Properties

Label 546.2.j.c.529.1
Level $546$
Weight $2$
Character 546.529
Analytic conductor $4.360$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.447703281.1
Defining polynomial: \(x^{8} - x^{7} - 2 x^{6} + 2 x^{5} + 3 x^{4} + 4 x^{3} - 8 x^{2} - 8 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 529.1
Root \(1.19003 + 0.764088i\) of defining polynomial
Character \(\chi\) \(=\) 546.529
Dual form 546.2.j.c.289.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(-0.924396 - 1.60110i) q^{5} +(-0.500000 - 0.866025i) q^{6} +(2.61442 - 0.405935i) q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(-0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(-0.924396 - 1.60110i) q^{5} +(-0.500000 - 0.866025i) q^{6} +(2.61442 - 0.405935i) q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.924396 - 1.60110i) q^{10} +(-0.357690 - 0.619538i) q^{11} +(-0.500000 - 0.866025i) q^{12} +(-2.81454 - 2.25352i) q^{13} +(2.61442 - 0.405935i) q^{14} +(-0.924396 + 1.60110i) q^{15} +1.00000 q^{16} +4.31156 q^{17} +(-0.500000 + 0.866025i) q^{18} +(3.43786 - 5.95456i) q^{19} +(-0.924396 - 1.60110i) q^{20} +(-1.65876 - 2.06119i) q^{21} +(-0.357690 - 0.619538i) q^{22} -7.16035 q^{23} +(-0.500000 - 0.866025i) q^{24} +(0.790985 - 1.37003i) q^{25} +(-2.81454 - 2.25352i) q^{26} +1.00000 q^{27} +(2.61442 - 0.405935i) q^{28} +(-4.63798 + 8.03322i) q^{29} +(-0.924396 + 1.60110i) q^{30} +(1.11104 - 1.92438i) q^{31} +1.00000 q^{32} +(-0.357690 + 0.619538i) q^{33} +4.31156 q^{34} +(-3.06671 - 3.81071i) q^{35} +(-0.500000 + 0.866025i) q^{36} +2.13341 q^{37} +(3.43786 - 5.95456i) q^{38} +(-0.544337 + 3.56422i) q^{39} +(-0.924396 - 1.60110i) q^{40} +(2.23138 - 3.86487i) q^{41} +(-1.65876 - 2.06119i) q^{42} +(-0.0979721 - 0.169693i) q^{43} +(-0.357690 - 0.619538i) q^{44} +1.84879 q^{45} -7.16035 q^{46} +(4.60553 + 7.97700i) q^{47} +(-0.500000 - 0.866025i) q^{48} +(6.67043 - 2.12257i) q^{49} +(0.790985 - 1.37003i) q^{50} +(-2.15578 - 3.73392i) q^{51} +(-2.81454 - 2.25352i) q^{52} +(3.80147 - 6.58434i) q^{53} +1.00000 q^{54} +(-0.661295 + 1.14540i) q^{55} +(2.61442 - 0.405935i) q^{56} -6.87573 q^{57} +(-4.63798 + 8.03322i) q^{58} -2.48056 q^{59} +(-0.924396 + 1.60110i) q^{60} +(-4.31156 + 7.46783i) q^{61} +(1.11104 - 1.92438i) q^{62} +(-0.955663 + 2.46713i) q^{63} +1.00000 q^{64} +(-1.00637 + 6.58951i) q^{65} +(-0.357690 + 0.619538i) q^{66} +(6.96322 + 12.0606i) q^{67} +4.31156 q^{68} +(3.58017 + 6.20104i) q^{69} +(-3.06671 - 3.81071i) q^{70} +(7.50874 + 13.0055i) q^{71} +(-0.500000 + 0.866025i) q^{72} +(-0.989914 + 1.71458i) q^{73} +2.13341 q^{74} -1.58197 q^{75} +(3.43786 - 5.95456i) q^{76} +(-1.18665 - 1.47454i) q^{77} +(-0.544337 + 3.56422i) q^{78} +(7.37533 + 12.7744i) q^{79} +(-0.924396 - 1.60110i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(2.23138 - 3.86487i) q^{82} -9.71538 q^{83} +(-1.65876 - 2.06119i) q^{84} +(-3.98558 - 6.90323i) q^{85} +(-0.0979721 - 0.169693i) q^{86} +9.27596 q^{87} +(-0.357690 - 0.619538i) q^{88} -4.46953 q^{89} +1.84879 q^{90} +(-8.27319 - 4.74914i) q^{91} -7.16035 q^{92} -2.22209 q^{93} +(4.60553 + 7.97700i) q^{94} -12.7118 q^{95} +(-0.500000 - 0.866025i) q^{96} +(1.39194 + 2.41091i) q^{97} +(6.67043 - 2.12257i) q^{98} +0.715381 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 8q^{2} - 4q^{3} + 8q^{4} + 2q^{5} - 4q^{6} + 3q^{7} + 8q^{8} - 4q^{9} + O(q^{10}) \) \( 8q + 8q^{2} - 4q^{3} + 8q^{4} + 2q^{5} - 4q^{6} + 3q^{7} + 8q^{8} - 4q^{9} + 2q^{10} + 4q^{11} - 4q^{12} + 3q^{13} + 3q^{14} + 2q^{15} + 8q^{16} + 4q^{17} - 4q^{18} - 4q^{19} + 2q^{20} - 3q^{21} + 4q^{22} - 8q^{23} - 4q^{24} + 2q^{25} + 3q^{26} + 8q^{27} + 3q^{28} + 2q^{29} + 2q^{30} + 14q^{31} + 8q^{32} + 4q^{33} + 4q^{34} - 22q^{35} - 4q^{36} + 12q^{37} - 4q^{38} - 12q^{39} + 2q^{40} + 12q^{41} - 3q^{42} + 4q^{44} - 4q^{45} - 8q^{46} + 7q^{47} - 4q^{48} + 5q^{49} + 2q^{50} - 2q^{51} + 3q^{52} - q^{53} + 8q^{54} - 25q^{55} + 3q^{56} + 8q^{57} + 2q^{58} - 32q^{59} + 2q^{60} - 4q^{61} + 14q^{62} + 8q^{64} + 10q^{65} + 4q^{66} + 19q^{67} + 4q^{68} + 4q^{69} - 22q^{70} + 20q^{71} - 4q^{72} - 7q^{73} + 12q^{74} - 4q^{75} - 4q^{76} - 24q^{77} - 12q^{78} + 24q^{79} + 2q^{80} - 4q^{81} + 12q^{82} - 64q^{83} - 3q^{84} + 15q^{85} - 4q^{87} + 4q^{88} + 22q^{89} - 4q^{90} - 38q^{91} - 8q^{92} - 28q^{93} + 7q^{94} - 56q^{95} - 4q^{96} + 11q^{97} + 5q^{98} - 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 1.00000 0.500000
\(5\) −0.924396 1.60110i −0.413402 0.716034i 0.581857 0.813291i \(-0.302326\pi\)
−0.995259 + 0.0972573i \(0.968993\pi\)
\(6\) −0.500000 0.866025i −0.204124 0.353553i
\(7\) 2.61442 0.405935i 0.988160 0.153429i
\(8\) 1.00000 0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −0.924396 1.60110i −0.292320 0.506312i
\(11\) −0.357690 0.619538i −0.107848 0.186798i 0.807050 0.590483i \(-0.201063\pi\)
−0.914898 + 0.403685i \(0.867729\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) −2.81454 2.25352i −0.780613 0.625015i
\(14\) 2.61442 0.405935i 0.698734 0.108491i
\(15\) −0.924396 + 1.60110i −0.238678 + 0.413402i
\(16\) 1.00000 0.250000
\(17\) 4.31156 1.04571 0.522853 0.852423i \(-0.324868\pi\)
0.522853 + 0.852423i \(0.324868\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) 3.43786 5.95456i 0.788700 1.36607i −0.138063 0.990423i \(-0.544088\pi\)
0.926763 0.375645i \(-0.122579\pi\)
\(20\) −0.924396 1.60110i −0.206701 0.358017i
\(21\) −1.65876 2.06119i −0.361972 0.449789i
\(22\) −0.357690 0.619538i −0.0762599 0.132086i
\(23\) −7.16035 −1.49304 −0.746518 0.665365i \(-0.768276\pi\)
−0.746518 + 0.665365i \(0.768276\pi\)
\(24\) −0.500000 0.866025i −0.102062 0.176777i
\(25\) 0.790985 1.37003i 0.158197 0.274005i
\(26\) −2.81454 2.25352i −0.551977 0.441952i
\(27\) 1.00000 0.192450
\(28\) 2.61442 0.405935i 0.494080 0.0767145i
\(29\) −4.63798 + 8.03322i −0.861251 + 1.49173i 0.00947068 + 0.999955i \(0.496985\pi\)
