Properties

Label 546.2.i.c
Level $546$
Weight $2$
Character orbit 546.i
Analytic conductor $4.360$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} + 4 \zeta_{6} q^{5} + q^{6} + ( -2 + 3 \zeta_{6} ) q^{7} + q^{8} -\zeta_{6} q^{9} +O(q^{10})\) \( q -\zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} + 4 \zeta_{6} q^{5} + q^{6} + ( -2 + 3 \zeta_{6} ) q^{7} + q^{8} -\zeta_{6} q^{9} + ( 4 - 4 \zeta_{6} ) q^{10} + ( 1 - \zeta_{6} ) q^{11} -\zeta_{6} q^{12} - q^{13} + ( 3 - \zeta_{6} ) q^{14} -4 q^{15} -\zeta_{6} q^{16} + ( -3 + 3 \zeta_{6} ) q^{17} + ( -1 + \zeta_{6} ) q^{18} + \zeta_{6} q^{19} -4 q^{20} + ( -1 - 2 \zeta_{6} ) q^{21} - q^{22} -6 \zeta_{6} q^{23} + ( -1 + \zeta_{6} ) q^{24} + ( -11 + 11 \zeta_{6} ) q^{25} + \zeta_{6} q^{26} + q^{27} + ( -1 - 2 \zeta_{6} ) q^{28} -9 q^{29} + 4 \zeta_{6} q^{30} + ( 8 - 8 \zeta_{6} ) q^{31} + ( -1 + \zeta_{6} ) q^{32} + \zeta_{6} q^{33} + 3 q^{34} + ( -12 + 4 \zeta_{6} ) q^{35} + q^{36} + 8 \zeta_{6} q^{37} + ( 1 - \zeta_{6} ) q^{38} + ( 1 - \zeta_{6} ) q^{39} + 4 \zeta_{6} q^{40} + ( -2 + 3 \zeta_{6} ) q^{42} + 10 q^{43} + \zeta_{6} q^{44} + ( 4 - 4 \zeta_{6} ) q^{45} + ( -6 + 6 \zeta_{6} ) q^{46} + 11 \zeta_{6} q^{47} + q^{48} + ( -5 - 3 \zeta_{6} ) q^{49} + 11 q^{50} -3 \zeta_{6} q^{51} + ( 1 - \zeta_{6} ) q^{52} + ( -1 + \zeta_{6} ) q^{53} -\zeta_{6} q^{54} + 4 q^{55} + ( -2 + 3 \zeta_{6} ) q^{56} - q^{57} + 9 \zeta_{6} q^{58} + ( 5 - 5 \zeta_{6} ) q^{59} + ( 4 - 4 \zeta_{6} ) q^{60} + 15 \zeta_{6} q^{61} -8 q^{62} + ( 3 - \zeta_{6} ) q^{63} + q^{64} -4 \zeta_{6} q^{65} + ( 1 - \zeta_{6} ) q^{66} + ( 5 - 5 \zeta_{6} ) q^{67} -3 \zeta_{6} q^{68} + 6 q^{69} + ( 4 + 8 \zeta_{6} ) q^{70} -15 q^{71} -\zeta_{6} q^{72} + ( -2 + 2 \zeta_{6} ) q^{73} + ( 8 - 8 \zeta_{6} ) q^{74} -11 \zeta_{6} q^{75} - q^{76} + ( 1 + 2 \zeta_{6} ) q^{77} - q^{78} + 2 \zeta_{6} q^{79} + ( 4 - 4 \zeta_{6} ) q^{80} + ( -1 + \zeta_{6} ) q^{81} -8 q^{83} + ( 3 - \zeta_{6} ) q^{84} -12 q^{85} -10 \zeta_{6} q^{86} + ( 9 - 9 \zeta_{6} ) q^{87} + ( 1 - \zeta_{6} ) q^{88} -4 q^{90} + ( 2 - 3 \zeta_{6} ) q^{91} + 6 q^{92} + 8 \zeta_{6} q^{93} + ( 11 - 11 \zeta_{6} ) q^{94} + ( -4 + 4 \zeta_{6} ) q^{95} -\zeta_{6} q^{96} + 10 q^{97} + ( -3 + 8 \zeta_{6} ) q^{98} - q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} - q^{3} - q^{4} + 4q^{5} + 2q^{6} - q^{7} + 2q^{8} - q^{9} + O(q^{10}) \) \( 2q - q^{2} - q^{3} - q^{4} + 4q^{5} + 2q^{6} - q^{7} + 2q^{8} - q^{9} + 4q^{10} + q^{11} - q^{12} - 2q^{13} + 