Properties

Label 546.2.ch
Level $546$
Weight $2$
Character orbit 546.ch
Rep. character $\chi_{546}(137,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $152$
Newform subspaces $1$
Sturm bound $224$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.ch (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 273 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(224\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(546, [\chi])\).

Total New Old
Modular forms 480 152 328
Cusp forms 416 152 264
Eisenstein series 64 0 64

Trace form

\( 152q + 8q^{7} + O(q^{10}) \) \( 152q + 8q^{7} - 152q^{16} - 8q^{18} + 36q^{19} + 8q^{21} + 24q^{27} - 12q^{28} - 24q^{30} - 36q^{31} + 12q^{33} + 24q^{36} - 12q^{37} - 8q^{39} - 36q^{42} + 84q^{43} - 40q^{45} + 8q^{46} + 4q^{49} - 20q^{52} - 12q^{54} + 16q^{55} - 8q^{57} + 8q^{58} + 24q^{60} - 32q^{61} - 28q^{63} + 16q^{66} + 92q^{67} + 84q^{69} - 8q^{72} + 84q^{73} - 48q^{76} - 8q^{78} + 32q^{79} - 24q^{81} - 48q^{82} - 8q^{84} - 152q^{85} - 96q^{87} - 88q^{91} - 48q^{93} + 32q^{94} - 100q^{97} + 16q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(546, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
546.2.ch.a \(152\) \(4.360\) None \(0\) \(0\) \(0\) \(8\)

Decomposition of \(S_{2}^{\mathrm{old}}(546, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(546, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 2}\)