Properties

Label 546.2.j.c.529.3
Level $546$
Weight $2$
Character 546.529
Analytic conductor $4.360$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.447703281.1
Defining polynomial: \(x^{8} - x^{7} - 2 x^{6} + 2 x^{5} + 3 x^{4} + 4 x^{3} - 8 x^{2} - 8 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 529.3
Root \(1.26359 - 0.635098i\) of defining polynomial
Character \(\chi\) \(=\) 546.529
Dual form 546.2.j.c.289.3

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(0.611519 + 1.05918i) q^{5} +(-0.500000 - 0.866025i) q^{6} +(1.15207 + 2.38175i) q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(-0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(0.611519 + 1.05918i) q^{5} +(-0.500000 - 0.866025i) q^{6} +(1.15207 + 2.38175i) q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.611519 + 1.05918i) q^{10} +(-0.0702857 - 0.121738i) q^{11} +(-0.500000 - 0.866025i) q^{12} +(2.39335 + 2.69665i) q^{13} +(1.15207 + 2.38175i) q^{14} +(0.611519 - 1.05918i) q^{15} +1.00000 q^{16} +0.186556 q^{17} +(-0.500000 + 0.866025i) q^{18} +(-0.447955 + 0.775880i) q^{19} +(0.611519 + 1.05918i) q^{20} +(1.48662 - 2.18860i) q^{21} +(-0.0702857 - 0.121738i) q^{22} +0.0364808 q^{23} +(-0.500000 - 0.866025i) q^{24} +(1.75209 - 3.03471i) q^{25} +(2.39335 + 2.69665i) q^{26} +1.00000 q^{27} +(1.15207 + 2.38175i) q^{28} +(2.99337 - 5.18466i) q^{29} +(0.611519 - 1.05918i) q^{30} +(-1.82050 + 3.15319i) q^{31} +1.00000 q^{32} +(-0.0702857 + 0.121738i) q^{33} +0.186556 q^{34} +(-1.81820 + 2.67673i) q^{35} +(-0.500000 + 0.866025i) q^{36} -0.363609 q^{37} +(-0.447955 + 0.775880i) q^{38} +(1.13869 - 3.42102i) q^{39} +(0.611519 + 1.05918i) q^{40} +(1.70480 - 2.95279i) q^{41} +(1.48662 - 2.18860i) q^{42} +(-2.06841 - 3.58258i) q^{43} +(-0.0702857 - 0.121738i) q^{44} -1.22304 q^{45} +0.0364808 q^{46} +(0.358745 + 0.621364i) q^{47} +(-0.500000 - 0.866025i) q^{48} +(-4.34548 + 5.48788i) q^{49} +(1.75209 - 3.03471i) q^{50} +(-0.0932782 - 0.161563i) q^{51} +(2.39335 + 2.69665i) q^{52} +(3.49556 - 6.05448i) q^{53} +1.00000 q^{54} +(0.0859621 - 0.148891i) q^{55} +(1.15207 + 2.38175i) q^{56} +0.895909 q^{57} +(2.99337 - 5.18466i) q^{58} -6.99624 q^{59} +(0.611519 - 1.05918i) q^{60} +(-0.186556 + 0.323125i) q^{61} +(-1.82050 + 3.15319i) q^{62} +(-2.63869 - 0.193156i) q^{63} +1.00000 q^{64} +(-1.39266 + 4.18404i) q^{65} +(-0.0702857 + 0.121738i) q^{66} +(2.42903 + 4.20720i) q^{67} +0.186556 q^{68} +(-0.0182404 - 0.0315933i) q^{69} +(-1.81820 + 2.67673i) q^{70} +(-5.31198 - 9.20062i) q^{71} +(-0.500000 + 0.866025i) q^{72} +(-4.80900 + 8.32943i) q^{73} -0.363609 q^{74} -3.50418 q^{75} +(-0.447955 + 0.775880i) q^{76} +(0.208977 - 0.307654i) q^{77} +(1.13869 - 3.42102i) q^{78} +(-2.94837 - 5.10673i) q^{79} +(0.611519 + 1.05918i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(1.70480 - 2.95279i) q^{82} -9.14057 q^{83} +(1.48662 - 2.18860i) q^{84} +(0.114083 + 0.197597i) q^{85} +(-2.06841 - 3.58258i) q^{86} -5.98674 q^{87} +(-0.0702857 - 0.121738i) q^{88} -6.35472 q^{89} -1.22304 q^{90} +(-3.66544 + 8.80707i) q^{91} +0.0364808 q^{92} +3.64099 q^{93} +(0.358745 + 0.621364i) q^{94} -1.09573 q^{95} +(-0.500000 - 0.866025i) q^{96} +(3.24059 + 5.61287i) q^{97} +(-4.34548 + 5.48788i) q^{98} +0.140571 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 8q^{2} - 4q^{3} + 8q^{4} + 2q^{5} - 4q^{6} + 3q^{7} + 8q^{8} - 4q^{9} + O(q^{10}) \) \( 8q + 8q^{2} - 4q^{3} + 8q^{4} + 2q^{5} - 4q^{6} + 3q^{7} + 8q^{8} - 4q^{9} + 2q^{10} + 4q^{11} - 4q^{12} + 3q^{13} + 3q^{14} + 2q^{15} + 8q^{16} + 4q^{17} - 4q^{18} - 4q^{19} + 2q^{20} - 3q^{21} + 4q^{22} - 8q^{23} - 4q^{24} + 2q^{25} + 3q^{26} + 8q^{27} + 3q^{28} + 2q^{29} + 2q^{30} + 14q^{31} + 8q^{32} + 4q^{33} + 4q^{34} - 22q^{35} - 4q^{36} + 12q^{37} - 4q^{38} - 12q^{39} + 2q^{40} + 12q^{41} - 3q^{42} + 4q^{44} - 4q^{45} - 8q^{46} + 7q^{47} - 4q^{48} + 5q^{49} + 2q^{50} - 2q^{51} + 3q^{52} - q^{53} + 8q^{54} - 25q^{55} + 3q^{56} + 8q^{57} + 2q^{58} - 32q^{59} + 2q^{60} - 4q^{61} + 14q^{62} + 8q^{64} + 10q^{65} + 4q^{66} + 19q^{67} + 4q^{68} + 4q^{69} - 22q^{70} + 20q^{71} - 4q^{72} - 7q^{73} + 12q^{74} - 4q^{75} - 4q^{76} - 24q^{77} - 12q^{78} + 24q^{79} + 2q^{80} - 4q^{81} + 12q^{82} - 64q^{83} - 3q^{84} + 15q^{85} - 4q^{87} + 4q^{88} + 22q^{89} - 4q^{90} - 38q^{91} - 8q^{92} - 28q^{93} + 7q^{94} - 56q^{95} - 4q^{96} + 11q^{97} + 5q^{98} - 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 1.00000 0.500000
\(5\) 0.611519 + 1.05918i 0.273479 + 0.473680i 0.969750 0.244099i \(-0.0784921\pi\)
−0.696271 + 0.717779i \(0.745159\pi\)
\(6\) −0.500000 0.866025i −0.204124 0.353553i
\(7\) 1.15207 + 2.38175i 0.435441 + 0.900217i
\(8\) 1.00000 0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0.611519 + 1.05918i 0.193379 + 0.334943i
\(11\) −0.0702857 0.121738i −0.0211919 0.0367055i 0.855235 0.518240i \(-0.173413\pi\)
−0.876427 + 0.481535i \(0.840079\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) 2.39335 + 2.69665i 0.663795 + 0.747915i
\(14\) 1.15207 + 2.38175i 0.307903 + 0.636550i
\(15\) 0.611519 1.05918i 0.157893 0.273479i
\(16\) 1.00000 0.250000
\(17\) 0.186556 0.0452466 0.0226233 0.999744i \(-0.492798\pi\)
0.0226233 + 0.999744i \(0.492798\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) −0.447955 + 0.775880i −0.102768 + 0.177999i −0.912824 0.408353i \(-0.866103\pi\)
0.810056 + 0.586352i \(0.199437\pi\)
\(20\) 0.611519 + 1.05918i 0.136740 + 0.236840i
\(21\) 1.48662 2.18860i 0.324408 0.477591i
\(22\) −0.0702857 0.121738i −0.0149850 0.0259547i
\(23\) 0.0364808 0.00760678 0.00380339 0.999993i \(-0.498789\pi\)
0.00380339 + 0.999993i \(0.498789\pi\)
\(24\) −0.500000 0.866025i −0.102062 0.176777i
\(25\) 1.75209 3.03471i 0.350418 0.606942i
\(26\) 2.39335 + 2.69665i 0.469374 + 0.528856i
\(27\) 1.00000 0.192450
\(28\) 1.15207 + 2.38175i 0.217720 + 0.450109i
\(29\) 2.99337 5.18466i 0.555854 0.962768i −0.441982 0.897024i \(-0.645725\pi\)
0.997837 0.0657442i \(-0.0209421\pi\)