−0.870722 + 0.491776i \(0.836348\pi\)
\(30\) −0.924396 + 1.60110i −0.168771 + 0.292320i
\(31\) 1.11104 1.92438i 0.199549 0.345629i −0.748833 0.662759i \(-0.769386\pi\)
0.948382 + 0.317129i \(0.102719\pi\)
\(32\) 1.00000 0.176777
\(33\) −0.357690 + 0.619538i −0.0622659 + 0.107848i
\(34\) 4.31156 0.739426
\(35\) −3.06671 3.81071i −0.518368 0.644128i
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) 2.13341 0.350731 0.175365 0.984503i \(-0.443889\pi\)
0.175365 + 0.984503i \(0.443889\pi\)
\(38\) 3.43786 5.95456i 0.557695 0.965956i
\(39\) −0.544337 + 3.56422i −0.0871637 + 0.570733i
\(40\) −0.924396 1.60110i −0.146160 0.253156i
\(41\) 2.23138 3.86487i 0.348483 0.603591i −0.637497 0.770453i \(-0.720030\pi\)
0.985980 + 0.166862i \(0.0533634\pi\)
\(42\) −1.65876 2.06119i −0.255953 0.318049i
\(43\) −0.0979721 0.169693i −0.0149406 0.0258779i 0.858458 0.512883i \(-0.171423\pi\)
−0.873399 + 0.487005i \(0.838089\pi\)
\(44\) −0.357690 0.619538i −0.0539239 0.0933989i
\(45\) 1.84879 0.275602
\(46\) −7.16035 −1.05574
\(47\) 4.60553 + 7.97700i 0.671785 + 1.16357i 0.977398 + 0.211410i \(0.0678054\pi\)
−0.305613 + 0.952156i \(0.598861\pi\)
\(48\) −0.500000 0.866025i −0.0721688 0.125000i
\(49\) 6.67043 2.12257i 0.952919 0.303225i
\(50\) 0.790985 1.37003i 0.111862 0.193751i
\(51\) −2.15578 3.73392i −0.301869 0.522853i
\(52\) −2.81454 2.25352i −0.390307 0.312507i
\(53\) 3.80147 6.58434i 0.522172 0.904429i −0.477495 0.878634i \(-0.658455\pi\)
0.999667 0.0257942i \(-0.00821145\pi\)
\(54\) 1.00000 0.136083
\(55\) −0.661295 + 1.14540i −0.0891690 + 0.154445i
\(56\) 2.61442 0.405935i 0.349367 0.0542453i
\(57\) −6.87573 −0.910712
\(58\) −4.63798 + 8.03322i −0.608997 + 1.05481i
\(59\) −2.48056 −0.322942 −0.161471 0.986877i \(-0.551624\pi\)
−0.161471 + 0.986877i \(0.551624\pi\)
\(60\) −0.924396 + 1.60110i −0.119339 + 0.206701i
\(61\) −4.31156 + 7.46783i −0.552038 + 0.956158i 0.446089 + 0.894989i \(0.352816\pi\)
−0.998127 + 0.0611697i \(0.980517\pi\)
\(62\) 1.11104 1.92438i 0.141103 0.244397i
\(63\) −0.955663 + 2.46713i −0.120402 + 0.310829i
\(64\) 1.00000 0.125000
\(65\) −1.00637 + 6.58951i −0.124824 + 0.817328i
\(66\) −0.357690 + 0.619538i −0.0440287 + 0.0762599i
\(67\) 6.96322 + 12.0606i 0.850692 + 1.47344i 0.880585 + 0.473889i \(0.157150\pi\)
−0.0298923 + 0.999553i \(0.509516\pi\)
\(68\) 4.31156 0.522853
\(69\) 3.58017 + 6.20104i 0.431002 + 0.746518i
\(70\) −3.06671 3.81071i −0.366541 0.455467i
\(71\) 7.50874 + 13.0055i 0.891124 + 1.54347i 0.838530 + 0.544855i \(0.183415\pi\)
0.0525935 + 0.998616i \(0.483251\pi\)
\(72\) −0.500000 + 0.866025i −0.0589256 + 0.102062i
\(73\) −0.989914 + 1.71458i −0.115861 + 0.200676i −0.918123 0.396294i \(-0.870296\pi\)
0.802263 + 0.596971i \(0.203629\pi\)
\(74\) 2.13341 0.248004
\(75\) −1.58197 −0.182670
\(76\) 3.43786 5.95456i 0.394350 0.683034i
\(77\) −1.18665 1.47454i −0.135231 0.168039i
\(78\) −0.544337 + 3.56422i −0.0616341 + 0.403569i
\(79\) 7.37533 + 12.7744i 0.829790 + 1.43724i 0.898203 + 0.439581i \(0.144873\pi\)
−0.0684137 + 0.997657i \(0.521794\pi\)
\(80\) −0.924396 1.60110i −0.103351 0.179008i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 2.23138 3.86487i 0.246415 0.426803i
\(83\) −9.71538 −1.06640 −0.533201 0.845989i \(-0.679011\pi\)
−0.533201 + 0.845989i \(0.679011\pi\)
\(84\) −1.65876 2.06119i −0.180986 0.224894i
\(85\) −3.98558 6.90323i −0.432297 0.748761i
\(86\) −0.0979721 0.169693i −0.0105646 0.0182984i
\(87\) 9.27596 0.994487
\(88\) −0.357690 0.619538i −0.0381299 0.0660430i
\(89\) −4.46953 −0.473769 −0.236885 0.971538i \(-0.576126\pi\)
−0.236885 + 0.971538i \(0.576126\pi\)
\(90\) 1.84879 0.194880
\(91\) −8.27319 4.74914i −0.867266 0.497846i
\(92\) −7.16035 −0.746518
\(93\) −2.22209 −0.230419
\(94\) 4.60553 + 7.97700i 0.475024 + 0.822765i
\(95\) −12.7118 −1.30420
\(96\) −0.500000 0.866025i −0.0510310 0.0883883i
\(97\) 1.39194 + 2.41091i 0.141330 + 0.244791i 0.927998 0.372586i \(-0.121529\pi\)
−0.786668 + 0.617377i \(0.788195\pi\)
\(98\) 6.67043 2.12257i 0.673816 0.214412i
\(99\) 0.715381 0.0718985
\(100\) 0.790985 1.37003i 0.0790985 0.137003i
\(101\) −2.67775 4.63800i −0.266446 0.461498i 0.701496 0.712674i \(-0.252516\pi\)
−0.967941 + 0.251176i \(0.919183\pi\)
\(102\) −2.15578 3.73392i −0.213454 0.369713i
\(103\) 3.26429 + 5.65391i 0.321640 + 0.557097i 0.980827 0.194883i \(-0.0624326\pi\)
−0.659187 + 0.751979i \(0.729099\pi\)
\(104\) −2.81454 2.25352i −0.275988 0.220976i
\(105\) −1.76682 + 4.56120i −0.172424 + 0.445128i
\(106\) 3.80147 6.58434i 0.369231 0.639528i
\(107\) −4.61994 −0.446627 −0.223313 0.974747i \(-0.571687\pi\)
−0.223313 + 0.974747i \(0.571687\pi\)
\(108\) 1.00000 0.0962250
\(109\) 4.95093 8.57527i 0.474214 0.821362i −0.525351 0.850886i \(-0.676066\pi\)
0.999564 + 0.0295240i \(0.00939913\pi\)
\(110\) −0.661295 + 1.14540i −0.0630520 + 0.109209i
\(111\) −1.06671 1.84759i −0.101247 0.175365i
\(112\) 2.61442 0.405935i 0.247040 0.0383572i
\(113\) 1.50417 + 2.60530i 0.141501 + 0.245086i 0.928062 0.372426i \(-0.121474\pi\)
−0.786561 + 0.617512i \(0.788141\pi\)
\(114\) −6.87573 −0.643971
\(115\) 6.61899 + 11.4644i 0.617224 + 1.06906i
\(116\) −4.63798 + 8.03322i −0.430626 + 0.745865i
\(117\) 3.35888 1.31070i 0.310528 0.121174i
\(118\) −2.48056 −0.228354
\(119\) 11.2722 1.75021i 1.03332 0.160442i
\(120\) −0.924396 + 1.60110i −0.0843854 + 0.146160i
\(121\) 5.24412 9.08307i 0.476738 0.825734i
\(122\) −4.31156 + 7.46783i −0.390350 + 0.676106i
\(123\) −4.46276 −0.402394
\(124\) 1.11104 1.92438i 0.0997746 0.172815i
\(125\) −12.1687 −1.08840
\(126\) −0.955663 + 2.46713i −0.0851372 + 0.219789i
\(127\) −7.58356 + 13.1351i −0.672932 + 1.16555i 0.304137 + 0.952628i \(0.401632\pi\)
−0.977069 + 0.212924i \(0.931701\pi\)
\(128\) 1.00000 0.0883883
\(129\) −0.0979721 + 0.169693i −0.00862596 + 0.0149406i
\(130\) −1.00637 + 6.58951i −0.0882642 + 0.577938i
