Properties

Label 546.2.cg.b.241.9
Level $546$
Weight $2$
Character 546.241
Analytic conductor $4.360$
Analytic rank $0$
Dimension $40$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.cg (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 241.9
Character \(\chi\) \(=\) 546.241
Dual form 546.2.cg.b.145.9

$q$-expansion

\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +(-0.866025 + 0.500000i) q^{3} +1.00000i q^{4} +(0.589284 + 0.157898i) q^{5} +(-0.965926 - 0.258819i) q^{6} +(-1.91156 + 1.82919i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(0.707107 + 0.707107i) q^{2} +(-0.866025 + 0.500000i) q^{3} +1.00000i q^{4} +(0.589284 + 0.157898i) q^{5} +(-0.965926 - 0.258819i) q^{6} +(-1.91156 + 1.82919i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(0.500000 - 0.866025i) q^{9} +(0.305036 + 0.528338i) q^{10} +(-3.40302 - 0.911835i) q^{11} +(-0.500000 - 0.866025i) q^{12} +(-1.11704 + 3.42815i) q^{13} +(-2.64511 - 0.0582404i) q^{14} +(-0.589284 + 0.157898i) q^{15} -1.00000 q^{16} -0.661787 q^{17} +(0.965926 - 0.258819i) q^{18} +(0.476735 + 1.77920i) q^{19} +(-0.157898 + 0.589284i) q^{20} +(0.740861 - 2.53991i) q^{21} +(-1.76153 - 3.05106i) q^{22} +6.64347i q^{23} +(0.258819 - 0.965926i) q^{24} +(-4.00780 - 2.31391i) q^{25} +(-3.21394 + 1.63420i) q^{26} +1.00000i q^{27} +(-1.82919 - 1.91156i) q^{28} +(2.81107 - 4.86891i) q^{29} +(-0.528338 - 0.305036i) q^{30} +(-0.583910 - 2.17918i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(3.40302 - 0.911835i) q^{33} +(-0.467954 - 0.467954i) q^{34} +(-1.41528 + 0.776083i) q^{35} +(0.866025 + 0.500000i) q^{36} +(-1.59669 + 1.59669i) q^{37} +(-0.920982 + 1.59519i) q^{38} +(-0.746686 - 3.52739i) q^{39} +(-0.528338 + 0.305036i) q^{40} +(1.83508 + 6.84860i) q^{41} +(2.31985 - 1.27212i) q^{42} +(-6.91494 + 3.99234i) q^{43} +(0.911835 - 3.40302i) q^{44} +(0.431386 - 0.431386i) q^{45} +(-4.69764 + 4.69764i) q^{46} +(-1.18439 + 4.42021i) q^{47} +(0.866025 - 0.500000i) q^{48} +(0.308105 - 6.99322i) q^{49} +(-1.19777 - 4.47012i) q^{50} +(0.573124 - 0.330893i) q^{51} +(-3.42815 - 1.11704i) q^{52} +(5.24890 - 9.09137i) q^{53} +(-0.707107 + 0.707107i) q^{54} +(-1.86137 - 1.07466i) q^{55} +(0.0582404 - 2.64511i) q^{56} +(-1.30246 - 1.30246i) q^{57} +(5.43056 - 1.45511i) q^{58} +(6.82671 + 6.82671i) q^{59} +(-0.157898 - 0.589284i) q^{60} +(11.3835 + 6.57224i) q^{61} +(1.12803 - 1.95380i) q^{62} +(0.628349 + 2.57005i) q^{63} -1.00000i q^{64} +(-1.19956 + 1.84377i) q^{65} +(3.05106 + 1.76153i) q^{66} +(-3.70462 + 13.8258i) q^{67} -0.661787i q^{68} +(-3.32174 - 5.75342i) q^{69} +(-1.54953 - 0.451978i) q^{70} +(3.44163 - 12.8443i) q^{71} +(0.258819 + 0.965926i) q^{72} +(-4.06451 + 1.08908i) q^{73} -2.25805 q^{74} +4.62781 q^{75} +(-1.77920 + 0.476735i) q^{76} +(8.17298 - 4.48175i) q^{77} +(1.96625 - 3.02223i) q^{78} +(-3.20797 - 5.55637i) q^{79} +(-0.589284 - 0.157898i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-3.54509 + 6.14028i) q^{82} +(5.17053 - 5.17053i) q^{83} +(2.53991 + 0.740861i) q^{84} +(-0.389981 - 0.104495i) q^{85} +(-7.71261 - 2.06659i) q^{86} +5.62213i q^{87} +(3.05106 - 1.76153i) q^{88} +(10.6780 + 10.6780i) q^{89} +0.610072 q^{90} +(-4.13545 - 8.59640i) q^{91} -6.64347 q^{92} +(1.59527 + 1.59527i) q^{93} +(-3.96305 + 2.28807i) q^{94} +1.12373i q^{95} +(0.965926 + 0.258819i) q^{96} +(3.44843 + 0.924004i) q^{97} +(5.16281 - 4.72709i) q^{98} +(-2.49118 + 2.49118i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q + 4q^{7} + 20q^{9} + O(q^{10}) \) \( 40q + 4q^{7} + 20q^{9} + 8q^{11} - 20q^{12} + 4q^{14} - 40q^{16} + 16q^{17} + 4q^{19} + 4q^{21} - 4q^{22} - 24q^{25} + 8q^{26} - 4q^{28} - 12q^{29} - 8q^{33} - 8q^{34} - 32q^{35} + 40q^{37} + 8q^{38} + 20q^{39} + 20q^{41} + 12q^{42} - 24q^{43} - 4q^{44} + 32q^{46} + 4q^{47} + 32q^{49} - 16q^{50} + 24q^{51} + 16q^{52} - 4q^{53} + 24q^{55} + 12q^{56} + 8q^{57} + 12q^{58} + 24q^{59} + 60q^{61} + 32q^{62} - 4q^{63} + 44q^{65} - 12q^{67} - 8q^{69} - 24q^{70} - 28q^{71} + 60q^{73} - 40q^{74} - 72q^{75} + 4q^{76} - 12q^{77} + 4q^{78} - 20q^{81} - 24q^{82} + 60q^{83} - 8q^{84} - 4q^{85} - 20q^{86} - 36q^{89} - 16q^{92} - 24q^{93} - 48q^{97} - 88q^{98} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) 1.00000i 0.500000i
\(5\) 0.589284 + 0.157898i 0.263536 + 0.0706142i 0.388167 0.921589i \(-0.373108\pi\)
−0.124632 + 0.992203i \(0.539775\pi\)
\(6\) −0.965926 0.258819i −0.394338 0.105662i
\(7\) −1.91156 + 1.82919i −0.722501 + 0.691370i
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0.305036 + 0.528338i 0.0964608 + 0.167075i
\(11\) −3.40302 0.911835i −1.02605 0.274929i −0.293728 0.955889i \(-0.594896\pi\)
−0.732320 + 0.680960i \(0.761563\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) −1.11704 + 3.42815i −0.309812 + 0.950798i
\(14\) −2.64511 0.0582404i −0.706935 0.0155654i
\(15\) −0.589284 + 0.157898i −0.152153 + 0.0407691i
\(16\) −1.00000 −0.250000
\(17\) −0.661787 −0.160507 −0.0802535 0.996774i \(-0.525573\pi\)
−0.0802535 + 0.996774i \(0.525573\pi\)
\(18\) 0.965926 0.258819i 0.227671 0.0610042i
\(19\) 0.476735 + 1.77920i 0.109371 + 0.408176i 0.998804 0.0488877i \(-0.0155676\pi\)
−0.889434 + 0.457064i \(0.848901\pi\)
\(20\) −0.157898 + 0.589284i −0.0353071 + 0.131768i
\(21\) 0.740861 2.53991i 0.161669 0.554253i
\(22\) −1.76153 3.05106i −0.375560 0.650488i
\(23\) 6.64347i 1.38526i 0.721293 + 0.692630i \(0.243548\pi\)
−0.721293 + 0.692630i \(0.756452\pi\)
\(24\) 0.258819 0.965926i 0.0528312 0.197169i
\(25\) −4.00780 2.31391i −0.801561 0.462781i
\(26\) −3.21394 + 1.63420i −0.630305 + 0.320493i
\(27\) 1.00000i 0.192450i
\(28\) −1.82919 1.91156i −0.345685 0.361250i
\(29\) 2.81107 4.86891i 0.522002 0.904134i −0.477671 0.878539i \(-0.658519\pi\)
0.999672 0.0255946i \(-0.00814789\pi\)
\(30\) −0.528338 0.305036i −0.0964608 0.0556917i
\(31\) −0.583910 2.17918i −0.104873 0.391393i 0.893457 0.449148i \(-0.148272\pi\)
−0.998331 + 0.0577552i \(0.981606\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 3.40302 0.911835i 0.592389 0.158730i
\(34\) −0.467954 0.467954i −0.0802535 0.0802535i
\(35\) −1.41528 + 0.776083i −0.239225 + 0.131182i
\(36\) 0.866025 + 0.500000i 0.144338 + 0.0833333i
