\(242\) −6.57259 11.3841i −0.422502 0.731795i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 4.14057 + 7.17168i 0.265073 + 0.459120i
\(245\) 27.3570 4.02672i 1.74778 0.257258i
\(246\) 9.31010 0.593590
\(247\) −0.498231 2.75672i −0.0317017 0.175406i
\(248\) −1.67992 2.90971i −0.106675 0.184767i
\(249\) −5.26102 + 9.11236i −0.333404 + 0.577472i
\(250\) 22.1392 1.40021
\(251\) 7.53648 13.0536i 0.475698 0.823934i −0.523914 0.851771i \(-0.675529\pi\)
0.999612 + 0.0278373i \(0.00886202\pi\)
\(252\) 2.63869 0.193156i 0.166222 0.0121677i
\(253\) −23.4311 + 40.5838i −1.47310 + 2.55148i
\(254\) −5.42757 9.40083i −0.340556 0.589860i
\(255\) 0.277647 + 0.480898i 0.0173869 + 0.0301150i
\(256\) 1.00000 0.0625000
\(257\) 11.1382 0.694780 0.347390 0.937721i \(-0.387068\pi\)
0.347390 + 0.937721i \(0.387068\pi\)
\(258\) 0.541233 + 0.937443i 0.0336957 + 0.0583626i
\(259\) −12.8304 + 26.5251i −0.797240 + 1.64819i
\(260\) 10.8715 9.20163i 0.674219 0.570661i
\(261\) −0.629759 + 1.09077i −0.0389811 + 0.0675173i
\(262\) −0.961751 + 1.66580i −0.0594172 + 0.102914i
\(263\) −8.58528 + 14.8701i −0.529391 + 0.916932i 0.470021 + 0.882655i \(0.344246\pi\)
−0.999412 + 0.0342770i \(0.989087\pi\)
\(264\) 2.45689 + 4.25545i 0.151211 + 0.261905i
\(265\) −43.7059 −2.68483
\(266\) −2.05016 + 0.150075i −0.125704 + 0.00920168i
\(267\) −0.536369 + 0.929018i −0.0328252 + 0.0568550i
\(268\) −4.09814 + 7.09819i −0.250334 + 0.433591i
\(269\) 3.28711 0.200419 0.100209 0.994966i \(-0.468049\pi\)
0.100209 + 0.994966i \(0.468049\pi\)
\(270\) 1.97513 3.42102i 0.120202 0.208197i
\(271\) 14.7261 0.894545 0.447273 0.894398i \(-0.352395\pi\)
0.447273 + 0.894398i \(0.352395\pi\)
\(272\) 0.140571 0.00852340
\(273\) −2.37740 9.23840i −0.143887 0.559133i
\(274\) 15.8821 0.959474
\(275\) 52.1082 3.14224
\(276\) 4.76845 8.25920i 0.287027 0.497145i
\(277\) 18.5004 1.11158 0.555791 0.831322i \(-0.312415\pi\)
0.555791 + 0.831322i \(0.312415\pi\)
\(278\) 2.94351 5.09831i 0.176540 0.305776i
\(279\) −1.67992 + 2.90971i −0.100574 + 0.174200i
\(280\) −5.87254 8.64551i −0.350951 0.516668i
\(281\) −31.3463 −1.86996 −0.934981 0.354698i \(-0.884584\pi\)
−0.934981 + 0.354698i \(0.884584\pi\)
\(282\) −3.33199 5.77118i −0.198417 0.343669i
\(283\) 7.35985 12.7476i 0.437498 0.757768i −0.559998 0.828494i \(-0.689198\pi\)
0.997496 + 0.0707258i \(0.0225315\pi\)
\(284\) 1.93865 3.35783i 0.115037 0.199251i
\(285\) −1.53460 + 2.65801i −0.0909019 + 0.157447i
\(286\) 13.5231 11.4460i 0.799640 0.676818i
\(287\) −24.5665 + 1.79830i −1.45011 + 0.106150i
\(288\) −0.500000 0.866025i −0.0294628 0.0510310i
\(289\) −16.9802 −0.998838
\(290\) 4.97542 0.292167
\(291\) 6.54097 + 11.3293i 0.383438 + 0.664135i
\(292\) −0.0817820 0.141650i −0.00478593 0.00828947i
\(293\) 8.39523 14.5410i 0.490454 0.849492i −0.509485 0.860479i \(-0.670164\pi\)
0.999940 + 0.0109876i \(0.00349752\pi\)
\(294\) −6.92538 + 1.01936i −0.403896 + 0.0594501i
\(295\) −0.851711 + 1.47521i −0.0495886 + 0.0858899i
\(296\) 11.1368 0.647314
\(297\) 2.45689 4.25545i 0.142563 0.246926i
\(298\) 6.63504 + 11.4922i 0.384358 + 0.665727i
\(299\) −32.3620 11.6225i −1.87154 0.672149i
\(300\) −10.6045 −0.612252
\(301\) −1.60922 2.36908i −0.0927538 0.136551i
\(302\) −8.06783 13.9739i −0.464252 0.804107i
\(303\) 3.69262 + 6.39580i 0.212135 + 0.367429i
\(304\) 0.388481 + 0.672870i 0.0222809 + 0.0385917i
\(305\) −32.7126 −1.87312
\(306\) −0.0702857 0.121738i −0.00401797 0.00695933i
\(307\) 5.69511 0.325037 0.162519 0.986705i \(-0.448038\pi\)
0.162519 + 0.986705i \(0.448038\pi\)
\(308\) −7.30493 10.7543i −0.416237 0.612781i
\(309\) 1.99107 + 3.44863i 0.113268 + 0.196186i
