Properties

Label 546.2.i.i
Level $546$
Weight $2$
Character orbit 546.i
Analytic conductor $4.360$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [546,2,Mod(79,546)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(546, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("546.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + (\beta_{2} + 1) q^{3} + ( - \beta_{2} - 1) q^{4} + ( - \beta_{3} - 2 \beta_{2} - \beta_1) q^{5} - q^{6} + (\beta_{3} + \beta_{2} - \beta_1) q^{7} + q^{8} + \beta_{2} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{2} q^{2} + (\beta_{2} + 1) q^{3} + ( - \beta_{2} - 1) q^{4} + ( - \beta_{3} - 2 \beta_{2} - \beta_1) q^{5} - q^{6} + (\beta_{3} + \beta_{2} - \beta_1) q^{7} + q^{8} + \beta_{2} q^{9} + (2 \beta_{2} + \beta_1 + 2) q^{10} + ( - \beta_{2} - \beta_1 - 1) q^{11} - \beta_{2} q^{12} + q^{13} + ( - 2 \beta_{3} - \beta_{2} - \beta_1 - 1) q^{14} + ( - \beta_{3} + 2) q^{15} + \beta_{2} q^{16} + (\beta_{2} - \beta_1 + 1) q^{17} + ( - \beta_{2} - 1) q^{18} + ( - 2 \beta_{3} - 5 \beta_{2} - 2 \beta_1) q^{19} + (\beta_{3} - 2) q^{20} + ( - \beta_{3} - 2 \beta_1 - 1) q^{21} + ( - \beta_{3} + 1) q^{22} + ( - \beta_{3} - \beta_1) q^{23} + (\beta_{2} + 1) q^{24} + ( - \beta_{2} - 4 \beta_1 - 1) q^{25} + \beta_{2} q^{26} - q^{27} + (\beta_{3} + 2 \beta_1 + 1) q^{28} + ( - 2 \beta_{3} + 1) q^{29} + (\beta_{3} + 2 \beta_{2} + \beta_1) q^{30} - 6 \beta_1 q^{31} + ( - \beta_{2} - 1) q^{32} + ( - \beta_{3} - \beta_{2} - \beta_1) q^{33} + ( - \beta_{3} - 1) q^{34} + (4 \beta_{3} + 4 \beta_{2} + 3 \beta_1) q^{35} + q^{36} + ( - \beta_{3} - \beta_1) q^{37} + (5 \beta_{2} + 2 \beta_1 + 5) q^{38} + (\beta_{2} + 1) q^{39} + ( - \beta_{3} - 2 \beta_{2} - \beta_1) q^{40} - 7 \beta_{3} q^{41} + ( - \beta_{3} - \beta_{2} + \beta_1) q^{42} + (6 \beta_{3} - 2) q^{43} + (\beta_{3} + \beta_{2} + \beta_1) q^{44} + (2 \beta_{2} + \beta_1 + 2) q^{45} + \beta_1 q^{46} + \beta_{2} q^{47} - q^{48} + ( - 4 \beta_{3} + 5 \beta_{2} + \cdots + 5) q^{49}+ \cdots + ( - \beta_{3} + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 2 q^{3} - 2 q^{4} + 4 q^{5} - 4 q^{6} - 2 q^{7} + 4 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} + 2 q^{3} - 2 q^{4} + 4 q^{5} - 4 q^{6} - 2 q^{7} + 4 q^{8} - 2 q^{9} + 4 q^{10} - 2 q^{11} + 2 q^{12} + 4 q^{13} - 2 q^{14} + 8 q^{15} - 2 q^{16} + 2 q^{17} - 2 q^{18} + 10 q^{19} - 8 q^{20} - 4 q^{21} + 4 q^{22} + 2 q^{24} - 2 q^{25} - 2 q^{26} - 4 q^{27} + 4 q^{28} + 4 q^{29} - 4 q^{30} - 2 q^{32} + 2 q^{33} - 4 q^{34} - 8 q^{35} + 4 q^{36} + 10 q^{38} + 2 q^{39} + 4 q^{40} + 2 q^{42} - 8 q^{43} - 2 q^{44} + 4 q^{45} - 2 q^{47} - 4 q^{48} + 10 q^{49} + 4 q^{50} - 2 q^{51} - 2 q^{52} - 2 q^{53} + 2 q^{54} - 16 q^{55} - 2 q^{56} + 20 q^{57} - 2 q^{58} + 10 q^{59} - 4 q^{60} + 6 q^{61} - 2 q^{63} + 4 q^{64} + 4 q^{65} + 2 q^{66} + 2 q^{67} + 2 q^{68} - 8 q^{70} - 20 q^{71} - 2 q^{72} + 2 q^{75} - 20 q^{76} + 4 q^{77} - 4 q^{78} + 12 q^{79} + 4 q^{80} - 2 q^{81} + 8 q^{83} + 2 q^{84} + 4 q^{86} + 2 q^{87} - 2 q^{88} - 8 q^{89} - 8 q^{90} - 2 q^{91} - 2 q^{94} - 28 q^{95} + 2 q^{96} - 32 q^{97} - 20 q^{98} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(\beta_{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
