Properties

Label 546.2.i.a
Level $546$
Weight $2$
Character orbit 546.i
Analytic conductor $4.360$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} -3 \zeta_{6} q^{5} + q^{6} + ( 1 - 3 \zeta_{6} ) q^{7} + q^{8} -\zeta_{6} q^{9} +O(q^{10})\) \( q -\zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} -3 \zeta_{6} q^{5} + q^{6} + ( 1 - 3 \zeta_{6} ) q^{7} + q^{8} -\zeta_{6} q^{9} + ( -3 + 3 \zeta_{6} ) q^{10} + ( -3 + 3 \zeta_{6} ) q^{11} -\zeta_{6} q^{12} + q^{13} + ( -3 + 2 \zeta_{6} ) q^{14} + 3 q^{15} -\zeta_{6} q^{16} + ( -6 + 6 \zeta_{6} ) q^{17} + ( -1 + \zeta_{6} ) q^{18} + 4 \zeta_{6} q^{19} + 3 q^{20} + ( 2 + \zeta_{6} ) q^{21} + 3 q^{22} -6 \zeta_{6} q^{23} + ( -1 + \zeta_{6} ) q^{24} + ( -4 + 4 \zeta_{6} ) q^{25} -\zeta_{6} q^{26} + q^{27} + ( 2 + \zeta_{6} ) q^{28} -9 q^{29} -3 \zeta_{6} q^{30} + ( -5 + 5 \zeta_{6} ) q^{31} + ( -1 + \zeta_{6} ) q^{32} -3 \zeta_{6} q^{33} + 6 q^{34} + ( -9 + 6 \zeta_{6} ) q^{35} + q^{36} + 4 \zeta_{6} q^{37} + ( 4 - 4 \zeta_{6} ) q^{38} + ( -1 + \zeta_{6} ) q^{39} -3 \zeta_{6} q^{40} -12 q^{41} + ( 1 - 3 \zeta_{6} ) q^{42} -4 q^{43} -3 \zeta_{6} q^{44} + ( -3 + 3 \zeta_{6} ) q^{45} + ( -6 + 6 \zeta_{6} ) q^{46} + 12 \zeta_{6} q^{47} + q^{48} + ( -8 + 3 \zeta_{6} ) q^{49} + 4 q^{50} -6 \zeta_{6} q^{51} + ( -1 + \zeta_{6} ) q^{52} + ( 9 - 9 \zeta_{6} ) q^{53} -\zeta_{6} q^{54} + 9 q^{55} + ( 1 - 3 \zeta_{6} ) q^{56} -4 q^{57} + 9 \zeta_{6} q^{58} + ( 9 - 9 \zeta_{6} ) q^{59} + ( -3 + 3 \zeta_{6} ) q^{60} -8 \zeta_{6} q^{61} + 5 q^{62} + ( -3 + 2 \zeta_{6} ) q^{63} + q^{64} -3 \zeta_{6} q^{65} + ( -3 + 3 \zeta_{6} ) q^{66} + ( 4 - 4 \zeta_{6} ) q^{67} -6 \zeta_{6} q^{68} + 6 q^{69} + ( 6 + 3 \zeta_{6} ) q^{70} + 6 q^{71} -\zeta_{6} q^{72} + ( -14 + 14 \zeta_{6} ) q^{73} + ( 4 - 4 \zeta_{6} ) q^{74} -4 \zeta_{6} q^{75} -4 q^{76} + ( 6 + 3 \zeta_{6} ) q^{77} + q^{78} + \zeta_{6} q^{79} + ( -3 + 3 \zeta_{6} ) q^{80} + ( -1 + \zeta_{6} ) q^{81} + 12 \zeta_{6} q^{82} + 3 q^{83} + ( -3 + 2 \zeta_{6} ) q^{84} + 18 q^{85} + 4 \zeta_{6} q^{86} + ( 9 - 9 \zeta_{6} ) q^{87} + ( -3 + 3 \zeta_{6} ) q^{88} + 3 q^{90} + ( 1 - 3 \zeta_{6} ) q^{91} + 6 q^{92} -5 \zeta_{6} q^{93} + ( 12 - 12 \zeta_{6} ) q^{94} + ( 12 - 12 \zeta_{6} ) q^{95} -\zeta_{6} q^{96} + 5 q^{97} + ( 3 + 5 \zeta_{6} ) q^{98} + 3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} - q^{3} - q^{4} - 3q^{5} + 2q^{6} - q^{7} + 2q^{8} - q^{9} + O(q^{10}) \) \( 2q - q^{2} - q^{3} - q^{4} - 3q^{5} + 2q^{6} - q^{7} + 2q^{8} - q^{9} - 3q^{10} - 3q^{11} - q^{12} + 2q^{13} - 