\(37\) −1.59669 + 1.59669i −0.262494 + 0.262494i −0.826066 0.563573i \(-0.809426\pi\)
0.563573 + 0.826066i \(0.309426\pi\)
\(38\) −0.920982 + 1.59519i −0.149403 + 0.258774i
\(39\) −0.746686 3.52739i −0.119565 0.564834i
\(40\) −0.528338 + 0.305036i −0.0835375 + 0.0482304i
\(41\) 1.83508 + 6.84860i 0.286591 + 1.06957i 0.947669 + 0.319254i \(0.103432\pi\)
−0.661078 + 0.750317i \(0.729901\pi\)
\(42\) 2.31985 1.27212i 0.357961 0.196292i
\(43\) −6.91494 + 3.99234i −1.05452 + 0.608826i −0.923911 0.382608i \(-0.875026\pi\)
−0.130607 + 0.991434i \(0.541693\pi\)
\(44\) 0.911835 3.40302i 0.137464 0.513024i
\(45\) 0.431386 0.431386i 0.0643072 0.0643072i
\(46\) −4.69764 + 4.69764i −0.692630 + 0.692630i
\(47\) −1.18439 + 4.42021i −0.172761 + 0.644753i 0.824161 + 0.566356i \(0.191647\pi\)
−0.996922 + 0.0783978i \(0.975020\pi\)
\(48\) 0.866025 0.500000i 0.125000 0.0721688i
\(49\) 0.308105 6.99322i 0.0440150 0.999031i
\(50\) −1.19777 4.47012i −0.169390 0.632171i
\(51\) 0.573124 0.330893i 0.0802535 0.0463344i
\(52\) −3.42815 1.11704i −0.475399 0.154906i
\(53\) 5.24890 9.09137i 0.720992 1.24880i −0.239610 0.970869i \(-0.577020\pi\)
0.960602 0.277926i \(-0.0896471\pi\)
\(54\) −0.707107 + 0.707107i −0.0962250 + 0.0962250i
\(55\) −1.86137 1.07466i −0.250987 0.144907i
\(56\) 0.0582404 2.64511i 0.00778271 0.353468i
\(57\) −1.30246 1.30246i −0.172516 0.172516i
\(58\) 5.43056 1.45511i 0.713068 0.191066i
\(59\) 6.82671 + 6.82671i 0.888763 + 0.888763i 0.994404 0.105642i \(-0.0336897\pi\)
−0.105642 + 0.994404i \(0.533690\pi\)
\(60\) −0.157898 0.589284i −0.0203846 0.0760763i
\(61\) 11.3835 + 6.57224i 1.45750 + 0.841489i 0.998888 0.0471460i \(-0.0150126\pi\)
0.458614 + 0.888635i \(0.348346\pi\)
\(62\) 1.12803 1.95380i 0.143260 0.248133i
\(63\) 0.628349 + 2.57005i 0.0791645 + 0.323796i
\(64\) 1.00000i 0.125000i
\(65\) −1.19956 + 1.84377i −0.148787 + 0.228692i
\(66\) 3.05106 + 1.76153i 0.375560 + 0.216829i
\(67\) −3.70462 + 13.8258i −0.452591 + 1.68909i 0.242482 + 0.970156i \(0.422038\pi\)
−0.695074 + 0.718939i \(0.744628\pi\)
\(68\) 0.661787i 0.0802535i
\(69\) −3.32174 5.75342i −0.399890 0.692630i
\(70\) −1.54953 0.451978i −0.185204 0.0540217i
\(71\) 3.44163 12.8443i 0.408446 1.52434i −0.389164 0.921168i \(-0.627236\pi\)
0.797610 0.603173i \(-0.206097\pi\)
\(72\) 0.258819 + 0.965926i 0.0305021 + 0.113835i
\(73\) −4.06451 + 1.08908i −0.475715 + 0.127467i −0.488707 0.872448i \(-0.662531\pi\)
0.0129916 + 0.999916i \(0.495865\pi\)
\(74\) −2.25805 −0.262494
\(75\) 4.62781 0.534374
\(76\) −1.77920 + 0.476735i −0.204088 + 0.0546853i
\(77\) 8.17298 4.48175i 0.931398 0.510742i
\(78\) 1.96625 3.02223i 0.222634 0.342200i
\(79\) −3.20797 5.55637i −0.360925 0.625141i 0.627188 0.778868i \(-0.284206\pi\)
−0.988113 + 0.153727i \(0.950872\pi\)
\(80\) −0.589284 0.157898i −0.0658840 0.0176536i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −3.54509 + 6.14028i −0.391490 + 0.678081i
\(83\) 5.17053 5.17053i 0.567540 0.567540i −0.363899 0.931438i \(-0.618555\pi\)
0.931438 + 0.363899i \(0.118555\pi\)
\(84\) 2.53991 + 0.740861i 0.277127 + 0.0808345i
\(85\) −0.389981 0.104495i −0.0422993 0.0113341i
\(86\) −7.71261 2.06659i −0.831672 0.222846i
\(87\) 5.62213i 0.602756i
\(88\) 3.05106 1.76153i 0.325244 0.187780i
\(89\) 10.6780 + 10.6780i 1.13186 + 1.13186i 0.989867 + 0.141994i \(0.0453514\pi\)
0.141994 + 0.989867i \(0.454649\pi\)
\(90\) 0.610072 0.0643072
\(91\) −4.13545 8.59640i −0.433513 0.901147i
\(92\) −6.64347 −0.692630
\(93\) 1.59527 + 1.59527i 0.165422 + 0.165422i
\(94\) −3.96305 + 2.28807i −0.408757 + 0.235996i
\(95\) 1.12373i 0.115292i
\(96\) 0.965926 + 0.258819i 0.0985844 + 0.0264156i
\(97\) 3.44843 + 0.924004i 0.350135 + 0.0938184i 0.429600 0.903019i \(-0.358655\pi\)
−0.0794650 + 0.996838i \(0.525321\pi\)
\(98\) 5.16281 4.72709i 0.521523 0.477508i
\(99\) −2.49118 + 2.49118i −0.250373 + 0.250373i
\(100\) 2.31391 4.00780i 0.231391 0.400780i
\(101\) 5.56394 + 9.63704i 0.553633 + 0.958921i 0.998008 + 0.0630801i \(0.0200924\pi\)
−0.444375 + 0.895841i \(0.646574\pi\)
\(102\) 0.639237 + 0.171283i 0.0632939 + 0.0169596i
\(103\) 1.71734 + 2.97452i 0.169214 + 0.293088i 0.938144 0.346246i \(-0.112544\pi\)
−0.768929 + 0.639334i \(0.779210\pi\)
\(104\) −1.63420 3.21394i −0.160246 0.315153i
\(105\) 0.837624 1.37975i 0.0817438 0.134649i
\(106\) 10.1401 2.71703i 0.984894 0.263902i
\(107\) 11.0684 1.07002 0.535012 0.844844i \(-0.320307\pi\)
0.535012 + 0.844844i \(0.320307\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 8.51517 2.28163i 0.815605 0.218541i 0.173181 0.984890i \(-0.444595\pi\)
0.642424 + 0.766349i \(0.277929\pi\)
\(110\) −0.556285 2.07608i −0.0530397 0.197947i
\(111\) 0.584428 2.18111i 0.0554714 0.207022i
\(112\) 1.91156 1.82919i 0.180625 0.172843i
\(113\) 3.05025 + 5.28319i 0.286943 + 0.497000i 0.973079 0.230474i \(-0.0740276\pi\)
−0.686135 + 0.727474i \(0.740694\pi\)
\(114\) 1.84196i 0.172516i
\(115\) −1.04899 + 3.91489i −0.0978190 + 0.365066i
\(116\) 4.86891 + 2.81107i 0.452067 + 0.261001i
\(117\) 2.41034 + 2.68146i 0.222836 + 0.247901i
\(118\) 9.65443i 0.888763i
\(119\) 1.26504 1.21054i 0.115966 0.110970i
\(120\) 0.305036 0.528338i 0.0278458 0.0482304i
\(121\) 1.22279 + 0.705979i 0.111163 + 0.0641799i
\(122\) 3.40204 + 12.6966i 0.308007 + 1.14950i
\(123\) −5.01352 5.01352i −0.452054 0.452054i
\(124\) 2.17918 0.583910i 0.195696 0.0524367i
\(125\) −4.15330 4.15330i −0.371483 0.371483i
\(126\) −1.37299 + 2.26161i −0.122316 + 0.201480i
\(127\) 3.92526 + 2.26625i 0.348311 + 0.201097i 0.663941 0.747785i \(-0.268883\pi\)
−0.315630 + 0.948882i \(0.602216\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 3.99234 6.91494i 0.351506 0.608826i
\(130\) −2.15196 + 0.455532i −0.188739 + 0.0399528i
\(131\) 7.91260 4.56834i 0.691327 0.399138i −0.112782 0.993620i \(-0.535976\pi\)
0.804109 + 0.594482i \(0.202643\pi\)
\(132\) 0.911835 + 3.40302i 0.0793651 + 0.296194i
\(133\) −4.16581 2.52900i −0.361221 0.219292i
\(134\) −12.3959 + 7.15678i −1.07084 + 0.618251i
\(135\) −0.157898 + 0.589284i −0.0135897 + 0.0507175i
\(136\) 0.467954 0.467954i 0.0401267 0.0401267i
\(137\) 8.59301 8.59301i 0.734151 0.734151i −0.237289 0.971439i \(-0.576259\pi\)