\(310\) 13.2723 0.753813
\(311\) 0.183797 + 0.318345i 0.0104221 + 0.0180517i 0.871189 0.490947i \(-0.163349\pi\)
−0.860767 + 0.508999i \(0.830016\pi\)
\(312\) −2.75209 + 2.32938i −0.155806 + 0.131875i
\(313\) −2.95742 + 5.12240i −0.167163 + 0.289535i −0.937421 0.348197i \(-0.886794\pi\)
0.770258 + 0.637732i \(0.220127\pi\)
\(314\) −8.85322 15.3342i −0.499616 0.865360i
\(315\) −4.55096 + 9.40852i −0.256418 + 0.530110i
\(316\) 2.17517 3.76751i 0.122363 0.211939i
\(317\) −4.28899 + 7.42875i −0.240894 + 0.417240i −0.960969 0.276656i \(-0.910774\pi\)
0.720075 + 0.693896i \(0.244107\pi\)
\(318\) 11.0641 0.620442
\(319\) 6.18899 0.346517
\(320\) −1.97513 + 3.42102i −0.110413 + 0.191241i
\(321\) −3.53679 + 6.12590i −0.197404 + 0.341914i
\(322\) −10.9872 + 22.7145i −0.612290 + 1.26583i
\(323\) 0.0546094 + 0.0945863i 0.00303855 + 0.00526292i
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) 6.80020 + 37.6255i 0.377207 + 2.08709i
\(326\) −1.63571 2.83313i −0.0905935 0.156912i
\(327\) −14.8470 −0.821041
\(328\) 4.65505 + 8.06279i 0.257032 + 0.445193i
\(329\) 9.90683 + 14.5848i 0.546181 + 0.804084i
\(330\) −19.4107 −1.06852
\(331\) 2.07489 + 3.59381i 0.114046 + 0.197533i 0.917398 0.397971i \(-0.130286\pi\)
−0.803352 + 0.595504i \(0.796952\pi\)
\(332\) −10.5220 −0.577472
\(333\) −5.56841 9.64476i −0.305147 0.528530i
\(334\) −4.42914 7.67150i −0.242352 0.419766i
\(335\) −16.1887 28.0397i −0.884483 1.53197i
\(336\) 1.48662 + 2.18860i 0.0811020 + 0.119398i
\(337\) 18.5391 1.00989 0.504945 0.863152i \(-0.331513\pi\)
0.504945 + 0.863152i \(0.331513\pi\)
\(338\) 10.0296 + 8.27088i 0.545537 + 0.449877i
\(339\) 0.785895 + 1.36121i 0.0426840 + 0.0739308i
\(340\) −0.277647 + 0.480898i −0.0150575 + 0.0260804i
\(341\) 16.5095 0.894041
\(342\) 0.388481 0.672870i 0.0210067 0.0363846i
\(343\) 18.0770 4.02745i 0.976069 0.217462i
\(344\) −0.541233 + 0.937443i −0.0291813 + 0.0505435i
\(345\) 18.8366 + 32.6259i 1.01413 + 1.75652i
\(346\) 7.47486 + 12.9468i 0.401851 + 0.696027i
\(347\) −22.9868 −1.23400 −0.616999 0.786964i \(-0.711652\pi\)
−0.616999 + 0.786964i \(0.711652\pi\)
\(348\) −1.25952 −0.0675173
\(349\) 7.29494 + 12.6352i 0.390489 + 0.676347i 0.992514 0.122130i \(-0.0389726\pi\)
−0.602025 + 0.798477i \(0.705639\pi\)
\(350\) 27.9820 2.04832i 1.49570 0.109487i
\(351\) 3.39335 + 1.21869i 0.181123 + 0.0650489i
\(352\) −2.45689 + 4.25545i −0.130953 + 0.226816i
\(353\) 9.86522 17.0871i 0.525073 0.909453i −0.474501 0.880255i \(-0.657371\pi\)
0.999574 0.0291979i \(-0.00929529\pi\)
\(354\) 0.215609 0.373446i 0.0114595 0.0198484i
\(355\) 7.65815 + 13.2643i 0.406452 + 0.703996i
\(356\) −1.07274 −0.0568550
\(357\) 0.208977 + 0.307654i 0.0110602 + 0.0162828i
\(358\) 11.6034 20.0977i 0.613260 1.06220i
\(359\) 18.8344 32.6222i 0.994044 1.72173i 0.402644 0.915357i \(-0.368091\pi\)
0.591401 0.806378i \(-0.298575\pi\)
\(360\) 3.95025 0.208197
\(361\) 9.19816 15.9317i 0.484114 0.838510i
\(362\) 19.4618 1.02289
\(363\) −13.1452 −0.689943
\(364\) 6.81198 6.67809i 0.357045 0.350027i
\(365\) 0.646119 0.0338194
\(366\) 8.28114 0.432862
\(367\) −1.25141 + 2.16750i −0.0653229 + 0.113143i −0.896837 0.442361i \(-0.854141\pi\)
0.831514 + 0.555503i \(0.187474\pi\)
\(368\) 9.53690 0.497145
\(369\) 4.65505 8.06279i 0.242332 0.419732i
\(370\) −21.9966 + 38.0993i −1.14355 + 1.98069i
\(371\) −29.1947 + 2.13709i −1.51571 + 0.110952i
\(372\) −3.35985 −0.174200
\(373\) 6.58371 + 11.4033i 0.340891 + 0.590441i 0.984598 0.174831i \(-0.0559378\pi\)
−0.643707 + 0.765272i \(0.722605\pi\)
\(374\) −0.345368 + 0.598195i −0.0178586 + 0.0309319i
\(375\) 11.0696 19.1731i 0.571633 0.990097i
