Properties

Label 546.2.cg.b.241.3
Level $546$
Weight $2$
Character 546.241
Analytic conductor $4.360$
Analytic rank $0$
Dimension $40$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.cg (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 241.3
Character \(\chi\) \(=\) 546.241
Dual form 546.2.cg.b.145.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +(-0.866025 + 0.500000i) q^{3} +1.00000i q^{4} +(-0.981662 - 0.263036i) q^{5} +(0.965926 + 0.258819i) q^{6} +(2.09303 + 1.61840i) q^{7} +(0.707107 - 0.707107i) q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.707107 - 0.707107i) q^{2} +(-0.866025 + 0.500000i) q^{3} +1.00000i q^{4} +(-0.981662 - 0.263036i) q^{5} +(0.965926 + 0.258819i) q^{6} +(2.09303 + 1.61840i) q^{7} +(0.707107 - 0.707107i) q^{8} +(0.500000 - 0.866025i) q^{9} +(0.508146 + 0.880134i) q^{10} +(-4.09120 - 1.09623i) q^{11} +(-0.500000 - 0.866025i) q^{12} +(0.709237 + 3.53511i) q^{13} +(-0.335613 - 2.62438i) q^{14} +(0.981662 - 0.263036i) q^{15} -1.00000 q^{16} -0.895472 q^{17} +(-0.965926 + 0.258819i) q^{18} +(-0.745350 - 2.78168i) q^{19} +(0.263036 - 0.981662i) q^{20} +(-2.62182 - 0.355062i) q^{21} +(2.11776 + 3.66807i) q^{22} +1.11283i q^{23} +(-0.258819 + 0.965926i) q^{24} +(-3.43565 - 1.98358i) q^{25} +(1.99819 - 3.00120i) q^{26} +1.00000i q^{27} +(-1.61840 + 2.09303i) q^{28} +(-4.64609 + 8.04727i) q^{29} +(-0.880134 - 0.508146i) q^{30} +(1.04539 + 3.90146i) q^{31} +(0.707107 + 0.707107i) q^{32} +(4.09120 - 1.09623i) q^{33} +(0.633194 + 0.633194i) q^{34} +(-1.62895 - 2.13927i) q^{35} +(0.866025 + 0.500000i) q^{36} +(-6.83756 + 6.83756i) q^{37} +(-1.43990 + 2.49399i) q^{38} +(-2.38177 - 2.70687i) q^{39} +(-0.880134 + 0.508146i) q^{40} +(0.375020 + 1.39959i) q^{41} +(1.60284 + 2.10497i) q^{42} +(-4.62926 + 2.67270i) q^{43} +(1.09623 - 4.09120i) q^{44} +(-0.718627 + 0.718627i) q^{45} +(0.786889 - 0.786889i) q^{46} +(-0.821480 + 3.06581i) q^{47} +(0.866025 - 0.500000i) q^{48} +(1.76155 + 6.77473i) q^{49} +(1.02677 + 3.83197i) q^{50} +(0.775501 - 0.447736i) q^{51} +(-3.53511 + 0.709237i) q^{52} +(-1.89754 + 3.28664i) q^{53} +(0.707107 - 0.707107i) q^{54} +(3.72783 + 2.15226i) q^{55} +(2.62438 - 0.335613i) q^{56} +(2.03633 + 2.03633i) q^{57} +(8.97556 - 2.40499i) q^{58} +(-5.46941 - 5.46941i) q^{59} +(0.263036 + 0.981662i) q^{60} +(2.04275 + 1.17938i) q^{61} +(2.01954 - 3.49795i) q^{62} +(2.44809 - 1.00342i) q^{63} -1.00000i q^{64} +(0.233628 - 3.65684i) q^{65} +(-3.66807 - 2.11776i) q^{66} +(1.11978 - 4.17906i) q^{67} -0.895472i q^{68} +(-0.556414 - 0.963738i) q^{69} +(-0.360846 + 2.66453i) q^{70} +(0.229950 - 0.858187i) q^{71} +(-0.258819 - 0.965926i) q^{72} +(0.449816 - 0.120528i) q^{73} +9.66976 q^{74} +3.96715 q^{75} +(2.78168 - 0.745350i) q^{76} +(-6.78886 - 8.91566i) q^{77} +(-0.229883 + 3.59822i) q^{78} +(3.14658 + 5.45004i) q^{79} +(0.981662 + 0.263036i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(0.724483 - 1.25484i) q^{82} +(7.53308 - 7.53308i) q^{83} +(0.355062 - 2.62182i) q^{84} +(0.879051 + 0.235541i) q^{85} +(5.16327 + 1.38349i) q^{86} -9.29218i q^{87} +(-3.66807 + 2.11776i) q^{88} +(-9.28304 - 9.28304i) q^{89} +1.01629 q^{90} +(-4.23677 + 8.54692i) q^{91} -1.11283 q^{92} +(-2.85607 - 2.85607i) q^{93} +(2.74873 - 1.58698i) q^{94} +2.92673i q^{95} +(-0.965926 - 0.258819i) q^{96} +(8.06565 + 2.16118i) q^{97} +(3.54485 - 6.03606i) q^{98} +(-2.99497 + 2.99497i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q + 4q^{7} + 20q^{9} + O(q^{10}) \) \( 40q + 4q^{7} + 20q^{9} + 8q^{11} - 20q^{12} + 4q^{14} - 40q^{16} + 16q^{17} + 4q^{19} + 4q^{21} - 4q^{22} - 24q^{25} + 8q^{26} - 4q^{28} - 12q^{29} - 8q^{33} - 8q^{34} - 32q^{35} + 40q^{37} + 8q^{38} + 20q^{39} + 20q^{41} + 12q^{42} - 24q^{43} - 4q^{44} + 32q^{46} + 4q^{47} + 32q^{49} - 16q^{50} + 24q^{51} + 16q^{52} - 4q^{53} + 24q^{55} + 12q^{56} + 8q^{57} + 12q^{58} + 24q^{59} + 60q^{61} + 32q^{62} - 4q^{63} + 44q^{65} - 12q^{67} - 8q^{69} - 24q^{70} - 28q^{71} + 60q^{73} - 40q^{74} - 72q^{75} + 4q^{76} - 12q^{77} + 4q^{78} - 20q^{81} - 24q^{82} + 60q^{83} - 8q^{84} - 4q^{85} - 20q^{86} - 36q^{89} - 16q^{92} - 24q^{93} - 48q^{97} - 88q^{98} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) 1.00000i 0.500000i
\(5\) −0.981662 0.263036i −0.439013 0.117633i 0.0325411 0.999470i \(-0.489640\pi\)
−0.471554 + 0.881837i \(0.656307\pi\)
\(6\) 0.965926 + 0.258819i 0.394338 + 0.105662i
\(7\) 2.09303 + 1.61840i 0.791091 + 0.611698i
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0.508146 + 0.880134i 0.160690 + 0.278323i
\(11\) −4.09120 1.09623i −1.23354 0.330527i −0.417585 0.908638i \(-0.637123\pi\)
−0.815958 + 0.578111i \(0.803790\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) 0.709237 + 3.53511i 0.196707 + 0.980462i
\(14\) −0.335613 2.62438i −0.0896964 0.701395i
\(15\) 0.981662 0.263036i 0.253464 0.0679155i
\(16\) −1.00000 −0.250000
\(17\) −0.895472 −0.217184 −0.108592 0.994086i \(-0.534634\pi\)
−0.108592 + 0.994086i \(0.534634\pi\)
\(18\) −0.965926 + 0.258819i −0.227671 + 0.0610042i
\(19\) −0.745350 2.78168i −0.170995 0.638162i −0.997199 0.0747911i \(-0.976171\pi\)
0.826204 0.563371i \(-0.190496\pi\)
\(20\) 0.263036 0.981662i 0.0588166 0.219506i
\(21\) −2.62182 0.355062i −0.572128 0.0774808i
\(22\) 2.11776 + 3.66807i 0.451508 + 0.782035i
\(23\) 1.11283i 0.232041i 0.993247 + 0.116020i \(0.0370138\pi\)
−0.993247 + 0.116020i \(0.962986\pi\)
\(24\) −0.258819 + 0.965926i −0.0528312 + 0.197169i
\(25\) −3.43565 1.98358i −0.687131 0.396715i
\(26\) 1.99819 3.00120i 0.391878 0.588585i
\(27\) 1.00000i 0.192450i
\(28\) −1.61840 + 2.09303i −0.305849 + 0.395546i
\(29\) −4.64609 + 8.04727i −0.862758 + 1.49434i 0.00649921 + 0.999979i \(0.497931\pi\)
−0.869257 + 0.494361i \(0.835402\pi\)
\(30\) −0.880134 0.508146i −0.160690 0.0927743i
\(31\) 1.04539 + 3.90146i 0.187758 + 0.700723i 0.994023 + 0.109169i \(0.0348188\pi\)