0.971439 + 0.237289i \(0.0762587\pi\)
\(138\) 1.71946 6.41710i 0.146370 0.546260i
\(139\) −17.3447 + 10.0140i −1.47116 + 0.849373i −0.999475 0.0323955i \(-0.989686\pi\)
−0.471682 + 0.881769i \(0.656353\pi\)
\(140\) −0.776083 1.41528i −0.0655910 0.119613i
\(141\) −1.18439 4.42021i −0.0997437 0.372249i
\(142\) 11.5159 6.64872i 0.966394 0.557948i
\(143\) 6.92723 10.6475i 0.579284 0.890388i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 2.42531 2.42531i 0.201411 0.201411i
\(146\) −3.64414 2.10395i −0.301591 0.174124i
\(147\) 3.22978 + 6.21036i 0.266388 + 0.512221i
\(148\) −1.59669 1.59669i −0.131247 0.131247i
\(149\) −16.4771 + 4.41502i −1.34986 + 0.361693i −0.860082 0.510156i \(-0.829588\pi\)
−0.489775 + 0.871849i \(0.662921\pi\)
\(150\) 3.27236 + 3.27236i 0.267187 + 0.267187i
\(151\) 1.12704 + 4.20616i 0.0917170 + 0.342293i 0.996501 0.0835776i \(-0.0266347\pi\)
−0.904784 + 0.425870i \(0.859968\pi\)
\(152\) −1.59519 0.920982i −0.129387 0.0747015i
\(153\) −0.330893 + 0.573124i −0.0267512 + 0.0463344i
\(154\) 8.94825 + 2.61010i 0.721070 + 0.210328i
\(155\) 1.37636i 0.110552i
\(156\) 3.52739 0.746686i 0.282417 0.0597827i
\(157\) −11.3079 6.52860i −0.902466 0.521039i −0.0244663 0.999701i \(-0.507789\pi\)
−0.877999 + 0.478662i \(0.841122\pi\)
\(158\) 1.66057 6.19733i 0.132108 0.493033i
\(159\) 10.4978i 0.832530i
\(160\) −0.305036 0.528338i −0.0241152 0.0417688i
\(161\) −12.1522 12.6994i −0.957727 1.00085i
\(162\) 0.258819 0.965926i 0.0203347 0.0758903i
\(163\) 4.71448 + 17.5947i 0.369267 + 1.37812i 0.861544 + 0.507683i \(0.169498\pi\)
−0.492277 + 0.870438i \(0.663835\pi\)
\(164\) −6.84860 + 1.83508i −0.534786 + 0.143295i
\(165\) 2.14932 0.167324
\(166\) 7.31224 0.567540
\(167\) −12.1764 + 3.26266i −0.942239 + 0.252472i −0.697066 0.717007i \(-0.745511\pi\)
−0.245173 + 0.969479i \(0.578845\pi\)
\(168\) 1.27212 + 2.31985i 0.0981460 + 0.178981i
\(169\) −10.5044 7.65879i −0.808033 0.589138i
\(170\) −0.201869 0.349647i −0.0154826 0.0268167i
\(171\) 1.77920 + 0.476735i 0.136059 + 0.0364569i
\(172\) −3.99234 6.91494i −0.304413 0.527259i
\(173\) −0.178580 + 0.309310i −0.0135772 + 0.0235164i −0.872734 0.488196i \(-0.837655\pi\)
0.859157 + 0.511712i \(0.170989\pi\)
\(174\) −3.97545 + 3.97545i −0.301378 + 0.301378i
\(175\) 11.8937 2.90788i 0.899081 0.219815i
\(176\) 3.40302 + 0.911835i 0.256512 + 0.0687322i
\(177\) −9.32547 2.49875i −0.700945 0.187818i
\(178\) 15.1009i 1.13186i
\(179\) 2.54652 1.47023i 0.190336 0.109890i −0.401804 0.915726i \(-0.631617\pi\)
0.592140 + 0.805835i \(0.298283\pi\)
\(180\) 0.431386 + 0.431386i 0.0321536 + 0.0321536i
\(181\) 3.08018 0.228948 0.114474 0.993426i \(-0.463482\pi\)
0.114474 + 0.993426i \(0.463482\pi\)
\(182\) 3.15436 9.00278i 0.233817 0.667330i
\(183\) −13.1445 −0.971668
\(184\) −4.69764 4.69764i −0.346315 0.346315i
\(185\) −1.19302 + 0.688788i −0.0877122 + 0.0506407i
\(186\) 2.25606i 0.165422i
\(187\) 2.25207 + 0.603441i 0.164688 + 0.0441280i
\(188\) −4.42021 1.18439i −0.322377 0.0863806i
\(189\) −1.82919 1.91156i −0.133054 0.139045i
\(190\) −0.794597 + 0.794597i −0.0576461 + 0.0576461i
\(191\) −0.647368 + 1.12127i −0.0468419 + 0.0811326i −0.888496 0.458885i \(-0.848249\pi\)
0.841654 + 0.540017i \(0.181582\pi\)
\(192\) 0.500000 + 0.866025i 0.0360844 + 0.0625000i
\(193\) −8.36542 2.24151i −0.602156 0.161347i −0.0551531 0.998478i \(-0.517565\pi\)
−0.547003 + 0.837131i \(0.684231\pi\)
\(194\) 1.78504 + 3.09178i 0.128158 + 0.221977i
\(195\) 0.116958 2.19653i 0.00837552 0.157297i
\(196\) 6.99322 + 0.308105i 0.499515 + 0.0220075i
\(197\) −2.64884 + 0.709754i −0.188722 + 0.0505679i −0.351942 0.936022i \(-0.614479\pi\)
0.163220 + 0.986590i \(0.447812\pi\)
\(198\) −3.52306 −0.250373
\(199\) −21.1257 −1.49756 −0.748780 0.662818i \(-0.769360\pi\)
−0.748780 + 0.662818i \(0.769360\pi\)
\(200\) 4.47012 1.19777i 0.316085 0.0846948i
\(201\) −3.70462 13.8258i −0.261304 0.975199i
\(202\) −2.88011 + 10.7487i −0.202644 + 0.756277i
\(203\) 3.53266 + 14.4492i 0.247944 + 1.01413i
\(204\) 0.330893 + 0.573124i 0.0231672 + 0.0401267i
\(205\) 4.32552i 0.302108i
\(206\) −0.888960 + 3.31764i −0.0619368 + 0.231151i
\(207\) 5.75342 + 3.32174i 0.399890 + 0.230877i
\(208\) 1.11704 3.42815i 0.0774531 0.237699i
\(209\) 6.48935i 0.448878i
\(210\) 1.56792 0.383338i 0.108197 0.0264528i
\(211\) 1.43098 2.47853i 0.0985129 0.170629i −0.812556 0.582883i \(-0.801925\pi\)
0.911069 + 0.412253i \(0.135258\pi\)
\(212\) 9.09137 + 5.24890i 0.624398 + 0.360496i
\(213\) 3.44163 + 12.8443i 0.235816 + 0.880079i
\(214\) 7.82656 + 7.82656i 0.535012 + 0.535012i
\(215\) −4.70525 + 1.26077i −0.320895 + 0.0859836i
\(216\) −0.707107 0.707107i −0.0481125 0.0481125i
\(217\) 5.10232 + 3.09755i 0.346368 + 0.210275i
\(218\) 7.63449 + 4.40778i 0.517073 + 0.298532i
\(219\) 2.97543 2.97543i 0.201061 0.201061i
\(220\) 1.07466 1.86137i 0.0724536 0.125493i
\(221\) 0.739245 2.26870i 0.0497270 0.152610i
\(222\) 1.95553 1.12903i 0.131247 0.0757754i
\(223\) −1.55649 5.80890i −0.104230 0.388993i 0.894026 0.448014i \(-0.147869\pi\)
−0.998257 + 0.0590214i \(0.981202\pi\)
\(224\) 2.64511 + 0.0582404i 0.176734 + 0.00389135i
\(225\) −4.00780 + 2.31391i −0.267187 + 0.154260i
\(226\) −1.57892 + 5.89263i −0.105029 + 0.391972i
\(227\) 2.34743 2.34743i 0.155804 0.155804i −0.624900 0.780705i \(-0.714860\pi\)
0.780705 + 0.624900i \(0.214860\pi\)
\(228\) 1.30246 1.30246i 0.0862578 0.0862578i
\(229\) 5.01006 18.6978i 0.331074 1.23559i −0.576989 0.816752i \(-0.695772\pi\)
0.908063 0.418833i \(-0.137561\pi\)
\(230\) −3.51000 + 2.02650i −0.231442 + 0.133623i
\(231\) −4.83714 + 7.96780i −0.318260 + 0.524243i
\(232\) 1.45511 + 5.43056i 0.0955330 + 0.356534i
\(233\) 16.0321 9.25613i 1.05030 0.606389i 0.127564 0.991830i \(-0.459284\pi\)
0.922732 + 0.385441i \(0.125951\pi\)
\(234\) −0.191712 + 3.60045i −0.0125326 + 0.235369i
\(235\) −1.39589 + 2.41774i −0.0910575 + 0.157716i
\(236\) −6.82671 + 6.82671i −0.444381 + 0.444381i
\(237\) 5.55637 + 3.20797i 0.360925 + 0.208380i
\(238\) 1.75050 + 0.0385428i 0.113468 + 0.00249836i
\(239\) −18.2410 18.2410i −1.17991 1.17991i −0.979767 0.200144i \(-0.935859\pi\)