\(131\) 9.69444 + 16.7913i 0.847007 + 1.46706i 0.883867 + 0.467739i \(0.154931\pi\)
−0.0368595 + 0.999320i \(0.511735\pi\)
\(132\) −0.357690 + 0.619538i −0.0311330 + 0.0539239i
\(133\) 6.57088 16.9633i 0.569767 1.47090i
\(134\) 6.96322 + 12.0606i 0.601530 + 1.04188i
\(135\) −0.924396 1.60110i −0.0795593 0.137801i
\(136\) 4.31156 0.369713
\(137\) −4.74829 −0.405673 −0.202837 0.979213i \(-0.565016\pi\)
−0.202837 + 0.979213i \(0.565016\pi\)
\(138\) 3.58017 + 6.20104i 0.304765 + 0.527868i
\(139\) −7.69027 13.3199i −0.652280 1.12978i −0.982568 0.185902i \(-0.940479\pi\)
0.330288 0.943880i \(-0.392854\pi\)
\(140\) −3.06671 3.81071i −0.259184 0.322064i
\(141\) 4.60553 7.97700i 0.387855 0.671785i
\(142\) 7.50874 + 13.0055i 0.630120 + 1.09140i
\(143\) −0.389409 + 2.54978i −0.0325640 + 0.213223i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 17.1493 1.42417
\(146\) −0.989914 + 1.71458i −0.0819258 + 0.141900i
\(147\) −5.17342 4.71548i −0.426696 0.388926i
\(148\) 2.13341 0.175365
\(149\) 5.82384 10.0872i 0.477107 0.826374i −0.522548 0.852610i \(-0.675019\pi\)
0.999656 + 0.0262354i \(0.00835195\pi\)
\(150\) −1.58197 −0.129167
\(151\) −4.09544 + 7.09351i −0.333282 + 0.577262i −0.983153 0.182783i \(-0.941489\pi\)
0.649871 + 0.760044i \(0.274823\pi\)
\(152\) 3.43786 5.95456i 0.278848 0.482978i
\(153\) −2.15578 + 3.73392i −0.174284 + 0.301869i
\(154\) −1.18665 1.47454i −0.0956227 0.118822i
\(155\) −4.10817 −0.329976
\(156\) −0.544337 + 3.56422i −0.0435819 + 0.285366i
\(157\) 11.4353 19.8066i 0.912639 1.58074i 0.102317 0.994752i \(-0.467374\pi\)
0.810322 0.585985i \(-0.199292\pi\)
\(158\) 7.37533 + 12.7744i 0.586750 + 1.01628i
\(159\) −7.60294 −0.602952
\(160\) −0.924396 1.60110i −0.0730799 0.126578i
\(161\) −18.7202 + 2.90663i −1.47536 + 0.229075i
\(162\) −0.500000 0.866025i −0.0392837 0.0680414i
\(163\) −9.01923 + 15.6218i −0.706440 + 1.22359i 0.259729 + 0.965682i \(0.416367\pi\)
−0.966169 + 0.257909i \(0.916967\pi\)
\(164\) 2.23138 3.86487i 0.174242 0.301795i
\(165\) 1.32259 0.102964
\(166\) −9.71538 −0.754060
\(167\) 3.86936 6.70193i 0.299420 0.518611i −0.676583 0.736366i \(-0.736540\pi\)
0.976003 + 0.217755i \(0.0698734\pi\)
\(168\) −1.65876 2.06119i −0.127976 0.159024i
\(169\) 2.84327 + 12.6853i 0.218713 + 0.975789i
\(170\) −3.98558 6.90323i −0.305680 0.529454i
\(171\) 3.43786 + 5.95456i 0.262900 + 0.455356i
\(172\) −0.0979721 0.169693i −0.00747030 0.0129389i
\(173\) −6.01212 + 10.4133i −0.457093 + 0.791709i −0.998806 0.0488550i \(-0.984443\pi\)
0.541713 + 0.840564i \(0.317776\pi\)
\(174\) 9.27596 0.703209
\(175\) 1.51183 3.90292i 0.114284 0.295033i
\(176\) −0.357690 0.619538i −0.0269619 0.0466994i
\(177\) 1.24028 + 2.14823i 0.0932253 + 0.161471i
\(178\) −4.46953 −0.335005
\(179\) −5.65742 9.79893i −0.422855 0.732407i 0.573362 0.819302i \(-0.305639\pi\)
−0.996217 + 0.0868953i \(0.972305\pi\)
\(180\) 1.84879 0.137801
\(181\) −2.49725 −0.185619 −0.0928095 0.995684i \(-0.529585\pi\)
−0.0928095 + 0.995684i \(0.529585\pi\)
\(182\) −8.27319 4.74914i −0.613249 0.352030i
\(183\) 8.62311 0.637439
\(184\) −7.16035 −0.527868
\(185\) −1.97212 3.41580i −0.144993 0.251135i
\(186\) −2.22209 −0.162931
\(187\) −1.54220 2.67117i −0.112777 0.195336i
\(188\) 4.60553 + 7.97700i 0.335892 + 0.581783i
\(189\) 2.61442 0.405935i 0.190171 0.0295274i
\(190\) −12.7118 −0.922210
\(191\) 2.66349 4.61330i 0.192723 0.333807i −0.753428 0.657530i \(-0.771601\pi\)
0.946152 + 0.323723i \(0.104935\pi\)
\(192\) −0.500000 0.866025i −0.0360844 0.0625000i
\(193\) −4.86186 8.42099i −0.349964 0.606156i 0.636278 0.771460i \(-0.280473\pi\)
−0.986243 + 0.165303i \(0.947140\pi\)
\(194\) 1.39194 + 2.41091i 0.0999356 + 0.173093i
\(195\) 6.20986 2.42321i 0.444698 0.173530i
\(196\) 6.67043 2.12257i 0.476460 0.151612i
\(197\) −3.08593 + 5.34499i −0.219863 + 0.380815i −0.954766 0.297358i \(-0.903895\pi\)
0.734903 + 0.678173i \(0.237228\pi\)
\(198\) 0.715381 0.0508399
\(199\) 5.41454 0.383827 0.191913 0.981412i \(-0.438531\pi\)
0.191913 + 0.981412i \(0.438531\pi\)
\(200\) 0.790985 1.37003i 0.0559311 0.0968755i
\(201\) 6.96322 12.0606i 0.491147 0.850692i
\(202\) −2.67775 4.63800i −0.188406 0.326328i
\(203\) −8.86469 + 22.8850i −0.622179 + 1.60621i
\(204\) −2.15578 3.73392i −0.150935 0.261426i
\(205\) −8.25072 −0.576255
\(206\) 3.26429 + 5.65391i 0.227434 + 0.393927i
\(207\) 3.58017 6.20104i 0.248839 0.431002i
\(208\) −2.81454 2.25352i −0.195153 0.156254i
\(209\) −4.91877 −0.340238
\(210\) −1.76682 + 4.56120i −0.121922 + 0.314753i
\(211\) 13.6366 23.6193i 0.938785 1.62602i 0.171043 0.985264i \(-0.445286\pi\)
0.767742 0.640759i \(-0.221380\pi\)
\(212\) 3.80147 6.58434i 0.261086 0.452214i
\(213\) 7.50874 13.0055i 0.514490 0.891124i
\(214\) −4.61994 −0.315813
\(215\) −0.181130 + 0.313726i −0.0123530 + 0.0213960i
\(216\) 1.00000 0.0680414
\(217\) 2.12356 5.48216i 0.144157 0.372153i
\(218\) 4.95093 8.57527i 0.335320 0.580791i
\(219\) 1.97983 0.133784
\(220\) −0.661295 + 1.14540i −0.0445845 + 0.0772226i
\(221\) −12.1350 9.71619i −0.816292 0.653582i
\(222\) −1.06671 1.84759i −0.0715926 0.124002i
\(223\) −2.88502 + 4.99700i −0.193195 + 0.334624i −0.946307 0.323268i \(-0.895218\pi\)
0.753112 + 0.657892i \(0.228552\pi\)
\(224\) 2.61442 0.405935i 0.174684 0.0271227i
\(225\) 0.790985 + 1.37003i 0.0527324 + 0.0913351i
\(226\) 1.50417 + 2.60530i 0.100056 + 0.173302i
\(227\) 16.9846 1.12731 0.563653 0.826012i \(-0.309396\pi\)
0.563653 + 0.826012i \(0.309396\pi\)
\(228\) −6.87573 −0.455356
\(229\) 0.460390 + 0.797420i 0.0304235 + 0.0526950i 0.880836 0.473421i \(-0.156981\pi\)
−0.850413 + 0.526116i \(0.823648\pi\)
\(230\) 6.61899 + 11.4644i 0.436444 + 0.755942i
\(231\) −0.683663 + 1.76493i −0.0449817 + 0.116124i
\(232\) −4.63798 + 8.03322i −0.304498 + 0.527407i
\(233\) −2.50283 4.33502i −0.163966 0.283997i 0.772322 0.635231i \(-0.219095\pi\)
−0.936287 + 0.351235i \(0.885762\pi\)
\(234\) 3.35888 1.31070i 0.219577 0.0856833i