−0.806265 + 0.591554i \(0.798515\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 4.09120 1.09623i 0.712187 0.190830i
\(34\) 0.633194 + 0.633194i 0.108592 + 0.108592i
\(35\) −1.62895 2.13927i −0.275343 0.361602i
\(36\) 0.866025 + 0.500000i 0.144338 + 0.0833333i
\(37\) −6.83756 + 6.83756i −1.12409 + 1.12409i −0.132967 + 0.991120i \(0.542450\pi\)
−0.991120 + 0.132967i \(0.957550\pi\)
\(38\) −1.43990 + 2.49399i −0.233583 + 0.404578i
\(39\) −2.38177 2.70687i −0.381389 0.433447i
\(40\) −0.880134 + 0.508146i −0.139161 + 0.0803449i
\(41\) 0.375020 + 1.39959i 0.0585683 + 0.218580i 0.989007 0.147867i \(-0.0472408\pi\)
−0.930439 + 0.366447i \(0.880574\pi\)
\(42\) 1.60284 + 2.10497i 0.247323 + 0.324804i
\(43\) −4.62926 + 2.67270i −0.705955 + 0.407583i −0.809562 0.587035i \(-0.800295\pi\)
0.103606 + 0.994618i \(0.466962\pi\)
\(44\) 1.09623 4.09120i 0.165263 0.616772i
\(45\) −0.718627 + 0.718627i −0.107127 + 0.107127i
\(46\) 0.786889 0.786889i 0.116020 0.116020i
\(47\) −0.821480 + 3.06581i −0.119825 + 0.447194i −0.999603 0.0281923i \(-0.991025\pi\)
0.879777 + 0.475386i \(0.157692\pi\)
\(48\) 0.866025 0.500000i 0.125000 0.0721688i
\(49\) 1.76155 + 6.77473i 0.251650 + 0.967818i
\(50\) 1.02677 + 3.83197i 0.145208 + 0.541923i
\(51\) 0.775501 0.447736i 0.108592 0.0626956i
\(52\) −3.53511 + 0.709237i −0.490231 + 0.0983534i
\(53\) −1.89754 + 3.28664i −0.260647 + 0.451454i −0.966414 0.256990i \(-0.917269\pi\)
0.705767 + 0.708444i \(0.250603\pi\)
\(54\) 0.707107 0.707107i 0.0962250 0.0962250i
\(55\) 3.72783 + 2.15226i 0.502660 + 0.290211i
\(56\) 2.62438 0.335613i 0.350697 0.0448482i
\(57\) 2.03633 + 2.03633i 0.269719 + 0.269719i
\(58\) 8.97556 2.40499i 1.17855 0.315791i
\(59\) −5.46941 5.46941i −0.712057 0.712057i 0.254908 0.966965i \(-0.417955\pi\)
−0.966965 + 0.254908i \(0.917955\pi\)
\(60\) 0.263036 + 0.981662i 0.0339578 + 0.126732i
\(61\) 2.04275 + 1.17938i 0.261547 + 0.151004i 0.625040 0.780593i \(-0.285083\pi\)
−0.363493 + 0.931597i \(0.618416\pi\)
\(62\) 2.01954 3.49795i 0.256482 0.444240i
\(63\) 2.44809 1.00342i 0.308431 0.126419i
\(64\) 1.00000i 0.125000i
\(65\) 0.233628 3.65684i 0.0289780 0.453575i
\(66\) −3.66807 2.11776i −0.451508 0.260678i
\(67\) 1.11978 4.17906i 0.136802 0.510553i −0.863182 0.504893i \(-0.831532\pi\)
0.999984 0.00565972i \(-0.00180155\pi\)
\(68\) 0.895472i 0.108592i
\(69\) −0.556414 0.963738i −0.0669844 0.116020i
\(70\) −0.360846 + 2.66453i −0.0431294 + 0.318473i
\(71\) 0.229950 0.858187i 0.0272901 0.101848i −0.950937 0.309383i \(-0.899877\pi\)
0.978228 + 0.207535i \(0.0665441\pi\)
\(72\) −0.258819 0.965926i −0.0305021 0.113835i
\(73\) 0.449816 0.120528i 0.0526470 0.0141067i −0.232399 0.972620i \(-0.574658\pi\)
0.285046 + 0.958514i \(0.407991\pi\)
\(74\) 9.66976 1.12409
\(75\) 3.96715 0.458087
\(76\) 2.78168 0.745350i 0.319081 0.0854975i
\(77\) −6.78886 8.91566i −0.773662 1.01603i
\(78\) −0.229883 + 3.59822i −0.0260291 + 0.407418i
\(79\) 3.14658 + 5.45004i 0.354018 + 0.613177i 0.986949 0.161031i \(-0.0514818\pi\)
−0.632931 + 0.774208i \(0.718148\pi\)
\(80\) 0.981662 + 0.263036i 0.109753 + 0.0294083i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0.724483 1.25484i 0.0800057 0.138574i
\(83\) 7.53308 7.53308i 0.826863 0.826863i −0.160219 0.987082i \(-0.551220\pi\)
0.987082 + 0.160219i \(0.0512200\pi\)
\(84\) 0.355062 2.62182i 0.0387404 0.286064i
\(85\) 0.879051 + 0.235541i 0.0953465 + 0.0255480i
\(86\) 5.16327 + 1.38349i 0.556769 + 0.149186i
\(87\) 9.29218i 0.996227i
\(88\) −3.66807 + 2.11776i −0.391018 + 0.225754i
\(89\) −9.28304 9.28304i −0.984000 0.984000i 0.0158739 0.999874i \(-0.494947\pi\)
−0.999874 + 0.0158739i \(0.994947\pi\)
\(90\) 1.01629 0.107127
\(91\) −4.23677 + 8.54692i −0.444134 + 0.895960i
\(92\) −1.11283 −0.116020
\(93\) −2.85607 2.85607i −0.296160 0.296160i
\(94\) 2.74873 1.58698i 0.283509 0.163684i
\(95\) 2.92673i 0.300276i
\(96\) −0.965926 0.258819i −0.0985844 0.0264156i
\(97\) 8.06565 + 2.16118i 0.818943 + 0.219435i 0.643884 0.765123i \(-0.277322\pi\)
0.175058 + 0.984558i \(0.443989\pi\)
\(98\) 3.54485 6.03606i 0.358084 0.609734i
\(99\) −2.99497 + 2.99497i −0.301005 + 0.301005i
\(100\) 1.98358 3.43565i 0.198358 0.343565i
\(101\) 4.10244 + 7.10564i 0.408208 + 0.707037i 0.994689 0.102926i \(-0.0328204\pi\)
−0.586481 + 0.809963i \(0.699487\pi\)
\(102\) −0.864960 0.231765i −0.0856438 0.0229482i
\(103\) −5.96169 10.3259i −0.587423 1.01745i −0.994569 0.104083i \(-0.966809\pi\)
0.407146 0.913363i \(-0.366524\pi\)
\(104\) 3.00120 + 1.99819i 0.294292 + 0.195939i
\(105\) 2.48035 + 1.03818i 0.242057 + 0.101316i
\(106\) 3.66577 0.982239i 0.356051 0.0954035i
\(107\) 1.21458 0.117418 0.0587088 0.998275i \(-0.481302\pi\)
0.0587088 + 0.998275i \(0.481302\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −10.4562 + 2.80174i −1.00152 + 0.268358i −0.722084 0.691805i \(-0.756816\pi\)
−0.279440 + 0.960163i \(0.590149\pi\)
\(110\) −1.11409 4.15785i −0.106225 0.396436i
\(111\) 2.50272 9.34028i 0.237548 0.886540i
\(112\) −2.09303 1.61840i −0.197773 0.152925i
\(113\) 6.77909 + 11.7417i 0.637723 + 1.10457i 0.985931 + 0.167152i \(0.0534570\pi\)
−0.348208 + 0.937417i \(0.613210\pi\)
\(114\) 2.87981i 0.269719i
\(115\) 0.292714 1.09242i 0.0272957 0.101869i
\(116\) −8.04727 4.64609i −0.747170 0.431379i
\(117\) 3.41611 + 1.15334i 0.315820 + 0.106626i
\(118\) 7.73492i 0.712057i
\(119\) −1.87425 1.44923i −0.171812 0.132851i
\(120\) 0.508146 0.880134i 0.0463872 0.0803449i
\(121\) 6.00991 + 3.46982i 0.546356 + 0.315439i
\(122\) −0.610493 2.27839i −0.0552714 0.206276i
\(123\) −1.02457 1.02457i −0.0923827 0.0923827i
\(124\) −3.90146 + 1.04539i −0.350361 + 0.0938791i
\(125\) 6.44403 + 6.44403i 0.576372 + 0.576372i
\(126\) −2.44059 1.02154i −0.217425 0.0910060i
\(127\) −7.87288 4.54541i −0.698605 0.403340i 0.108223 0.994127i \(-0.465484\pi\)
−0.806828 + 0.590787i \(0.798817\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 2.67270 4.62926i 0.235318 0.407583i
\(130\) −2.75097 + 2.42057i −0.241276 + 0.212298i