−0.200144 0.979767i \(-0.564141\pi\)
\(240\) 0.589284 0.157898i 0.0380381 0.0101923i
\(241\) 4.29063 + 4.29063i 0.276384 + 0.276384i 0.831664 0.555280i \(-0.187389\pi\)
−0.555280 + 0.831664i \(0.687389\pi\)
\(242\) 0.365442 + 1.36385i 0.0234915 + 0.0876714i
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) −6.57224 + 11.3835i −0.420745 + 0.728751i
\(245\) 1.28578 4.07234i 0.0821453 0.260172i
\(246\) 7.09019i 0.452054i
\(247\) −6.63190 0.353126i −0.421978 0.0224688i
\(248\) 1.95380 + 1.12803i 0.124067 + 0.0716298i
\(249\) −1.89255 + 7.06308i −0.119935 + 0.447604i
\(250\) 5.87366i 0.371483i
\(251\) −1.57998 2.73660i −0.0997272 0.172733i 0.811845 0.583874i \(-0.198464\pi\)
−0.911572 + 0.411141i \(0.865130\pi\)
\(252\) −2.57005 + 0.628349i −0.161898 + 0.0395823i
\(253\) 6.05775 22.6078i 0.380848 1.42134i
\(254\) 1.17310 + 4.37806i 0.0736067 + 0.274704i
\(255\) 0.389981 0.104495i 0.0244215 0.00654373i
\(256\) 1.00000 0.0625000
\(257\) 3.59919 0.224511 0.112256 0.993679i \(-0.464192\pi\)
0.112256 + 0.993679i \(0.464192\pi\)
\(258\) 7.71261 2.06659i 0.480166 0.128660i
\(259\) 0.131510 5.97280i 0.00817164 0.371132i
\(260\) −1.84377 1.19956i −0.114346 0.0743933i
\(261\) −2.81107 4.86891i −0.174001 0.301378i
\(262\) 8.82536 + 2.36475i 0.545233 + 0.146095i
\(263\) −7.00937 12.1406i −0.432216 0.748620i 0.564848 0.825195i \(-0.308935\pi\)
−0.997064 + 0.0765750i \(0.975602\pi\)
\(264\) −1.76153 + 3.05106i −0.108415 + 0.187780i
\(265\) 4.52861 4.52861i 0.278190 0.278190i
\(266\) −1.15740 4.73395i −0.0709645 0.290257i
\(267\) −14.5864 3.90841i −0.892671 0.239191i
\(268\) −13.8258 3.70462i −0.844547 0.226296i
\(269\) 10.2215i 0.623214i −0.950211 0.311607i \(-0.899133\pi\)
0.950211 0.311607i \(-0.100867\pi\)
\(270\) −0.528338 + 0.305036i −0.0321536 + 0.0185639i
\(271\) 8.53395 + 8.53395i 0.518401 + 0.518401i 0.917087 0.398687i \(-0.130534\pi\)
−0.398687 + 0.917087i \(0.630534\pi\)
\(272\) 0.661787 0.0401267
\(273\) 7.87961 + 5.37697i 0.476895 + 0.325429i
\(274\) 12.1524 0.734151
\(275\) 11.5287 + 11.5287i 0.695208 + 0.695208i
\(276\) 5.75342 3.32174i 0.346315 0.199945i
\(277\) 22.7747i 1.36840i 0.729294 + 0.684200i \(0.239848\pi\)
−0.729294 + 0.684200i \(0.760152\pi\)
\(278\) −19.3455 5.18361i −1.16027 0.310892i
\(279\) −2.17918 0.583910i −0.130464 0.0349578i
\(280\) 0.451978 1.54953i 0.0270109 0.0926019i
\(281\) −11.4925 + 11.4925i −0.685584 + 0.685584i −0.961253 0.275669i \(-0.911101\pi\)
0.275669 + 0.961253i \(0.411101\pi\)
\(282\) 2.28807 3.96305i 0.136252 0.235996i
\(283\) −15.5043 26.8542i −0.921635 1.59632i −0.796885 0.604131i \(-0.793521\pi\)
−0.124750 0.992188i \(-0.539813\pi\)
\(284\) 12.8443 + 3.44163i 0.762171 + 0.204223i
\(285\) −0.561865 0.973179i −0.0332820 0.0576461i
\(286\) 12.4272 2.63062i 0.734836 0.155552i
\(287\) −16.0353 9.73478i −0.946531 0.574626i
\(288\) −0.965926 + 0.258819i −0.0569177 + 0.0152511i
\(289\) −16.5620 −0.974238
\(290\) 3.42990 0.201411
\(291\) −3.44843 + 0.924004i −0.202151 + 0.0541661i
\(292\) −1.08908 4.06451i −0.0637337 0.237858i
\(293\) −5.39854 + 20.1476i −0.315386 + 1.17704i 0.608244 + 0.793750i \(0.291874\pi\)
−0.923630 + 0.383286i \(0.874792\pi\)
\(294\) −2.10758 + 6.67518i −0.122917 + 0.389305i
\(295\) 2.94495 + 5.10080i 0.171462 + 0.296980i
\(296\) 2.25805i 0.131247i
\(297\) 0.911835 3.40302i 0.0529100 0.197463i
\(298\) −14.7730 8.52917i −0.855775 0.494082i
\(299\) −22.7748 7.42105i −1.31710 0.429171i
\(300\) 4.62781i 0.267187i
\(301\) 5.91554 20.2803i 0.340966 1.16894i
\(302\) −2.17727 + 3.77114i −0.125288 + 0.217005i
\(303\) −9.63704 5.56394i −0.553633 0.319640i
\(304\) −0.476735 1.77920i −0.0273426 0.102044i
\(305\) 5.67035 + 5.67035i 0.324683 + 0.324683i
\(306\) −0.639237 + 0.171283i −0.0365428 + 0.00979160i
\(307\) 15.6514 + 15.6514i 0.893271 + 0.893271i 0.994830 0.101559i \(-0.0323830\pi\)
−0.101559 + 0.994830i \(0.532383\pi\)
\(308\) 4.48175 + 8.17298i 0.255371 + 0.465699i
\(309\) −2.97452 1.71734i −0.169214 0.0976960i
\(310\) 0.973231 0.973231i 0.0552758 0.0552758i
\(311\) −3.13129 + 5.42356i −0.177559 + 0.307542i −0.941044 0.338284i \(-0.890154\pi\)
0.763485 + 0.645826i \(0.223487\pi\)
\(312\) 3.02223 + 1.96625i 0.171100 + 0.111317i
\(313\) 2.02929 1.17161i 0.114702 0.0662235i −0.441551 0.897236i \(-0.645572\pi\)
0.556254 + 0.831013i \(0.312238\pi\)
\(314\) −3.37945 12.6123i −0.190713 0.711752i
\(315\) −0.0355308 + 1.61371i −0.00200194 + 0.0909221i
\(316\) 5.55637 3.20797i 0.312570 0.180463i
\(317\) −6.82959 + 25.4884i −0.383588 + 1.43157i 0.456793 + 0.889573i \(0.348998\pi\)
−0.840381 + 0.541996i \(0.817669\pi\)
\(318\) −7.42307 + 7.42307i −0.416265 + 0.416265i
\(319\) −14.0057 + 14.0057i −0.784171 + 0.784171i
\(320\) 0.157898 0.589284i 0.00882678 0.0329420i
\(321\) −9.58554 + 5.53421i −0.535012 + 0.308890i
\(322\) 0.386919 17.5727i 0.0215621 0.979289i
\(323\) −0.315497 1.17745i −0.0175547 0.0655151i
\(324\) 0.866025 0.500000i 0.0481125 0.0277778i
\(325\) 12.4093 11.1546i 0.688345 0.618747i
\(326\) −9.10768 + 15.7750i −0.504428 + 0.873694i
\(327\) −6.23354 + 6.23354i −0.344715 + 0.344715i
\(328\) −6.14028 3.54509i −0.339040 0.195745i
\(329\) −5.82138 10.6160i −0.320943 0.585277i
\(330\) 1.51980 + 1.51980i 0.0836622 + 0.0836622i
\(331\) 10.8013 2.89420i 0.593692 0.159079i 0.0505521 0.998721i \(-0.483902\pi\)
0.543140 + 0.839642i \(0.317235\pi\)
\(332\) 5.17053 + 5.17053i 0.283770 + 0.283770i
\(333\) 0.584428 + 2.18111i 0.0320264 + 0.119524i
\(334\) −10.9171 6.30297i −0.597355 0.344883i
\(335\) −4.36615 + 7.56239i −0.238548 + 0.413178i
\(336\) −0.740861 + 2.53991i −0.0404173 + 0.138563i
\(337\) 20.8601i 1.13632i −0.822918 0.568160i \(-0.807656\pi\)
0.822918 0.568160i \(-0.192344\pi\)
\(338\) −2.01217 12.8433i −0.109447 0.698585i
\(339\) −5.28319 3.05025i −0.286943 0.165667i
\(340\) 0.104495 0.389981i 0.00566704 0.0211497i
\(341\) 7.94822i 0.430420i
\(342\) 0.920982 + 1.59519i 0.0498010 + 0.0862578i
\(343\) 12.2030 + 13.9315i 0.658899 + 0.752231i
\(344\) 2.06659 7.71261i 0.111423 0.415836i
\(345\) −1.04899 3.91489i −0.0564759 0.210771i
\(346\) −0.344991 + 0.0924401i −0.0185468 + 0.00496961i
\(347\) 11.8972 0.638674 0.319337 0.947641i \(-0.396540\pi\)