\(30\) 0.611519 1.05918i 0.111648 0.193379i
\(31\) −1.82050 + 3.15319i −0.326971 + 0.566330i −0.981909 0.189352i \(-0.939361\pi\)
0.654939 + 0.755682i \(0.272694\pi\)
\(32\) 1.00000 0.176777
\(33\) −0.0702857 + 0.121738i −0.0122352 + 0.0211919i
\(34\) 0.186556 0.0319941
\(35\) −1.81820 + 2.67673i −0.307331 + 0.452451i
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) −0.363609 −0.0597769 −0.0298884 0.999553i \(-0.509515\pi\)
−0.0298884 + 0.999553i \(0.509515\pi\)
\(38\) −0.447955 + 0.775880i −0.0726678 + 0.125864i
\(39\) 1.13869 3.42102i 0.182337 0.547802i
\(40\) 0.611519 + 1.05918i 0.0966896 + 0.167471i
\(41\) 1.70480 2.95279i 0.266245 0.461149i −0.701644 0.712527i \(-0.747550\pi\)
0.967889 + 0.251378i \(0.0808838\pi\)
\(42\) 1.48662 2.18860i 0.229391 0.337708i
\(43\) −2.06841 3.58258i −0.315429 0.546339i 0.664100 0.747644i \(-0.268815\pi\)
−0.979529 + 0.201305i \(0.935482\pi\)
\(44\) −0.0702857 0.121738i −0.0105960 0.0183528i
\(45\) −1.22304 −0.182320
\(46\) 0.0364808 0.00537880
\(47\) 0.358745 + 0.621364i 0.0523283 + 0.0906353i 0.891003 0.453997i \(-0.150002\pi\)
−0.838675 + 0.544633i \(0.816669\pi\)
\(48\) −0.500000 0.866025i −0.0721688 0.125000i
\(49\) −4.34548 + 5.48788i −0.620783 + 0.783983i
\(50\) 1.75209 3.03471i 0.247783 0.429173i
\(51\) −0.0932782 0.161563i −0.0130616 0.0226233i
\(52\) 2.39335 + 2.69665i 0.331897 + 0.373957i
\(53\) 3.49556 6.05448i 0.480151 0.831647i −0.519589 0.854416i \(-0.673915\pi\)
0.999741 + 0.0227694i \(0.00724836\pi\)
\(54\) 1.00000 0.136083
\(55\) 0.0859621 0.148891i 0.0115911 0.0200764i
\(56\) 1.15207 + 2.38175i 0.153952 + 0.318275i
\(57\) 0.895909 0.118666
\(58\) 2.99337 5.18466i 0.393048 0.680780i
\(59\) −6.99624 −0.910833 −0.455416 0.890279i \(-0.650510\pi\)
−0.455416 + 0.890279i \(0.650510\pi\)
\(60\) 0.611519 1.05918i 0.0789467 0.136740i
\(61\) −0.186556 + 0.323125i −0.0238861 + 0.0413719i −0.877721 0.479171i \(-0.840937\pi\)
0.853835 + 0.520543i \(0.174271\pi\)
\(62\) −1.82050 + 3.15319i −0.231203 + 0.400456i
\(63\) −2.63869 0.193156i −0.332444 0.0243353i
\(64\) 1.00000 0.125000
\(65\) −1.39266 + 4.18404i −0.172738 + 0.518966i
\(66\) −0.0702857 + 0.121738i −0.00865158 + 0.0149850i
\(67\) 2.42903 + 4.20720i 0.296753 + 0.513992i 0.975391 0.220481i \(-0.0707628\pi\)
−0.678638 + 0.734473i \(0.737429\pi\)
\(68\) 0.186556 0.0226233
\(69\) −0.0182404 0.0315933i −0.00219589 0.00380339i
\(70\) −1.81820 + 2.67673i −0.217316 + 0.319931i
\(71\) −5.31198 9.20062i −0.630416 1.09191i −0.987467 0.157828i \(-0.949551\pi\)
0.357050 0.934085i \(-0.383782\pi\)
\(72\) −0.500000 + 0.866025i −0.0589256 + 0.102062i
\(73\) −4.80900 + 8.32943i −0.562851 + 0.974886i 0.434395 + 0.900722i \(0.356962\pi\)
−0.997246 + 0.0741638i \(0.976371\pi\)
\(74\) −0.363609 −0.0422686
\(75\) −3.50418 −0.404628
\(76\) −0.447955 + 0.775880i −0.0513839 + 0.0889996i
\(77\) 0.208977 0.307654i 0.0238151 0.0350604i
\(78\) 1.13869 3.42102i 0.128931 0.387354i
\(79\) −2.94837 5.10673i −0.331718 0.574552i 0.651131 0.758966i \(-0.274295\pi\)
−0.982849 + 0.184413i \(0.940962\pi\)
\(80\) 0.611519 + 1.05918i 0.0683699 + 0.118420i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 1.70480 2.95279i 0.188263 0.326082i
\(83\) −9.14057 −1.00331 −0.501654 0.865068i \(-0.667275\pi\)
−0.501654 + 0.865068i \(0.667275\pi\)
\(84\) 1.48662 2.18860i 0.162204 0.238795i
\(85\) 0.114083 + 0.197597i 0.0123740 + 0.0214324i
\(86\) −2.06841 3.58258i −0.223042 0.386320i
\(87\) −5.98674 −0.641845
\(88\) −0.0702857 0.121738i −0.00749249 0.0129774i
\(89\) −6.35472 −0.673599 −0.336799 0.941576i \(-0.609344\pi\)
−0.336799 + 0.941576i \(0.609344\pi\)
\(90\) −1.22304 −0.128919
\(91\) −3.66544 + 8.80707i −0.384243 + 0.923232i
\(92\) 0.0364808 0.00380339
\(93\) 3.64099 0.377553
\(94\) 0.358745 + 0.621364i 0.0370017 + 0.0640888i
\(95\) −1.09573 −0.112420
\(96\) −0.500000 0.866025i −0.0510310 0.0883883i
\(97\) 3.24059 + 5.61287i 0.329032 + 0.569901i 0.982320 0.187209i \(-0.0599441\pi\)
−0.653288 + 0.757110i \(0.726611\pi\)
\(98\) −4.34548 + 5.48788i −0.438960 + 0.554359i
\(99\) 0.140571 0.0141280
\(100\) 1.75209 3.03471i 0.175209 0.303471i
\(101\) 1.50230 + 2.60206i 0.149484 + 0.258915i 0.931037 0.364925i \(-0.118905\pi\)
−0.781553 + 0.623839i \(0.785572\pi\)
\(102\) −0.0932782 0.161563i −0.00923591 0.0159971i
\(103\) −4.12788 7.14970i −0.406732 0.704480i 0.587789 0.809014i \(-0.299998\pi\)
−0.994521 + 0.104534i \(0.966665\pi\)
\(104\) 2.39335 + 2.69665i 0.234687 + 0.264428i
\(105\) 3.22722 + 0.236237i 0.314944 + 0.0230543i
\(106\) 3.49556 6.05448i 0.339518 0.588063i
\(107\) −4.47283 −0.432405 −0.216202 0.976349i \(-0.569367\pi\)
−0.216202 + 0.976349i \(0.569367\pi\)
\(108\) 1.00000 0.0962250
\(109\) −3.83686 + 6.64563i −0.367504 + 0.636536i −0.989175 0.146743i \(-0.953121\pi\)
0.621671 + 0.783279i \(0.286454\pi\)
\(110\) 0.0859621 0.148891i 0.00819616 0.0141962i
\(111\) 0.181804 + 0.314894i 0.0172561 + 0.0298884i
\(112\) 1.15207 + 2.38175i 0.108860 + 0.225054i
\(113\) −6.18222 10.7079i −0.581575 1.00732i −0.995293 0.0969119i \(-0.969103\pi\)
0.413718 0.910405i \(-0.364230\pi\)
\(114\) 0.895909 0.0839096
\(115\) 0.0223087 + 0.0386398i 0.00208030 + 0.00360318i
\(116\) 2.99337 5.18466i 0.277927 0.481384i
\(117\) −3.53204 + 0.724375i −0.326537 + 0.0669685i
\(118\) −6.99624 −0.644056
\(119\) 0.214926 + 0.444331i 0.0197022 + 0.0407317i
\(120\) 0.611519 1.05918i 0.0558238 0.0966896i
\(121\) 5.49012 9.50917i 0.499102 0.864470i
\(122\) −0.186556 + 0.323125i −0.0168900 + 0.0292544i
\(123\) −3.40959 −0.307433
\(124\) −1.82050 + 3.15319i −0.163485 + 0.283165i
\(125\) 10.4009 0.930287
\(126\) −2.63869 0.193156i −0.235073 0.0172077i
\(127\) −5.45432 + 9.44716i −0.483993 + 0.838300i −0.999831 0.0183858i \(-0.994147\pi\)
0.515838 + 0.856686i \(0.327481\pi\)
\(128\) 1.00000 0.0883883
\(129\) −2.06841 + 3.58258i −0.182113 + 0.315429i
\(130\) −1.39266 + 4.18404i −0.122144 + 0.366964i
\(131\) −10.9715 19.0032i −0.958583 1.66031i −0.725948 0.687749i \(-0.758599\pi\)