\(131\) −5.46001 + 3.15234i −0.477043 + 0.275421i −0.719183 0.694820i \(-0.755484\pi\)
0.242140 + 0.970241i \(0.422151\pi\)
\(132\) 1.09623 + 4.09120i 0.0954149 + 0.356093i
\(133\) 2.94184 7.02842i 0.255090 0.609441i
\(134\) −3.74684 + 2.16324i −0.323678 + 0.186875i
\(135\) 0.263036 0.981662i 0.0226385 0.0844880i
\(136\) −0.633194 + 0.633194i −0.0542960 + 0.0542960i
\(137\) 16.0668 16.0668i 1.37268 1.37268i 0.516233 0.856448i \(-0.327334\pi\)
0.856448 0.516233i \(-0.172666\pi\)
\(138\) −0.288021 + 1.07491i −0.0245180 + 0.0915024i
\(139\) 13.7959 7.96507i 1.17015 0.675588i 0.216437 0.976297i \(-0.430556\pi\)
0.953716 + 0.300708i \(0.0972230\pi\)
\(140\) 2.13927 1.62895i 0.180801 0.137672i
\(141\) −0.821480 3.06581i −0.0691811 0.258187i
\(142\) −0.769429 + 0.444230i −0.0645691 + 0.0372790i
\(143\) 0.973674 15.2403i 0.0814227 1.27446i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 6.67761 6.67761i 0.554545 0.554545i
\(146\) −0.403294 0.232842i −0.0333769 0.0192701i
\(147\) −4.91291 4.98631i −0.405210 0.411264i
\(148\) −6.83756 6.83756i −0.562044 0.562044i
\(149\) −3.43927 + 0.921550i −0.281756 + 0.0754963i −0.396930 0.917849i \(-0.629924\pi\)
0.115173 + 0.993345i \(0.463258\pi\)
\(150\) −2.80520 2.80520i −0.229044 0.229044i
\(151\) −1.27548 4.76017i −0.103797 0.387377i 0.894409 0.447251i \(-0.147597\pi\)
−0.998206 + 0.0598738i \(0.980930\pi\)
\(152\) −2.49399 1.43990i −0.202289 0.116792i
\(153\) −0.447736 + 0.775501i −0.0361973 + 0.0626956i
\(154\) −1.50387 + 11.1048i −0.121185 + 0.894848i
\(155\) 4.10489i 0.329713i
\(156\) 2.70687 2.38177i 0.216723 0.190694i
\(157\) 9.25317 + 5.34232i 0.738483 + 0.426363i 0.821518 0.570183i \(-0.193128\pi\)
−0.0830344 + 0.996547i \(0.526461\pi\)
\(158\) 1.62879 6.07873i 0.129580 0.483598i
\(159\) 3.79508i 0.300969i
\(160\) −0.508146 0.880134i −0.0401725 0.0695807i
\(161\) −1.80100 + 2.32918i −0.141939 + 0.183565i
\(162\) −0.258819 + 0.965926i −0.0203347 + 0.0758903i
\(163\) −6.06884 22.6492i −0.475349 1.77402i −0.620064 0.784551i \(-0.712893\pi\)
0.144715 0.989473i \(-0.453773\pi\)
\(164\) −1.39959 + 0.375020i −0.109290 + 0.0292841i
\(165\) −4.30453 −0.335107
\(166\) −10.6534 −0.826863
\(167\) 15.7780 4.22772i 1.22094 0.327150i 0.409896 0.912132i \(-0.365565\pi\)
0.811046 + 0.584982i \(0.198898\pi\)
\(168\) −2.10497 + 1.60284i −0.162402 + 0.123662i
\(169\) −11.9940 + 5.01446i −0.922613 + 0.385727i
\(170\) −0.455030 0.788136i −0.0348992 0.0604473i
\(171\) −2.78168 0.745350i −0.212721 0.0569983i
\(172\) −2.67270 4.62926i −0.203792 0.352978i
\(173\) −9.26068 + 16.0400i −0.704077 + 1.21950i 0.262947 + 0.964810i \(0.415306\pi\)
−0.967024 + 0.254686i \(0.918028\pi\)
\(174\) −6.57057 + 6.57057i −0.498113 + 0.498113i
\(175\) −3.98071 9.71195i −0.300913 0.734155i
\(176\) 4.09120 + 1.09623i 0.308386 + 0.0826317i
\(177\) 7.47136 + 2.00194i 0.561581 + 0.150475i
\(178\) 13.1282i 0.984000i
\(179\) −19.1571 + 11.0604i −1.43187 + 0.826691i −0.997263 0.0739299i \(-0.976446\pi\)
−0.434607 + 0.900620i \(0.643113\pi\)
\(180\) −0.718627 0.718627i −0.0535633 0.0535633i
\(181\) 12.9441 0.962126 0.481063 0.876686i \(-0.340251\pi\)
0.481063 + 0.876686i \(0.340251\pi\)
\(182\) 9.03943 3.04773i 0.670047 0.225913i
\(183\) −2.35876 −0.174365
\(184\) 0.786889 + 0.786889i 0.0580102 + 0.0580102i
\(185\) 8.51069 4.91365i 0.625719 0.361259i
\(186\) 4.03909i 0.296160i
\(187\) 3.66356 + 0.981647i 0.267906 + 0.0717851i
\(188\) −3.06581 0.821480i −0.223597 0.0599126i
\(189\) −1.61840 + 2.09303i −0.117721 + 0.152246i
\(190\) 2.06951 2.06951i 0.150138 0.150138i
\(191\) −3.65123 + 6.32412i −0.264194 + 0.457597i −0.967352 0.253436i \(-0.918439\pi\)
0.703158 + 0.711033i \(0.251773\pi\)
\(192\) 0.500000 + 0.866025i 0.0360844 + 0.0625000i
\(193\) 19.9346 + 5.34146i 1.43492 + 0.384487i 0.890753 0.454487i \(-0.150177\pi\)
0.544172 + 0.838974i \(0.316844\pi\)
\(194\) −4.17509 7.23146i −0.299754 0.519189i
\(195\) 1.62609 + 3.28373i 0.116447 + 0.235153i
\(196\) −6.77473 + 1.76155i −0.483909 + 0.125825i
\(197\) 16.2233 4.34702i 1.15586 0.309712i 0.370550 0.928812i \(-0.379169\pi\)
0.785312 + 0.619100i \(0.212503\pi\)
\(198\) 4.23552 0.301005
\(199\) 4.26267 0.302172 0.151086 0.988521i \(-0.451723\pi\)
0.151086 + 0.988521i \(0.451723\pi\)
\(200\) −3.83197 + 1.02677i −0.270961 + 0.0726039i
\(201\) 1.11978 + 4.17906i 0.0789829 + 0.294768i
\(202\) 2.12358 7.92531i 0.149415 0.557623i
\(203\) −22.7481 + 9.32393i −1.59660 + 0.654412i
\(204\) 0.447736 + 0.775501i 0.0313478 + 0.0542960i
\(205\) 1.47257i 0.102849i
\(206\) −3.08600 + 11.5171i −0.215012 + 0.802434i
\(207\) 0.963738 + 0.556414i 0.0669844 + 0.0386735i
\(208\) −0.709237 3.53511i −0.0491767 0.245116i
\(209\) 12.1975i 0.843718i
\(210\) −1.01976 2.48798i −0.0703704 0.171687i
\(211\) −7.88634 + 13.6595i −0.542918 + 0.940362i 0.455816 + 0.890074i \(0.349347\pi\)
−0.998735 + 0.0502883i \(0.983986\pi\)
\(212\) −3.28664 1.89754i −0.225727 0.130324i
\(213\) 0.229950 + 0.858187i 0.0157559 + 0.0588020i
\(214\) −0.858835 0.858835i −0.0587088 0.0587088i
\(215\) 5.24739 1.40603i 0.357869 0.0958906i
\(216\) 0.707107 + 0.707107i 0.0481125 + 0.0481125i
\(217\) −4.12609 + 9.85774i −0.280097 + 0.669187i
\(218\) 9.37479 + 5.41254i 0.634941 + 0.366583i
\(219\) −0.329288 + 0.329288i −0.0222512 + 0.0222512i
\(220\) −2.15226 + 3.72783i −0.145106 + 0.251330i
\(221\) −0.635102 3.16559i −0.0427216 0.212941i
\(222\) −8.37426 + 4.83488i −0.562044 + 0.324496i
\(223\) −7.04837 26.3049i −0.471994 1.76151i −0.632592 0.774486i \(-0.718009\pi\)
0.160598 0.987020i \(-0.448658\pi\)
\(224\) 0.335613 + 2.62438i 0.0224241 + 0.175349i
\(225\) −3.43565 + 1.98358i −0.229044 + 0.132238i
\(226\) 3.50912 13.0962i 0.233423 0.871146i
\(227\) 7.21417 7.21417i 0.478821 0.478821i −0.425933 0.904754i \(-0.640054\pi\)
0.904754 + 0.425933i \(0.140054\pi\)
\(228\) −2.03633 + 2.03633i −0.134859 + 0.134859i