\(376\) 3.33199 5.77118i 0.171834 0.297626i
\(377\) 0.807672 + 4.46886i 0.0415972 + 0.230158i
\(378\) 1.15207 2.38175i 0.0592560 0.122504i
\(379\) −5.93228 10.2750i −0.304721 0.527792i 0.672478 0.740117i \(-0.265230\pi\)
−0.977199 + 0.212325i \(0.931896\pi\)
\(380\) −3.06920 −0.157447
\(381\) −10.8551 −0.556126
\(382\) 7.29819 + 12.6408i 0.373408 + 0.646761i
\(383\) −8.21139 14.2225i −0.419582 0.726738i 0.576315 0.817228i \(-0.304490\pi\)
−0.995897 + 0.0904897i \(0.971157\pi\)
\(384\) 0.500000 0.866025i 0.0255155 0.0441942i
\(385\) 51.2187 3.74928i 2.61035 0.191081i
\(386\) 0.884301 1.53165i 0.0450098 0.0779592i
\(387\) 1.08247 0.0550248
\(388\) −6.54097 + 11.3293i −0.332067 + 0.575158i
\(389\) 9.03721 + 15.6529i 0.458205 + 0.793634i 0.998866 0.0476065i \(-0.0151594\pi\)
−0.540662 + 0.841240i \(0.681826\pi\)
\(390\) −2.53312 14.0158i −0.128270 0.709716i
\(391\) 1.34062 0.0677979
\(392\) −4.34548 5.48788i −0.219480 0.277180i
\(393\) 0.961751 + 1.66580i 0.0485139 + 0.0840285i
\(394\) 2.92757 + 5.07070i 0.147489 + 0.255458i
\(395\) 8.59248 + 14.8826i 0.432335 + 0.748826i
\(396\) 4.91377 0.246926
\(397\) 1.20491 + 2.08696i 0.0604726 + 0.104742i 0.894677 0.446714i \(-0.147406\pi\)
−0.834204 + 0.551456i \(0.814073\pi\)
\(398\) 13.9227 0.697884
\(399\) −0.895114 + 1.85053i −0.0448117 + 0.0926425i
\(400\) −5.30226 9.18378i −0.265113 0.459189i
\(401\) −24.9243 −1.24466 −0.622331 0.782754i \(-0.713814\pi\)
−0.622331 + 0.782754i \(0.713814\pi\)
\(402\) 4.09814 + 7.09819i 0.204397 + 0.354026i
\(403\) 2.15452 + 11.9210i 0.107324 + 0.593826i
\(404\) −3.69262 + 6.39580i −0.183715 + 0.318203i
\(405\) −1.97513 3.42102i −0.0981449 0.169992i
\(406\) 3.32348 0.243283i 0.164941 0.0120739i
\(407\) −27.3619 + 47.3922i −1.35628 + 2.34914i
\(408\) 0.0702857 0.121738i 0.00347966 0.00602695i
\(409\) 27.4769 1.35865 0.679323 0.733840i \(-0.262274\pi\)
0.679323 + 0.733840i \(0.262274\pi\)
\(410\) −36.7773 −1.81630
\(411\) 7.94106 13.7543i 0.391704 0.678450i
\(412\) −1.99107 + 3.44863i −0.0980929 + 0.169902i
\(413\) −0.496793 + 1.02706i −0.0244456 + 0.0505381i
\(414\) −4.76845 8.25920i −0.234357 0.405917i
\(415\) 20.7824 35.9961i 1.02017 1.76698i
\(416\) −3.39335 1.21869i −0.166372 0.0597512i
\(417\) −2.94351 5.09831i −0.144144 0.249665i
\(418\) −3.81782 −0.186736
\(419\) −5.16655 8.94872i −0.252402 0.437174i 0.711784 0.702398i \(-0.247887\pi\)
−0.964187 + 0.265224i \(0.914554\pi\)
\(420\) −10.4235 + 0.763015i −0.508615 + 0.0372313i
\(421\) −16.8702 −0.822204 −0.411102 0.911589i \(-0.634856\pi\)
−0.411102 + 0.911589i \(0.634856\pi\)
\(422\) 3.35399 + 5.80929i 0.163270 + 0.282792i
\(423\) −6.66398 −0.324014
\(424\) 5.53204 + 9.58177i 0.268659 + 0.465332i
\(425\) −0.745346 1.29098i −0.0361546 0.0626216i
\(426\) −1.93865 3.35783i −0.0939277 0.162688i
\(427\) −21.8514 + 1.59955i −1.05746 + 0.0774077i
\(428\) −7.07358 −0.341914
\(429\) −3.15098 17.4344i −0.152131 0.841741i
\(430\) −2.13801 3.70314i −0.103104 0.178581i
\(431\) −12.1718 + 21.0822i −0.586294 + 1.01549i 0.408418 + 0.912795i \(0.366080\pi\)
−0.994713 + 0.102697i \(0.967253\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 0.984059 1.70444i 0.0472909 0.0819102i −0.841411 0.540396i \(-0.818275\pi\)
0.888702 + 0.458485i \(0.151608\pi\)
\(434\) 8.86560 0.648974i 0.425562 0.0311518i
\(435\) 2.48771 4.30884i 0.119276 0.206593i
\(436\) −7.42350 12.8579i −0.355521 0.615781i
\(437\) 3.70491 + 6.41709i 0.177230 + 0.306971i
\(438\) −0.163564 −0.00781539
\(439\) 20.2636 0.967128 0.483564 0.875309i \(-0.339342\pi\)
0.483564 + 0.875309i \(0.339342\pi\)
\(440\) −9.70533 16.8101i −0.462683 0.801391i