−0.232634 0.972564i \(-0.574735\pi\)
\(132\) −0.0702857 + 0.121738i −0.00611759 + 0.0105960i
\(133\) −2.36403 0.173050i −0.204987 0.0150053i
\(134\) 2.42903 + 4.20720i 0.209836 + 0.363447i
\(135\) 0.611519 + 1.05918i 0.0526311 + 0.0911598i
\(136\) 0.186556 0.0159971
\(137\) 2.69210 0.230002 0.115001 0.993365i \(-0.463313\pi\)
0.115001 + 0.993365i \(0.463313\pi\)
\(138\) −0.0182404 0.0315933i −0.00155273 0.00268940i
\(139\) 5.28925 + 9.16126i 0.448629 + 0.777048i 0.998297 0.0583352i \(-0.0185792\pi\)
−0.549668 + 0.835383i \(0.685246\pi\)
\(140\) −1.81820 + 2.67673i −0.153666 + 0.226225i
\(141\) 0.358745 0.621364i 0.0302118 0.0523283i
\(142\) −5.31198 9.20062i −0.445772 0.772099i
\(143\) 0.160068 0.480898i 0.0133855 0.0402147i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 7.32200 0.608059
\(146\) −4.80900 + 8.32943i −0.397996 + 0.689349i
\(147\) 6.92538 + 1.01936i 0.571196 + 0.0840752i
\(148\) −0.363609 −0.0298884
\(149\) 5.95244 10.3099i 0.487643 0.844623i −0.512256 0.858833i \(-0.671190\pi\)
0.999899 + 0.0142102i \(0.00452341\pi\)
\(150\) −3.50418 −0.286115
\(151\) −3.66774 + 6.35272i −0.298477 + 0.516977i −0.975788 0.218720i \(-0.929812\pi\)
0.677311 + 0.735697i \(0.263145\pi\)
\(152\) −0.447955 + 0.775880i −0.0363339 + 0.0629322i
\(153\) −0.0932782 + 0.161563i −0.00754109 + 0.0130616i
\(154\) 0.208977 0.307654i 0.0168398 0.0247915i
\(155\) −4.45307 −0.357679
\(156\) 1.13869 3.42102i 0.0911683 0.273901i
\(157\) 5.15138 8.92246i 0.411125 0.712090i −0.583888 0.811834i \(-0.698469\pi\)
0.995013 + 0.0997446i \(0.0318026\pi\)
\(158\) −2.94837 5.10673i −0.234560 0.406270i
\(159\) −6.99111 −0.554431
\(160\) 0.611519 + 1.05918i 0.0483448 + 0.0837356i
\(161\) 0.0420284 + 0.0868883i 0.00331230 + 0.00684775i
\(162\) −0.500000 0.866025i −0.0392837 0.0680414i
\(163\) 5.06852 8.77893i 0.396997 0.687619i −0.596357 0.802719i \(-0.703386\pi\)
0.993354 + 0.115101i \(0.0367190\pi\)
\(164\) 1.70480 2.95279i 0.133122 0.230575i
\(165\) −0.171924 −0.0133843
\(166\) −9.14057 −0.709446
\(167\) −4.28857 + 7.42802i −0.331860 + 0.574798i −0.982876 0.184266i \(-0.941009\pi\)
0.651017 + 0.759063i \(0.274343\pi\)
\(168\) 1.48662 2.18860i 0.114695 0.168854i
\(169\) −1.54380 + 12.9080i −0.118754 + 0.992924i
\(170\) 0.114083 + 0.197597i 0.00874974 + 0.0151550i
\(171\) −0.447955 0.775880i −0.0342559 0.0593330i
\(172\) −2.06841 3.58258i −0.157714 0.273169i
\(173\) 5.33942 9.24815i 0.405949 0.703124i −0.588483 0.808510i \(-0.700275\pi\)
0.994431 + 0.105386i \(0.0336079\pi\)
\(174\) −5.98674 −0.453853
\(175\) 9.24645 + 0.676853i 0.698966 + 0.0511653i
\(176\) −0.0702857 0.121738i −0.00529799 0.00917638i
\(177\) 3.49812 + 6.05892i 0.262935 + 0.455416i
\(178\) −6.35472 −0.476306
\(179\) 6.48961 + 11.2403i 0.485056 + 0.840142i 0.999853 0.0171707i \(-0.00546588\pi\)
−0.514797 + 0.857312i \(0.672133\pi\)
\(180\) −1.22304 −0.0911598
\(181\) 23.7327 1.76403 0.882017 0.471217i \(-0.156185\pi\)
0.882017 + 0.471217i \(0.156185\pi\)
\(182\) −3.66544 + 8.80707i −0.271701 + 0.652824i
\(183\) 0.373113 0.0275813
\(184\) 0.0364808 0.00268940
\(185\) −0.222353 0.385127i −0.0163477 0.0283151i
\(186\) 3.64099 0.266970
\(187\) −0.0131122 0.0227111i −0.000958863 0.00166080i
\(188\) 0.358745 + 0.621364i 0.0261642 + 0.0453176i
\(189\) 1.15207 + 2.38175i 0.0838006 + 0.173247i
\(190\) −1.09573 −0.0794926
\(191\) 9.98892 17.3013i 0.722773 1.25188i −0.237111 0.971483i \(-0.576200\pi\)
0.959884 0.280397i \(-0.0904662\pi\)
\(192\) −0.500000 0.866025i −0.0360844 0.0625000i
\(193\) 3.11194 + 5.39003i 0.224002 + 0.387983i 0.956020 0.293303i \(-0.0947544\pi\)
−0.732017 + 0.681286i \(0.761421\pi\)
\(194\) 3.24059 + 5.61287i 0.232661 + 0.402981i
\(195\) 4.31981 0.885937i 0.309348 0.0634433i
\(196\) −4.34548 + 5.48788i −0.310391 + 0.391991i
\(197\) 12.2503 21.2182i 0.872799 1.51173i 0.0137105 0.999906i \(-0.495636\pi\)
0.859089 0.511827i \(-0.171031\pi\)
\(198\) 0.140571 0.00998998
\(199\) −19.6151 −1.39048 −0.695238 0.718780i \(-0.744701\pi\)
−0.695238 + 0.718780i \(0.744701\pi\)
\(200\) 1.75209 3.03471i 0.123891 0.214586i
\(201\) 2.42903 4.20720i 0.171331 0.296753i
\(202\) 1.50230 + 2.60206i 0.105701 + 0.183080i
\(203\) 15.7971 + 1.15637i 1.10874 + 0.0811615i
\(204\) −0.0932782 0.161563i −0.00653078 0.0113116i
\(205\) 4.17006 0.291250
\(206\) −4.12788 7.14970i −0.287603 0.498143i
\(207\) −0.0182404 + 0.0315933i −0.00126780 + 0.00219589i
\(208\) 2.39335 + 2.69665i 0.165949 + 0.186979i
\(209\) 0.125939 0.00871140
\(210\) 3.22722 + 0.236237i 0.222699 + 0.0163019i
\(211\) −2.99635 + 5.18983i −0.206277 + 0.357283i −0.950539 0.310605i \(-0.899468\pi\)
0.744262 + 0.667888i \(0.232802\pi\)
\(212\) 3.49556 6.05448i 0.240076 0.415823i
\(213\) −5.31198 + 9.20062i −0.363971 + 0.630416i
\(214\) −4.47283 −0.305756
\(215\) 2.52974 4.38163i 0.172527 0.298825i
\(216\) 1.00000 0.0680414
\(217\) −9.60745 0.703279i −0.652196 0.0477417i
\(218\) −3.83686 + 6.64563i −0.259865 + 0.450099i
\(219\) 9.61800 0.649924
\(220\) 0.0859621 0.148891i 0.00579556 0.0100382i
\(221\) 0.446494 + 0.503076i 0.0300344 + 0.0338406i
\(222\) 0.181804 + 0.314894i 0.0122019 + 0.0211343i
\(223\) 13.8098 23.9193i 0.924775 1.60176i 0.132853 0.991136i \(-0.457586\pi\)
0.791922 0.610622i \(-0.209080\pi\)
\(224\) 1.15207 + 2.38175i 0.0769758 + 0.159137i
\(225\) 1.75209 + 3.03471i 0.116806 + 0.202314i
\(226\) −6.18222 10.7079i −0.411235 0.712281i
\(227\) −1.79129 −0.118892 −0.0594460 0.998232i \(-0.518933\pi\)
−0.0594460 + 0.998232i \(0.518933\pi\)
\(228\) 0.895909 0.0593330
\(229\) 12.6142 + 21.8485i 0.833572 + 1.44379i 0.895188 + 0.445690i \(0.147041\pi\)
−0.0616153 + 0.998100i \(0.519625\pi\)
\(230\) 0.0223087 + 0.0386398i 0.00147099 + 0.00254783i
\(231\) −0.370925 0.0271522i −0.0244051 0.00178648i
\(232\) 2.99337 5.18466i 0.196524 0.340390i
\(233\) 14.1852 + 24.5695i 0.929304 + 1.60960i 0.784489 + 0.620143i \(0.212925\pi\)
0.144815 + 0.989459i \(0.453741\pi\)
\(234\) −3.53204 + 0.724375i −0.230896 + 0.0473539i