4q^{14} + 6q^{15} - q^{16} - 6q^{17} - q^{18} + 4q^{19} + 6q^{20} + 5q^{21} + 6q^{22} - 6q^{23} - q^{24} - 4q^{25} - q^{26} + 2q^{27} + 5q^{28} - 18q^{29} - 3q^{30} - 5q^{31} - q^{32} - 3q^{33} + 12q^{34} - 12q^{35} + 2q^{36} + 4q^{37} + 4q^{38} - q^{39} - 3q^{40} - 24q^{41} - q^{42} - 8q^{43} - 3q^{44} - 3q^{45} - 6q^{46} + 12q^{47} + 2q^{48} - 13q^{49} + 8q^{50} - 6q^{51} - q^{52} + 9q^{53} - q^{54} + 18q^{55} - q^{56} - 8q^{57} + 9q^{58} + 9q^{59} - 3q^{60} - 8q^{61} + 10q^{62} - 4q^{63} + 2q^{64} - 3q^{65} - 3q^{66} + 4q^{67} - 6q^{68} + 12q^{69} + 15q^{70} + 12q^{71} - q^{72} - 14q^{73} + 4q^{74} - 4q^{75} - 8q^{76} + 15q^{77} + 2q^{78} + q^{79} - 3q^{80} - q^{81} + 12q^{82} + 6q^{83} - 4q^{84} + 36q^{85} + 4q^{86} + 9q^{87} - 3q^{88} + 6q^{90} - q^{91} + 12q^{92} - 5q^{93} + 12q^{94} + 12q^{95} - q^{96} + 10q^{97} + 11q^{98} + 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
79.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 + 0.866025i −0.500000 0.866025i −0.500000 0.866025i −1.50000 + 2.59808i 1.00000 −0.500000 + 2.59808i 1.00000 −0.500000 + 0.866025i −1.50000 2.59808i
235.1 −0.500000 0.866025i −0.500000 + 0.866025i −0.500000 + 0.866025i −1.50000 2.59808i 1.00000 −0.500000 2.59808i 1.00000 −0.500000 0.866025i −1.50000 + 2.59808i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 546.2.i.a 2
3.b odd 2 1 1638.2.j.j 2
7.c even 3 1 inner 546.2.i.a 2
7.c even 3 1 3822.2.a.bh 1
7.d odd 6 1 3822.2.a.s 1
21.h odd 6 1 1638.2.j.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.i.a 2 1.a even 1 1 trivial
546.2.i.a 2 7.c even 3 1 inner
1638.2.j.j 2 3.b odd 2 1
1638.2.j.j 2 21.h odd 6 1
3822.2.a.s 1 7.d odd 6 1
3822.2.a.bh 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(546, [\chi])\):

\( T_{5}^{2} + 3 T_{5} + 9 \)
\( T_{17}^{2} + 6 T_{17} + 36 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + T^{2} \)
$3$ \( 1 + T + T^{2} \)
$5$ \( 9 + 3 T + T^{2} \)
$7$ \( 7 + T + T^{2} \)
$11$ \( 9 + 3 T + T^{2} \)
$13$ \( ( -1 + T )^{2} \)
$17$ \( 36 + 6 T + T^{2} \)
$19$ \( 16 - 4 T + T^{2} \)
$23$ \( 36 + 6 T + T^{2} \)
$29$ \( ( 9 + T )^{2} \)
$31$ \( 25 + 5 T + T^{2} \)
$37$ \( 16 - 4 T + T^{2} \)
$41$ \( ( 12 + T )^{2} \)
$43$ \( ( 4 + T )^{2} \)
$47$ \( 144 - 12 T + T^{2} \)
$53$ \( 81 - 9 T + T^{2} \)
$59$ \( 81 - 9 T + T^{2} \)
$61$ \( 64 + 8 T + T^{2} \)
$67$ \( 16 - 4 T + T^{2} \)
$71$ \( ( -6 + T )^{2} \)
$73$ \( 196 + 14 T + T^{2} \)
$79$ \( 1 - T + T^{2} \)
$83$ \( ( -3 + T )^{2} \)
$89$ \( T^{2} \)
$97$ \( ( -5 + T )^{2} \)
show more
show less