\(441\) −2.57990 + 6.50724i −0.122852 + 0.309868i
\(442\) −0.477008 0.171313i −0.0226889 0.00814854i
\(443\) −14.2707 + 24.7177i −0.678024 + 1.17437i 0.297551 + 0.954706i \(0.403830\pi\)
−0.975575 + 0.219666i \(0.929503\pi\)
\(444\) 5.56841 9.64476i 0.264265 0.457720i
\(445\) 2.11879 3.66986i 0.100440 0.173968i
\(446\) −1.02744 1.77957i −0.0486505 0.0842652i
\(447\) 13.2701 0.627653
\(448\) −1.15207 + 2.38175i −0.0544301 + 0.112527i
\(449\) 12.1517 21.0474i 0.573475 0.993287i −0.422731 0.906255i \(-0.638928\pi\)
0.996206 0.0870320i \(-0.0277382\pi\)
\(450\) −5.30226 + 9.18378i −0.249951 + 0.432927i
\(451\) −45.7477 −2.15418
\(452\) −0.785895 + 1.36121i −0.0369654 + 0.0640259i
\(453\) −16.1357 −0.758120
\(454\) −25.8298 −1.21225
\(455\) 9.39135 + 36.4940i 0.440273 + 1.71087i
\(456\) 0.776963 0.0363846
\(457\) −6.25302 −0.292504 −0.146252 0.989247i \(-0.546721\pi\)
−0.146252 + 0.989247i \(0.546721\pi\)
\(458\) 5.39496 9.34435i 0.252090 0.436633i
\(459\) −0.140571 −0.00656131
\(460\) −18.8366 + 32.6259i −0.878261 + 1.52119i
\(461\) 9.65625 16.7251i 0.449736 0.778966i −0.548632 0.836064i \(-0.684851\pi\)
0.998369 + 0.0570976i \(0.0181846\pi\)
\(462\) −12.9659 + 0.949124i −0.603230 + 0.0441572i
\(463\) 21.4480 0.996772 0.498386 0.866955i \(-0.333926\pi\)
0.498386 + 0.866955i \(0.333926\pi\)
\(464\) −0.629759 1.09077i −0.0292358 0.0506379i
\(465\) 6.63613 11.4941i 0.307743 0.533027i
\(466\) −1.92109 + 3.32742i −0.0889928 + 0.154140i
\(467\) 2.39255 4.14402i 0.110714 0.191762i −0.805344 0.592807i \(-0.798020\pi\)
0.916058 + 0.401045i \(0.131353\pi\)
\(468\) 0.641255 + 3.54807i 0.0296420 + 0.164010i
\(469\) −12.1848 17.9384i −0.562641 0.828316i
\(470\) 13.1622 + 22.7976i 0.607128 + 1.05158i
\(471\) −17.7064 −0.815869
\(472\) 0.431218 0.0198484
\(473\) −2.65950 4.60638i −0.122284 0.211802i
\(474\) −2.17517 3.76751i −0.0999090 0.173047i
\(475\) 4.11966 7.13545i 0.189023 0.327397i
\(476\) −0.161948 + 0.334806i −0.00742287 + 0.0153458i
\(477\) 5.53204 9.58177i 0.253295 0.438719i
\(478\) 10.2560 0.469098
\(479\) 5.85660 10.1439i 0.267595 0.463488i −0.700645 0.713510i \(-0.747104\pi\)
0.968240 + 0.250022i \(0.0804378\pi\)
\(480\) 1.97513 + 3.42102i 0.0901518 + 0.156148i
\(481\) −37.7910 13.5723i −1.72312 0.618845i
\(482\) −0.632854 −0.0288257
\(483\) 14.1778 + 20.8724i 0.645111 + 0.949728i
\(484\) −6.57259 11.3841i −0.298754 0.517457i
\(485\) −25.8385 44.7536i −1.17327 2.03216i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) −25.7570 −1.16716 −0.583581 0.812055i \(-0.698349\pi\)
−0.583581 + 0.812055i \(0.698349\pi\)
\(488\) 4.14057 + 7.17168i 0.187435 + 0.324647i
\(489\) −3.27142 −0.147939
\(490\) 27.3570 4.02672i 1.23586 0.181909i
\(491\) 2.35012 + 4.07053i 0.106059 + 0.183700i 0.914171 0.405330i \(-0.132843\pi\)
−0.808111 + 0.589030i \(0.799510\pi\)
\(492\) 9.31010 0.419732
\(493\) −0.0885262 0.153332i −0.00398702 0.00690572i
\(494\) −0.498231 2.75672i −0.0224165 0.124031i
\(495\) −9.70533 + 16.8101i −0.436222 + 0.755559i
\(496\) −1.67992 2.90971i −0.0754308 0.130650i
\(497\) 5.76407 + 8.48583i 0.258554 + 0.380641i
\(498\) −5.26102 + 9.11236i −0.235752 + 0.408335i
\(499\) 16.3247 28.2752i 0.730794 1.26577i −0.225751 0.974185i \(-0.572483\pi\)
0.956544 0.291587i \(-0.0941832\pi\)
\(500\) 22.1392 0.990097
\(501\) −8.85828 −0.395759
\(502\) 7.53648 13.0536i 0.336370 0.582609i
\(503\) 7.49164 12.9759i 0.334036 0.578567i −0.649263 0.760564i \(-0.724923\pi\)
0.983299 + 0.181997i \(0.0582560\pi\)
\(504\) 2.63869 0.193156i 0.117537 0.00860384i
\(505\) −14.5868 25.2650i −0.649103 1.12428i
\(506\) −23.4311 + 40.5838i −1.04164 + 1.80417i