\(235\) 8.51466 14.7478i 0.555435 0.962041i
\(236\) −2.48056 −0.161471
\(237\) 7.37533 12.7744i 0.479079 0.829790i
\(238\) 11.2722 1.75021i 0.730671 0.113449i
\(239\) 13.8239 0.894195 0.447097 0.894485i \(-0.352458\pi\)
0.447097 + 0.894485i \(0.352458\pi\)
\(240\) −0.924396 + 1.60110i −0.0596695 + 0.103351i
\(241\) 10.7589 0.693041 0.346521 0.938042i \(-0.387363\pi\)
0.346521 + 0.938042i \(0.387363\pi\)
\(242\) 5.24412 9.08307i 0.337104 0.583882i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) −4.31156 + 7.46783i −0.276019 + 0.478079i
\(245\) −9.56457 8.71794i −0.611058 0.556969i
\(246\) −4.46276 −0.284535
\(247\) −23.0947 + 9.01203i −1.46948 + 0.573422i
\(248\) 1.11104 1.92438i 0.0705513 0.122198i
\(249\) 4.85769 + 8.41377i 0.307844 + 0.533201i
\(250\) −12.1687 −0.769616
\(251\) −11.8267 20.4844i −0.746492 1.29296i −0.949494 0.313784i \(-0.898403\pi\)
0.203002 0.979178i \(-0.434930\pi\)
\(252\) −0.955663 + 2.46713i −0.0602011 + 0.155414i
\(253\) 2.56119 + 4.43611i 0.161021 + 0.278896i
\(254\) −7.58356 + 13.1351i −0.475835 + 0.824170i
\(255\) −3.98558 + 6.90323i −0.249587 + 0.432297i
\(256\) 1.00000 0.0625000
\(257\) −19.1940 −1.19729 −0.598646 0.801014i \(-0.704294\pi\)
−0.598646 + 0.801014i \(0.704294\pi\)
\(258\) −0.0979721 + 0.169693i −0.00609948 + 0.0105646i
\(259\) 5.57764 0.866025i 0.346578 0.0538122i
\(260\) −1.00637 + 6.58951i −0.0624122 + 0.408664i
\(261\) −4.63798 8.03322i −0.287084 0.497244i
\(262\) 9.69444 + 16.7913i 0.598925 + 1.03737i
\(263\) −5.49567 9.51878i −0.338878 0.586953i 0.645344 0.763892i \(-0.276714\pi\)
−0.984222 + 0.176939i \(0.943381\pi\)
\(264\) −0.357690 + 0.619538i −0.0220143 + 0.0381299i
\(265\) −14.0562 −0.863469
\(266\) 6.57088 16.9633i 0.402886 1.04009i
\(267\) 2.23476 + 3.87073i 0.136765 + 0.236885i
\(268\) 6.96322 + 12.0606i 0.425346 + 0.736721i
\(269\) 16.5175 1.00709 0.503546 0.863968i \(-0.332028\pi\)
0.503546 + 0.863968i \(0.332028\pi\)
\(270\) −0.924396 1.60110i −0.0562569 0.0974399i
\(271\) −18.1906 −1.10500 −0.552499 0.833514i \(-0.686326\pi\)
−0.552499 + 0.833514i \(0.686326\pi\)
\(272\) 4.31156 0.261426
\(273\) 0.0237134 + 9.53936i 0.00143520 + 0.577348i
\(274\) −4.74829 −0.286854
\(275\) −1.13171 −0.0682448
\(276\) 3.58017 + 6.20104i 0.215501 + 0.373259i
\(277\) 16.4894 0.990751 0.495376 0.868679i \(-0.335030\pi\)
0.495376 + 0.868679i \(0.335030\pi\)
\(278\) −7.69027 13.3199i −0.461232 0.798877i
\(279\) 1.11104 + 1.92438i 0.0665164 + 0.115210i
\(280\) −3.06671 3.81071i −0.183271 0.227734i
\(281\) 15.2768 0.911335 0.455667 0.890150i \(-0.349401\pi\)
0.455667 + 0.890150i \(0.349401\pi\)
\(282\) 4.60553 7.97700i 0.274255 0.475024i
\(283\) 4.57838 + 7.92998i 0.272156 + 0.471388i 0.969414 0.245432i \(-0.0789299\pi\)
−0.697257 + 0.716821i \(0.745597\pi\)
\(284\) 7.50874 + 13.0055i 0.445562 + 0.771736i
\(285\) 6.35589 + 11.0087i 0.376491 + 0.652101i
\(286\) −0.389409 + 2.54978i −0.0230262 + 0.150772i
\(287\) 4.26490 11.0102i 0.251749 0.649912i
\(288\) −0.500000 + 0.866025i −0.0294628 + 0.0510310i
\(289\) 1.58952 0.0935010
\(290\) 17.1493 1.00704
\(291\) 1.39194 2.41091i 0.0815971 0.141330i
\(292\) −0.989914 + 1.71458i −0.0579303 + 0.100338i
\(293\) 5.93488 + 10.2795i 0.346719 + 0.600536i 0.985665 0.168717i \(-0.0539623\pi\)
−0.638945 + 0.769252i \(0.720629\pi\)
\(294\) −5.17342 4.71548i −0.301720 0.275012i
\(295\) 2.29302 + 3.97163i 0.133505 + 0.231237i
\(296\) 2.13341 0.124002
\(297\) −0.357690 0.619538i −0.0207553 0.0359492i
\(298\) 5.82384 10.0872i 0.337366 0.584335i
\(299\) 20.1531 + 16.1360i 1.16548 + 0.933169i
\(300\) −1.58197 −0.0913351
\(301\) −0.325025 0.403878i −0.0187341 0.0232792i
\(302\) −4.09544 + 7.09351i −0.235666 + 0.408186i
\(303\) −2.67775 + 4.63800i −0.153833 + 0.266446i
\(304\) 3.43786 5.95456i 0.197175 0.341517i
\(305\) 15.9423 0.912855
\(306\) −2.15578 + 3.73392i −0.123238 + 0.213454i
\(307\) −28.0679 −1.60192 −0.800959 0.598719i \(-0.795677\pi\)
−0.800959 + 0.598719i \(0.795677\pi\)
\(308\) −1.18665 1.47454i −0.0676155 0.0840195i
\(309\) 3.26429 5.65391i 0.185699 0.321640i
\(310\) −4.10817 −0.233328
\(311\) −12.7326 + 22.0536i −0.722001 + 1.25054i 0.238195 + 0.971217i \(0.423444\pi\)
−0.960196 + 0.279325i \(0.909889\pi\)
\(312\) −0.544337 + 3.56422i −0.0308170 + 0.201784i
\(313\) −8.82204 15.2802i −0.498651 0.863689i 0.501348 0.865246i \(-0.332838\pi\)
−0.999999 + 0.00155673i \(0.999504\pi\)
\(314\) 11.4353 19.8066i 0.645333 1.11775i
\(315\) 4.83353 0.750489i 0.272338 0.0422852i
\(316\) 7.37533 + 12.7744i 0.414895 + 0.718619i
\(317\) −14.8710 25.7573i −0.835239 1.44668i −0.893836 0.448394i \(-0.851996\pi\)
0.0585974 0.998282i \(-0.481337\pi\)
\(318\) −7.60294 −0.426352
\(319\) 6.63585 0.371536
\(320\) −0.924396 1.60110i −0.0516753 0.0895042i
\(321\) 2.30997 + 4.00099i 0.128930 + 0.223313i
\(322\) −18.7202 + 2.90663i −1.04324 + 0.161980i
\(323\) 14.8225 25.6734i 0.824748 1.42851i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) −5.31365 + 2.07349i −0.294748 + 0.115017i
\(326\) −9.01923 + 15.6218i −0.499529 + 0.865209i
\(327\) −9.90187 −0.547575
\(328\) 2.23138 3.86487i 0.123207 0.213402i
\(329\) 15.2789 + 18.9857i 0.842355 + 1.04672i
\(330\) 1.32259 0.0728062
\(331\) −12.0197 + 20.8187i −0.660661 + 1.14430i 0.319781 + 0.947491i \(0.396391\pi\)
−0.980442 + 0.196807i \(0.936943\pi\)
\(332\) −9.71538 −0.533201
\(333\) −1.06671 + 1.84759i −0.0584551 + 0.101247i
\(334\) 3.86936 6.70193i 0.211722 0.366713i
\(335\) 12.8735 22.2976i 0.703356 1.21825i
\(336\) −1.65876 2.06119i −0.0904929 0.112447i
\(337\) −2.21939 −0.120898 −0.0604490 0.998171i \(-0.519253\pi\)
−0.0604490 + 0.998171i \(0.519253\pi\)
\(338\) 2.84327 + 12.6853i 0.154654 + 0.689987i
\(339\) 1.50417 2.60530i 0.0816954 0.141501i
\(340\) −3.98558 6.90323i −0.216149 0.374380i
\(341\) −1.58964 −0.0860837
\(342\) 3.43786 + 5.95456i 0.185898 + 0.321985i