\(229\) −6.86791 + 25.6314i −0.453844 + 1.69377i 0.237618 + 0.971359i \(0.423633\pi\)
−0.691463 + 0.722412i \(0.743033\pi\)
\(230\) −0.979439 + 0.565479i −0.0645823 + 0.0372866i
\(231\) 10.3372 + 4.32675i 0.680135 + 0.284680i
\(232\) 2.40499 + 8.97556i 0.157896 + 0.589274i
\(233\) −23.6788 + 13.6710i −1.55125 + 0.895614i −0.553208 + 0.833043i \(0.686597\pi\)
−0.998041 + 0.0625709i \(0.980070\pi\)
\(234\) −1.60002 3.23109i −0.104597 0.211223i
\(235\) 1.61283 2.79351i 0.105210 0.182228i
\(236\) 5.46941 5.46941i 0.356028 0.356028i
\(237\) −5.45004 3.14658i −0.354018 0.204392i
\(238\) 0.300532 + 2.35006i 0.0194806 + 0.152332i
\(239\) 19.5943 + 19.5943i 1.26745 + 1.26745i 0.947402 + 0.320045i \(0.103698\pi\)
0.320045 + 0.947402i \(0.396302\pi\)
\(240\) −0.981662 + 0.263036i −0.0633660 + 0.0169789i
\(241\) 17.7577 + 17.7577i 1.14388 + 1.14388i 0.987735 + 0.156141i \(0.0499054\pi\)
0.156141 + 0.987735i \(0.450095\pi\)
\(242\) −1.79611 6.70318i −0.115459 0.430897i
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) −1.17938 + 2.04275i −0.0755021 + 0.130774i
\(245\) 0.0527446 7.11385i 0.00336973 0.454487i
\(246\) 1.44897i 0.0923827i
\(247\) 9.30492 4.60776i 0.592058 0.293185i
\(248\) 3.49795 + 2.01954i 0.222120 + 0.128241i
\(249\) −2.75730 + 10.2904i −0.174737 + 0.652126i
\(250\) 9.11324i 0.576372i
\(251\) 7.23404 + 12.5297i 0.456609 + 0.790869i 0.998779 0.0493992i \(-0.0157307\pi\)
−0.542171 + 0.840268i \(0.682397\pi\)
\(252\) 1.00342 + 2.44809i 0.0632093 + 0.154215i
\(253\) 1.21992 4.55281i 0.0766958 0.286232i
\(254\) 2.35288 + 8.78106i 0.147633 + 0.550972i
\(255\) −0.879051 + 0.235541i −0.0550483 + 0.0147502i
\(256\) 1.00000 0.0625000
\(257\) 12.8487 0.801482 0.400741 0.916191i \(-0.368753\pi\)
0.400741 + 0.916191i \(0.368753\pi\)
\(258\) −5.16327 + 1.38349i −0.321451 + 0.0861325i
\(259\) −25.3771 + 3.24530i −1.57686 + 0.201653i
\(260\) 3.65684 + 0.233628i 0.226787 + 0.0144890i
\(261\) 4.64609 + 8.04727i 0.287586 + 0.498113i
\(262\) 6.08985 + 1.63177i 0.376232 + 0.100811i
\(263\) 5.32982 + 9.23151i 0.328651 + 0.569240i 0.982244 0.187606i \(-0.0600728\pi\)
−0.653594 + 0.756846i \(0.726739\pi\)
\(264\) 2.11776 3.66807i 0.130339 0.225754i
\(265\) 2.72725 2.72725i 0.167533 0.167533i
\(266\) −7.05004 + 2.88965i −0.432266 + 0.177176i
\(267\) 12.6809 + 3.39783i 0.776056 + 0.207944i
\(268\) 4.17906 + 1.11978i 0.255277 + 0.0684012i
\(269\) 9.60406i 0.585570i −0.956178 0.292785i \(-0.905418\pi\)
0.956178 0.292785i \(-0.0945820\pi\)
\(270\) −0.880134 + 0.508146i −0.0535633 + 0.0309248i
\(271\) 9.30186 + 9.30186i 0.565048 + 0.565048i 0.930737 0.365689i \(-0.119167\pi\)
−0.365689 + 0.930737i \(0.619167\pi\)
\(272\) 0.895472 0.0542960
\(273\) −0.604309 9.52023i −0.0365744 0.576191i
\(274\) −22.7219 −1.37268
\(275\) 11.8815 + 11.8815i 0.716480 + 0.716480i
\(276\) 0.963738 0.556414i 0.0580102 0.0334922i
\(277\) 19.7086i 1.18418i −0.805873 0.592089i \(-0.798304\pi\)
0.805873 0.592089i \(-0.201696\pi\)
\(278\) −15.3873 4.12302i −0.922871 0.247283i
\(279\) 3.90146 + 1.04539i 0.233574 + 0.0625860i
\(280\) −2.66453 0.360846i −0.159236 0.0215647i
\(281\) −12.8366 + 12.8366i −0.765767 + 0.765767i −0.977358 0.211591i \(-0.932135\pi\)
0.211591 + 0.977358i \(0.432135\pi\)
\(282\) −1.58698 + 2.74873i −0.0945031 + 0.163684i
\(283\) −9.67398 16.7558i −0.575058 0.996030i −0.996035 0.0889589i \(-0.971646\pi\)
0.420977 0.907071i \(-0.361687\pi\)
\(284\) 0.858187 + 0.229950i 0.0509240 + 0.0136450i
\(285\) −1.46336 2.53462i −0.0866822 0.150138i
\(286\) −11.4650 + 10.0880i −0.677941 + 0.596518i
\(287\) −1.48018 + 3.53632i −0.0873720 + 0.208743i
\(288\) 0.965926 0.258819i 0.0569177 0.0152511i
\(289\) −16.1981 −0.952831
\(290\) −9.44357 −0.554545
\(291\) −8.06565 + 2.16118i −0.472817 + 0.126691i
\(292\) 0.120528 + 0.449816i 0.00705336 + 0.0263235i
\(293\) −2.77511 + 10.3569i −0.162124 + 0.605054i 0.836266 + 0.548324i \(0.184734\pi\)
−0.998390 + 0.0567298i \(0.981933\pi\)
\(294\) −0.0518991 + 6.99981i −0.00302682 + 0.408237i
\(295\) 3.93047 + 6.80777i 0.228841 + 0.396363i
\(296\) 9.66976i 0.562044i
\(297\) 1.09623 4.09120i 0.0636099 0.237396i
\(298\) 3.08357 + 1.78030i 0.178626 + 0.103130i
\(299\) −3.93397 + 0.789259i −0.227507 + 0.0456440i
\(300\) 3.96715i 0.229044i
\(301\) −14.0147 1.89795i −0.807793 0.109396i
\(302\) −2.46404 + 4.26785i −0.141790 + 0.245587i
\(303\) −7.10564 4.10244i −0.408208 0.235679i
\(304\) 0.745350 + 2.78168i 0.0427487 + 0.159540i
\(305\) −1.69507 1.69507i −0.0970594 0.0970594i
\(306\) 0.864960 0.231765i 0.0494464 0.0132491i
\(307\) −4.30658 4.30658i −0.245789 0.245789i 0.573451 0.819240i \(-0.305604\pi\)
−0.819240 + 0.573451i \(0.805604\pi\)
\(308\) 8.91566 6.78886i 0.508017 0.386831i
\(309\) 10.3259 + 5.96169i 0.587423 + 0.339149i
\(310\) −2.90260 + 2.90260i −0.164856 + 0.164856i
\(311\) 0.316677 0.548501i 0.0179571 0.0311027i −0.856907 0.515471i \(-0.827617\pi\)
0.874864 + 0.484368i \(0.160950\pi\)
\(312\) −3.59822 0.229883i −0.203709 0.0130146i
\(313\) 6.23316 3.59872i 0.352319 0.203411i −0.313387 0.949625i \(-0.601464\pi\)
0.665706 + 0.746214i \(0.268130\pi\)
\(314\) −2.76539 10.3206i −0.156060 0.582423i
\(315\) −2.66713 + 0.341081i −0.150276 + 0.0192177i
\(316\) −5.45004 + 3.14658i −0.306589 + 0.177009i
\(317\) −2.26411 + 8.44978i −0.127165 + 0.474587i −0.999908 0.0135942i \(-0.995673\pi\)
0.872742 + 0.488181i \(0.162339\pi\)
\(318\) −2.68353 + 2.68353i −0.150485 + 0.150485i
\(319\) 27.8298 27.8298i 1.55817 1.55817i
\(320\) −0.263036 + 0.981662i −0.0147041 + 0.0548766i
\(321\) −1.05185 + 0.607288i −0.0587088 + 0.0338955i
\(322\) 2.92048 0.373480i 0.162752 0.0208132i
\(323\) 0.667440 + 2.49092i 0.0371373 + 0.138598i
\(324\) 0.866025 0.500000i 0.0481125 0.0277778i
\(325\) 4.57546 13.5522i 0.253801 0.751742i
\(326\) −11.7241 + 20.3067i −0.649338 + 1.12469i
\(327\) 7.65449 7.65449i 0.423294 0.423294i
\(328\) 1.25484 + 0.724483i 0.0692870 + 0.0400029i
\(329\) −6.68109 + 5.08734i −0.368340 + 0.280474i