\(507\) 12.1776 4.55044i 0.540825 0.202092i
\(508\) −5.42757 9.40083i −0.240809 0.417094i
\(509\) −0.420876 −0.0186550 −0.00932749 0.999956i \(-0.502969\pi\)
−0.00932749 + 0.999956i \(0.502969\pi\)
\(510\) 0.277647 + 0.480898i 0.0122944 + 0.0212945i
\(511\) 0.431595 0.0315933i 0.0190926 0.00139761i
\(512\) 1.00000 0.0441942
\(513\) −0.388481 0.672870i −0.0171519 0.0297079i
\(514\) 11.1382 0.491284
\(515\) −7.86522 13.6230i −0.346583 0.600300i
\(516\) 0.541233 + 0.937443i 0.0238264 + 0.0412686i
\(517\) 16.3727 + 28.3583i 0.720068 + 1.24720i
\(518\) −12.8304 + 26.5251i −0.563734 + 1.16545i
\(519\) 14.9497 0.656220
\(520\) 10.8715 9.20163i 0.476745 0.403518i
\(521\) −15.5914 27.0050i −0.683070 1.18311i −0.974039 0.226379i \(-0.927311\pi\)
0.290969 0.956732i \(-0.406022\pi\)
\(522\) −0.629759 + 1.09077i −0.0275638 + 0.0477419i
\(523\) 14.3638 0.628087 0.314043 0.949409i \(-0.398316\pi\)
0.314043 + 0.949409i \(0.398316\pi\)
\(524\) −0.961751 + 1.66580i −0.0420143 + 0.0727709i
\(525\) 12.2171 25.2573i 0.533199 1.10232i
\(526\) −8.58528 + 14.8701i −0.374336 + 0.648369i
\(527\) −0.236149 0.409023i −0.0102868 0.0178173i
\(528\) 2.45689 + 4.25545i 0.106922 + 0.185195i
\(529\) 67.9525 2.95446
\(530\) −43.7059 −1.89846
\(531\) −0.215609 0.373446i −0.00935664 0.0162062i
\(532\) −2.05016 + 0.150075i −0.0888859 + 0.00650657i
\(533\) −5.97015 33.0329i −0.258596 1.43081i
\(534\) −0.536369 + 0.929018i −0.0232110 + 0.0402026i
\(535\) 13.9712 24.1989i 0.604028 1.04621i
\(536\) −4.09814 + 7.09819i −0.177013 + 0.306595i
\(537\) −11.6034 20.0977i −0.500725 0.867281i
\(538\) 3.28711 0.141717
\(539\) 34.0298 5.00889i 1.46577 0.215748i
\(540\) 1.97513 3.42102i 0.0849959 0.147217i
\(541\) 4.68698 8.11808i 0.201509 0.349024i −0.747506 0.664255i \(-0.768749\pi\)
0.949015 + 0.315232i \(0.102082\pi\)
\(542\) 14.7261 0.632539
\(543\) 9.73088 16.8544i 0.417592 0.723291i
\(544\) 0.140571 0.00602695
\(545\) 58.6494 2.51227
\(546\) −2.37740 9.23840i −0.101744 0.395367i
\(547\) 17.7829 0.760343 0.380172 0.924916i \(-0.375865\pi\)
0.380172 + 0.924916i \(0.375865\pi\)
\(548\) 15.8821 0.678450
\(549\) 4.14057 7.17168i 0.176715 0.306080i
\(550\) 52.1082 2.22190
\(551\) 0.489299 0.847491i 0.0208449 0.0361043i
\(552\) 4.76845 8.25920i 0.202959 0.351535i
\(553\) 6.46732 + 9.52114i 0.275019 + 0.404880i
\(554\) 18.5004 0.786008
\(555\) 21.9966 + 38.0993i 0.933704 + 1.61722i
\(556\) 2.94351 5.09831i 0.124833 0.216216i
\(557\) −6.68207 + 11.5737i −0.283128 + 0.490393i −0.972154 0.234345i \(-0.924706\pi\)
0.689025 + 0.724737i \(0.258039\pi\)
\(558\) −1.67992 + 2.90971i −0.0711169 + 0.123178i
\(559\) 2.97904 2.52147i 0.126000 0.106647i
\(560\) −5.87254 8.64551i −0.248160 0.365339i
\(561\) 0.345368 + 0.598195i 0.0145815 + 0.0252558i
\(562\) −31.3463 −1.32226
\(563\) −27.3883 −1.15428 −0.577139 0.816646i \(-0.695831\pi\)
−0.577139 + 0.816646i \(0.695831\pi\)
\(564\) −3.33199 5.77118i −0.140302 0.243010i
\(565\) −3.10449 5.37713i −0.130607 0.226217i
\(566\) 7.35985 12.7476i 0.309357 0.535823i
\(567\) −1.48662 2.18860i −0.0624323 0.0919124i
\(568\) 1.93865 3.35783i 0.0813438 0.140892i
\(569\) −10.9762 −0.460145 −0.230072 0.973173i \(-0.573896\pi\)
−0.230072 + 0.973173i \(0.573896\pi\)
\(570\) −1.53460 + 2.65801i −0.0642773 + 0.111332i
\(571\) −14.5552 25.2103i −0.609115 1.05502i −0.991387 0.130969i \(-0.958191\pi\)
0.382271 0.924050i \(-0.375142\pi\)
\(572\) 13.5231 11.4460i 0.565431 0.478583i
\(573\) 14.5964 0.609772
\(574\) −24.5665 + 1.79830i −1.02539 + 0.0750596i
\(575\) −50.5671 87.5847i −2.10879 3.65254i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) −10.0317 17.3753i −0.417623 0.723345i 0.578076 0.815983i \(-0.303804\pi\)