\(343\) 16.5777 8.25707i 0.895113 0.445840i
\(344\) −0.0979721 0.169693i −0.00528230 0.00914921i
\(345\) 6.61899 11.4644i 0.356355 0.617224i
\(346\) −6.01212 + 10.4133i −0.323214 + 0.559823i
\(347\) −2.01895 −0.108383 −0.0541916 0.998531i \(-0.517258\pi\)
−0.0541916 + 0.998531i \(0.517258\pi\)
\(348\) 9.27596 0.497244
\(349\) −16.8191 + 29.1316i −0.900306 + 1.55938i −0.0732096 + 0.997317i \(0.523324\pi\)
−0.827097 + 0.562060i \(0.810009\pi\)
\(350\) 1.51183 3.90292i 0.0808107 0.208620i
\(351\) −2.81454 2.25352i −0.150229 0.120284i
\(352\) −0.357690 0.619538i −0.0190650 0.0330215i
\(353\) −11.6388 20.1590i −0.619472 1.07296i −0.989582 0.143970i \(-0.954013\pi\)
0.370110 0.928988i \(-0.379320\pi\)
\(354\) 1.24028 + 2.14823i 0.0659202 + 0.114177i
\(355\) 13.8821 24.0445i 0.736785 1.27615i
\(356\) −4.46953 −0.236885
\(357\) −7.15185 8.88694i −0.378516 0.470347i
\(358\) −5.65742 9.79893i −0.299004 0.517890i
\(359\) 5.44896 + 9.43787i 0.287585 + 0.498112i 0.973233 0.229822i \(-0.0738143\pi\)
−0.685648 + 0.727933i \(0.740481\pi\)
\(360\) 1.84879 0.0974399
\(361\) −14.1378 24.4874i −0.744096 1.28881i
\(362\) −2.49725 −0.131252
\(363\) −10.4882 −0.550489
\(364\) −8.27319 4.74914i −0.433633 0.248923i
\(365\) 3.66029 0.191588
\(366\) 8.62311 0.450737
\(367\) −2.44394 4.23302i −0.127573 0.220962i 0.795163 0.606396i \(-0.207385\pi\)
−0.922736 + 0.385434i \(0.874052\pi\)
\(368\) −7.16035 −0.373259
\(369\) 2.23138 + 3.86487i 0.116161 + 0.201197i
\(370\) −1.97212 3.41580i −0.102525 0.177579i
\(371\) 7.26584 18.7574i 0.377224 0.973836i
\(372\) −2.22209 −0.115210
\(373\) 7.68366 13.3085i 0.397845 0.689088i −0.595615 0.803270i \(-0.703092\pi\)
0.993460 + 0.114182i \(0.0364249\pi\)
\(374\) −1.54220 2.67117i −0.0797454 0.138123i
\(375\) 6.08435 + 10.5384i 0.314194 + 0.544200i
\(376\) 4.60553 + 7.97700i 0.237512 + 0.411383i
\(377\) 31.1568 12.1580i 1.60466 0.626170i
\(378\) 2.61442 0.405935i 0.134472 0.0208790i
\(379\) 8.66626 15.0104i 0.445156 0.771033i −0.552907 0.833243i \(-0.686482\pi\)
0.998063 + 0.0622101i \(0.0198149\pi\)
\(380\) −12.7118 −0.652101
\(381\) 15.1671 0.777035
\(382\) 2.66349 4.61330i 0.136276 0.236037i
\(383\) 5.99628 10.3859i 0.306396 0.530693i −0.671175 0.741298i \(-0.734210\pi\)
0.977571 + 0.210606i \(0.0675436\pi\)
\(384\) −0.500000 0.866025i −0.0255155 0.0441942i
\(385\) −1.26395 + 3.26300i −0.0644169 + 0.166298i
\(386\) −4.86186 8.42099i −0.247462 0.428617i
\(387\) 0.195944 0.00996040
\(388\) 1.39194 + 2.41091i 0.0706651 + 0.122396i
\(389\) −8.89274 + 15.4027i −0.450880 + 0.780947i −0.998441 0.0558191i \(-0.982223\pi\)
0.547561 + 0.836766i \(0.315556\pi\)
\(390\) 6.20986 2.42321i 0.314449 0.122704i
\(391\) −30.8722 −1.56128
\(392\) 6.67043 2.12257i 0.336908 0.107206i
\(393\) 9.69444 16.7913i 0.489020 0.847007i
\(394\) −3.08593 + 5.34499i −0.155467 + 0.269277i
\(395\) 13.6354 23.6173i 0.686074 1.18831i
\(396\) 0.715381 0.0359492
\(397\) −7.02952 + 12.1755i −0.352802 + 0.611070i −0.986739 0.162314i \(-0.948104\pi\)
0.633938 + 0.773384i \(0.281438\pi\)
\(398\) 5.41454 0.271406
\(399\) −17.9761 + 2.79110i −0.899929 + 0.139730i
\(400\) 0.790985 1.37003i 0.0395493 0.0685013i
\(401\) 4.13072 0.206278 0.103139 0.994667i \(-0.467111\pi\)
0.103139 + 0.994667i \(0.467111\pi\)
\(402\) 6.96322 12.0606i 0.347294 0.601530i
\(403\) −7.46371 + 2.91249i −0.371794 + 0.145082i
\(404\) −2.67775 4.63800i −0.133223 0.230749i
\(405\) −0.924396 + 1.60110i −0.0459336 + 0.0795593i
\(406\) −8.86469 + 22.8850i −0.439947 + 1.13576i
\(407\) −0.763101 1.32173i −0.0378255 0.0655157i
\(408\) −2.15578 3.73392i −0.106727 0.184856i
\(409\) −5.21490 −0.257860 −0.128930 0.991654i \(-0.541154\pi\)
−0.128930 + 0.991654i \(0.541154\pi\)
\(410\) −8.25072 −0.407474
\(411\) 2.37414 + 4.11214i 0.117108 + 0.202837i
\(412\) 3.26429 + 5.65391i 0.160820 + 0.278548i
\(413\) −6.48525 + 1.00695i −0.319118 + 0.0495486i
\(414\) 3.58017 6.20104i 0.175956 0.304765i
\(415\) 8.98086 + 15.5553i 0.440853 + 0.763580i
\(416\) −2.81454 2.25352i −0.137994 0.110488i
\(417\) −7.69027 + 13.3199i −0.376594 + 0.652280i
\(418\) −4.91877 −0.240585
\(419\) 3.69624 6.40207i 0.180573 0.312762i −0.761503 0.648162i \(-0.775538\pi\)
0.942076 + 0.335400i \(0.108871\pi\)
\(420\) −1.76682 + 4.56120i −0.0862120 + 0.222564i
\(421\) 4.67144 0.227672 0.113836 0.993500i \(-0.463686\pi\)
0.113836 + 0.993500i \(0.463686\pi\)
\(422\) 13.6366 23.6193i 0.663821 1.14977i
\(423\) −9.21105 −0.447857
\(424\) 3.80147 6.58434i 0.184616 0.319764i
\(425\) 3.41038 5.90695i 0.165428 0.286529i
\(426\) 7.50874 13.0055i 0.363800 0.630120i
\(427\) −8.24079 + 21.2743i −0.398800 + 1.02954i
\(428\) −4.61994 −0.223313
\(429\) 2.40288 0.937651i 0.116012 0.0452702i
\(430\) −0.181130 + 0.313726i −0.00873486 + 0.0151292i
\(431\) 11.0089 + 19.0680i 0.530280 + 0.918472i 0.999376 + 0.0353247i \(0.0112465\pi\)
−0.469096 + 0.883147i \(0.655420\pi\)
\(432\) 1.00000 0.0481125
\(433\) −12.5366 21.7141i −0.602472 1.04351i −0.992446 0.122686i \(-0.960849\pi\)
0.389973 0.920826i \(-0.372484\pi\)
\(434\) 2.12356 5.48216i 0.101934 0.263152i
\(435\) −8.57466 14.8517i −0.411123 0.712086i
\(436\) 4.95093 8.57527i 0.237107 0.410681i
\(437\) −24.6163 + 42.6367i −1.17756 + 2.03959i
\(438\) 1.97983 0.0945998
\(439\) −13.9493 −0.665764 −0.332882 0.942969i \(-0.608021\pi\)
−0.332882 + 0.942969i \(0.608021\pi\)
\(440\) −0.661295 + 1.14540i −0.0315260 + 0.0546046i
\(441\) −1.49702 + 6.83805i −0.0712865 + 0.325621i
\(442\) −12.1350 9.71619i −0.577205 0.462152i
\(443\) 1.69137 + 2.92955i 0.0803596 + 0.139187i 0.903404 0.428789i \(-0.141060\pi\)
−0.823045 + 0.567976i \(0.807726\pi\)
\(444\) −1.06671 1.84759i −0.0506236 0.0876826i
\(445\) 4.13161 + 7.15616i 0.195857 + 0.339235i
\(446\) −2.88502 + 4.99700i −0.136610 + 0.236615i
\(447\) −11.6477 −0.550916
\(448\) 2.61442 0.405935i 0.123520 0.0191786i
\(449\) 7.51094 + 13.0093i 0.354463 + 0.613948i 0.987026 0.160561i \(-0.0513304\pi\)