\(235\) −0.438758 + 0.759952i −0.0286214 + 0.0495738i
\(236\) −6.99624 −0.455416
\(237\) −2.94837 + 5.10673i −0.191517 + 0.331718i
\(238\) 0.214926 + 0.444331i 0.0139316 + 0.0288017i
\(239\) −28.9654 −1.87362 −0.936809 0.349842i \(-0.886235\pi\)
−0.936809 + 0.349842i \(0.886235\pi\)
\(240\) 0.611519 1.05918i 0.0394734 0.0683699i
\(241\) −13.1951 −0.849974 −0.424987 0.905200i \(-0.639721\pi\)
−0.424987 + 0.905200i \(0.639721\pi\)
\(242\) 5.49012 9.50917i 0.352918 0.611272i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) −0.186556 + 0.323125i −0.0119430 + 0.0206860i
\(245\) −8.47000 1.24671i −0.541128 0.0796495i
\(246\) −3.40959 −0.217388
\(247\) −3.16438 + 0.648974i −0.201345 + 0.0412932i
\(248\) −1.82050 + 3.15319i −0.115602 + 0.200228i
\(249\) 4.57029 + 7.91597i 0.289630 + 0.501654i
\(250\) 10.4009 0.657812
\(251\) 4.73276 + 8.19739i 0.298729 + 0.517415i 0.975846 0.218462i \(-0.0701038\pi\)
−0.677116 + 0.735876i \(0.736771\pi\)
\(252\) −2.63869 0.193156i −0.166222 0.0121677i
\(253\) −0.00256408 0.00444112i −0.000161202 0.000279211i
\(254\) −5.45432 + 9.44716i −0.342235 + 0.592768i
\(255\) 0.114083 0.197597i 0.00714413 0.0123740i
\(256\) 1.00000 0.0625000
\(257\) −10.2358 −0.638490 −0.319245 0.947672i \(-0.603429\pi\)
−0.319245 + 0.947672i \(0.603429\pi\)
\(258\) −2.06841 + 3.58258i −0.128773 + 0.223042i
\(259\) −0.418902 0.866025i −0.0260293 0.0538122i
\(260\) −1.39266 + 4.18404i −0.0863692 + 0.259483i
\(261\) 2.99337 + 5.18466i 0.185285 + 0.320923i
\(262\) −10.9715 19.0032i −0.677820 1.17402i
\(263\) 2.42308 + 4.19690i 0.149414 + 0.258792i 0.931011 0.364991i \(-0.118928\pi\)
−0.781597 + 0.623783i \(0.785595\pi\)
\(264\) −0.0702857 + 0.121738i −0.00432579 + 0.00749249i
\(265\) 8.55039 0.525246
\(266\) −2.36403 0.173050i −0.144948 0.0106104i
\(267\) 3.17736 + 5.50335i 0.194451 + 0.336799i
\(268\) 2.42903 + 4.20720i 0.148377 + 0.256996i
\(269\) −0.897277 −0.0547079 −0.0273540 0.999626i \(-0.508708\pi\)
−0.0273540 + 0.999626i \(0.508708\pi\)
\(270\) 0.611519 + 1.05918i 0.0372158 + 0.0644597i
\(271\) 13.8751 0.842854 0.421427 0.906862i \(-0.361529\pi\)
0.421427 + 0.906862i \(0.361529\pi\)
\(272\) 0.186556 0.0113116
\(273\) 9.45987 1.22917i 0.572537 0.0743926i
\(274\) 2.69210 0.162636
\(275\) −0.492588 −0.0297042
\(276\) −0.0182404 0.0315933i −0.00109794 0.00190169i
\(277\) −20.4739 −1.23016 −0.615078 0.788466i \(-0.710876\pi\)
−0.615078 + 0.788466i \(0.710876\pi\)
\(278\) 5.28925 + 9.16126i 0.317228 + 0.549456i
\(279\) −1.82050 3.15319i −0.108990 0.188777i
\(280\) −1.81820 + 2.67673i −0.108658 + 0.159965i
\(281\) 5.11819 0.305326 0.152663 0.988278i \(-0.451215\pi\)
0.152663 + 0.988278i \(0.451215\pi\)
\(282\) 0.358745 0.621364i 0.0213629 0.0370017i
\(283\) −4.54066 7.86466i −0.269914 0.467505i 0.698925 0.715195i \(-0.253662\pi\)
−0.968839 + 0.247690i \(0.920329\pi\)
\(284\) −5.31198 9.20062i −0.315208 0.545957i
\(285\) 0.547865 + 0.948930i 0.0324527 + 0.0562098i
\(286\) 0.160068 0.480898i 0.00946499 0.0284361i
\(287\) 8.99686 + 0.658583i 0.531068 + 0.0388749i
\(288\) −0.500000 + 0.866025i −0.0294628 + 0.0510310i
\(289\) −16.9652 −0.997953
\(290\) 7.32200 0.429963
\(291\) 3.24059 5.61287i 0.189967 0.329032i
\(292\) −4.80900 + 8.32943i −0.281425 + 0.487443i
\(293\) 3.13195 + 5.42469i 0.182970 + 0.316914i 0.942891 0.333102i \(-0.108095\pi\)
−0.759920 + 0.650016i \(0.774762\pi\)
\(294\) 6.92538 + 1.01936i 0.403896 + 0.0594501i
\(295\) −4.27833 7.41029i −0.249094 0.431443i
\(296\) −0.363609 −0.0211343
\(297\) −0.0702857 0.121738i −0.00407839 0.00706398i
\(298\) 5.95244 10.3099i 0.344816 0.597238i
\(299\) 0.0873112 + 0.0983759i 0.00504934 + 0.00568922i
\(300\) −3.50418 −0.202314
\(301\) 6.14988 9.05381i 0.354473 0.521853i
\(302\) −3.66774 + 6.35272i −0.211055 + 0.365558i
\(303\) 1.50230 2.60206i 0.0863049 0.149484i
\(304\) −0.447955 + 0.775880i −0.0256920 + 0.0444998i
\(305\) −0.456331 −0.0261294
\(306\) −0.0932782 + 0.161563i −0.00533236 + 0.00923591i
\(307\) 30.0806 1.71679 0.858395 0.512989i \(-0.171462\pi\)
0.858395 + 0.512989i \(0.171462\pi\)
\(308\) 0.208977 0.307654i 0.0119076 0.0175302i
\(309\) −4.12788 + 7.14970i −0.234827 + 0.406732i
\(310\) −4.45307 −0.252917
\(311\) −13.8292 + 23.9528i −0.784180 + 1.35824i 0.145308 + 0.989386i \(0.453583\pi\)
−0.929488 + 0.368853i \(0.879751\pi\)
\(312\) 1.13869 3.42102i 0.0644657 0.193677i
\(313\) −3.43002 5.94097i −0.193876 0.335804i 0.752655 0.658415i \(-0.228773\pi\)
−0.946532 + 0.322611i \(0.895439\pi\)
\(314\) 5.15138 8.92246i 0.290709 0.503523i
\(315\) −1.40902 2.91297i −0.0793894 0.164127i
\(316\) −2.94837 5.10673i −0.165859 0.287276i
\(317\) 3.37146 + 5.83953i 0.189360 + 0.327981i 0.945037 0.326963i \(-0.106025\pi\)
−0.755677 + 0.654944i \(0.772692\pi\)
\(318\) −6.99111 −0.392042
\(319\) −0.841564 −0.0471186
\(320\) 0.611519 + 1.05918i 0.0341849 + 0.0592100i
\(321\) 2.23641 + 3.87358i 0.124824 + 0.216202i
\(322\) 0.0420284 + 0.0868883i 0.00234215 + 0.00484209i
\(323\) −0.0835688 + 0.144745i −0.00464989 + 0.00805385i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 12.3769 2.53834i 0.686546 0.140802i
\(326\) 5.06852 8.77893i 0.280719 0.486220i
\(327\) 7.67371 0.424357
\(328\) 1.70480 2.95279i 0.0941317 0.163041i
\(329\) −1.06664 + 1.57029i −0.0588056 + 0.0865731i
\(330\) −0.171924 −0.00946411
\(331\) 5.54908 9.61129i 0.305005 0.528284i −0.672257 0.740317i \(-0.734675\pi\)
0.977262 + 0.212033i \(0.0680085\pi\)
\(332\) −9.14057 −0.501654
\(333\) 0.181804 0.314894i 0.00996282 0.0172561i
\(334\) −4.28857 + 7.42802i −0.234660 + 0.406443i
\(335\) −2.97079 + 5.14557i −0.162312 + 0.281132i
\(336\) 1.48662 2.18860i 0.0811020 0.119398i
\(337\) 21.6470 1.17918 0.589592 0.807701i \(-0.299288\pi\)
0.589592 + 0.807701i \(0.299288\pi\)
\(338\) −1.54380 + 12.9080i −0.0839715 + 0.702103i
\(339\) −6.18222 + 10.7079i −0.335772 + 0.581575i
\(340\) 0.114083 + 0.197597i 0.00618700 + 0.0107162i
\(341\) 0.511819 0.0277166
\(342\) −0.447955 0.775880i −0.0242226 0.0419548i