\(330\) 3.04376 + 3.04376i 0.167553 + 0.167553i
\(331\) 12.2810 3.29069i 0.675026 0.180873i 0.0950081 0.995477i \(-0.469712\pi\)
0.580018 + 0.814604i \(0.303046\pi\)
\(332\) 7.53308 + 7.53308i 0.413431 + 0.413431i
\(333\) 2.50272 + 9.34028i 0.137148 + 0.511844i
\(334\) −14.1462 8.16732i −0.774046 0.446896i
\(335\) −2.19848 + 3.80788i −0.120116 + 0.208047i
\(336\) 2.62182 + 0.355062i 0.143032 + 0.0193702i
\(337\) 19.1949i 1.04561i −0.852451 0.522807i \(-0.824885\pi\)
0.852451 0.522807i \(-0.175115\pi\)
\(338\) 12.0268 + 4.93526i 0.654170 + 0.268443i
\(339\) −11.7417 6.77909i −0.637723 0.368190i
\(340\) −0.235541 + 0.879051i −0.0127740 + 0.0476732i
\(341\) 17.1076i 0.926431i
\(342\) 1.43990 + 2.49399i 0.0778611 + 0.134859i
\(343\) −7.27725 + 17.0306i −0.392934 + 0.919567i
\(344\) −1.38349 + 5.16327i −0.0745930 + 0.278385i
\(345\) 0.292714 + 1.09242i 0.0157592 + 0.0588140i
\(346\) 17.8903 4.79368i 0.961787 0.257710i
\(347\) 15.4683 0.830382 0.415191 0.909734i \(-0.363715\pi\)
0.415191 + 0.909734i \(0.363715\pi\)
\(348\) 9.29218 0.498113
\(349\) 5.37886 1.44126i 0.287924 0.0771489i −0.111966 0.993712i \(-0.535715\pi\)
0.399890 + 0.916563i \(0.369048\pi\)
\(350\) −4.05260 + 9.68217i −0.216621 + 0.517534i
\(351\) −3.53511 + 0.709237i −0.188690 + 0.0378563i
\(352\) −2.11776 3.66807i −0.112877 0.195509i
\(353\) −27.8499 7.46235i −1.48230 0.397181i −0.575170 0.818034i \(-0.695064\pi\)
−0.907129 + 0.420853i \(0.861731\pi\)
\(354\) −3.86746 6.69863i −0.205553 0.356028i
\(355\) −0.451467 + 0.781964i −0.0239614 + 0.0415024i
\(356\) 9.28304 9.28304i 0.492000 0.492000i
\(357\) 2.34776 + 0.317948i 0.124257 + 0.0168276i
\(358\) 21.3670 + 5.72527i 1.12928 + 0.302590i
\(359\) −2.86118 0.766652i −0.151007 0.0404623i 0.182523 0.983202i \(-0.441573\pi\)
−0.333531 + 0.942739i \(0.608240\pi\)
\(360\) 1.01629i 0.0535633i
\(361\) 9.27227 5.35335i 0.488014 0.281755i
\(362\) −9.15285 9.15285i −0.481063 0.481063i
\(363\) −6.93965 −0.364237
\(364\) −8.54692 4.23677i −0.447980 0.222067i
\(365\) −0.473271 −0.0247721
\(366\) 1.66790 + 1.66790i 0.0871824 + 0.0871824i
\(367\) −11.0391 + 6.37341i −0.576235 + 0.332689i −0.759636 0.650349i \(-0.774623\pi\)
0.183401 + 0.983038i \(0.441289\pi\)
\(368\) 1.11283i 0.0580102i
\(369\) 1.39959 + 0.375020i 0.0728599 + 0.0195228i
\(370\) −9.49244 2.54349i −0.493489 0.132230i
\(371\) −9.29071 + 3.80805i −0.482349 + 0.197704i
\(372\) 2.85607 2.85607i 0.148080 0.148080i
\(373\) −7.63783 + 13.2291i −0.395472 + 0.684978i −0.993161 0.116750i \(-0.962752\pi\)
0.597689 + 0.801728i \(0.296086\pi\)
\(374\) −1.89640 3.28465i −0.0980603 0.169845i
\(375\) −8.80272 2.35868i −0.454570 0.121802i
\(376\) 1.58698 + 2.74873i 0.0818421 + 0.141755i
\(377\) −31.7431 10.7170i −1.63485 0.551954i
\(378\) 2.62438 0.335613i 0.134983 0.0172621i
\(379\) −14.6944 + 3.93734i −0.754799 + 0.202248i −0.615646 0.788023i \(-0.711105\pi\)
−0.139153 + 0.990271i \(0.544438\pi\)
\(380\) −2.92673 −0.150138
\(381\) 9.09082 0.465737
\(382\) 7.05364 1.89002i 0.360896 0.0967017i
\(383\) 3.70224 + 13.8170i 0.189176 + 0.706013i 0.993698 + 0.112091i \(0.0357548\pi\)
−0.804522 + 0.593923i \(0.797579\pi\)
\(384\) 0.258819 0.965926i 0.0132078 0.0492922i
\(385\) 4.31923 + 10.5379i 0.220129 + 0.537060i
\(386\) −10.3189 17.8729i −0.525219 0.909706i
\(387\) 5.34541i 0.271722i
\(388\) −2.16118 + 8.06565i −0.109717 + 0.409471i
\(389\) −6.99902 4.04089i −0.354864 0.204881i 0.311961 0.950095i \(-0.399014\pi\)
−0.666826 + 0.745214i \(0.732347\pi\)
\(390\) 1.17213 3.47177i 0.0593529 0.175800i
\(391\) 0.996507i 0.0503955i
\(392\) 6.03606 + 3.54485i 0.304867 + 0.179042i
\(393\) 3.15234 5.46001i 0.159014 0.275421i
\(394\) −14.5454 8.39780i −0.732787 0.423075i
\(395\) −1.65533 6.17776i −0.0832885 0.310837i
\(396\) −2.99497 2.99497i −0.150503 0.150503i
\(397\) 28.8453 7.72908i 1.44771 0.387912i 0.552481 0.833526i \(-0.313681\pi\)
0.895225 + 0.445614i \(0.147015\pi\)
\(398\) −3.01416 3.01416i −0.151086 0.151086i
\(399\) 0.966502 + 7.55771i 0.0483856 + 0.378359i
\(400\) 3.43565 + 1.98358i 0.171783 + 0.0991788i
\(401\) 5.58904 5.58904i 0.279103 0.279103i −0.553648 0.832751i \(-0.686765\pi\)
0.832751 + 0.553648i \(0.186765\pi\)
\(402\) 2.16324 3.74684i 0.107893 0.186875i
\(403\) −13.0506 + 6.46264i −0.650099 + 0.321927i
\(404\) −7.10564 + 4.10244i −0.353519 + 0.204104i
\(405\) 0.263036 + 0.981662i 0.0130703 + 0.0487792i
\(406\) 22.6784 + 9.49233i 1.12551 + 0.471097i
\(407\) 35.4694 20.4783i 1.75815 1.01507i
\(408\) 0.231765 0.864960i 0.0114741 0.0428219i
\(409\) 4.84747 4.84747i 0.239692 0.239692i −0.577030 0.816723i \(-0.695789\pi\)
0.816723 + 0.577030i \(0.195789\pi\)
\(410\) −1.04127 + 1.04127i −0.0514244 + 0.0514244i
\(411\) −5.88086 + 21.9477i −0.290082 + 1.08260i
\(412\) 10.3259 5.96169i 0.508723 0.293711i
\(413\) −2.59594 20.2994i −0.127738 0.998866i
\(414\) −0.288021 1.07491i −0.0141555 0.0528290i
\(415\) −9.37641 + 5.41347i −0.460270 + 0.265737i
\(416\) −1.99819 + 3.00120i −0.0979694 + 0.147146i
\(417\) −7.96507 + 13.7959i −0.390051 + 0.675588i
\(418\) 8.62493 8.62493i 0.421859 0.421859i
\(419\) 24.6906 + 14.2551i 1.20622 + 0.696409i 0.961930 0.273295i \(-0.0881135\pi\)
0.244285 + 0.969704i \(0.421447\pi\)
\(420\) −1.03818 + 2.48035i −0.0506581 + 0.121029i
\(421\) −26.7911 26.7911i −1.30572 1.30572i −0.924475 0.381243i \(-0.875496\pi\)
−0.381243 0.924475i \(-0.624504\pi\)
\(422\) 15.2352 4.08227i 0.741640 0.198722i
\(423\) 2.24433 + 2.24433i 0.109123 + 0.109123i
\(424\) 0.982239 + 3.66577i 0.0477017 + 0.178025i
\(425\) 3.07653 + 1.77624i 0.149234 + 0.0861601i
\(426\) 0.444230 0.769429i 0.0215230 0.0372790i
\(427\) 2.36682 + 5.77447i 0.114539 + 0.279446i
\(428\) 1.21458i 0.0587088i
\(429\) 6.77693 + 13.6853i 0.327193 + 0.660735i
\(430\) −4.70468 2.71625i −0.226880 0.130989i
\(431\) −2.12686 + 7.93755i −0.102447 + 0.382338i −0.998043 0.0625303i \(-0.980083\pi\)