5q^{14} - 8q^{15} - q^{16} - 3q^{17} - q^{18} + q^{19} - 8q^{20} - 4q^{21} - 2q^{22} - 6q^{23} - q^{24} - 11q^{25} + q^{26} + 2q^{27} - 4q^{28} - 18q^{29} + 4q^{30} + 8q^{31} - q^{32} + q^{33} + 6q^{34} - 20q^{35} + 2q^{36} + 8q^{37} + q^{38} + q^{39} + 4q^{40} - q^{42} + 20q^{43} + q^{44} + 4q^{45} - 6q^{46} + 11q^{47} + 2q^{48} - 13q^{49} + 22q^{50} - 3q^{51} + q^{52} - q^{53} - q^{54} + 8q^{55} - q^{56} - 2q^{57} + 9q^{58} + 5q^{59} + 4q^{60} + 15q^{61} - 16q^{62} + 5q^{63} + 2q^{64} - 4q^{65} + q^{66} + 5q^{67} - 3q^{68} + 12q^{69} + 16q^{70} - 30q^{71} - q^{72} - 2q^{73} + 8q^{74} - 11q^{75} - 2q^{76} + 4q^{77} - 2q^{78} + 2q^{79} + 4q^{80} - q^{81} - 16q^{83} + 5q^{84} - 24q^{85} - 10q^{86} + 9q^{87} + q^{88} - 8q^{90} + q^{91} + 12q^{92} + 8q^{93} + 11q^{94} - 4q^{95} - q^{96} + 20q^{97} + 2q^{98} - 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
79.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 + 0.866025i −0.500000 0.866025i −0.500000 0.866025i 2.00000 3.46410i 1.00000 −0.500000 2.59808i 1.00000 −0.500000 + 0.866025i 2.00000 + 3.46410i
235.1 −0.500000 0.866025i −0.500000 + 0.866025i −0.500000 + 0.866025i 2.00000 + 3.46410i 1.00000 −0.500000 + 2.59808i 1.00000 −0.500000 0.866025i 2.00000 3.46410i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 546.2.i.c 2
3.b odd 2 1 1638.2.j.f 2
7.c even 3 1 inner 546.2.i.c 2
7.c even 3 1 3822.2.a.ba 1
7.d odd 6 1 3822.2.a.z 1
21.h odd 6 1 1638.2.j.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.i.c 2 1.a even 1 1 trivial
546.2.i.c 2 7.c even 3 1 inner
1638.2.j.f 2 3.b odd 2 1
1638.2.j.f 2 21.h odd 6 1
3822.2.a.z 1 7.d odd 6 1
3822.2.a.ba 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(546, [\chi])\):

\( T_{5}^{2} - 4 T_{5} + 16 \)
\( T_{17}^{2} + 3 T_{17} + 9 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + T^{2} \)
$3$ \( 1 + T + T^{2} \)
$5$ \( 16 - 4 T + T^{2} \)
$7$ \( 7 + T + T^{2} \)
$11$ \( 1 - T + T^{2} \)
$13$ \( ( 1 + T )^{2} \)
$17$ \( 9 + 3 T + T^{2} \)
$19$ \( 1 - T + T^{2} \)
$23$ \( 36 + 6 T + T^{2} \)
$29$ \( ( 9 + T )^{2} \)
$31$ \( 64 - 8 T + T^{2} \)
$37$ \( 64 - 8 T + T^{2} \)
$41$ \( T^{2} \)
$43$ \( ( -10 + T )^{2} \)
$47$ \( 121 - 11 T + T^{2} \)
$53$ \( 1 + T + T^{2} \)
$59$ \( 25 - 5 T + T^{2} \)
$61$ \( 225 - 15 T + T^{2} \)
$67$ \( 25 - 5 T + T^{2} \)
$71$ \( ( 15 + T )^{2} \)
$73$ \( 4 + 2 T + T^{2} \)
$79$ \( 4 - 2 T + T^{2} \)
$83$ \( ( 8 + T )^{2} \)
$89$ \( T^{2} \)
$97$ \( ( -10 + T )^{2} \)
show more
show less