Properties

Label 546.2.g.a
Level $546$
Weight $2$
Character orbit 546.g
Analytic conductor $4.360$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Defining polynomial: \(x^{4} + 3 x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + ( -1 - \beta_{1} ) q^{3} - q^{4} + ( -\beta_{1} + \beta_{3} ) q^{5} + ( -\beta_{2} - \beta_{3} ) q^{6} + ( 1 + 2 \beta_{2} + \beta_{3} ) q^{7} -\beta_{2} q^{8} + ( 1 + \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{9} +O(q^{10})\) \( q + \beta_{2} q^{2} + ( -1 - \beta_{1} ) q^{3} - q^{4} + ( -\beta_{1} + \beta_{3} ) q^{5} + ( -\beta_{2} - \beta_{3} ) q^{6} + ( 1 + 2 \beta_{2} + \beta_{3} ) q^{7} -\beta_{2} q^{8} + ( 1 + \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{9} + ( -\beta_{1} - \beta_{3} ) q^{10} + ( 1 + \beta_{1} ) q^{12} -\beta_{2} q^{13} + ( -2 - \beta_{1} + \beta_{2} ) q^{14} + ( 2 - \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{15} + q^{16} + ( -4 - 2 \beta_{1} + 2 \beta_{3} ) q^{17} + ( -2 + \beta_{1} + \beta_{2} + \beta_{3} ) q^{18} -6 \beta_{2} q^{19} + ( \beta_{1} - \beta_{3} ) q^{20} + ( 1 - 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} ) q^{21} + ( -\beta_{1} - \beta_{3} ) q^{23} + ( \beta_{2} + \beta_{3} ) q^{24} + ( -1 - 2 \beta_{1} + 2 \beta_{3} ) q^{25} + q^{26} + ( -3 - 4 \beta_{2} - \beta_{3} ) q^{27} + ( -1 - 2 \beta_{2} - \beta_{3} ) q^{28} + ( -3 \beta_{1} - 4 \beta_{2} - 3 \beta_{3} ) q^{29} + ( -2 + \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{30} + ( \beta_{1} - 4 \beta_{2} + \beta_{3} ) q^{31} + \beta_{2} q^{32} + ( -2 \beta_{1} - 4 \beta_{2} - 2 \beta_{3} ) q^{34} + ( 2 - 3 \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{35} + ( -1 - \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{36} + ( -6 + \beta_{1} - \beta_{3} ) q^{37} + 6 q^{38} + ( \beta_{2} + \beta_{3} ) q^{39} + ( \beta_{1} + \beta_{3} ) q^{40} + ( -2 + \beta_{1} - \beta_{3} ) q^{41} + ( 2 + 2 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{42} + ( -4 + 2 \beta_{1} - 2 \beta_{3} ) q^{43} + ( -4 - \beta_{1} - 3 \beta_{3} ) q^{45} + ( \beta_{1} - \beta_{3} ) q^{46} + ( 2 \beta_{1} - 2 \beta_{3} ) q^{47} + ( -1 - \beta_{1} ) q^{48} + ( -3 - 3 \beta_{1} + 2 \beta_{2} + 3 \beta_{3} ) q^{49} + ( -2 \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{50} + ( 8 + 2 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} ) q^{51} + \beta_{2} q^{52} + ( -\beta_{1} - \beta_{3} ) q^{53} + ( 4 + \beta_{1} - 3 \beta_{2} ) q^{54} + ( 2 + \beta_{1} - \beta_{2} ) q^{56} + ( 6 \beta_{2} + 6 \beta_{3} ) q^{57} + ( 4 + 3 \beta_{1} - 3 \beta_{3} ) q^{58} + ( 2 + 2 \beta_{1} - 2 \beta_{3} ) q^{59} + ( -2 + \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{60} + ( 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{61} + ( 4 - \beta_{1} + \beta_{3} ) q^{62} + ( -5 + \beta_{1} + 6 \beta_{2} ) q^{63} - q^{64} + ( \beta_{1} + \beta_{3} ) q^{65} + ( -6 - 4 \beta_{1} + 4 \beta_{3} ) q^{67} + ( 4 + 2 \beta_{1} - 2 \beta_{3} ) q^{68} + ( -2 + \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{69} + ( 2 - \beta_{1} + 2 \beta_{2} - 3 \beta_{3} ) q^{70} + ( 2 \beta_{1} - 8 \beta_{2} + 2 \beta_{3} ) q^{71} + ( 2 - \beta_{1} - \beta_{2} - \beta_{3} ) q^{72} + ( -\beta_{1} - \beta_{3} ) q^{73} + ( \beta_{1} - 6 \beta_{2} + \beta_{3} ) q^{74} + ( 5 - \beta_{1} + 4 \beta_{2} - 2 \beta_{3} ) q^{75} + 6 \beta_{2} q^{76} + ( -1 - \beta_{1} ) q^{78} + ( 4 + 4 \beta_{1} - 4 \beta_{3} ) q^{79} + ( -\beta_{1} + \beta_{3} ) q^{80} + ( 1 + 4 \beta_{1} + 4 \beta_{2} + 4 \beta_{3} ) q^{81} + ( \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{82} + 14 q^{83} + ( -1 + 