0.319337 + 0.947641i \(0.396540\pi\)
\(348\) −5.62213 −0.301378
\(349\) −32.7335 + 8.77090i −1.75218 + 0.469496i −0.985090 0.172041i \(-0.944964\pi\)
−0.767092 + 0.641537i \(0.778297\pi\)
\(350\) 10.4663 + 6.35395i 0.559448 + 0.339633i
\(351\) −3.42815 1.11704i −0.182981 0.0596234i
\(352\) 1.76153 + 3.05106i 0.0938899 + 0.162622i
\(353\) 7.60446 + 2.03761i 0.404745 + 0.108451i 0.455447 0.890263i \(-0.349479\pi\)
−0.0507026 + 0.998714i \(0.516146\pi\)
\(354\) −4.82722 8.36098i −0.256564 0.444381i
\(355\) 4.05619 7.02553i 0.215280 0.372877i
\(356\) −10.6780 + 10.6780i −0.565931 + 0.565931i
\(357\) −0.490292 + 1.68088i −0.0259490 + 0.0889614i
\(358\) 2.84027 + 0.761049i 0.150113 + 0.0402227i
\(359\) −26.6667 7.14533i −1.40742 0.377116i −0.526414 0.850228i \(-0.676464\pi\)
−0.881002 + 0.473112i \(0.843131\pi\)
\(360\) 0.610072i 0.0321536i
\(361\) 13.5162 7.80359i 0.711379 0.410715i
\(362\) 2.17801 + 2.17801i 0.114474 + 0.114474i
\(363\) −1.41196 −0.0741086
\(364\) 8.59640 4.13545i 0.450574 0.216757i
\(365\) −2.56712 −0.134369
\(366\) −9.29455 9.29455i −0.485834 0.485834i
\(367\) 2.97444 1.71730i 0.155265 0.0896421i −0.420355 0.907360i \(-0.638094\pi\)
0.575619 + 0.817718i \(0.304761\pi\)
\(368\) 6.64347i 0.346315i
\(369\) 6.84860 + 1.83508i 0.356524 + 0.0955302i
\(370\) −1.33064 0.356543i −0.0691765 0.0185358i
\(371\) 6.59629 + 26.9799i 0.342462 + 1.40073i
\(372\) −1.59527 + 1.59527i −0.0827110 + 0.0827110i
\(373\) −5.92593 + 10.2640i −0.306833 + 0.531450i −0.977668 0.210157i \(-0.932603\pi\)
0.670835 + 0.741607i \(0.265936\pi\)
\(374\) 1.16576 + 2.01915i 0.0602799 + 0.104408i
\(375\) 5.67352 + 1.52021i 0.292979 + 0.0785035i
\(376\) −2.28807 3.96305i −0.117998 0.204379i
\(377\) 13.5513 + 15.0755i 0.697926 + 0.776430i
\(378\) 0.0582404 2.64511i 0.00299556 0.136050i
\(379\) 19.1079 5.11994i 0.981506 0.262994i 0.267828 0.963467i \(-0.413694\pi\)
0.713679 + 0.700473i \(0.247028\pi\)
\(380\) −1.12373 −0.0576461
\(381\) −4.53250 −0.232207
\(382\) −1.25062 + 0.335102i −0.0639873 + 0.0171453i
\(383\) 4.46650 + 16.6692i 0.228228 + 0.851757i 0.981086 + 0.193574i \(0.0620080\pi\)
−0.752858 + 0.658183i \(0.771325\pi\)
\(384\) −0.258819 + 0.965926i −0.0132078 + 0.0492922i
\(385\) 5.52387 1.35052i 0.281522 0.0688290i
\(386\) −4.33026 7.50023i −0.220404 0.381752i
\(387\) 7.98468i 0.405884i
\(388\) −0.924004 + 3.44843i −0.0469092 + 0.175068i
\(389\) 2.98149 + 1.72136i 0.151167 + 0.0872765i 0.573676 0.819083i \(-0.305517\pi\)
−0.422508 + 0.906359i \(0.638850\pi\)
\(390\) 1.63589 1.47048i 0.0828363 0.0744608i
\(391\) 4.39656i 0.222344i
\(392\) 4.72709 + 5.16281i 0.238754 + 0.260761i
\(393\) −4.56834 + 7.91260i −0.230442 + 0.399138i
\(394\) −2.37488 1.37114i −0.119645 0.0690770i
\(395\) −1.01307 3.78082i −0.0509729 0.190233i
\(396\) −2.49118 2.49118i −0.125187 0.125187i
\(397\) 32.5144 8.71220i 1.63185 0.437253i 0.677397 0.735617i \(-0.263108\pi\)
0.954452 + 0.298365i \(0.0964412\pi\)
\(398\) −14.9381 14.9381i −0.748780 0.748780i
\(399\) 4.87220 + 0.107277i 0.243915 + 0.00537055i
\(400\) 4.00780 + 2.31391i 0.200390 + 0.115695i
\(401\) −15.0727 + 15.0727i −0.752693 + 0.752693i −0.974981 0.222288i \(-0.928647\pi\)
0.222288 + 0.974981i \(0.428647\pi\)
\(402\) 7.15678 12.3959i 0.356948 0.618251i
\(403\) 8.12282 + 0.432512i 0.404626 + 0.0215450i
\(404\) −9.63704 + 5.56394i −0.479460 + 0.276817i
\(405\) −0.157898 0.589284i −0.00784602 0.0292818i
\(406\) −7.71915 + 12.7151i −0.383095 + 0.631039i
\(407\) 6.88946 3.97763i 0.341498 0.197164i
\(408\) −0.171283 + 0.639237i −0.00847978 + 0.0316470i
\(409\) −5.32363 + 5.32363i −0.263237 + 0.263237i −0.826368 0.563131i \(-0.809597\pi\)
0.563131 + 0.826368i \(0.309597\pi\)
\(410\) −3.05861 + 3.05861i −0.151054 + 0.151054i
\(411\) −3.14526 + 11.7383i −0.155144 + 0.579006i
\(412\) −2.97452 + 1.71734i −0.146544 + 0.0846072i
\(413\) −25.5370 0.562278i −1.25660 0.0276679i
\(414\) 1.71946 + 6.41710i 0.0845067 + 0.315383i
\(415\) 3.86333 2.23049i 0.189643 0.109491i
\(416\) 3.21394 1.63420i 0.157576 0.0801232i
\(417\) 10.0140 17.3447i 0.490386 0.849373i
\(418\) 4.58866 4.58866i 0.224439 0.224439i
\(419\) 6.59649 + 3.80849i 0.322260 + 0.186057i 0.652399 0.757875i \(-0.273763\pi\)
−0.330140 + 0.943932i \(0.607096\pi\)
\(420\) 1.37975 + 0.837624i 0.0673247 + 0.0408719i
\(421\) 13.3231 + 13.3231i 0.649327 + 0.649327i 0.952830 0.303503i \(-0.0981562\pi\)
−0.303503 + 0.952830i \(0.598156\pi\)
\(422\) 2.76445 0.740731i 0.134571 0.0360582i
\(423\) 3.23582 + 3.23582i 0.157331 + 0.157331i
\(424\) 2.71703 + 10.1401i 0.131951 + 0.492447i
\(425\) 2.65231 + 1.53131i 0.128656 + 0.0742796i
\(426\) −6.64872 + 11.5159i −0.322131 + 0.557948i
\(427\) −33.7820 + 8.25932i −1.63483 + 0.399697i
\(428\) 11.0684i 0.535012i
\(429\) −0.675411 + 12.6846i −0.0326092 + 0.612419i
\(430\) −4.21861 2.43561i −0.203439 0.117456i
\(431\) −0.399053 + 1.48929i −0.0192217 + 0.0717364i −0.974870 0.222772i \(-0.928489\pi\)
0.955649 + 0.294509i \(0.0951560\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) −17.7509 30.7454i −0.853053 1.47753i −0.878440 0.477853i \(-0.841415\pi\)
0.0253870 0.999678i \(-0.491918\pi\)
\(434\) 1.41759 + 5.79819i 0.0680465 + 0.278322i
\(435\) −0.887724 + 3.31303i −0.0425631 + 0.158848i
\(436\) 2.28163 + 8.51517i 0.109270 + 0.407803i
\(437\) −11.8201 + 3.16718i −0.565431 + 0.151507i
\(438\) 4.20789 0.201061
\(439\) 28.5671 1.36343 0.681717 0.731616i \(-0.261234\pi\)
0.681717 + 0.731616i \(0.261234\pi\)
\(440\) 2.07608 0.556285i 0.0989734 0.0265198i
\(441\) −5.90225 3.76343i −0.281060 0.179211i
\(442\) 2.12694 1.08149i 0.101168 0.0514413i
\(443\) −5.73331 9.93038i −0.272398 0.471807i 0.697078 0.716996i \(-0.254483\pi\)
−0.969475 + 0.245189i \(0.921150\pi\)
\(444\) 2.18111 + 0.584428i 0.103511 + 0.0277357i
\(445\) 4.60632 + 7.97838i 0.218361 + 0.378212i
\(446\) 3.00691 5.20812i 0.142381 0.246612i
\(447\) 12.0621 12.0621i 0.570516 0.570516i
\(448\) 1.82919 + 1.91156i 0.0864213 + 0.0903126i
\(449\) −0.958153 0.256736i −0.0452180 0.0121161i 0.236139 0.971719i \(-0.424118\pi\)
−0.281357 + 0.959603i \(0.590785\pi\)
\(450\) −4.47012 1.19777i −0.210724 0.0564632i
\(451\) 24.9792i 1.17622i