−0.632563 + 0.774509i \(0.717997\pi\)
\(450\) 0.790985 + 1.37003i 0.0372874 + 0.0645837i
\(451\) −3.19258 −0.150333
\(452\) 1.50417 + 2.60530i 0.0707503 + 0.122543i
\(453\) 8.19088 0.384841
\(454\) 16.9846 0.797126
\(455\) 0.0438411 + 17.6363i 0.00205530 + 0.826802i
\(456\) −6.87573 −0.321985
\(457\) −11.9647 −0.559686 −0.279843 0.960046i \(-0.590282\pi\)
−0.279843 + 0.960046i \(0.590282\pi\)
\(458\) 0.460390 + 0.797420i 0.0215126 + 0.0372610i
\(459\) 4.31156 0.201246
\(460\) 6.61899 + 11.4644i 0.308612 + 0.534532i
\(461\) 5.35595 + 9.27677i 0.249451 + 0.432062i 0.963374 0.268163i \(-0.0864164\pi\)
−0.713922 + 0.700225i \(0.753083\pi\)
\(462\) −0.683663 + 1.76493i −0.0318069 + 0.0821122i
\(463\) −13.5305 −0.628814 −0.314407 0.949288i \(-0.601806\pi\)
−0.314407 + 0.949288i \(0.601806\pi\)
\(464\) −4.63798 + 8.03322i −0.215313 + 0.372933i
\(465\) 2.05409 + 3.55778i 0.0952560 + 0.164988i
\(466\) −2.50283 4.33502i −0.115941 0.200816i
\(467\) −13.9783 24.2112i −0.646840 1.12036i −0.983873 0.178867i \(-0.942757\pi\)
0.337034 0.941493i \(-0.390576\pi\)
\(468\) 3.35888 1.31070i 0.155264 0.0605872i
\(469\) 23.1006 + 28.7050i 1.06669 + 1.32548i
\(470\) 8.51466 14.7478i 0.392752 0.680266i
\(471\) −22.8707 −1.05382
\(472\) −2.48056 −0.114177
\(473\) −0.0700874 + 0.121395i −0.00322262 + 0.00558174i
\(474\) 7.37533 12.7744i 0.338760 0.586750i
\(475\) −5.43860 9.41993i −0.249540 0.432216i
\(476\) 11.2722 1.75021i 0.516662 0.0802208i
\(477\) 3.80147 + 6.58434i 0.174057 + 0.301476i
\(478\) 13.8239 0.632291
\(479\) 5.79262 + 10.0331i 0.264672 + 0.458425i 0.967478 0.252957i \(-0.0814031\pi\)
−0.702806 + 0.711382i \(0.748070\pi\)
\(480\) −0.924396 + 1.60110i −0.0421927 + 0.0730799i
\(481\) −6.00457 4.80769i −0.273785 0.219212i
\(482\) 10.7589 0.490054
\(483\) 11.8773 + 14.7588i 0.540436 + 0.671551i
\(484\) 5.24412 9.08307i 0.238369 0.412867i
\(485\) 2.57341 4.45728i 0.116853 0.202394i
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) −8.48336 −0.384418 −0.192209 0.981354i \(-0.561565\pi\)
−0.192209 + 0.981354i \(0.561565\pi\)
\(488\) −4.31156 + 7.46783i −0.195175 + 0.338053i
\(489\) 18.0385 0.815727
\(490\) −9.56457 8.71794i −0.432083 0.393836i
\(491\) −14.8606 + 25.7394i −0.670650 + 1.16160i 0.307069 + 0.951687i \(0.400652\pi\)
−0.977720 + 0.209914i \(0.932682\pi\)
\(492\) −4.46276 −0.201197
\(493\) −19.9969 + 34.6357i −0.900616 + 1.55991i
\(494\) −23.0947 + 9.01203i −1.03908 + 0.405471i
\(495\) −0.661295 1.14540i −0.0297230 0.0514818i
\(496\) 1.11104 1.92438i 0.0498873 0.0864073i
\(497\) 24.9104 + 30.9539i 1.11739 + 1.38847i
\(498\) 4.85769 + 8.41377i 0.217678 + 0.377030i
\(499\) 17.7944 + 30.8208i 0.796586 + 1.37973i 0.921827 + 0.387601i \(0.126696\pi\)
−0.125241 + 0.992126i \(0.539970\pi\)
\(500\) −12.1687 −0.544200
\(501\) −7.73872 −0.345741
\(502\) −11.8267 20.4844i −0.527850 0.914263i
\(503\) 13.5658 + 23.4966i 0.604867 + 1.04766i 0.992072 + 0.125667i \(0.0401072\pi\)
−0.387205 + 0.921994i \(0.626560\pi\)
\(504\) −0.955663 + 2.46713i −0.0425686 + 0.109895i
\(505\) −4.95060 + 8.57469i −0.220299 + 0.381568i
\(506\) 2.56119 + 4.43611i 0.113859 + 0.197209i
\(507\) 9.56412 8.80498i 0.424757 0.391043i
\(508\) −7.58356 + 13.1351i −0.336466 + 0.582776i
\(509\) 7.21670 0.319875 0.159937 0.987127i \(-0.448871\pi\)
0.159937 + 0.987127i \(0.448871\pi\)
\(510\) −3.98558 + 6.90323i −0.176485 + 0.305680i
\(511\) −1.89205 + 4.88448i −0.0836992 + 0.216077i
\(512\) 1.00000 0.0441942
\(513\) 3.43786 5.95456i 0.151785 0.262900i
\(514\) −19.1940 −0.846613
\(515\) 6.03499 10.4529i 0.265933 0.460610i
\(516\) −0.0979721 + 0.169693i −0.00431298 + 0.00747030i
\(517\) 3.29471 5.70660i 0.144901 0.250976i
\(518\) 5.57764 0.866025i 0.245067 0.0380510i
\(519\) 12.0242 0.527806
\(520\) −1.00637 + 6.58951i −0.0441321 + 0.288969i
\(521\) 11.6165 20.1203i 0.508926 0.881486i −0.491020 0.871148i \(-0.663376\pi\)
0.999947 0.0103382i \(-0.00329081\pi\)
\(522\) −4.63798 8.03322i −0.202999 0.351604i
\(523\) −39.7226 −1.73695 −0.868475 0.495734i \(-0.834899\pi\)
−0.868475 + 0.495734i \(0.834899\pi\)
\(524\) 9.69444 + 16.7913i 0.423504 + 0.733530i
\(525\) −4.13594 + 0.642177i −0.180507 + 0.0280269i
\(526\) −5.49567 9.51878i −0.239623 0.415039i
\(527\) 4.79032 8.29708i 0.208670 0.361427i
\(528\) −0.357690 + 0.619538i −0.0155665 + 0.0269619i
\(529\) 28.2706 1.22916
\(530\) −14.0562 −0.610564
\(531\) 1.24028 2.14823i 0.0538236 0.0932253i
\(532\) 6.57088 16.9633i 0.284884 0.735452i
\(533\) −14.9899 + 5.84936i −0.649284 + 0.253364i
\(534\) 2.23476 + 3.87073i 0.0967077 + 0.167503i
\(535\) 4.27065 + 7.39699i 0.184636 + 0.319800i
\(536\) 6.96322 + 12.0606i 0.300765 + 0.520940i
\(537\) −5.65742 + 9.79893i −0.244136 + 0.422855i
\(538\) 16.5175 0.712122
\(539\) −3.70096 3.37336i −0.159412 0.145301i
\(540\) −0.924396 1.60110i −0.0397797 0.0689004i
\(541\) 17.6323 + 30.5400i 0.758070 + 1.31302i 0.943834 + 0.330421i \(0.107191\pi\)
−0.185764 + 0.982594i \(0.559476\pi\)
\(542\) −18.1906 −0.781352
\(543\) 1.24862 + 2.16268i 0.0535836 + 0.0928095i
\(544\) 4.31156 0.184856
\(545\) −18.3065 −0.784164
\(546\) 0.0237134 + 9.53936i 0.00101484 + 0.408247i
\(547\) −37.3861 −1.59851 −0.799257 0.600990i \(-0.794773\pi\)
−0.799257 + 0.600990i \(0.794773\pi\)
\(548\) −4.74829 −0.202837
\(549\) −4.31156 7.46783i −0.184013 0.318719i
\(550\) −1.13171 −0.0482563
\(551\) 31.8895 + 55.2342i 1.35854 + 2.35306i
\(552\) 3.58017 + 6.20104i 0.152382 + 0.263934i
\(553\) 24.4678 + 30.4039i 1.04048 + 1.29291i
\(554\) 16.4894 0.700567
\(555\) −1.97212 + 3.41580i −0.0837116 + 0.144993i
\(556\) −7.69027 13.3199i −0.326140 0.564891i
\(557\) −16.6350 28.8127i −0.704847 1.22083i −0.966747 0.255736i \(-0.917682\pi\)
0.261899 0.965095i \(-0.415651\pi\)
\(558\) 1.11104 + 1.92438i 0.0470342 + 0.0814656i
\(559\) −0.106660 + 0.698389i −0.00451123 + 0.0295387i