−0.995700 + 0.0926375i \(0.970470\pi\)
\(578\) −16.9802 −0.706285
\(579\) −0.884301 1.53165i −0.0367503 0.0636534i
\(580\) 4.97542 0.206593
\(581\) 12.1221 25.0609i 0.502910 1.03970i
\(582\) 6.54097 + 11.3293i 0.271132 + 0.469614i
\(583\) −54.3663 −2.25162
\(584\) −0.0817820 0.141650i −0.00338416 0.00586154i
\(585\) −13.4046 4.81414i −0.554211 0.199040i
\(586\) 8.39523 14.5410i 0.346804 0.600681i
\(587\) 16.0113 + 27.7323i 0.660855 + 1.14463i 0.980391 + 0.197060i \(0.0631395\pi\)
−0.319536 + 0.947574i \(0.603527\pi\)
\(588\) −6.92538 + 1.01936i −0.285598 + 0.0420376i
\(589\) 1.30524 2.26074i 0.0537814 0.0931521i
\(590\) −0.851711 + 1.47521i −0.0350644 + 0.0607333i
\(591\) 5.85514 0.240848
\(592\) 11.1368 0.457720
\(593\) 12.2192 21.1643i 0.501784 0.869115i −0.498214 0.867054i \(-0.666011\pi\)
0.999998 0.00206106i \(-0.000656057\pi\)
\(594\) 2.45689 4.25545i 0.100807 0.174603i
\(595\) −0.825512 1.21531i −0.0338427 0.0498229i
\(596\) 6.63504 + 11.4922i 0.271782 + 0.470740i
\(597\) 6.96137 12.0575i 0.284910 0.493479i
\(598\) −32.3620 11.6225i −1.32338 0.475281i
\(599\) −7.93636 13.7462i −0.324271 0.561654i 0.657093 0.753809i \(-0.271786\pi\)
−0.981365 + 0.192155i \(0.938452\pi\)
\(600\) −10.6045 −0.432927
\(601\) −0.0246085 0.0426231i −0.00100380 0.00173863i 0.865523 0.500869i \(-0.166986\pi\)
−0.866527 + 0.499130i \(0.833653\pi\)
\(602\) −1.60922 2.36908i −0.0655869 0.0965565i
\(603\) 8.19628 0.333778
\(604\) −8.06783 13.9739i −0.328275 0.568590i
\(605\) 51.9268 2.11112
\(606\) 3.69262 + 6.39580i 0.150002 + 0.259812i
\(607\) −6.61325 11.4545i −0.268423 0.464923i 0.700031 0.714112i \(-0.253169\pi\)
−0.968455 + 0.249189i \(0.919836\pi\)
\(608\) 0.388481 + 0.672870i 0.0157550 + 0.0272885i
\(609\) 1.45105 2.99986i 0.0587995 0.121560i
\(610\) −32.7126 −1.32450
\(611\) −18.3399 + 15.5229i −0.741952 + 0.627991i
\(612\) −0.0702857 0.121738i −0.00284113 0.00492099i
\(613\) 1.17548 2.03599i 0.0474772 0.0822329i −0.841310 0.540553i \(-0.818215\pi\)
0.888787 + 0.458320i \(0.151549\pi\)
\(614\) 5.69511 0.229836
\(615\) −18.3886 + 31.8501i −0.741501 + 1.28432i
\(616\) −7.30493 10.7543i −0.294324 0.433302i
\(617\) −16.1133 + 27.9090i −0.648697 + 1.12358i 0.334738 + 0.942311i \(0.391352\pi\)
−0.983434 + 0.181264i \(0.941981\pi\)
\(618\) 1.99107 + 3.44863i 0.0800925 + 0.138724i
\(619\) 9.49745 + 16.4501i 0.381735 + 0.661184i 0.991310 0.131544i \(-0.0419934\pi\)
−0.609575 + 0.792728i \(0.708660\pi\)
\(620\) 13.2723 0.533027
\(621\) −9.53690 −0.382703
\(622\) 0.183797 + 0.318345i 0.00736957 + 0.0127645i
\(623\) 1.23587 2.55500i 0.0495140 0.102364i
\(624\) −2.75209 + 2.32938i −0.110172 + 0.0932497i
\(625\) −17.2165 + 29.8199i −0.688662 + 1.19280i
\(626\) −2.95742 + 5.12240i −0.118202 + 0.204732i
\(627\) −1.90891 + 3.30633i −0.0762345 + 0.132042i
\(628\) −8.85322 15.3342i −0.353282 0.611902i
\(629\) 1.56552 0.0624213
\(630\) −4.55096 + 9.40852i −0.181315 + 0.374845i
\(631\) −11.7271 + 20.3119i −0.466849 + 0.808606i −0.999283 0.0378658i \(-0.987944\pi\)
0.532434 + 0.846471i \(0.321277\pi\)
\(632\) 2.17517 3.76751i 0.0865237 0.149863i
\(633\) 6.70799 0.266618
\(634\) −4.28899 + 7.42875i −0.170338 + 0.295033i
\(635\) 42.8806 1.70166
\(636\) 11.0641 0.438719
\(637\) 8.05769 + 23.9181i 0.319257 + 0.947668i
\(638\) 6.18899 0.245024
\(639\) −3.87729 −0.153383
\(640\) −1.97513 + 3.42102i −0.0780738 + 0.135228i
\(641\) 5.60442 0.221361 0.110681 0.993856i \(-0.464697\pi\)
0.110681 + 0.993856i \(0.464697\pi\)
\(642\) −3.53679 + 6.12590i −0.139586 + 0.241770i
\(643\) 11.5626 20.0270i 0.455983 0.789786i −0.542761 0.839887i \(-0.682621\pi\)