\(343\) −18.0770 4.02745i −0.976069 0.217462i
\(344\) −2.06841 3.58258i −0.111521 0.193160i
\(345\) 0.0223087 0.0386398i 0.00120106 0.00208030i
\(346\) 5.33942 9.24815i 0.287049 0.497183i
\(347\) 29.8675 1.60337 0.801685 0.597746i \(-0.203937\pi\)
0.801685 + 0.597746i \(0.203937\pi\)
\(348\) −5.98674 −0.320923
\(349\) −6.47690 + 11.2183i −0.346700 + 0.600503i −0.985661 0.168737i \(-0.946031\pi\)
0.638961 + 0.769239i \(0.279365\pi\)
\(350\) 9.24645 + 0.676853i 0.494243 + 0.0361793i
\(351\) 2.39335 + 2.69665i 0.127747 + 0.143936i
\(352\) −0.0702857 0.121738i −0.00374624 0.00648868i
\(353\) −3.07853 5.33218i −0.163854 0.283803i 0.772394 0.635144i \(-0.219059\pi\)
−0.936248 + 0.351341i \(0.885726\pi\)
\(354\) 3.49812 + 6.05892i 0.185923 + 0.322028i
\(355\) 6.49675 11.2527i 0.344812 0.597232i
\(356\) −6.35472 −0.336799
\(357\) 0.277339 0.408296i 0.0146783 0.0216093i
\(358\) 6.48961 + 11.2403i 0.342986 + 0.594070i
\(359\) 12.4203 + 21.5125i 0.655516 + 1.13539i 0.981764 + 0.190103i \(0.0608821\pi\)
−0.326248 + 0.945284i \(0.605785\pi\)
\(360\) −1.22304 −0.0644597
\(361\) 9.09867 + 15.7594i 0.478878 + 0.829440i
\(362\) 23.7327 1.24736
\(363\) −10.9802 −0.576313
\(364\) −3.66544 + 8.80707i −0.192121 + 0.461616i
\(365\) −11.7632 −0.615712
\(366\) 0.373113 0.0195029
\(367\) −18.0306 31.2299i −0.941188 1.63019i −0.763209 0.646152i \(-0.776377\pi\)
−0.177980 0.984034i \(-0.556956\pi\)
\(368\) 0.0364808 0.00190169
\(369\) 1.70480 + 2.95279i 0.0887482 + 0.153716i
\(370\) −0.222353 0.385127i −0.0115596 0.0200218i
\(371\) 18.4474 + 1.35037i 0.957740 + 0.0701079i
\(372\) 3.64099 0.188777
\(373\) 7.37092 12.7668i 0.381652 0.661041i −0.609647 0.792673i \(-0.708689\pi\)
0.991299 + 0.131633i \(0.0420219\pi\)
\(374\) −0.0131122 0.0227111i −0.000678018 0.00117436i
\(375\) −5.20046 9.00747i −0.268551 0.465144i
\(376\) 0.358745 + 0.621364i 0.0185009 + 0.0320444i
\(377\) 21.1454 4.33664i 1.08904 0.223348i
\(378\) 1.15207 + 2.38175i 0.0592560 + 0.122504i
\(379\) 5.33674 9.24351i 0.274130 0.474807i −0.695785 0.718250i \(-0.744943\pi\)
0.969915 + 0.243443i \(0.0782768\pi\)
\(380\) −1.09573 −0.0562098
\(381\) 10.9086 0.558867
\(382\) 9.98892 17.3013i 0.511078 0.885213i
\(383\) 10.2017 17.6698i 0.521281 0.902884i −0.478413 0.878135i \(-0.658788\pi\)
0.999694 0.0247495i \(-0.00787881\pi\)
\(384\) −0.500000 0.866025i −0.0255155 0.0441942i
\(385\) 0.453655 + 0.0332082i 0.0231204 + 0.00169244i
\(386\) 3.11194 + 5.39003i 0.158393 + 0.274346i
\(387\) 4.13681 0.210286
\(388\) 3.24059 + 5.61287i 0.164516 + 0.284950i
\(389\) −15.8455 + 27.4453i −0.803400 + 1.39153i 0.113966 + 0.993485i \(0.463644\pi\)
−0.917366 + 0.398045i \(0.869689\pi\)
\(390\) 4.31981 0.885937i 0.218742 0.0448612i
\(391\) 0.00680573 0.000344181
\(392\) −4.34548 + 5.48788i −0.219480 + 0.277180i
\(393\) −10.9715 + 19.0032i −0.553438 + 0.958583i
\(394\) 12.2503 21.2182i 0.617162 1.06896i
\(395\) 3.60597 6.24573i 0.181436 0.314257i
\(396\) 0.140571 0.00706398
\(397\) 1.30524 2.26074i 0.0655080 0.113463i −0.831411 0.555658i \(-0.812467\pi\)
0.896919 + 0.442194i \(0.145800\pi\)
\(398\) −19.6151 −0.983215
\(399\) 1.03215 + 2.13383i 0.0516720 + 0.106825i
\(400\) 1.75209 3.03471i 0.0876045 0.151735i
\(401\) −16.3696 −0.817458 −0.408729 0.912656i \(-0.634028\pi\)
−0.408729 + 0.912656i \(0.634028\pi\)
\(402\) 2.42903 4.20720i 0.121149 0.209836i
\(403\) −12.8601 + 2.63744i −0.640608 + 0.131380i
\(404\) 1.50230 + 2.60206i 0.0747422 + 0.129457i
\(405\) 0.611519 1.05918i 0.0303866 0.0526311i
\(406\) 15.7971 + 1.15637i 0.783999 + 0.0573898i
\(407\) 0.0255565 + 0.0442652i 0.00126679 + 0.00219414i
\(408\) −0.0932782 0.161563i −0.00461796 0.00799854i
\(409\) 22.7307 1.12396 0.561980 0.827151i \(-0.310040\pi\)
0.561980 + 0.827151i \(0.310040\pi\)
\(410\) 4.17006 0.205945
\(411\) −1.34605 2.33143i −0.0663958 0.115001i
\(412\) −4.12788 7.14970i −0.203366 0.352240i
\(413\) −8.06014 16.6633i −0.396614 0.819948i
\(414\) −0.0182404 + 0.0315933i −0.000896467 + 0.00155273i
\(415\) −5.58963 9.68152i −0.274384 0.475247i
\(416\) 2.39335 + 2.69665i 0.117343 + 0.132214i
\(417\) 5.28925 9.16126i 0.259016 0.448629i
\(418\) 0.125939 0.00615989
\(419\) −11.4491 + 19.8303i −0.559323 + 0.968776i 0.438230 + 0.898863i \(0.355606\pi\)
−0.997553 + 0.0699131i \(0.977728\pi\)
\(420\) 3.22722 + 0.236237i 0.157472 + 0.0115272i
\(421\) 8.33173 0.406064 0.203032 0.979172i \(-0.434921\pi\)
0.203032 + 0.979172i \(0.434921\pi\)
\(422\) −2.99635 + 5.18983i −0.145860 + 0.252637i
\(423\) −0.717490 −0.0348855
\(424\) 3.49556 6.05448i 0.169759 0.294032i
\(425\) 0.326863 0.566144i 0.0158552 0.0274620i
\(426\) −5.31198 + 9.20062i −0.257366 + 0.445772i
\(427\) −0.984529 0.0720689i −0.0476447 0.00348766i
\(428\) −4.47283 −0.216202
\(429\) −0.496504 + 0.101826i −0.0239714 + 0.00491623i
\(430\) 2.52974 4.38163i 0.121995 0.211301i
\(431\) 13.7933 + 23.8907i 0.664401 + 1.15078i 0.979447 + 0.201700i \(0.0646466\pi\)
−0.315046 + 0.949076i \(0.602020\pi\)
\(432\) 1.00000 0.0481125
\(433\) −15.7254 27.2372i −0.755714 1.30893i −0.945019 0.327016i \(-0.893957\pi\)
0.189305 0.981918i \(-0.439376\pi\)
\(434\) −9.60745 0.703279i −0.461172 0.0337585i
\(435\) −3.66100 6.34104i −0.175532 0.304029i
\(436\) −3.83686 + 6.64563i −0.183752 + 0.318268i
\(437\) −0.0163418 + 0.0283048i −0.000781732 + 0.00135400i
\(438\) 9.61800 0.459566
\(439\) −15.2460 −0.727653 −0.363827 0.931467i \(-0.618530\pi\)
−0.363827 + 0.931467i \(0.618530\pi\)
\(440\) 0.0859621 0.148891i 0.00409808 0.00709808i
\(441\) −2.57990 6.50724i −0.122852 0.309868i
\(442\) 0.446494 + 0.503076i 0.0212375 + 0.0239289i
\(443\) 10.7666 + 18.6482i 0.511535 + 0.886005i 0.999911 + 0.0133713i \(0.00425634\pi\)
−0.488375 + 0.872634i \(0.662410\pi\)
\(444\) 0.181804 + 0.314894i 0.00862805 + 0.0149442i
\(445\) −3.88603 6.73080i −0.184215 0.319071i
\(446\) 13.8098 23.9193i 0.653915 1.13261i
\(447\) −11.9049 −0.563082
\(448\) 1.15207 + 2.38175i 0.0544301 + 0.112527i