\(560\) −3.06671 3.81071i −0.129592 0.161032i
\(561\) −1.54220 + 2.67117i −0.0651118 + 0.112777i
\(562\) 15.2768 0.644411
\(563\) 14.6410 0.617045 0.308523 0.951217i \(-0.400165\pi\)
0.308523 + 0.951217i \(0.400165\pi\)
\(564\) 4.60553 7.97700i 0.193928 0.335892i
\(565\) 2.78090 4.81666i 0.116993 0.202638i
\(566\) 4.57838 + 7.92998i 0.192444 + 0.333322i
\(567\) −1.65876 2.06119i −0.0696615 0.0865619i
\(568\) 7.50874 + 13.0055i 0.315060 + 0.545700i
\(569\) 34.8196 1.45972 0.729858 0.683599i \(-0.239586\pi\)
0.729858 + 0.683599i \(0.239586\pi\)
\(570\) 6.35589 + 11.0087i 0.266219 + 0.461105i
\(571\) 17.3721 30.0894i 0.727001 1.25920i −0.231144 0.972920i \(-0.574247\pi\)
0.958145 0.286283i \(-0.0924199\pi\)
\(572\) −0.389409 + 2.54978i −0.0162820 + 0.106612i
\(573\) −5.32698 −0.222538
\(574\) 4.26490 11.0102i 0.178013 0.459557i
\(575\) −5.66373 + 9.80987i −0.236194 + 0.409100i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) −11.2007 + 19.4003i −0.466293 + 0.807643i −0.999259 0.0384934i \(-0.987744\pi\)
0.532966 + 0.846137i \(0.321077\pi\)
\(578\) 1.58952 0.0661152
\(579\) −4.86186 + 8.42099i −0.202052 + 0.349964i
\(580\) 17.1493 0.712086
\(581\) −25.4001 + 3.94381i −1.05378 + 0.163617i
\(582\) 1.39194 2.41091i 0.0576978 0.0999356i
\(583\) −5.43900 −0.225260
\(584\) −0.989914 + 1.71458i −0.0409629 + 0.0709499i
\(585\) −5.20350 4.16629i −0.215138 0.172255i
\(586\) 5.93488 + 10.2795i 0.245168 + 0.424643i
\(587\) −7.57505 + 13.1204i −0.312656 + 0.541536i −0.978936 0.204165i \(-0.934552\pi\)
0.666280 + 0.745701i \(0.267885\pi\)
\(588\) −5.17342 4.71548i −0.213348 0.194463i
\(589\) −7.63923 13.2315i −0.314769 0.545196i
\(590\) 2.29302 + 3.97163i 0.0944022 + 0.163509i
\(591\) 6.17186 0.253876
\(592\) 2.13341 0.0876826
\(593\) −3.85455 6.67627i −0.158287 0.274162i 0.775964 0.630777i \(-0.217264\pi\)
−0.934251 + 0.356616i \(0.883931\pi\)
\(594\) −0.357690 0.619538i −0.0146762 0.0254200i
\(595\) −13.2223 16.4301i −0.542060 0.673568i
\(596\) 5.82384 10.0872i 0.238554 0.413187i
\(597\) −2.70727 4.68913i −0.110801 0.191913i
\(598\) 20.1531 + 16.1360i 0.824121 + 0.659850i
\(599\) −8.99448 + 15.5789i −0.367505 + 0.636537i −0.989175 0.146743i \(-0.953121\pi\)
0.621670 + 0.783279i \(0.286454\pi\)
\(600\) −1.58197 −0.0645837
\(601\) 4.77657 8.27326i 0.194840 0.337473i −0.752008 0.659154i \(-0.770914\pi\)
0.946848 + 0.321681i \(0.104248\pi\)
\(602\) −0.325025 0.403878i −0.0132470 0.0164609i
\(603\) −13.9264 −0.567128
\(604\) −4.09544 + 7.09351i −0.166641 + 0.288631i
\(605\) −19.3905 −0.788338
\(606\) −2.67775 + 4.63800i −0.108776 + 0.188406i
\(607\) −10.7619 + 18.6402i −0.436813 + 0.756582i −0.997442 0.0714855i \(-0.977226\pi\)
0.560629 + 0.828067i \(0.310559\pi\)
\(608\) 3.43786 5.95456i 0.139424 0.241489i
\(609\) 24.2513 3.76543i 0.982712 0.152583i
\(610\) 15.9423 0.645486
\(611\) 5.01392 32.8303i 0.202841 1.32817i
\(612\) −2.15578 + 3.73392i −0.0871422 + 0.150935i
\(613\) 18.4945 + 32.0334i 0.746985 + 1.29382i 0.949262 + 0.314488i \(0.101833\pi\)
−0.202276 + 0.979328i \(0.564834\pi\)
\(614\) −28.0679 −1.13273
\(615\) 4.12536 + 7.14533i 0.166351 + 0.288128i
\(616\) −1.18665 1.47454i −0.0478114 0.0594108i
\(617\) 1.88766 + 3.26953i 0.0759945 + 0.131626i 0.901518 0.432741i \(-0.142454\pi\)
−0.825524 + 0.564367i \(0.809120\pi\)
\(618\) 3.26429 5.65391i 0.131309 0.227434i
\(619\) −14.0117 + 24.2689i −0.563177 + 0.975451i 0.434040 + 0.900894i \(0.357088\pi\)
−0.997217 + 0.0745570i \(0.976246\pi\)
\(620\) −4.10817 −0.164988
\(621\) −7.16035 −0.287335
\(622\) −12.7326 + 22.0536i −0.510532 + 0.884267i
\(623\) −11.6852 + 1.81434i −0.468160 + 0.0726899i
\(624\) −0.544337 + 3.56422i −0.0217909 + 0.142683i
\(625\) 7.29376 + 12.6332i 0.291750 + 0.505326i
\(626\) −8.82204 15.2802i −0.352600 0.610721i
\(627\) 2.45938 + 4.25978i 0.0982183 + 0.170119i
\(628\) 11.4353 19.8066i 0.456319 0.790368i
\(629\) 9.19832 0.366761
\(630\) 4.83353 0.750489i 0.192572 0.0299002i
\(631\) 6.85038 + 11.8652i 0.272709 + 0.472346i 0.969555 0.244875i \(-0.0787470\pi\)
−0.696845 + 0.717221i \(0.745414\pi\)
\(632\) 7.37533 + 12.7744i 0.293375 + 0.508140i
\(633\) −27.2733 −1.08402
\(634\) −14.8710 25.7573i −0.590603 1.02295i
\(635\) 28.0408 1.11277
\(636\) −7.60294 −0.301476
\(637\) −23.5575 9.05791i −0.933381 0.358887i
\(638\) 6.63585 0.262716
\(639\) −15.0175 −0.594082
\(640\) −0.924396 1.60110i −0.0365399 0.0632890i
\(641\) −6.40335 −0.252917 −0.126458 0.991972i \(-0.540361\pi\)
−0.126458 + 0.991972i \(0.540361\pi\)
\(642\) 2.30997 + 4.00099i 0.0911673 + 0.157906i
\(643\) 9.93369 + 17.2057i 0.391747 + 0.678525i 0.992680 0.120774i \(-0.0385377\pi\)
−0.600933 + 0.799299i \(0.705204\pi\)
\(644\) −18.7202 + 2.90663i −0.737679 + 0.114537i
\(645\) 0.362260 0.0142640
\(646\) 14.8225 25.6734i 0.583185 1.01011i
\(647\) −15.2592 26.4297i −0.599902 1.03906i −0.992835 0.119494i \(-0.961873\pi\)
0.392933 0.919567i \(-0.371460\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) 0.887274 + 1.53680i 0.0348285 + 0.0603248i
\(650\) −5.31365 + 2.07349i −0.208418 + 0.0813291i
\(651\) −5.80947 + 0.902022i −0.227691 + 0.0353530i
\(652\) −9.01923 + 15.6218i −0.353220 + 0.611795i
\(653\) 3.65412 0.142997 0.0714984 0.997441i \(-0.477222\pi\)
0.0714984 + 0.997441i \(0.477222\pi\)
\(654\) −9.90187 −0.387194
\(655\) 17.9230 31.0435i 0.700309 1.21297i
\(656\) 2.23138 3.86487i 0.0871208 0.150898i
\(657\) −0.989914 1.71458i −0.0386202 0.0668922i
\(658\) 15.2789 + 18.9857i 0.595635 + 0.740141i
\(659\) 4.12332 + 7.14181i 0.160622 + 0.278205i 0.935092 0.354405i \(-0.115317\pi\)
−0.774470 + 0.632611i \(0.781983\pi\)
\(660\) 1.32259 0.0514818
\(661\) −23.0565 39.9351i −0.896796 1.55330i −0.831567 0.555425i \(-0.812556\pi\)
−0.0652290 0.997870i \(-0.520778\pi\)
\(662\) −12.0197 + 20.8187i −0.467158 + 0.809141i
\(663\) −2.34694 + 15.3674i −0.0911476 + 0.596819i
\(664\) −9.71538 −0.377030