0.895596 + 0.444869i \(0.146750\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) 8.27418 + 14.3313i 0.397632 + 0.688719i 0.993433 0.114413i \(-0.0364988\pi\)
−0.595801 + 0.803132i \(0.703165\pi\)
\(434\) 9.88806 4.05289i 0.474642 0.194545i
\(435\) −2.44418 + 9.12179i −0.117189 + 0.437356i
\(436\) −2.80174 10.4562i −0.134179 0.500762i
\(437\) 3.09554 0.829447i 0.148080 0.0396778i
\(438\) 0.465684 0.0222512
\(439\) −36.1411 −1.72492 −0.862460 0.506125i \(-0.831077\pi\)
−0.862460 + 0.506125i \(0.831077\pi\)
\(440\) 4.15785 1.11409i 0.198218 0.0531123i
\(441\) 6.74786 + 1.86181i 0.321327 + 0.0886578i
\(442\) −1.78933 + 2.68749i −0.0851095 + 0.127831i
\(443\) 9.04555 + 15.6673i 0.429767 + 0.744378i 0.996852 0.0792809i \(-0.0252624\pi\)
−0.567085 + 0.823659i \(0.691929\pi\)
\(444\) 9.34028 + 2.50272i 0.443270 + 0.118774i
\(445\) 6.67104 + 11.5546i 0.316238 + 0.547740i
\(446\) −13.6164 + 23.5843i −0.644756 + 1.11675i
\(447\) 2.51772 2.51772i 0.119084 0.119084i
\(448\) 1.61840 2.09303i 0.0764623 0.0988864i
\(449\) −11.6055 3.10969i −0.547699 0.146755i −0.0256499 0.999671i \(-0.508166\pi\)
−0.522049 + 0.852916i \(0.674832\pi\)
\(450\) 3.83197 + 1.02677i 0.180641 + 0.0484026i
\(451\) 6.13713i 0.288986i
\(452\) −11.7417 + 6.77909i −0.552285 + 0.318862i
\(453\) 3.48468 + 3.48468i 0.163725 + 0.163725i
\(454\) −10.2024 −0.478821
\(455\) 6.40722 7.27577i 0.300375 0.341093i
\(456\) 2.87981 0.134859
\(457\) −10.5376 10.5376i −0.492930 0.492930i 0.416298 0.909228i \(-0.363327\pi\)
−0.909228 + 0.416298i \(0.863327\pi\)
\(458\) 22.9805 13.2678i 1.07381 0.619963i
\(459\) 0.895472i 0.0417971i
\(460\) 1.09242 + 0.292714i 0.0509345 + 0.0136478i
\(461\) −32.6783 8.75614i −1.52198 0.407814i −0.601588 0.798806i \(-0.705465\pi\)
−0.920394 + 0.390992i \(0.872132\pi\)
\(462\) −4.24999 10.3689i −0.197728 0.482407i
\(463\) 20.8393 20.8393i 0.968486 0.968486i −0.0310326 0.999518i \(-0.509880\pi\)
0.999518 + 0.0310326i \(0.00987956\pi\)
\(464\) 4.64609 8.04727i 0.215689 0.373585i
\(465\) 2.05245 + 3.55494i 0.0951799 + 0.164856i
\(466\) 26.4103 + 7.07661i 1.22343 + 0.327817i
\(467\) −19.7862 34.2707i −0.915597 1.58586i −0.806025 0.591882i \(-0.798385\pi\)
−0.109572 0.993979i \(-0.534948\pi\)
\(468\) −1.15334 + 3.41611i −0.0533130 + 0.157910i
\(469\) 9.10712 6.93465i 0.420528 0.320212i
\(470\) −3.11575 + 0.834863i −0.143719 + 0.0385094i
\(471\) −10.6846 −0.492322
\(472\) −7.73492 −0.356028
\(473\) 21.8691 5.85982i 1.00554 0.269435i
\(474\) 1.62879 + 6.07873i 0.0748128 + 0.279205i
\(475\) −2.95691 + 11.0354i −0.135673 + 0.506337i
\(476\) 1.44923 1.87425i 0.0664255 0.0859061i
\(477\) 1.89754 + 3.28664i 0.0868824 + 0.150485i
\(478\) 27.7105i 1.26745i
\(479\) 4.96278 18.5214i 0.226755 0.846262i −0.754938 0.655796i \(-0.772333\pi\)
0.981694 0.190467i \(-0.0610001\pi\)
\(480\) 0.880134 + 0.508146i 0.0401725 + 0.0231936i
\(481\) −29.0209 19.3220i −1.32324 0.881010i
\(482\) 25.1132i 1.14388i
\(483\) 0.395123 2.91764i 0.0179787 0.132757i
\(484\) −3.46982 + 6.00991i −0.157719 + 0.273178i
\(485\) −7.34928 4.24311i −0.333713 0.192670i
\(486\) −0.258819 0.965926i −0.0117403 0.0438153i
\(487\) −2.63332 2.63332i −0.119327 0.119327i 0.644922 0.764249i \(-0.276890\pi\)
−0.764249 + 0.644922i \(0.776890\pi\)
\(488\) 2.27839 0.610493i 0.103138 0.0276357i
\(489\) 16.5804 + 16.5804i 0.749791 + 0.749791i
\(490\) −5.06755 + 4.99295i −0.228928 + 0.225559i
\(491\) −3.19473 1.84448i −0.144176 0.0832401i 0.426177 0.904640i \(-0.359860\pi\)
−0.570353 + 0.821400i \(0.693194\pi\)
\(492\) 1.02457 1.02457i 0.0461913 0.0461913i
\(493\) 4.16044 7.20610i 0.187377 0.324546i
\(494\) −9.83775 3.32139i −0.442621 0.149436i
\(495\) 3.72783 2.15226i 0.167553 0.0967370i
\(496\) −1.04539 3.90146i −0.0469395 0.175181i
\(497\) 1.87018 1.42406i 0.0838892 0.0638778i
\(498\) 9.22610 5.32669i 0.413431 0.238695i
\(499\) 7.22047 26.9472i 0.323233 1.20632i −0.592844 0.805318i \(-0.701995\pi\)
0.916076 0.401004i \(-0.131339\pi\)
\(500\) −6.44403 + 6.44403i −0.288186 + 0.288186i
\(501\) −11.5503 + 11.5503i −0.516031 + 0.516031i
\(502\) 3.74461 13.9751i 0.167130 0.623739i
\(503\) −12.6397 + 7.29753i −0.563576 + 0.325381i −0.754580 0.656208i \(-0.772159\pi\)
0.191003 + 0.981589i \(0.438826\pi\)
\(504\) 1.02154 2.44059i 0.0455030 0.108712i
\(505\) −2.15818 8.05443i −0.0960376 0.358417i
\(506\) −4.08193 + 2.35671i −0.181464 + 0.104768i
\(507\) 7.87985 10.3396i 0.349956 0.459199i
\(508\) 4.54541 7.87288i 0.201670 0.349303i
\(509\) 16.9231 16.9231i 0.750102 0.750102i −0.224396 0.974498i \(-0.572041\pi\)
0.974498 + 0.224396i \(0.0720408\pi\)
\(510\) 0.788136 + 0.455030i 0.0348992 + 0.0201491i
\(511\) 1.13654 + 0.475715i 0.0502776 + 0.0210444i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 2.78168 0.745350i 0.122814 0.0329080i
\(514\) −9.08543 9.08543i −0.400741 0.400741i
\(515\) 3.13627 + 11.7047i 0.138201 + 0.515772i
\(516\) 4.62926 + 2.67270i 0.203792 + 0.117659i
\(517\) 6.72168 11.6423i 0.295619 0.512027i
\(518\) 20.2391 + 15.6496i 0.889255 + 0.687602i
\(519\) 18.5214i 0.812998i
\(520\) −2.42057 2.75097i −0.106149 0.120638i
\(521\) −6.38446 3.68607i −0.279708 0.161490i 0.353583 0.935403i \(-0.384963\pi\)
−0.633291 + 0.773913i \(0.718297\pi\)
\(522\) 2.40499 8.97556i 0.105264 0.392850i
\(523\) 33.6653i 1.47208i 0.676937 + 0.736041i \(0.263307\pi\)
−0.676937 + 0.736041i \(0.736693\pi\)
\(524\) −3.15234 5.46001i −0.137711 0.238522i
\(525\) 8.30337 + 6.42044i 0.362389 + 0.280211i
\(526\) 2.75892 10.2964i 0.120294 0.448945i
\(527\) −0.936120 3.49365i −0.0407780 0.152186i
\(528\) −4.09120 + 1.09623i −0.178047 + 0.0477075i
\(529\) 21.7616 0.946157
\(530\) −3.85691 −0.167533
\(531\) −7.47136 + 2.00194i −0.324229 + 0.0868770i
\(532\) 7.02842 + 2.94184i 0.304721 + 0.127545i
\(533\) −4.68173 + 2.31838i −0.202788 + 0.100420i
\(534\) −6.56410 11.3694i −0.284056 0.492000i
\(535\) −1.19230 0.319477i −0.0515478 0.0138122i
\(536\) −2.16324 3.74684i −0.0934377 0.161839i