\(449\) 2.76290 + 4.78549i 0.130389 + 0.225841i 0.923827 0.382811i \(-0.125044\pi\)
−0.793437 + 0.608652i \(0.791711\pi\)
\(450\) 1.75209 + 3.03471i 0.0825943 + 0.143058i
\(451\) −0.479292 −0.0225690
\(452\) −6.18222 10.7079i −0.290787 0.503658i
\(453\) 7.33549 0.344651
\(454\) −1.79129 −0.0840694
\(455\) −11.5698 + 1.50332i −0.542399 + 0.0704767i
\(456\) 0.895909 0.0419548
\(457\) −32.0373 −1.49864 −0.749321 0.662207i \(-0.769620\pi\)
−0.749321 + 0.662207i \(0.769620\pi\)
\(458\) 12.6142 + 21.8485i 0.589425 + 1.02091i
\(459\) 0.186556 0.00870770
\(460\) 0.0223087 + 0.0386398i 0.00104015 + 0.00180159i
\(461\) −6.48516 11.2326i −0.302044 0.523156i 0.674555 0.738225i \(-0.264336\pi\)
−0.976599 + 0.215069i \(0.931002\pi\)
\(462\) −0.370925 0.0271522i −0.0172570 0.00126323i
\(463\) −11.6453 −0.541202 −0.270601 0.962692i \(-0.587222\pi\)
−0.270601 + 0.962692i \(0.587222\pi\)
\(464\) 2.99337 5.18466i 0.138964 0.240692i
\(465\) 2.22653 + 3.85647i 0.103253 + 0.178839i
\(466\) 14.1852 + 24.5695i 0.657117 + 1.13816i
\(467\) 2.99029 + 5.17934i 0.138374 + 0.239671i 0.926881 0.375354i \(-0.122479\pi\)
−0.788507 + 0.615026i \(0.789146\pi\)
\(468\) −3.53204 + 0.724375i −0.163268 + 0.0334842i
\(469\) −7.22211 + 10.6323i −0.333486 + 0.490955i
\(470\) −0.438758 + 0.759952i −0.0202384 + 0.0350539i
\(471\) −10.3028 −0.474726
\(472\) −6.99624 −0.322028
\(473\) −0.290759 + 0.503609i −0.0133691 + 0.0231560i
\(474\) −2.94837 + 5.10673i −0.135423 + 0.234560i
\(475\) 1.56971 + 2.71882i 0.0720234 + 0.124748i
\(476\) 0.214926 + 0.444331i 0.00985109 + 0.0203659i
\(477\) 3.49556 + 6.05448i 0.160050 + 0.277216i
\(478\) −28.9654 −1.32485
\(479\) −3.33079 5.76911i −0.152188 0.263597i 0.779844 0.625974i \(-0.215299\pi\)
−0.932032 + 0.362377i \(0.881965\pi\)
\(480\) 0.611519 1.05918i 0.0279119 0.0483448i
\(481\) −0.870241 0.980524i −0.0396796 0.0447080i
\(482\) −13.1951 −0.601022
\(483\) 0.0542333 0.0798418i 0.00246770 0.00363293i
\(484\) 5.49012 9.50917i 0.249551 0.432235i
\(485\) −3.96337 + 6.86475i −0.179967 + 0.311712i
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) −18.9362 −0.858079 −0.429039 0.903286i \(-0.641148\pi\)
−0.429039 + 0.903286i \(0.641148\pi\)
\(488\) −0.186556 + 0.323125i −0.00844501 + 0.0146272i
\(489\) −10.1370 −0.458413
\(490\) −8.47000 1.24671i −0.382636 0.0563207i
\(491\) −19.5234 + 33.8155i −0.881079 + 1.52607i −0.0309367 + 0.999521i \(0.509849\pi\)
−0.850143 + 0.526553i \(0.823484\pi\)
\(492\) −3.40959 −0.153716
\(493\) 0.558432 0.967232i 0.0251505 0.0435619i
\(494\) −3.16438 + 0.648974i −0.142372 + 0.0291987i
\(495\) 0.0859621 + 0.148891i 0.00386371 + 0.00669214i
\(496\) −1.82050 + 3.15319i −0.0817427 + 0.141582i
\(497\) 15.7938 23.2516i 0.708450 1.04298i
\(498\) 4.57029 + 7.91597i 0.204799 + 0.354723i
\(499\) −16.6602 28.8563i −0.745812 1.29178i −0.949814 0.312814i \(-0.898728\pi\)
0.204002 0.978970i \(-0.434605\pi\)
\(500\) 10.4009 0.465144
\(501\) 8.57714 0.383198
\(502\) 4.73276 + 8.19739i 0.211234 + 0.365867i
\(503\) 5.86768 + 10.1631i 0.261627 + 0.453151i 0.966674 0.256009i \(-0.0824077\pi\)
−0.705048 + 0.709160i \(0.749074\pi\)
\(504\) −2.63869 0.193156i −0.117537 0.00860384i
\(505\) −1.83737 + 3.18242i −0.0817618 + 0.141616i
\(506\) −0.00256408 0.00444112i −0.000113987 0.000197432i
\(507\) 11.9506 5.11704i 0.530743 0.227256i
\(508\) −5.45432 + 9.44716i −0.241996 + 0.419150i
\(509\) −34.6529 −1.53596 −0.767982 0.640471i \(-0.778739\pi\)
−0.767982 + 0.640471i \(0.778739\pi\)
\(510\) 0.114083 0.197597i 0.00505167 0.00874974i
\(511\) −25.3789 1.85777i −1.12270 0.0821830i
\(512\) 1.00000 0.0441942
\(513\) −0.447955 + 0.775880i −0.0197777 + 0.0342559i
\(514\) −10.2358 −0.451481
\(515\) 5.04855 8.74434i 0.222466 0.385322i
\(516\) −2.06841 + 3.58258i −0.0910565 + 0.157714i
\(517\) 0.0504293 0.0873461i 0.00221788 0.00384148i
\(518\) −0.418902 0.866025i −0.0184055 0.0380510i
\(519\) −10.6788 −0.468749
\(520\) −1.39266 + 4.18404i −0.0610722 + 0.183482i
\(521\) 2.62165 4.54083i 0.114856 0.198937i −0.802866 0.596160i \(-0.796693\pi\)
0.917722 + 0.397222i \(0.130026\pi\)
\(522\) 2.99337 + 5.18466i 0.131016 + 0.226927i
\(523\) −15.9800 −0.698757 −0.349379 0.936982i \(-0.613607\pi\)
−0.349379 + 0.936982i \(0.613607\pi\)
\(524\) −10.9715 19.0032i −0.479291 0.830157i
\(525\) −4.03705 8.34609i −0.176191 0.364253i
\(526\) 2.42308 + 4.19690i 0.105651 + 0.182994i
\(527\) −0.339625 + 0.588248i −0.0147943 + 0.0256245i
\(528\) −0.0702857 + 0.121738i −0.00305879 + 0.00529799i
\(529\) −22.9987 −0.999942
\(530\) 8.55039 0.371405
\(531\) 3.49812 6.05892i 0.151805 0.262935i
\(532\) −2.36403 0.173050i −0.102494 0.00750267i
\(533\) 12.0428 2.46982i 0.521632 0.106980i
\(534\) 3.17736 + 5.50335i 0.137498 + 0.238153i
\(535\) −2.73522 4.73753i −0.118254 0.204821i
\(536\) 2.42903 + 4.20720i 0.104918 + 0.181724i
\(537\) 6.48961 11.2403i 0.280047 0.485056i
\(538\) −0.897277 −0.0386843
\(539\) 0.973511 + 0.143293i 0.0419321 + 0.00617205i
\(540\) 0.611519 + 1.05918i 0.0263156 + 0.0455799i
\(541\) −0.886405 1.53530i −0.0381095 0.0660077i 0.846342 0.532641i \(-0.178800\pi\)
−0.884451 + 0.466633i \(0.845467\pi\)
\(542\) 13.8751 0.595988
\(543\) −11.8663 20.5531i −0.509233 0.882017i
\(544\) 0.186556 0.00799854
\(545\) −9.38523 −0.402019
\(546\) 9.45987 1.22917i 0.404845 0.0526035i
\(547\) 9.88287 0.422561 0.211280 0.977425i \(-0.432237\pi\)
0.211280 + 0.977425i \(0.432237\pi\)
\(548\) 2.69210 0.115001
\(549\) −0.186556 0.323125i −0.00796203 0.0137906i
\(550\) −0.492588 −0.0210040
\(551\) 2.68179 + 4.64499i 0.114248 + 0.197883i
\(552\) −0.0182404 0.0315933i −0.000776364 0.00134470i
\(553\) 8.76624 12.9056i 0.372779 0.548802i
\(554\) −20.4739 −0.869852
\(555\) −0.222353 + 0.385127i −0.00943838 + 0.0163477i
\(556\) 5.28925 + 9.16126i 0.224314 + 0.388524i
\(557\) −10.0865 17.4704i −0.427380 0.740244i 0.569259 0.822158i \(-0.307230\pi\)
−0.996639 + 0.0819139i \(0.973897\pi\)
\(558\) −1.82050 3.15319i −0.0770677 0.133485i
\(559\) 4.71055 14.1521i 0.199235 0.598571i