\(665\) −33.2340 + 5.16016i −1.28876 + 0.200102i
\(666\) −1.06671 + 1.84759i −0.0413340 + 0.0715926i
\(667\) 33.2095 57.5206i 1.28588 2.22721i
\(668\) 3.86936 6.70193i 0.149710 0.259306i
\(669\) 5.77004 0.223083
\(670\) 12.8735 22.2976i 0.497348 0.861432i
\(671\) 6.16881 0.238144
\(672\) −1.65876 2.06119i −0.0639881 0.0795122i
\(673\) −3.98669 + 6.90515i −0.153676 + 0.266174i −0.932576 0.360974i \(-0.882444\pi\)
0.778900 + 0.627148i \(0.215778\pi\)
\(674\) −2.21939 −0.0854879
\(675\) 0.790985 1.37003i 0.0304450 0.0527324i
\(676\) 2.84327 + 12.6853i 0.109357 + 0.487895i
\(677\) −20.4979 35.5033i −0.787797 1.36450i −0.927314 0.374285i \(-0.877888\pi\)
0.139517 0.990220i \(-0.455445\pi\)
\(678\) 1.50417 2.60530i 0.0577674 0.100056i
\(679\) 4.61780 + 5.73811i 0.177215 + 0.220209i
\(680\) −3.98558 6.90323i −0.152840 0.264727i
\(681\) −8.49229 14.7091i −0.325425 0.563653i
\(682\) −1.58964 −0.0608704
\(683\) 35.2665 1.34944 0.674718 0.738076i \(-0.264265\pi\)
0.674718 + 0.738076i \(0.264265\pi\)
\(684\) 3.43786 + 5.95456i 0.131450 + 0.227678i
\(685\) 4.38930 + 7.60248i 0.167706 + 0.290476i
\(686\) 16.5777 8.25707i 0.632940 0.315256i
\(687\) 0.460390 0.797420i 0.0175650 0.0304235i
\(688\) −0.0979721 0.169693i −0.00373515 0.00646947i
\(689\) −25.5373 + 9.96519i −0.972895 + 0.379644i
\(690\) 6.61899 11.4644i 0.251981 0.436444i
\(691\) 40.7075 1.54859 0.774293 0.632827i \(-0.218105\pi\)
0.774293 + 0.632827i \(0.218105\pi\)
\(692\) −6.01212 + 10.4133i −0.228547 + 0.395854i
\(693\) 1.87031 0.290398i 0.0710472 0.0110313i
\(694\) −2.01895 −0.0766384
\(695\) −14.2177 + 24.6258i −0.539308 + 0.934109i
\(696\) 9.27596 0.351604
\(697\) 9.62073 16.6636i 0.364411 0.631179i
\(698\) −16.8191 + 29.1316i −0.636613 + 1.10265i
\(699\) −2.50283 + 4.33502i −0.0946656 + 0.163966i
\(700\) 1.51183 3.90292i 0.0571418 0.147517i
\(701\) −33.7968 −1.27649 −0.638243 0.769835i \(-0.720339\pi\)
−0.638243 + 0.769835i \(0.720339\pi\)
\(702\) −2.81454 2.25352i −0.106228 0.0850537i
\(703\) 7.33438 12.7035i 0.276621 0.479122i
\(704\) −0.357690 0.619538i −0.0134810 0.0233497i
\(705\) −17.0293 −0.641361
\(706\) −11.6388 20.1590i −0.438033 0.758696i
\(707\) −8.88349 11.0387i −0.334098 0.415153i
\(708\) 1.24028 + 2.14823i 0.0466126 + 0.0807355i
\(709\) 1.67680 2.90430i 0.0629736 0.109073i −0.832820 0.553544i \(-0.813275\pi\)
0.895793 + 0.444471i \(0.146608\pi\)
\(710\) 13.8821 24.0445i 0.520986 0.902374i
\(711\) −14.7507 −0.553193
\(712\) −4.46953 −0.167503
\(713\) −7.95545 + 13.7792i −0.297934 + 0.516037i
\(714\) −7.15185 8.88694i −0.267651 0.332585i
\(715\) 4.44242 1.73352i 0.166137 0.0648300i
\(716\) −5.65742 9.79893i −0.211428 0.366203i
\(717\) −6.91196 11.9719i −0.258132 0.447097i
\(718\) 5.44896 + 9.43787i 0.203353 + 0.352218i
\(719\) 19.5541 33.8687i 0.729245 1.26309i −0.227958 0.973671i \(-0.573205\pi\)
0.957203 0.289419i \(-0.0934619\pi\)
\(720\) 1.84879 0.0689004
\(721\) 10.8294 + 13.4566i 0.403306 + 0.501151i
\(722\) −14.1378 24.4874i −0.526155 0.911328i
\(723\) −5.37945 9.31748i −0.200064 0.346521i
\(724\) −2.49725 −0.0928095
\(725\) 7.33715 + 12.7083i 0.272495 + 0.471975i
\(726\) −10.4882 −0.389255
\(727\) −3.65073 −0.135398 −0.0676990 0.997706i \(-0.521566\pi\)
−0.0676990 + 0.997706i \(0.521566\pi\)
\(728\) −8.27319 4.74914i −0.306625 0.176015i
\(729\) 1.00000 0.0370370
\(730\) 3.66029 0.135473
\(731\) −0.422412 0.731639i −0.0156235 0.0270607i
\(732\) 8.62311 0.318719
\(733\) 16.3999 + 28.4054i 0.605744 + 1.04918i 0.991933 + 0.126760i \(0.0404577\pi\)
−0.386190 + 0.922419i \(0.626209\pi\)
\(734\) −2.44394 4.23302i −0.0902074 0.156244i
\(735\) −2.76767 + 12.6421i −0.102087 + 0.466312i
\(736\) −7.16035 −0.263934
\(737\) 4.98135 8.62796i 0.183490 0.317815i
\(738\) 2.23138 + 3.86487i 0.0821383 + 0.142268i
\(739\) −5.11506 8.85954i −0.188160 0.325903i 0.756477 0.654021i \(-0.226919\pi\)
−0.944637 + 0.328118i \(0.893586\pi\)
\(740\) −1.97212 3.41580i −0.0724964 0.125567i
\(741\) 19.3520 + 15.4946i 0.710914 + 0.569209i
\(742\) 7.26584 18.7574i 0.266738 0.688606i
\(743\) 17.1231 29.6581i 0.628186 1.08805i −0.359729 0.933057i \(-0.617131\pi\)
0.987915 0.154994i \(-0.0495357\pi\)
\(744\) −2.22209 −0.0814656
\(745\) −21.5341 −0.788949
\(746\) 7.68366 13.3085i 0.281319 0.487259i
\(747\) 4.85769 8.41377i 0.177734 0.307844i
\(748\) −1.54220 2.67117i −0.0563885 0.0976678i
\(749\) −12.0785 + 1.87539i −0.441338 + 0.0685254i
\(750\) 6.08435 + 10.5384i 0.222169 + 0.384808i
\(751\) 11.7925 0.430316 0.215158 0.976579i \(-0.430973\pi\)
0.215158 + 0.976579i \(0.430973\pi\)
\(752\) 4.60553 + 7.97700i 0.167946 + 0.290891i
\(753\) −11.8267 + 20.4844i −0.430988 + 0.746492i
\(754\) 31.1568 12.1580i 1.13466 0.442769i
\(755\) 15.1432 0.551118
\(756\) 2.61442 0.405935i 0.0950857 0.0147637i
\(757\) 24.1278 41.7906i 0.876940 1.51890i 0.0222575 0.999752i \(-0.492915\pi\)
0.854682 0.519152i \(-0.173752\pi\)
\(758\) 8.66626 15.0104i 0.314773 0.545203i
\(759\) 2.56119 4.43611i 0.0929652 0.161021i
\(760\) −12.7118 −0.461105
\(761\) −6.11899 + 10.5984i −0.221813 + 0.384192i −0.955359 0.295449i \(-0.904531\pi\)
0.733545 + 0.679641i \(0.237864\pi\)
\(762\) 15.1671 0.549446
\(763\) 9.46285 24.4292i 0.342578 0.884395i
\(764\) 2.66349 4.61330i 0.0963617 0.166903i
\(765\) 7.97117 0.288198
\(766\) 5.99628 10.3859i 0.216654 0.375256i
\(767\) 6.98165 + 5.59000i 0.252093 + 0.201843i
\(768\) −0.500000 0.866025i −0.0180422 0.0312500i
\(769\) 0.357690 0.619538i 0.0128986 0.0223411i −0.859504 0.511129i \(-0.829227\pi\)
0.872403 + 0.488788i \(0.162561\pi\)
\(770\) −1.26395 + 3.26300i −0.0455496 + 0.117590i
\(771\) 9.59702 + 16.6225i 0.345628 + 0.598646i
\(772\) −4.86186 8.42099i −0.174982 0.303078i
\(773\) 5.43066 0.195327 0.0976636 0.995219i \(-0.468863\pi\)
0.0976636 + 0.995219i \(0.468863\pi\)
\(774\) 0.195944 0.00704307
\(775\) −1.75764 3.04432i −0.0631362 0.109355i
\(776\) 1.39194 + 2.41091i