\(452\) −5.28319 + 3.05025i −0.248500 + 0.143472i
\(453\) −3.07912 3.07912i −0.144670 0.144670i
\(454\) 3.31977 0.155804
\(455\) −1.07960 5.71870i −0.0506125 0.268097i
\(456\) 1.84196 0.0862578
\(457\) 18.4027 + 18.4027i 0.860843 + 0.860843i 0.991436 0.130593i \(-0.0416880\pi\)
−0.130593 + 0.991436i \(0.541688\pi\)
\(458\) 16.7640 9.67869i 0.783330 0.452256i
\(459\) 0.661787i 0.0308896i
\(460\) −3.91489 1.04899i −0.182533 0.0489095i
\(461\) 19.4765 + 5.21871i 0.907111 + 0.243060i 0.682068 0.731289i \(-0.261081\pi\)
0.225044 + 0.974349i \(0.427748\pi\)
\(462\) −9.05446 + 2.21371i −0.421251 + 0.102991i
\(463\) −14.5403 + 14.5403i −0.675743 + 0.675743i −0.959034 0.283291i \(-0.908574\pi\)
0.283291 + 0.959034i \(0.408574\pi\)
\(464\) −2.81107 + 4.86891i −0.130500 + 0.226033i
\(465\) 0.688178 + 1.19196i 0.0319135 + 0.0552758i
\(466\) 17.8815 + 4.79132i 0.828343 + 0.221954i
\(467\) −14.1818 24.5637i −0.656257 1.13667i −0.981577 0.191067i \(-0.938805\pi\)
0.325320 0.945604i \(-0.394528\pi\)
\(468\) −2.68146 + 2.41034i −0.123951 + 0.111418i
\(469\) −18.2085 33.2053i −0.840792 1.53328i
\(470\) −2.69664 + 0.722563i −0.124387 + 0.0333294i
\(471\) 13.0572 0.601644
\(472\) −9.65443 −0.444381
\(473\) 27.1720 7.28071i 1.24937 0.334768i
\(474\) 1.66057 + 6.19733i 0.0762725 + 0.284653i
\(475\) 2.20624 8.23380i 0.101229 0.377793i
\(476\) 1.21054 + 1.26504i 0.0554848 + 0.0579832i
\(477\) −5.24890 9.09137i −0.240331 0.416265i
\(478\) 25.7966i 1.17991i
\(479\) −0.781041 + 2.91488i −0.0356867 + 0.133184i −0.981471 0.191611i \(-0.938629\pi\)
0.945784 + 0.324795i \(0.105295\pi\)
\(480\) 0.528338 + 0.305036i 0.0241152 + 0.0139229i
\(481\) −3.69011 7.25725i −0.168255 0.330902i
\(482\) 6.06787i 0.276384i
\(483\) 16.8738 + 4.92189i 0.767785 + 0.223954i
\(484\) −0.705979 + 1.22279i −0.0320900 + 0.0555814i
\(485\) 1.88621 + 1.08900i 0.0856482 + 0.0494490i
\(486\) 0.258819 + 0.965926i 0.0117403 + 0.0438153i
\(487\) −9.40414 9.40414i −0.426142 0.426142i 0.461170 0.887312i \(-0.347430\pi\)
−0.887312 + 0.461170i \(0.847430\pi\)
\(488\) −12.6966 + 3.40204i −0.574748 + 0.154003i
\(489\) −12.8802 12.8802i −0.582463 0.582463i
\(490\) 3.78876 1.97040i 0.171159 0.0890135i
\(491\) 38.1948 + 22.0518i 1.72371 + 0.995182i 0.910877 + 0.412678i \(0.135407\pi\)
0.812828 + 0.582503i \(0.197927\pi\)
\(492\) 5.01352 5.01352i 0.226027 0.226027i
\(493\) −1.86033 + 3.22218i −0.0837849 + 0.145120i
\(494\) −4.43976 4.93916i −0.199754 0.222223i
\(495\) −1.86137 + 1.07466i −0.0836622 + 0.0483024i
\(496\) 0.583910 + 2.17918i 0.0262183 + 0.0978482i
\(497\) 16.9159 + 30.8481i 0.758781 + 1.38373i
\(498\) −6.33258 + 3.65612i −0.283770 + 0.163835i
\(499\) 3.84420 14.3468i 0.172090 0.642249i −0.824939 0.565222i \(-0.808791\pi\)
0.997029 0.0770271i \(-0.0245428\pi\)
\(500\) 4.15330 4.15330i 0.185741 0.185741i
\(501\) 8.91375 8.91375i 0.398237 0.398237i
\(502\) 0.817856 3.05228i 0.0365027 0.136230i
\(503\) 13.0702 7.54607i 0.582770 0.336462i −0.179463 0.983765i \(-0.557436\pi\)
0.762233 + 0.647302i \(0.224103\pi\)
\(504\) −2.26161 1.37299i −0.100740 0.0611580i
\(505\) 1.75707 + 6.55749i 0.0781888 + 0.291804i
\(506\) 20.2696 11.7027i 0.901095 0.520248i
\(507\) 12.9265 + 1.38050i 0.574086 + 0.0613100i
\(508\) −2.26625 + 3.92526i −0.100549 + 0.174155i
\(509\) 8.65298 8.65298i 0.383537 0.383537i −0.488838 0.872375i \(-0.662579\pi\)
0.872375 + 0.488838i \(0.162579\pi\)
\(510\) 0.349647 + 0.201869i 0.0154826 + 0.00893890i
\(511\) 5.77741 9.51662i 0.255577 0.420991i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) −1.77920 + 0.476735i −0.0785536 + 0.0210484i
\(514\) 2.54501 + 2.54501i 0.112256 + 0.112256i
\(515\) 0.542329 + 2.02400i 0.0238979 + 0.0891881i
\(516\) 6.91494 + 3.99234i 0.304413 + 0.175753i
\(517\) 8.06100 13.9621i 0.354522 0.614051i
\(518\) 4.31640 4.13042i 0.189652 0.181480i
\(519\) 0.357161i 0.0156776i
\(520\) −0.455532 2.15196i −0.0199764 0.0943697i
\(521\) −22.6198 13.0595i −0.990991 0.572149i −0.0854203 0.996345i \(-0.527223\pi\)
−0.905570 + 0.424196i \(0.860557\pi\)
\(522\) 1.45511 5.43056i 0.0636886 0.237689i
\(523\) 32.6776i 1.42889i 0.699690 + 0.714447i \(0.253321\pi\)
−0.699690 + 0.714447i \(0.746679\pi\)
\(524\) 4.56834 + 7.91260i 0.199569 + 0.345664i
\(525\) −8.84633 + 8.46516i −0.386085 + 0.369450i
\(526\) 3.62832 13.5411i 0.158202 0.590418i
\(527\) 0.386424 + 1.44215i 0.0168329 + 0.0628212i
\(528\) −3.40302 + 0.911835i −0.148097 + 0.0396825i
\(529\) −21.1357 −0.918945
\(530\) 6.40442 0.278190
\(531\) 9.32547 2.49875i 0.404691 0.108437i
\(532\) 2.52900 4.16581i 0.109646 0.180611i
\(533\) −25.5279 1.35927i −1.10574 0.0588766i
\(534\) −7.55046 13.0778i −0.326740 0.565931i
\(535\) 6.52245 + 1.74768i 0.281990 + 0.0755590i
\(536\) −7.15678 12.3959i −0.309126 0.535421i
\(537\) −1.47023 + 2.54652i −0.0634453 + 0.109890i
\(538\) 7.22767 7.22767i 0.311607 0.311607i
\(539\) −7.42515 + 23.5171i −0.319824 + 1.01295i
\(540\) −0.589284 0.157898i −0.0253588 0.00679486i
\(541\) 37.0514 + 9.92791i 1.59297 + 0.426834i 0.942909 0.333051i \(-0.108078\pi\)
0.650057 + 0.759885i \(0.274745\pi\)
\(542\) 12.0688i 0.518401i
\(543\) −2.66751 + 1.54009i −0.114474 + 0.0660915i
\(544\) 0.467954 + 0.467954i 0.0200634 + 0.0200634i
\(545\) 5.37812 0.230373
\(546\) 1.76963 + 9.37381i 0.0757332 + 0.401162i
\(547\) 38.1476 1.63107 0.815536 0.578706i \(-0.196442\pi\)
0.815536 + 0.578706i \(0.196442\pi\)
\(548\) 8.59301 + 8.59301i 0.367075 + 0.367075i
\(549\) 11.3835 6.57224i 0.485834 0.280496i
\(550\) 16.3041i 0.695208i
\(551\) 10.0029 + 2.68027i 0.426138 + 0.114183i
\(552\) 6.41710 + 1.71946i 0.273130 + 0.0731850i
\(553\) 16.2959 + 4.75332i 0.692972 + 0.202132i
\(554\) −16.1042 + 16.1042i −0.684200 + 0.684200i
\(555\) 0.688788 1.19302i 0.0292374 0.0506407i
\(556\) −10.0140 17.3447i −0.424687 0.735579i
\(557\) 17.9536 + 4.81066i 0.760720 + 0.203834i 0.618268 0.785967i \(-0.287835\pi\)
0.142452 + 0.989802i \(0.454501\pi\)
\(558\) −1.12803 1.95380i −0.0477532 0.0827110i
\(559\) −5.96205 28.1651i −0.252168 1.19126i
\(560\) 1.41528 0.776083i 0.0598064 0.0327955i
\(561\) −2.25207 + 0.603441i −0.0950825 + 0.0254773i
\(562\) −16.2528 −0.685584