\(537\) 11.0604 19.1571i 0.477290 0.826691i
\(538\) −6.79110 + 6.79110i −0.292785 + 0.292785i
\(539\) 0.219820 29.6478i 0.00946831 1.27702i
\(540\) 0.981662 + 0.263036i 0.0422440 + 0.0113193i
\(541\) 9.31061 + 2.49477i 0.400294 + 0.107259i 0.453349 0.891333i \(-0.350229\pi\)
−0.0530547 + 0.998592i \(0.516896\pi\)
\(542\) 13.1548i 0.565048i
\(543\) −11.2099 + 6.47204i −0.481063 + 0.277742i
\(544\) −0.633194 0.633194i −0.0271480 0.0271480i
\(545\) 11.0014 0.471250
\(546\) −6.30451 + 7.15913i −0.269808 + 0.306383i
\(547\) −7.74134 −0.330996 −0.165498 0.986210i \(-0.552923\pi\)
−0.165498 + 0.986210i \(0.552923\pi\)
\(548\) 16.0668 + 16.0668i 0.686341 + 0.686341i
\(549\) 2.04275 1.17938i 0.0871824 0.0503348i
\(550\) 16.8030i 0.716480i
\(551\) 25.8479 + 6.92592i 1.10116 + 0.295054i
\(552\) −1.07491 0.288021i −0.0457512 0.0122590i
\(553\) −2.23446 + 16.4995i −0.0950189 + 0.701631i
\(554\) −13.9361 + 13.9361i −0.592089 + 0.592089i
\(555\) −4.91365 + 8.51069i −0.208573 + 0.361259i
\(556\) 7.96507 + 13.7959i 0.337794 + 0.585077i
\(557\) −13.4348 3.59983i −0.569249 0.152530i −0.0372967 0.999304i \(-0.511875\pi\)
−0.531952 + 0.846774i \(0.678541\pi\)
\(558\) −2.01954 3.49795i −0.0854941 0.148080i
\(559\) −12.7315 14.4693i −0.538487 0.611988i
\(560\) 1.62895 + 2.13927i 0.0688358 + 0.0904005i
\(561\) −3.66356 + 0.981647i −0.154675 + 0.0414452i
\(562\) 18.1537 0.765767
\(563\) 1.49021 0.0628050 0.0314025 0.999507i \(-0.490003\pi\)
0.0314025 + 0.999507i \(0.490003\pi\)
\(564\) 3.06581 0.821480i 0.129094 0.0345906i
\(565\) −3.56629 13.3096i −0.150035 0.559937i
\(566\) −5.00762 + 18.6887i −0.210486 + 0.785544i
\(567\) 0.355062 2.62182i 0.0149112 0.110106i
\(568\) −0.444230 0.769429i −0.0186395 0.0322845i
\(569\) 1.50113i 0.0629308i 0.999505 + 0.0314654i \(0.0100174\pi\)
−0.999505 + 0.0314654i \(0.989983\pi\)
\(570\) −0.757493 + 2.82700i −0.0317279 + 0.118410i
\(571\) 27.0036 + 15.5905i 1.13006 + 0.652443i 0.943951 0.330085i \(-0.107078\pi\)
0.186113 + 0.982528i \(0.440411\pi\)
\(572\) 15.2403 + 0.973674i 0.637230 + 0.0407114i
\(573\) 7.30247i 0.305065i
\(574\) 3.54720 1.45392i 0.148057 0.0606853i
\(575\) 2.20738 3.82329i 0.0920541 0.159442i
\(576\) −0.866025 0.500000i −0.0360844 0.0208333i
\(577\) 10.9832 + 40.9897i 0.457235 + 1.70643i 0.681432 + 0.731881i \(0.261357\pi\)
−0.224197 + 0.974544i \(0.571976\pi\)
\(578\) 11.4538 + 11.4538i 0.476416 + 0.476416i
\(579\) −19.9346 + 5.34146i −0.828454 + 0.221984i
\(580\) 6.67761 + 6.67761i 0.277273 + 0.277273i
\(581\) 27.9585 3.57542i 1.15991 0.148333i
\(582\) 7.23146 + 4.17509i 0.299754 + 0.173063i
\(583\) 11.3661 11.3661i 0.470737 0.470737i
\(584\) 0.232842 0.403294i 0.00963507 0.0166884i
\(585\) −3.05010 2.03075i −0.126106 0.0839610i
\(586\) 9.28570 5.36110i 0.383589 0.221465i
\(587\) −2.49601 9.31524i −0.103021 0.384481i 0.895092 0.445882i \(-0.147110\pi\)
−0.998113 + 0.0614008i \(0.980443\pi\)
\(588\) 4.98631 4.91291i 0.205632 0.202605i
\(589\) 10.0734 5.81590i 0.415069 0.239640i
\(590\) 2.03456 7.59308i 0.0837615 0.312602i
\(591\) −11.8763 + 11.8763i −0.488525 + 0.488525i
\(592\) 6.83756 6.83756i 0.281022 0.281022i
\(593\) −6.10134 + 22.7705i −0.250552 + 0.935073i 0.719959 + 0.694016i \(0.244161\pi\)
−0.970511 + 0.241056i \(0.922506\pi\)
\(594\) −3.66807 + 2.11776i −0.150503 + 0.0868928i
\(595\) 1.45868 + 1.91565i 0.0598001 + 0.0785341i
\(596\) −0.921550 3.43927i −0.0377482 0.140878i
\(597\) −3.69158 + 2.13133i −0.151086 + 0.0872297i
\(598\) 3.33983 + 2.22365i 0.136576 + 0.0909317i
\(599\) −14.5945 + 25.2784i −0.596314 + 1.03285i 0.397046 + 0.917799i \(0.370035\pi\)
−0.993360 + 0.115048i \(0.963298\pi\)
\(600\) 2.80520 2.80520i 0.114522 0.114522i
\(601\) −22.5127 12.9977i −0.918311 0.530187i −0.0352154 0.999380i \(-0.511212\pi\)
−0.883096 + 0.469192i \(0.844545\pi\)
\(602\) 8.56783 + 11.2519i 0.349199 + 0.458595i
\(603\) −3.05928 3.05928i −0.124584 0.124584i
\(604\) 4.76017 1.27548i 0.193688 0.0518987i
\(605\) −4.98702 4.98702i −0.202751 0.202751i
\(606\) 2.12358 + 7.92531i 0.0862645 + 0.321944i
\(607\) 19.9709 + 11.5302i 0.810594 + 0.467997i 0.847162 0.531335i \(-0.178309\pi\)
−0.0365681 + 0.999331i \(0.511643\pi\)
\(608\) 1.43990 2.49399i 0.0583958 0.101145i
\(609\) 15.0385 19.4488i 0.609390 0.788106i
\(610\) 2.39719i 0.0970594i
\(611\) −11.4206 0.729638i −0.462027 0.0295180i
\(612\) −0.775501 0.447736i −0.0313478 0.0180987i
\(613\) −7.12247 + 26.5814i −0.287674 + 1.07361i 0.659190 + 0.751977i \(0.270899\pi\)
−0.946863 + 0.321636i \(0.895767\pi\)
\(614\) 6.09042i 0.245789i
\(615\) 0.736286 + 1.27528i 0.0296899 + 0.0514244i
\(616\) −11.1048 1.50387i −0.447424 0.0605927i
\(617\) −3.65190 + 13.6291i −0.147020 + 0.548687i 0.852637 + 0.522504i \(0.175002\pi\)
−0.999657 + 0.0261829i \(0.991665\pi\)
\(618\) −3.08600 11.5171i −0.124137 0.463286i
\(619\) 7.54604 2.02195i 0.303301 0.0812692i −0.103959 0.994582i \(-0.533151\pi\)
0.407260 + 0.913312i \(0.366484\pi\)
\(620\) 4.10489 0.164856
\(621\) −1.11283 −0.0446563
\(622\) −0.611774 + 0.163924i −0.0245299 + 0.00657276i
\(623\) −4.40600 34.4534i −0.176523 1.38034i
\(624\) 2.38177 + 2.70687i 0.0953471 + 0.108362i
\(625\) 5.28702 + 9.15739i 0.211481 + 0.366296i
\(626\) −6.95219 1.86283i −0.277865 0.0744538i
\(627\) −6.09875 10.5633i −0.243561 0.421859i
\(628\) −5.34232 + 9.25317i −0.213182 + 0.369242i
\(629\) 6.12284 6.12284i 0.244134 0.244134i
\(630\) 2.12713 + 1.64477i 0.0847469 + 0.0655291i
\(631\) 5.31050 + 1.42295i 0.211408 + 0.0566466i 0.362969 0.931801i \(-0.381763\pi\)
−0.151561 + 0.988448i \(0.548430\pi\)
\(632\) 6.07873 + 1.62879i 0.241799 + 0.0647898i
\(633\) 15.7727i 0.626908i
\(634\) 7.57586 4.37393i 0.300876 0.173711i
\(635\) 6.53291 + 6.53291i 0.259250 + 0.259250i
\(636\) 3.79508 0.150485
\(637\) −22.7000 + 11.0322i −0.899408 + 0.437110i
\(638\) −39.3572 −1.55817
\(639\) −0.628236 0.628236i −0.0248526 0.0248526i
\(640\) 0.880134 0.508146i 0.0347904 0.0200862i