0.998744 + 0.0501012i \(0.0159544\pi\)
\(644\) −10.9872 + 22.7145i −0.432955 + 0.895078i
\(645\) −4.27601 −0.168368
\(646\) 0.0546094 + 0.0945863i 0.00214858 + 0.00372145i
\(647\) −8.88782 + 15.3941i −0.349416 + 0.605206i −0.986146 0.165881i \(-0.946953\pi\)
0.636730 + 0.771087i \(0.280287\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) −1.05945 + 1.83503i −0.0415872 + 0.0720312i
\(650\) 6.80020 + 37.6255i 0.266726 + 1.47579i
\(651\) 3.87077 8.00232i 0.151708 0.313636i
\(652\) −1.63571 2.83313i −0.0640593 0.110954i
\(653\) 2.50502 0.0980290 0.0490145 0.998798i \(-0.484392\pi\)
0.0490145 + 0.998798i \(0.484392\pi\)
\(654\) −14.8470 −0.580564
\(655\) −3.79916 6.58034i −0.148445 0.257115i
\(656\) 4.65505 + 8.06279i 0.181749 + 0.314799i
\(657\) −0.0817820 + 0.141650i −0.00319062 + 0.00552631i
\(658\) 9.90683 + 14.5848i 0.386209 + 0.568573i
\(659\) −15.8598 + 27.4700i −0.617810 + 1.07008i 0.372074 + 0.928203i \(0.378647\pi\)
−0.989884 + 0.141876i \(0.954687\pi\)
\(660\) −19.4107 −0.755559
\(661\) −11.3573 + 19.6714i −0.441747 + 0.765128i −0.997819 0.0660056i \(-0.978974\pi\)
0.556072 + 0.831134i \(0.312308\pi\)
\(662\) 2.07489 + 3.59381i 0.0806427 + 0.139677i
\(663\) −0.386865 + 0.327444i −0.0150246 + 0.0127169i
\(664\) −10.5220 −0.408335
\(665\) 3.53593 7.31007i 0.137117 0.283473i
\(666\) −5.56841 9.64476i −0.215771 0.373727i
\(667\) −6.00595 10.4026i −0.232551 0.402791i
\(668\) −4.42914 7.67150i −0.171369 0.296819i
\(669\) −2.05487 −0.0794460
\(670\) −16.1887 28.0397i −0.625424 1.08327i
\(671\) −40.6917 −1.57088
\(672\) 1.48662 + 2.18860i 0.0573477 + 0.0844269i
\(673\) −2.56027 4.43452i −0.0986911 0.170938i 0.812452 0.583028i \(-0.198132\pi\)
−0.911143 + 0.412090i \(0.864799\pi\)
\(674\) 18.5391 0.714100
\(675\) 5.30226 + 9.18378i 0.204084 + 0.353484i
\(676\) 10.0296 + 8.27088i 0.385753 + 0.318111i
\(677\) 1.02921 1.78264i 0.0395556 0.0685123i −0.845570 0.533865i \(-0.820739\pi\)
0.885125 + 0.465353i \(0.154072\pi\)
\(678\) 0.785895 + 1.36121i 0.0301821 + 0.0522770i
\(679\) −19.4479 28.6311i −0.746342 1.09876i
\(680\) −0.277647 + 0.480898i −0.0106473 + 0.0184416i
\(681\) −12.9149 + 22.3692i −0.494899 + 0.857190i
\(682\) 16.5095 0.632183
\(683\) −26.9289 −1.03040 −0.515202 0.857069i \(-0.672283\pi\)
−0.515202 + 0.857069i \(0.672283\pi\)
\(684\) 0.388481 0.672870i 0.0148540 0.0257278i
\(685\) −31.3692 + 54.3330i −1.19856 + 2.07596i
\(686\) 18.0770 4.02745i 0.690185 0.153769i
\(687\) −5.39496 9.34435i −0.205831 0.356509i
\(688\) −0.541233 + 0.937443i −0.0206343 + 0.0357397i
\(689\) −7.09489 39.2561i −0.270294 1.49554i
\(690\) 18.8366 + 32.6259i 0.717097 + 1.24205i
\(691\) 51.2761 1.95063 0.975316 0.220812i \(-0.0708706\pi\)
0.975316 + 0.220812i \(0.0708706\pi\)
\(692\) 7.47486 + 12.9468i 0.284152 + 0.492165i
\(693\) −5.66100 + 11.7034i −0.215044 + 0.444575i
\(694\) −22.9868 −0.872568
\(695\) 11.6276 + 20.1396i 0.441061 + 0.763939i
\(696\) −1.25952 −0.0477419
\(697\) 0.654367 + 1.13340i 0.0247859 + 0.0429305i
\(698\) 7.29494 + 12.6352i 0.276118 + 0.478250i
\(699\) 1.92109 + 3.32742i 0.0726623 + 0.125855i
\(700\) 27.9820 2.04832i 1.05762 0.0774193i
\(701\) −26.2809 −0.992617 −0.496308 0.868146i \(-0.665311\pi\)
−0.496308 + 0.868146i \(0.665311\pi\)
\(702\) 3.39335 + 1.21869i 0.128074 + 0.0459965i
\(703\) 4.32644 + 7.49362i 0.163175 + 0.282627i
\(704\) −2.45689 + 4.25545i −0.0925974 + 0.160383i
\(705\) 26.3244 0.991435
\(706\) 9.86522 17.0871i 0.371283 0.643080i
\(707\) −10.9791 16.1633i −0.412910 0.607883i
\(708\) 0.215609 0.373446i 0.00810309 0.0140350i
\(709\) −4.37966 7.58580i −0.164482 0.284891i 0.771989 0.635635i \(-0.219262\pi\)