\(563\) 16.0774 0.677581 0.338791 0.940862i \(-0.389982\pi\)
0.338791 + 0.940862i \(0.389982\pi\)
\(564\) 4.42021 1.18439i 0.186124 0.0498718i
\(565\) 0.963257 + 3.59493i 0.0405245 + 0.151240i
\(566\) 8.02562 29.9520i 0.337342 1.25898i
\(567\) 2.53991 + 0.740861i 0.106666 + 0.0311132i
\(568\) 6.64872 + 11.5159i 0.278974 + 0.483197i
\(569\) 0.671507i 0.0281511i −0.999901 0.0140755i \(-0.995519\pi\)
0.999901 0.0140755i \(-0.00448053\pi\)
\(570\) 0.290843 1.08544i 0.0121821 0.0454641i
\(571\) 22.2930 + 12.8709i 0.932933 + 0.538629i 0.887738 0.460349i \(-0.152276\pi\)
0.0451952 + 0.998978i \(0.485609\pi\)
\(572\) 10.6475 + 6.92723i 0.445194 + 0.289642i
\(573\) 1.29474i 0.0540884i
\(574\) −4.45511 18.2222i −0.185953 0.760579i
\(575\) 15.3724 26.6257i 0.641072 1.11037i
\(576\) −0.866025 0.500000i −0.0360844 0.0208333i
\(577\) −3.91154 14.5981i −0.162840 0.607726i −0.998306 0.0581840i \(-0.981469\pi\)
0.835466 0.549542i \(-0.185198\pi\)
\(578\) −11.7111 11.7111i −0.487119 0.487119i
\(579\) 8.36542 2.24151i 0.347655 0.0931539i
\(580\) 2.42531 + 2.42531i 0.100705 + 0.100705i
\(581\) −0.425868 + 19.3417i −0.0176680 + 0.802428i
\(582\) −3.09178 1.78504i −0.128158 0.0739923i
\(583\) −26.1519 + 26.1519i −1.08310 + 1.08310i
\(584\) 2.10395 3.64414i 0.0870619 0.150796i
\(585\) 0.996978 + 1.96073i 0.0412200 + 0.0810663i
\(586\) −18.0639 + 10.4292i −0.746211 + 0.430825i
\(587\) 1.31954 + 4.92459i 0.0544632 + 0.203259i 0.987796 0.155753i \(-0.0497803\pi\)
−0.933333 + 0.359012i \(0.883114\pi\)
\(588\) −6.21036 + 3.22978i −0.256111 + 0.133194i
\(589\) 3.59883 2.07779i 0.148287 0.0856137i
\(590\) −1.52442 + 5.68920i −0.0627593 + 0.234221i
\(591\) 1.93908 1.93908i 0.0797632 0.0797632i
\(592\) 1.59669 1.59669i 0.0656234 0.0656234i
\(593\) −1.83462 + 6.84690i −0.0753389 + 0.281169i −0.993310 0.115479i \(-0.963160\pi\)
0.917971 + 0.396647i \(0.129826\pi\)
\(594\) 3.05106 1.76153i 0.125187 0.0722765i
\(595\) 0.936612 0.513602i 0.0383973 0.0210556i
\(596\) −4.41502 16.4771i −0.180846 0.674928i
\(597\) 18.2954 10.5628i 0.748780 0.432309i
\(598\) −10.8568 21.3517i −0.443966 0.873136i
\(599\) 12.6914 21.9821i 0.518555 0.898164i −0.481212 0.876604i \(-0.659803\pi\)
0.999768 0.0215601i \(-0.00686331\pi\)
\(600\) −3.27236 + 3.27236i −0.133593 + 0.133593i
\(601\) 19.7808 + 11.4204i 0.806875 + 0.465849i 0.845869 0.533390i \(-0.179082\pi\)
−0.0389947 + 0.999239i \(0.512416\pi\)
\(602\) 18.5233 10.1575i 0.754953 0.413987i
\(603\) 10.1212 + 10.1212i 0.412168 + 0.412168i
\(604\) −4.20616 + 1.12704i −0.171146 + 0.0458585i
\(605\) 0.609099 + 0.609099i 0.0247634 + 0.0247634i
\(606\) −2.88011 10.7487i −0.116996 0.436637i
\(607\) −3.46230 1.99896i −0.140530 0.0811352i 0.428086 0.903738i \(-0.359188\pi\)
−0.568617 + 0.822603i \(0.692521\pi\)
\(608\) 0.920982 1.59519i 0.0373507 0.0646934i
\(609\) −10.2840 10.7470i −0.416727 0.435492i
\(610\) 8.01908i 0.324683i
\(611\) −13.8301 8.99784i −0.559506 0.364013i
\(612\) −0.573124 0.330893i −0.0231672 0.0133756i
\(613\) −10.0533 + 37.5193i −0.406047 + 1.51539i 0.396069 + 0.918221i \(0.370374\pi\)
−0.802116 + 0.597168i \(0.796292\pi\)
\(614\) 22.1344i 0.893271i
\(615\) −2.16276 3.74601i −0.0872110 0.151054i
\(616\) −2.61010 + 8.94825i −0.105164 + 0.360535i
\(617\) −2.49513 + 9.31195i −0.100450 + 0.374885i −0.997789 0.0664565i \(-0.978831\pi\)
0.897339 + 0.441342i \(0.145497\pi\)
\(618\) −0.888960 3.31764i −0.0357592 0.133455i
\(619\) 5.44832 1.45987i 0.218986 0.0586772i −0.147658 0.989039i \(-0.547173\pi\)
0.366644 + 0.930361i \(0.380507\pi\)
\(620\) 1.37636 0.0552758
\(621\) −6.64347 −0.266593
\(622\) −6.04920 + 1.62088i −0.242551 + 0.0649913i
\(623\) −39.9436 0.879484i −1.60031 0.0352358i
\(624\) 0.746686 + 3.52739i 0.0298914 + 0.141208i
\(625\) 9.77785 + 16.9357i 0.391114 + 0.677430i
\(626\) 2.26338 + 0.606472i 0.0904630 + 0.0242395i
\(627\) 3.24467 + 5.61994i 0.129580 + 0.224439i
\(628\) 6.52860 11.3079i 0.260519 0.451233i
\(629\) 1.05667 1.05667i 0.0421320 0.0421320i
\(630\) −1.16619 + 1.11594i −0.0464620 + 0.0444601i
\(631\) 1.52391 + 0.408330i 0.0606659 + 0.0162554i 0.289024 0.957322i \(-0.406669\pi\)
−0.228358 + 0.973577i \(0.573336\pi\)
\(632\) 6.19733 + 1.66057i 0.246517 + 0.0660539i
\(633\) 2.86197i 0.113753i
\(634\) −22.8522 + 13.1937i −0.907578 + 0.523991i
\(635\) 1.95526 + 1.95526i 0.0775920 + 0.0775920i
\(636\) −10.4978 −0.416265
\(637\) 23.6296 + 8.86796i 0.936240 + 0.351361i
\(638\) −19.8071 −0.784171
\(639\) −9.40270 9.40270i −0.371965 0.371965i
\(640\) 0.528338 0.305036i 0.0208844 0.0120576i
\(641\) 41.1399i 1.62493i −0.583010 0.812465i \(-0.698125\pi\)
0.583010 0.812465i \(-0.301875\pi\)
\(642\) −10.6913 2.86472i −0.421951 0.113061i
\(643\) 46.0170 + 12.3302i 1.81473 + 0.486256i 0.996113 0.0880805i \(-0.0280733\pi\)
0.818619 + 0.574337i \(0.194740\pi\)
\(644\) 12.6994 12.1522i 0.500426 0.478864i
\(645\) 3.44448 3.44448i 0.135626 0.135626i
\(646\) 0.609494 1.05567i 0.0239802 0.0415349i
\(647\) −19.1270 33.1290i −0.751962 1.30244i −0.946871 0.321615i \(-0.895774\pi\)
0.194909 0.980821i \(-0.437559\pi\)
\(648\) 0.965926 + 0.258819i 0.0379452 + 0.0101674i
\(649\) −17.0066 29.4563i −0.667567 1.15626i
\(650\) 16.6622 + 0.887205i 0.653546 + 0.0347990i
\(651\) −5.96752 0.131394i −0.233885 0.00514972i
\(652\) −17.5947 + 4.71448i −0.689061 + 0.184633i
\(653\) −0.133906 −0.00524013 −0.00262007 0.999997i \(-0.500834\pi\)
−0.00262007 + 0.999997i \(0.500834\pi\)
\(654\) −8.81555 −0.344715
\(655\) 5.38410 1.44267i 0.210374 0.0563696i
\(656\) −1.83508 6.84860i −0.0716477 0.267393i
\(657\) −1.08908 + 4.06451i −0.0424892 + 0.158572i
\(658\) 3.39028 11.6230i 0.132167 0.453110i
\(659\) 4.72225 + 8.17917i 0.183953 + 0.318615i 0.943223 0.332160i \(-0.107777\pi\)
−0.759271 + 0.650775i \(0.774444\pi\)
\(660\) 2.14932i 0.0836622i
\(661\) −3.91995 + 14.6294i −0.152468 + 0.569019i 0.846841 + 0.531847i \(0.178502\pi\)
−0.999309 + 0.0371726i \(0.988165\pi\)
\(662\) 9.68417 + 5.59116i 0.376386 + 0.217306i
\(663\) 0.494147 + 2.33438i 0.0191911 + 0.0906598i
\(664\) 7.31224i 0.283770i
\(665\) −2.05552 2.14807i −0.0797096 0.0832988i
\(666\) −1.12903 + 1.95553i −0.0437489 + 0.0757754i