79.1
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i
0.707107 1.22474i
−0.500000 + 0.866025i 0.500000 + 0.866025i −0.500000 0.866025i 0.292893 0.507306i −1.00000 1.62132 + 2.09077i 1.00000 −0.500000 + 0.866025i 0.292893 + 0.507306i
79.2 −0.500000 + 0.866025i 0.500000 + 0.866025i −0.500000 0.866025i 1.70711 2.95680i −1.00000 −2.62132 0.358719i 1.00000 −0.500000 + 0.866025i 1.70711 + 2.95680i
235.1 −0.500000 0.866025i 0.500000 0.866025i −0.500000 + 0.866025i 0.292893 + 0.507306i −1.00000 1.62132 2.09077i 1.00000 −0.500000 0.866025i 0.292893 0.507306i
235.2 −0.500000 0.866025i 0.500000 0.866025i −0.500000 + 0.866025i 1.70711 + 2.95680i −1.00000 −2.62132 + 0.358719i 1.00000 −0.500000 0.866025i 1.70711 2.95680i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 546.2.i.i 4
3.b odd 2 1 1638.2.j.m 4
7.c even 3 1 inner 546.2.i.i 4
7.c even 3 1 3822.2.a.bn 2
7.d odd 6 1 3822.2.a.bu 2
21.h odd 6 1 1638.2.j.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.i.i 4 1.a even 1 1 trivial
546.2.i.i 4 7.c even 3 1 inner
1638.2.j.m 4 3.b odd 2 1
1638.2.j.m 4 21.h odd 6 1
3822.2.a.bn 2 7.c even 3 1
3822.2.a.bu 2 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(546, [\chi])\):

\( T_{5}^{4} - 4T_{5}^{3} + 14T_{5}^{2} - 8T_{5} + 4 \) Copy content Toggle raw display
\( T_{17}^{4} - 2T_{17}^{3} + 5T_{17}^{2} + 2T_{17} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 4 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( T^{4} + 2 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$11$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( (T - 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} - 10 T^{3} + \cdots + 289 \) Copy content Toggle raw display
$23$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$29$ \( (T^{2} - 2 T - 7)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 72T^{2} + 5184 \) Copy content Toggle raw display
$37$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T^{2} - 98)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 4 T - 68)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 2 T^{3} + \cdots + 5041 \) Copy content Toggle raw display
$59$ \( T^{4} - 10 T^{3} + \cdots + 625 \) Copy content Toggle raw display
$61$ \( T^{4} - 6 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$67$ \( T^{4} - 2 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$71$ \( (T + 5)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$79$ \( T^{4} - 12 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$83$ \( (T^{2} - 4 T - 28)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 8 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$97$ \( (T^{2} + 16 T + 14)^{2} \) Copy content Toggle raw display
show more
show less