\(560\) −1.81820 + 2.67673i −0.0768328 + 0.113113i
\(561\) −0.0131122 + 0.0227111i −0.000553600 + 0.000958863i
\(562\) 5.11819 0.215898
\(563\) −0.106297 −0.00447988 −0.00223994 0.999997i \(-0.500713\pi\)
−0.00223994 + 0.999997i \(0.500713\pi\)
\(564\) 0.358745 0.621364i 0.0151059 0.0261642i
\(565\) 7.56109 13.0962i 0.318097 0.550961i
\(566\) −4.54066 7.86466i −0.190858 0.330576i
\(567\) 1.48662 2.18860i 0.0624323 0.0919124i
\(568\) −5.31198 9.20062i −0.222886 0.386050i
\(569\) −7.66181 −0.321200 −0.160600 0.987020i \(-0.551343\pi\)
−0.160600 + 0.987020i \(0.551343\pi\)
\(570\) 0.547865 + 0.948930i 0.0229475 + 0.0397463i
\(571\) −1.44075 + 2.49545i −0.0602935 + 0.104431i −0.894597 0.446875i \(-0.852537\pi\)
0.834303 + 0.551306i \(0.185870\pi\)
\(572\) 0.160068 0.480898i 0.00669276 0.0201074i
\(573\) −19.9778 −0.834587
\(574\) 8.99686 + 0.658583i 0.375522 + 0.0274887i
\(575\) 0.0639177 0.110709i 0.00266555 0.00461687i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 17.3055 29.9740i 0.720438 1.24783i −0.240387 0.970677i \(-0.577274\pi\)
0.960825 0.277157i \(-0.0893923\pi\)
\(578\) −16.9652 −0.705659
\(579\) 3.11194 5.39003i 0.129328 0.224002i
\(580\) 7.32200 0.304029
\(581\) −10.5306 21.7706i −0.436881 0.903195i
\(582\) 3.24059 5.61287i 0.134327 0.232661i
\(583\) −0.982751 −0.0407014
\(584\) −4.80900 + 8.32943i −0.198998 + 0.344674i
\(585\) −2.92715 3.29810i −0.121023 0.136360i
\(586\) 3.13195 + 5.42469i 0.129380 + 0.224092i
\(587\) −5.21346 + 9.02999i −0.215183 + 0.372707i −0.953329 0.301933i \(-0.902368\pi\)
0.738146 + 0.674641i \(0.235701\pi\)
\(588\) 6.92538 + 1.01936i 0.285598 + 0.0420376i
\(589\) −1.63100 2.82497i −0.0672041 0.116401i
\(590\) −4.27833 7.41029i −0.176136 0.305077i
\(591\) −24.5006 −1.00782
\(592\) −0.363609 −0.0149442
\(593\) 10.9551 + 18.9748i 0.449873 + 0.779203i 0.998377 0.0569451i \(-0.0181360\pi\)
−0.548505 + 0.836148i \(0.684803\pi\)
\(594\) −0.0702857 0.121738i −0.00288386 0.00499499i
\(595\) −0.339196 + 0.499362i −0.0139057 + 0.0204718i
\(596\) 5.95244 10.3099i 0.243822 0.422311i
\(597\) 9.80754 + 16.9872i 0.401396 + 0.695238i
\(598\) 0.0873112 + 0.0983759i 0.00357042 + 0.00402289i
\(599\) −7.67924 + 13.3008i −0.313765 + 0.543457i −0.979174 0.203022i \(-0.934924\pi\)
0.665409 + 0.746479i \(0.268257\pi\)
\(600\) −3.50418 −0.143058
\(601\) 1.63801 2.83711i 0.0668157 0.115728i −0.830682 0.556747i \(-0.812049\pi\)
0.897498 + 0.441019i \(0.145383\pi\)
\(602\) 6.14988 9.05381i 0.250650 0.369006i
\(603\) −4.85806 −0.197836
\(604\) −3.66774 + 6.35272i −0.149238 + 0.258488i
\(605\) 13.4292 0.545976
\(606\) 1.50230 2.60206i 0.0610268 0.105701i
\(607\) −16.5768 + 28.7118i −0.672830 + 1.16538i 0.304268 + 0.952587i \(0.401588\pi\)
−0.977098 + 0.212790i \(0.931745\pi\)
\(608\) −0.447955 + 0.775880i −0.0181670 + 0.0314661i
\(609\) −6.89712 14.2589i −0.279486 0.577800i
\(610\) −0.456331 −0.0184763
\(611\) −0.816999 + 2.45455i −0.0330522 + 0.0993003i
\(612\) −0.0932782 + 0.161563i −0.00377055 + 0.00653078i
\(613\) 17.1792 + 29.7553i 0.693863 + 1.20181i 0.970562 + 0.240849i \(0.0774260\pi\)
−0.276700 + 0.960956i \(0.589241\pi\)
\(614\) 30.0806 1.21395
\(615\) −2.08503 3.61138i −0.0840765 0.145625i
\(616\) 0.208977 0.307654i 0.00841992 0.0123957i
\(617\) −10.2155 17.6938i −0.411261 0.712325i 0.583767 0.811921i \(-0.301578\pi\)
−0.995028 + 0.0995961i \(0.968245\pi\)
\(618\) −4.12788 + 7.14970i −0.166048 + 0.287603i
\(619\) −6.14114 + 10.6368i −0.246833 + 0.427528i −0.962645 0.270765i \(-0.912723\pi\)
0.715812 + 0.698293i \(0.246057\pi\)
\(620\) −4.45307 −0.178839
\(621\) 0.0364808 0.00146393
\(622\) −13.8292 + 23.9528i −0.554499 + 0.960420i
\(623\) −7.32107 15.1354i −0.293312 0.606386i
\(624\) 1.13869 3.42102i 0.0455841 0.136950i
\(625\) −2.40009 4.15708i −0.0960036 0.166283i
\(626\) −3.43002 5.94097i −0.137091 0.237449i
\(627\) −0.0629697 0.109067i −0.00251477 0.00435570i
\(628\) 5.15138 8.92246i 0.205563 0.356045i
\(629\) −0.0678335 −0.00270470
\(630\) −1.40902 2.91297i −0.0561368 0.116056i
\(631\) −0.272895 0.472667i −0.0108638 0.0188166i 0.860542 0.509379i \(-0.170125\pi\)
−0.871406 + 0.490562i \(0.836791\pi\)
\(632\) −2.94837 5.10673i −0.117280 0.203135i
\(633\) 5.99270 0.238189
\(634\) 3.37146 + 5.83953i 0.133898 + 0.231917i
\(635\) −13.3417 −0.529448
\(636\) −6.99111 −0.277216
\(637\) −25.1991 + 1.41617i −0.998425 + 0.0561105i
\(638\) −0.841564 −0.0333178
\(639\) 10.6240 0.420278
\(640\) 0.611519 + 1.05918i 0.0241724 + 0.0418678i
\(641\) −36.0597 −1.42427 −0.712136 0.702041i \(-0.752272\pi\)
−0.712136 + 0.702041i \(0.752272\pi\)
\(642\) 2.23641 + 3.87358i 0.0882642 + 0.152878i
\(643\) 13.7343 + 23.7885i 0.541627 + 0.938125i 0.998811 + 0.0487529i \(0.0155247\pi\)
−0.457184 + 0.889372i \(0.651142\pi\)
\(644\) 0.0420284 + 0.0868883i 0.00165615 + 0.00342388i
\(645\) −5.05947 −0.199217
\(646\) −0.0835688 + 0.144745i −0.00328797 + 0.00569493i
\(647\) −3.07080 5.31878i −0.120726 0.209103i 0.799328 0.600894i \(-0.205189\pi\)
−0.920054 + 0.391792i \(0.871855\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) 0.491736 + 0.851712i 0.0193023 + 0.0334326i
\(650\) 12.3769 2.53834i 0.485462 0.0995619i
\(651\) 4.19467 + 8.67194i 0.164402 + 0.339880i
\(652\) 5.06852 8.77893i 0.198498 0.343809i
\(653\) −24.3606 −0.953304 −0.476652 0.879092i \(-0.658150\pi\)
−0.476652 + 0.879092i \(0.658150\pi\)
\(654\) 7.67371 0.300066
\(655\) 13.4185 23.2416i 0.524305 0.908123i
\(656\) 1.70480 2.95279i 0.0665611 0.115287i
\(657\) −4.80900 8.32943i −0.187617 0.324962i
\(658\) −1.06664 + 1.57029i −0.0415818 + 0.0612165i
\(659\) 5.44539 + 9.43169i 0.212122 + 0.367407i 0.952379 0.304918i \(-0.0986291\pi\)
−0.740256 + 0.672325i \(0.765296\pi\)
\(660\) −0.171924 −0.00669214
\(661\) 18.6363 + 32.2789i 0.724866 + 1.25551i 0.959029 + 0.283308i \(0.0914319\pi\)
−0.234163 + 0.972197i \(0.575235\pi\)
\(662\) 5.54908 9.61129i 0.215671 0.373553i
\(663\) 0.212430 0.638213i 0.00825010 0.0247861i
\(664\) −9.14057 −0.354723