−0.936471 + 0.350745i \(0.885928\pi\)
\(710\) 7.65815 + 13.2643i 0.287405 + 0.497800i
\(711\) −4.35034 −0.163151
\(712\) −1.07274 −0.0402026
\(713\) −16.0213 27.7496i −0.600001 1.03923i
\(714\) 0.208977 + 0.307654i 0.00782076 + 0.0115137i
\(715\) 12.4472 + 68.8703i 0.465498 + 2.57560i
\(716\) 11.6034 20.0977i 0.433640 0.751087i
\(717\) 5.12799 8.88194i 0.191508 0.331702i
\(718\) 18.8344 32.6222i 0.702895 1.21745i
\(719\) 1.13801 + 1.97109i 0.0424405 + 0.0735091i 0.886465 0.462795i \(-0.153153\pi\)
−0.844025 + 0.536304i \(0.819820\pi\)
\(720\) 3.95025 0.147217
\(721\) −5.91994 8.71528i −0.220470 0.324574i
\(722\) 9.19816 15.9317i 0.342320 0.592916i
\(723\) −0.316427 + 0.548068i −0.0117681 + 0.0203829i
\(724\) 19.4618 0.723291
\(725\) −6.67829 + 11.5671i −0.248025 + 0.429592i
\(726\) −13.1452 −0.487863
\(727\) −39.8719 −1.47877 −0.739383 0.673285i \(-0.764883\pi\)
−0.739383 + 0.673285i \(0.764883\pi\)
\(728\) 6.81198 6.67809i 0.252469 0.247506i
\(729\) 1.00000 0.0370370
\(730\) 0.646119 0.0239139
\(731\) −0.0760819 + 0.131778i −0.00281399 + 0.00487398i
\(732\) 8.28114 0.306080
\(733\) −12.8845 + 22.3167i −0.475901 + 0.824284i −0.999619 0.0276073i \(-0.991211\pi\)
0.523718 + 0.851892i \(0.324545\pi\)
\(734\) −1.25141 + 2.16750i −0.0461903 + 0.0800039i
\(735\) 10.1913 25.7052i 0.375911 0.948152i
\(736\) 9.53690 0.351535
\(737\) −20.1373 34.8789i −0.741769 1.28478i
\(738\) 4.65505 8.06279i 0.171355 0.296795i
\(739\) −6.40893 + 11.1006i −0.235756 + 0.408342i −0.959492 0.281735i \(-0.909090\pi\)
0.723736 + 0.690077i \(0.242423\pi\)
\(740\) −21.9966 + 38.0993i −0.808612 + 1.40056i
\(741\) −2.63650 0.946878i −0.0968544 0.0347844i
\(742\) −29.1947 + 2.13709i −1.07177 + 0.0784551i
\(743\) −10.1715 17.6176i −0.373156 0.646326i 0.616893 0.787047i \(-0.288391\pi\)
−0.990049 + 0.140721i \(0.955058\pi\)
\(744\) −3.35985 −0.123178
\(745\) −52.4202 −1.92053
\(746\) 6.58371 + 11.4033i 0.241047 + 0.417505i
\(747\) 5.26102 + 9.11236i 0.192491 + 0.333404i
\(748\) −0.345368 + 0.598195i −0.0126279 + 0.0218722i
\(749\) 8.14924 16.8475i 0.297767 0.615594i
\(750\) 11.0696 19.1731i 0.404205 0.700104i
\(751\) −30.4741 −1.11202 −0.556008 0.831177i \(-0.687668\pi\)
−0.556008 + 0.831177i \(0.687668\pi\)
\(752\) 3.33199 5.77118i 0.121505 0.210453i
\(753\) −7.53648 13.0536i −0.274645 0.475698i
\(754\) 0.807672 + 4.46886i 0.0294137 + 0.162746i
\(755\) 63.7400 2.31974
\(756\) 1.15207 2.38175i 0.0419003 0.0866235i
\(757\) 10.7264 + 18.5787i 0.389859 + 0.675256i 0.992430 0.122809i \(-0.0391904\pi\)
−0.602571 + 0.798065i \(0.705857\pi\)
\(758\) −5.93228 10.2750i −0.215470 0.373205i
\(759\) 23.4311 + 40.5838i 0.850494 + 1.47310i
\(760\) −3.06920 −0.111332
\(761\) 25.0238 + 43.3425i 0.907112 + 1.57116i 0.818057 + 0.575137i \(0.195051\pi\)
0.0890544 + 0.996027i \(0.471615\pi\)
\(762\) −10.8551 −0.393240
\(763\) 39.1767 2.86779i 1.41829 0.103821i
\(764\) 7.29819 + 12.6408i 0.264039 + 0.457329i
\(765\) 0.555293 0.0200767
\(766\) −8.21139 14.2225i −0.296690 0.513881i
\(767\) −1.46327 0.525522i −0.0528357 0.0189755i
\(768\) 0.500000 0.866025i 0.0180422 0.0312500i
\(769\) 25.3820 + 43.9629i 0.915298 + 1.58534i 0.806465 + 0.591282i \(0.201378\pi\)
0.108833 + 0.994060i \(0.465289\pi\)
\(770\) 51.2187 3.74928i 1.84579 0.135115i
\(771\) 5.56909 9.64595i 0.200566 0.347390i
\(772\) 0.884301 1.53165i 0.0318267 0.0551255i
\(773\) 14.2845 0.513778 0.256889 0.966441i \(-0.417303\pi\)
0.256889 + 0.966441i \(0.417303\pi\)
\(774\) 1.08247 0.0389084
\(775\) −17.8148 + 30.8561i −0.639925 + 1.10838i
\(776\) −6.54097 + 11.3293i −0.234807 + 0.406698i