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{84} + 8 q^{85} + ( 2 \beta_{1} - 4 \beta_{2} + 2 \beta_{3} ) q^{86} + ( -6 + 3 \beta_{1} + 10 \beta_{2} + \beta_{3} ) q^{87} + ( -10 - 5 \beta_{1} + 5 \beta_{3} ) q^{89} + ( 3 \beta_{1} - 4 \beta_{2} - \beta_{3} ) q^{90} + ( 2 + \beta_{1} - \beta_{2} ) q^{91} + ( \beta_{1} + \beta_{3} ) q^{92} + ( 2 - \beta_{1} + 2 \beta_{2} + 5 \beta_{3} ) q^{93} + ( 2 \beta_{1} + 2 \beta_{3} ) q^{94} + ( 6 \beta_{1} + 6 \beta_{3} ) q^{95} + ( -\beta_{2} - \beta_{3} ) q^{96} + ( \beta_{1} + 4 \beta_{2} + \beta_{3} ) q^{97} + ( -2 - 3 \beta_{1} - 3 \beta_{2} - 3 \beta_{3} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 2q^{3} - 4q^{4} + 4q^{5} - 2q^{6} + 6q^{7} + O(q^{10}) \) \( 4q - 2q^{3} - 4q^{4} + 4q^{5} - 2q^{6} + 6q^{7} + 2q^{12} - 6q^{14} + 8q^{15} + 4q^{16} - 8q^{17} - 8q^{18} - 4q^{20} + 4q^{21} + 2q^{24} + 4q^{25} + 4q^{26} - 14q^{27} - 6q^{28} - 12q^{30} + 16q^{35} - 28q^{37} + 24q^{38} + 2q^{39} - 12q^{41} - 24q^{43} - 20q^{45} - 4q^{46} - 8q^{47} - 2q^{48} + 24q^{51} + 14q^{54} + 6q^{56} + 12q^{57} + 4q^{58} - 8q^{60} + 20q^{62} - 22q^{63} - 4q^{64} - 8q^{67} + 8q^{68} - 12q^{69} + 4q^{70} + 8q^{72} + 18q^{75} - 2q^{78} + 4q^{80} + 4q^{81} + 56q^{83} - 4q^{84} + 32q^{85} - 28q^{87} - 20q^{89} - 8q^{90} + 6q^{91} + 20q^{93} - 2q^{96} - 8q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 3 x^{2} + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu^{2} + \nu + 1 \)
\(\beta_{2}\)\(=\)\( \nu^{3} + 2 \nu \)
\(\beta_{3}\)\(=\)\( -\nu^{2} + \nu - 1 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{3} + \beta_{1}\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(-\beta_{3} + \beta_{1} - 2\)\()/2\)
\(\nu^{3}\)\(=\)\(-\beta_{3} + \beta_{2} - \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
209.1
0.618034i
1.61803i
0.618034i
1.61803i
1.00000i −1.61803 + 0.618034i −1.00000 −1.23607 0.618034 + 1.61803i 0.381966 2.61803i 1.00000i 2.23607 2.00000i 1.23607i
209.2 1.00000i 0.618034 1.61803i −1.00000 3.23607 −1.61803 0.618034i 2.61803 0.381966i 1.00000i −2.23607 2.00000i 3.23607i
209.3 1.00000i −1.61803 0.618034i −1.00000 −1.23607 0.618034 1.61803i 0.381966 + 2.61803i 1.00000i 2.23607 + 2.00000i 1.23607i
209.4 1.00000i 0.618034 + 1.61803i −1.00000 3.23607 −1.61803 + 0.618034i 2.61803 + 0.381966i 1.00000i −2.23607 + 2.00000i 3.23607i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 546.2.g.a 4
3.b odd 2 1 546.2.g.b yes 4
7.b odd 2 1 546.2.g.b yes 4
21.c even 2 1 inner 546.2.g.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.g.a 4 1.a even 1 1 trivial
546.2.g.a 4 21.c even 2 1 inner
546.2.g.b yes 4 3.b odd 2 1
546.2.g.b yes 4 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 2 T_{5} - 4 \) acting on \(S_{2}^{\mathrm{new}}(546, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T^{2} )^{2} \)
$3$ \( 9 + 6 T + 2 T^{2} + 2 T^{3} + T^{4} \)
$5$ \( ( -4 - 2 T + T^{2} )^{2} \)
$7$ \( 49 - 42 T + 18 T^{2} - 6 T^{3} + T^{4} \)
$11$ \( T^{4} \)
$13$ \( ( 1 + T^{2} )^{2} \)
$17$ \( ( -16 + 4 T + T^{2} )^{2} \)
$19$ \( ( 36 + T^{2} )^{2} \)
$23$ \( 16 + 12 T^{2} + T^{4} \)
$29$ \( 1936 + 92 T^{2} + T^{4} \)
$31$ \( 400 + 60 T^{2} + T^{4} \)
$37$ \( ( 44 + 14 T + T^{2} )^{2} \)
$41$ \( ( 4 + 6 T + T^{2} )^{2} \)
$43$ \( ( 16 + 12 T + T^{2} )^{2} \)
$47$ \( ( -16 + 4 T + T^{2} )^{2} \)
$53$ \( 16 + 12 T^{2} + T^{4} \)
$59$ \( ( -20 + T^{2} )^{2} \)
$61$ \( ( 20 + T^{2} )^{2} \)
$67$ \( ( -76 + 4 T + T^{2} )^{2} \)
$71$ \( 6400 + 240 T^{2} + T^{4} \)
$73$ \( 16 + 12 T^{2} + T^{4} \)
$79$ \( ( -80 + T^{2} )^{2} \)
$83$ \( ( -14 + T )^{4} \)
$89$ \( ( -100 + 10 T + T^{2} )^{2} \)
$97$ \( 16 + 28 T^{2} + T^{4} \)
show more
show less