\(665\) −1.26236 2.60976i −0.0489521 0.101202i
\(666\) 0.181804 0.314894i 0.00704477 0.0122019i
\(667\) 0.109201 0.189141i 0.00422826 0.00732356i
\(668\) −4.28857 + 7.42802i −0.165930 + 0.287399i
\(669\) −27.6197 −1.06784
\(670\) −2.97079 + 5.14557i −0.114772 + 0.198791i
\(671\) 0.0524490 0.00202477
\(672\) 1.48662 2.18860i 0.0573477 0.0844269i
\(673\) −21.9417 + 38.0042i −0.845792 + 1.46495i 0.0391397 + 0.999234i \(0.487538\pi\)
−0.884932 + 0.465721i \(0.845795\pi\)
\(674\) 21.6470 0.833810
\(675\) 1.75209 3.03471i 0.0674380 0.116806i
\(676\) −1.54380 + 12.9080i −0.0593768 + 0.496462i
\(677\) −20.6518 35.7700i −0.793713 1.37475i −0.923653 0.383230i \(-0.874812\pi\)
0.129940 0.991522i \(-0.458522\pi\)
\(678\) −6.18222 + 10.7079i −0.237427 + 0.411235i
\(679\) −9.63509 + 14.1847i −0.369761 + 0.544359i
\(680\) 0.114083 + 0.197597i 0.00437487 + 0.00757750i
\(681\) 0.895645 + 1.55130i 0.0343212 + 0.0594460i
\(682\) 0.511819 0.0195986
\(683\) 27.5816 1.05538 0.527690 0.849437i \(-0.323058\pi\)
0.527690 + 0.849437i \(0.323058\pi\)
\(684\) −0.447955 0.775880i −0.0171280 0.0296665i
\(685\) 1.64627 + 2.85143i 0.0629008 + 0.108947i
\(686\) −18.0770 4.02745i −0.690185 0.153769i
\(687\) 12.6142 21.8485i 0.481263 0.833572i
\(688\) −2.06841 3.58258i −0.0788572 0.136585i
\(689\) 24.6929 5.06419i 0.940723 0.192930i
\(690\) 0.0223087 0.0386398i 0.000849278 0.00147099i
\(691\) 29.3993 1.11840 0.559202 0.829032i \(-0.311108\pi\)
0.559202 + 0.829032i \(0.311108\pi\)
\(692\) 5.33942 9.24815i 0.202974 0.351562i
\(693\) 0.161948 + 0.334806i 0.00615189 + 0.0127182i
\(694\) 29.8675 1.13375
\(695\) −6.46895 + 11.2046i −0.245381 + 0.425013i
\(696\) −5.98674 −0.226927
\(697\) 0.318041 0.550863i 0.0120466 0.0208654i
\(698\) −6.47690 + 11.2183i −0.245154 + 0.424619i
\(699\) 14.1852 24.5695i 0.536534 0.929304i
\(700\) 9.24645 + 0.676853i 0.349483 + 0.0255826i
\(701\) 19.0498 0.719500 0.359750 0.933049i \(-0.382862\pi\)
0.359750 + 0.933049i \(0.382862\pi\)
\(702\) 2.39335 + 2.69665i 0.0903310 + 0.101778i
\(703\) 0.162880 0.282117i 0.00614314 0.0106402i
\(704\) −0.0702857 0.121738i −0.00264899 0.00458819i
\(705\) 0.877516 0.0330492
\(706\) −3.07853 5.33218i −0.115862 0.200679i
\(707\) −4.46671 + 6.57585i −0.167988 + 0.247310i
\(708\) 3.49812 + 6.05892i 0.131467 + 0.227708i
\(709\) −8.95282 + 15.5067i −0.336230 + 0.582368i −0.983720 0.179706i \(-0.942485\pi\)
0.647490 + 0.762074i \(0.275819\pi\)
\(710\) 6.49675 11.2527i 0.243819 0.422306i
\(711\) 5.89675 0.221145
\(712\) −6.35472 −0.238153
\(713\) −0.0664132 + 0.115031i −0.00248719 + 0.00430794i
\(714\) 0.277339 0.408296i 0.0103792 0.0152801i
\(715\) 0.607242 0.124538i 0.0227096 0.00465744i
\(716\) 6.48961 + 11.2403i 0.242528 + 0.420071i
\(717\) 14.4827 + 25.0848i 0.540867 + 0.936809i
\(718\) 12.4203 + 21.5125i 0.463520 + 0.802840i
\(719\) −17.1583 + 29.7191i −0.639897 + 1.10833i 0.345558 + 0.938397i \(0.387690\pi\)
−0.985455 + 0.169936i \(0.945644\pi\)
\(720\) −1.22304 −0.0455799
\(721\) 12.2732 18.0685i 0.457078 0.672907i
\(722\) 9.09867 + 15.7594i 0.338618 + 0.586503i
\(723\) 6.59757 + 11.4273i 0.245366 + 0.424987i
\(724\) 23.7327 0.882017
\(725\) −10.4893 18.1680i −0.389563 0.674743i
\(726\) −10.9802 −0.407515
\(727\) 20.6482 0.765800 0.382900 0.923790i \(-0.374925\pi\)
0.382900 + 0.923790i \(0.374925\pi\)
\(728\) −3.66544 + 8.80707i −0.135850 + 0.326412i
\(729\) 1.00000 0.0370370
\(730\) −11.7632 −0.435374
\(731\) −0.385874 0.668354i −0.0142721 0.0247199i
\(732\) 0.373113 0.0137906
\(733\) 14.5834 + 25.2592i 0.538650 + 0.932969i 0.998977 + 0.0452199i \(0.0143988\pi\)
−0.460327 + 0.887749i \(0.652268\pi\)
\(734\) −18.0306 31.2299i −0.665521 1.15272i
\(735\) 3.15532 + 7.95859i 0.116386 + 0.293557i
\(736\) 0.0364808 0.00134470
\(737\) 0.341452 0.591413i 0.0125776 0.0217850i
\(738\) 1.70480 + 2.95279i 0.0627544 + 0.108694i
\(739\) 21.1080 + 36.5602i 0.776471 + 1.34489i 0.933964 + 0.357367i \(0.116326\pi\)
−0.157493 + 0.987520i \(0.550341\pi\)
\(740\) −0.222353 0.385127i −0.00817387 0.0141576i
\(741\) 2.14422 + 2.41595i 0.0787699 + 0.0887521i
\(742\) 18.4474 + 1.35037i 0.677225 + 0.0495738i
\(743\) 8.87311 15.3687i 0.325523 0.563822i −0.656095 0.754678i \(-0.727793\pi\)
0.981618 + 0.190856i \(0.0611263\pi\)
\(744\) 3.64099 0.133485
\(745\) 14.5601 0.533441
\(746\) 7.37092 12.7668i 0.269869 0.467426i
\(747\) 4.57029 7.91597i 0.167218 0.289630i
\(748\) −0.0131122 0.0227111i −0.000479431 0.000830399i
\(749\) −5.15300 10.6532i −0.188287 0.389258i
\(750\) −5.20046 9.00747i −0.189894 0.328906i
\(751\) 31.3274 1.14315 0.571576 0.820549i \(-0.306332\pi\)
0.571576 + 0.820549i \(0.306332\pi\)
\(752\) 0.358745 + 0.621364i 0.0130821 + 0.0226588i
\(753\) 4.73276 8.19739i 0.172472 0.298729i
\(754\) 21.1454 4.33664i 0.770069 0.157931i
\(755\) −8.97157 −0.326509
\(756\) 1.15207 + 2.38175i 0.0419003 + 0.0866235i
\(757\) 12.9370 22.4076i 0.470204 0.814417i −0.529216 0.848487i \(-0.677514\pi\)
0.999419 + 0.0340705i \(0.0108471\pi\)
\(758\) 5.33674 9.24351i 0.193839 0.335739i
\(759\) −0.00256408 + 0.00444112i −9.30703e−5 + 0.000161202i
\(760\) −1.09573 −0.0397463
\(761\) 0.477691 0.827386i 0.0173163 0.0299927i −0.857237 0.514921i \(-0.827821\pi\)
0.874554 + 0.484929i \(0.161154\pi\)
\(762\) 10.9086 0.395179
\(763\) −20.2486 1.48222i −0.733047 0.0536600i
\(764\) 9.98892 17.3013i 0.361387 0.625940i
\(765\) −0.228165 −0.00824933
\(766\) 10.2017 17.6698i 0.368601 0.638436i
\(767\) −16.7444 18.8664i −0.604606 0.681225i
\(768\) −0.500000 0.866025i −0.0180422 0.0312500i
\(769\) 0.0702857 0.121738i 0.00253457 0.00439000i −0.864755 0.502193i \(-0.832527\pi\)
0.867290 + 0.497803i \(0.165860\pi\)
\(770\) 0.453655 + 0.0332082i 0.0163486 + 0.00119674i
\(771\) 5.11789 + 8.86444i 0.184316 + 0.319245i
\(772\) 3.11194 + 5.39003i 0.112001 + 0.193992i
\(773\) 16.3472 0.587968 0.293984 0.955810i \(-0.405019\pi\)
0.293984 + 0.955810i \(0.405019\pi\)
\(774\) 4.13681 0.148695
\(775\) 6.37934 + 11.0493i 0.229153 + 0.396904i
\(776\) 3.24059 +