\(667\) 32.3465 + 18.6752i 1.25246 + 0.723108i
\(668\) −3.26266 12.1764i −0.126236 0.471119i
\(669\) 4.25241 + 4.25241i 0.164408 + 0.164408i
\(670\) −8.43475 + 2.26008i −0.325863 + 0.0873147i
\(671\) −32.7453 32.7453i −1.26412 1.26412i
\(672\) −2.31985 + 1.27212i −0.0894903 + 0.0490730i
\(673\) −15.0362 8.68115i −0.579602 0.334634i 0.181373 0.983414i \(-0.441946\pi\)
−0.760975 + 0.648781i \(0.775279\pi\)
\(674\) 14.7503 14.7503i 0.568160 0.568160i
\(675\) 2.31391 4.00780i 0.0890623 0.154260i
\(676\) 7.65879 10.5044i 0.294569 0.404016i
\(677\) 0.855137 0.493714i 0.0328656 0.0189750i −0.483477 0.875357i \(-0.660626\pi\)
0.516343 + 0.856382i \(0.327293\pi\)
\(678\) −1.57892 5.89263i −0.0606382 0.226305i
\(679\) −8.28206 + 4.54156i −0.317836 + 0.174289i
\(680\) 0.349647 0.201869i 0.0134084 0.00774131i
\(681\) −0.859219 + 3.20665i −0.0329253 + 0.122879i
\(682\) −5.62024 + 5.62024i −0.215210 + 0.215210i
\(683\) 13.5640 13.5640i 0.519013 0.519013i −0.398260 0.917273i \(-0.630386\pi\)
0.917273 + 0.398260i \(0.130386\pi\)
\(684\) −0.476735 + 1.77920i −0.0182284 + 0.0680294i
\(685\) 6.42055 3.70690i 0.245316 0.141634i
\(686\) −1.22226 + 18.4799i −0.0466661 + 0.705565i
\(687\) 5.01006 + 18.6978i 0.191146 + 0.713366i
\(688\) 6.91494 3.99234i 0.263629 0.152207i
\(689\) 25.3033 + 28.1495i 0.963979 + 1.07241i
\(690\) 2.02650 3.51000i 0.0771475 0.133623i
\(691\) −16.3727 + 16.3727i −0.622845 + 0.622845i −0.946258 0.323413i \(-0.895170\pi\)
0.323413 + 0.946258i \(0.395170\pi\)
\(692\) −0.309310 0.178580i −0.0117582 0.00678861i
\(693\) 0.205185 9.31888i 0.00779432 0.353995i
\(694\) 8.41258 + 8.41258i 0.319337 + 0.319337i
\(695\) −11.8021 + 3.16237i −0.447681 + 0.119956i
\(696\) −3.97545 3.97545i −0.150689 0.150689i
\(697\) −1.21443 4.53231i −0.0459998 0.171674i
\(698\) −29.3480 16.9441i −1.11084 0.641343i
\(699\) −9.25613 + 16.0321i −0.350099 + 0.606389i
\(700\) 2.90788 + 11.8937i 0.109908 + 0.449541i
\(701\) 17.2532i 0.651646i 0.945431 + 0.325823i \(0.105641\pi\)
−0.945431 + 0.325823i \(0.894359\pi\)
\(702\) −1.63420 3.21394i −0.0616788 0.121302i
\(703\) −3.60202 2.07963i −0.135853 0.0784346i
\(704\) −0.911835 + 3.40302i −0.0343661 + 0.128256i
\(705\) 2.79177i 0.105144i
\(706\) 3.93636 + 6.81797i 0.148147 + 0.256598i
\(707\) −28.2638 8.24422i −1.06297 0.310056i
\(708\) 2.49875 9.32547i 0.0939088 0.350472i
\(709\) 0.212442 + 0.792846i 0.00797844 + 0.0297759i 0.969800 0.243900i \(-0.0784270\pi\)
−0.961822 + 0.273676i \(0.911760\pi\)
\(710\) 7.83596 2.09964i 0.294079 0.0787981i
\(711\) −6.41595 −0.240617
\(712\) −15.1009 −0.565931
\(713\) 14.4773 3.87919i 0.542181 0.145277i
\(714\) −1.53525 + 0.841871i −0.0574552 + 0.0315062i
\(715\) 5.76332 5.18060i 0.215536 0.193743i
\(716\) 1.47023 + 2.54652i 0.0549452 + 0.0951679i
\(717\) 24.9176 + 6.67666i 0.930566 + 0.249344i
\(718\) −13.8037 23.9087i −0.515150 0.892266i
\(719\) 6.10088 10.5670i 0.227524 0.394084i −0.729549 0.683928i \(-0.760270\pi\)
0.957074 + 0.289844i \(0.0936036\pi\)
\(720\) −0.431386 + 0.431386i −0.0160768 + 0.0160768i
\(721\) −8.72376 2.54462i −0.324890 0.0947665i
\(722\) 15.0754 + 4.03943i 0.561047 + 0.150332i
\(723\) −5.86111 1.57048i −0.217977 0.0584067i
\(724\) 3.08018i 0.114474i
\(725\) −22.5324 + 13.0091i −0.836832 + 0.483145i
\(726\) −0.998405 0.998405i −0.0370543 0.0370543i
\(727\) −26.9918 −1.00107 −0.500535 0.865716i \(-0.666863\pi\)
−0.500535 + 0.865716i \(0.666863\pi\)
\(728\) 9.00278 + 3.15436i 0.333665 + 0.116908i
\(729\) −1.00000 −0.0370370
\(730\) −1.81523 1.81523i −0.0671845 0.0671845i
\(731\) 4.57622 2.64208i 0.169257 0.0977208i
\(732\) 13.1445i 0.485834i
\(733\) −23.9381 6.41419i −0.884173 0.236914i −0.211967 0.977277i \(-0.567987\pi\)
−0.672207 + 0.740363i \(0.734653\pi\)
\(734\) 3.31756 + 0.888938i 0.122453 + 0.0328113i
\(735\) 0.922655 + 4.16964i 0.0340326 + 0.153799i
\(736\) 4.69764 4.69764i 0.173157 0.173157i
\(737\) 25.2138 43.6715i 0.928761 1.60866i
\(738\) 3.54509 + 6.14028i 0.130497 + 0.226027i
\(739\) −44.6315 11.9590i −1.64179 0.439918i −0.684495 0.729017i \(-0.739977\pi\)
−0.957299 + 0.289100i \(0.906644\pi\)
\(740\) −0.688788 1.19302i −0.0253203 0.0438561i
\(741\) 5.91996 3.01013i 0.217475 0.110580i
\(742\) −14.4134 + 23.7420i −0.529133 + 0.871595i
\(743\) 21.9692 5.88663i 0.805972 0.215959i 0.167767 0.985827i \(-0.446344\pi\)
0.638204 + 0.769867i \(0.279678\pi\)
\(744\) −2.25606 −0.0827110
\(745\) −10.4068 −0.381276
\(746\) −11.4480 + 3.06749i −0.419142 + 0.112309i
\(747\) −1.89255 7.06308i −0.0692446 0.258425i
\(748\) −0.603441 + 2.25207i −0.0220640 + 0.0823439i
\(749\) −21.1579 + 20.2463i −0.773094 + 0.739783i
\(750\) 2.93683 + 5.08674i 0.107238 + 0.185741i
\(751\) 31.9064i 1.16428i −0.813088 0.582141i \(-0.802215\pi\)
0.813088 0.582141i \(-0.197785\pi\)
\(752\) 1.18439 4.42021i 0.0431903 0.161188i
\(753\) 2.73660 + 1.57998i 0.0997272 + 0.0575775i
\(754\) −1.07783 + 20.2422i −0.0392522 + 0.737178i
\(755\) 2.65658i 0.0966829i
\(756\) 1.91156 1.82919i 0.0695227 0.0665271i
\(757\) −23.5249 + 40.7463i −0.855028 + 1.48095i 0.0215919 + 0.999767i \(0.493127\pi\)
−0.876619 + 0.481184i \(0.840207\pi\)
\(758\) 17.1317 + 9.89097i 0.622250 + 0.359256i
\(759\) 6.05775 + 22.6078i 0.219883 + 0.820613i
\(760\) −0.794597 0.794597i −0.0288231 0.0288231i
\(761\) −31.6416 + 8.47833i −1.14701 + 0.307339i −0.781765 0.623574i \(-0.785680\pi\)
−0.365241 + 0.930913i \(0.619013\pi\)
\(762\) −3.20496 3.20496i −0.116104 0.116104i
\(763\) −12.1037 + 19.9374i −0.438183 + 0.721781i
\(764\) −1.12127 0.647368i −0.0405663 0.0234210i
\(765\) −0.285486 + 0.285486i −0.0103218 + 0.0103218i
\(766\) −8.62862 + 14.9452i −0.311765 + 0.539992i
\(767\) −31.0287 + 15.7773i −1.12038 + 0.569684i
\(768\) −0.866025 + 0.500000i −0.0312500 + 0.0180422i
\(769\) 7.72927 + 28.8460i 0.278725 + 1.04021i 0.953304 + 0.302012i \(0.0976583\pi\)
−0.674580 + 0.738202i \(0.735675\pi\)
\(770\) 4.86093 + 2.95100i 0.175176 + 0.106347i
\(771\) −3.11699 + 1.79960i −0.112256 + 0.0648109i
\(772\) 2.24151 8.36542i 0.0806736 0.301078i
\(773\) −19.8642 + 19.8642i −0.714466 + 0.714466i −0.967466 0.253000i \(-0.918583\pi\)
0.253000 + 0.967466i \(0.418583\pi\)
\(774\) −5.64602 + 5.64602i &mi