\(641\) 20.1284i 0.795026i 0.917597 + 0.397513i \(0.130127\pi\)
−0.917597 + 0.397513i \(0.869873\pi\)
\(642\) 1.17319 + 0.314355i 0.0463021 + 0.0124066i
\(643\) −35.9273 9.62668i −1.41683 0.379639i −0.532474 0.846446i \(-0.678738\pi\)
−0.884359 + 0.466807i \(0.845404\pi\)
\(644\) −2.32918 1.80100i −0.0917827 0.0709695i
\(645\) −3.84135 + 3.84135i −0.151253 + 0.151253i
\(646\) 1.28939 2.23330i 0.0507305 0.0878679i
\(647\) 9.32424 + 16.1501i 0.366574 + 0.634924i 0.989027 0.147732i \(-0.0471974\pi\)
−0.622454 + 0.782657i \(0.713864\pi\)
\(648\) −0.965926 0.258819i −0.0379452 0.0101674i
\(649\) 16.3807 + 28.3722i 0.642999 + 1.11371i
\(650\) −12.8182 + 6.34753i −0.502772 + 0.248971i
\(651\) −1.35557 10.6001i −0.0531290 0.415451i
\(652\) 22.6492 6.06884i 0.887012 0.237674i
\(653\) 3.85660 0.150920 0.0754602 0.997149i \(-0.475957\pi\)
0.0754602 + 0.997149i \(0.475957\pi\)
\(654\) −10.8251 −0.423294
\(655\) 6.18906 1.65835i 0.241827 0.0647973i
\(656\) −0.375020 1.39959i −0.0146421 0.0546449i
\(657\) 0.120528 0.449816i 0.00470224 0.0175490i
\(658\) 8.32153 + 1.12695i 0.324407 + 0.0439331i
\(659\) 13.9329 + 24.1325i 0.542748 + 0.940067i 0.998745 + 0.0500858i \(0.0159495\pi\)
−0.455997 + 0.889981i \(0.650717\pi\)
\(660\) 4.30453i 0.167553i
\(661\) −8.52114 + 31.8013i −0.331434 + 1.23693i 0.576250 + 0.817274i \(0.304516\pi\)
−0.907684 + 0.419655i \(0.862151\pi\)
\(662\) −11.0109 6.35712i −0.427949 0.247077i
\(663\) 2.13281 + 2.42393i 0.0828314 + 0.0941376i
\(664\) 10.6534i 0.413431i
\(665\) −4.73662 + 6.12573i −0.183678 + 0.237546i
\(666\) 4.83488 8.37426i 0.187348 0.324496i
\(667\) −8.95523 5.17031i −0.346748 0.200195i
\(668\) 4.22772 + 15.7780i 0.163575 + 0.610471i
\(669\) 19.2565 + 19.2565i 0.744500 + 0.744500i
\(670\) 4.24714 1.13802i 0.164081 0.0439655i
\(671\) −7.06441 7.06441i −0.272719 0.272719i
\(672\) −1.60284 2.10497i −0.0618309 0.0812011i
\(673\) −41.7627 24.1117i −1.60983 0.929438i −0.989406 0.145174i \(-0.953626\pi\)
−0.620427 0.784264i \(-0.713041\pi\)
\(674\) −13.5729 + 13.5729i −0.522807 + 0.522807i
\(675\) 1.98358 3.43565i 0.0763479 0.132238i
\(676\) −5.01446 11.9940i −0.192864 0.461306i
\(677\) 38.4502 22.1992i 1.47776 0.853185i 0.478076 0.878318i \(-0.341334\pi\)
0.999684 + 0.0251328i \(0.00800086\pi\)
\(678\) 3.50912 + 13.0962i 0.134767 + 0.502956i
\(679\) 13.3840 + 17.5769i 0.513630 + 0.674539i
\(680\) 0.788136 0.455030i 0.0302236 0.0174496i
\(681\) −2.64057 + 9.85473i −0.101187 + 0.377634i
\(682\) −12.0969 + 12.0969i −0.463216 + 0.463216i
\(683\) −9.83294 + 9.83294i −0.376247 + 0.376247i −0.869746 0.493499i \(-0.835718\pi\)
0.493499 + 0.869746i \(0.335718\pi\)
\(684\) 0.745350 2.78168i 0.0284992 0.106360i
\(685\) −19.9983 + 11.5460i −0.764097 + 0.441152i
\(686\) 17.1882 6.89667i 0.656250 0.263316i
\(687\) −6.86791 25.6314i −0.262027 0.977899i
\(688\) 4.62926 2.67270i 0.176489 0.101896i
\(689\) −12.9644 4.37700i −0.493905 0.166751i
\(690\) 0.565479 0.979439i 0.0215274 0.0372866i
\(691\) −6.38125 + 6.38125i −0.242754 + 0.242754i −0.817989 0.575234i \(-0.804911\pi\)
0.575234 + 0.817989i \(0.304911\pi\)
\(692\) −16.0400 9.26068i −0.609748 0.352038i
\(693\) −11.1156 + 1.42150i −0.422247 + 0.0539982i
\(694\) −10.9377 10.9377i −0.415191 0.415191i
\(695\) −15.6380 + 4.19019i −0.593184 + 0.158943i
\(696\) −6.57057 6.57057i −0.249057 0.249057i
\(697\) −0.335820 1.25330i −0.0127201 0.0474720i
\(698\) −4.82255 2.78430i −0.182536 0.105387i
\(699\) 13.6710 23.6788i 0.517083 0.895614i
\(700\) 9.71195 3.98071i 0.367077 0.150457i
\(701\) 41.6879i 1.57453i −0.616615 0.787265i \(-0.711497\pi\)
0.616615 0.787265i \(-0.288503\pi\)
\(702\) 3.00120 + 1.99819i 0.113273 + 0.0754169i
\(703\) 24.1163 + 13.9235i 0.909563 + 0.525136i
\(704\) −1.09623 + 4.09120i −0.0413159 + 0.154193i
\(705\) 3.22566i 0.121486i
\(706\) 14.4162 + 24.9695i 0.542559 + 0.939740i
\(707\) −2.91324 + 21.5117i −0.109564 + 0.809031i
\(708\) −2.00194 + 7.47136i −0.0752377 + 0.280791i
\(709\) 0.827388 + 3.08785i 0.0310732 + 0.115967i 0.979721 0.200369i \(-0.0642141\pi\)
−0.948647 + 0.316336i \(0.897547\pi\)
\(710\) 0.872168 0.233697i 0.0327319 0.00877048i
\(711\) 6.29316 0.236012
\(712\) −13.1282 −0.492000
\(713\) −4.34166 + 1.16334i −0.162596 + 0.0435676i
\(714\) −1.43530 1.88494i −0.0537147 0.0705422i
\(715\) −4.96457 + 14.7047i −0.185664 + 0.549926i
\(716\) −11.0604 19.1571i −0.413345 0.715935i
\(717\) −26.7663 7.17200i −0.999604 0.267843i
\(718\) 1.48106 + 2.56527i 0.0552726 + 0.0957349i
\(719\) −2.51955 + 4.36399i −0.0939634 + 0.162749i −0.909175 0.416413i \(-0.863287\pi\)
0.815212 + 0.579163i \(0.196620\pi\)
\(720\) 0.718627 0.718627i 0.0267816 0.0267816i
\(721\) 4.23353 31.2609i 0.157665 1.16422i
\(722\) −10.3419 2.77110i −0.384885 0.103130i
\(723\) −24.2575 6.49978i −0.902146 0.241729i
\(724\) 12.9441i 0.481063i
\(725\) 31.9247 18.4317i 1.18565 0.684538i
\(726\) 4.90707 + 4.90707i 0.182119 + 0.182119i
\(727\) 4.03230 0.149550 0.0747748 0.997200i \(-0.476176\pi\)
0.0747748 + 0.997200i \(0.476176\pi\)
\(728\) 3.04773 + 9.03943i 0.112957 + 0.335024i
\(729\) −1.00000 −0.0370370
\(730\) 0.334653 + 0.334653i 0.0123861 + 0.0123861i
\(731\) 4.14537 2.39333i 0.153322 0.0885206i
\(732\) 2.35876i 0.0871824i
\(733\) −18.7546 5.02527i −0.692716 0.185613i −0.104750 0.994499i \(-0.533404\pi\)
−0.587966 + 0.808886i \(0.700071\pi\)
\(734\) 12.3125 + 3.29912i 0.454462 + 0.121773i
\(735\) 3.51124 + 6.18714i 0.129514 + 0.228216i
\(736\) −0.786889 + 0.786889i −0.0290051 + 0.0290051i
\(737\) −9.16245 + 15.8698i −0.337503 + 0.584573i
\(738\) −0.724483 1.25484i −0.0266686 0.0461913i
\(739\) −22.5465 6.04132i −0.829387 0.222234i −0.180941 0.983494i \(-0.557914\pi\)
−0.648446 + 0.761260i \(0.724581\pi\)
\(740\) 4.91365 + 8.51069i 0.180629 + 0.312859i
\(741\) −5.75441 + 8.64290i −0.211394 + 0.317505i
\(742\) 9.26222 + 3.87683i 0.340027 + 0.142323i
\(743\) 33.0260 8.84929i 1.21161 0.324649i 0.404214 0.914664i \(-0.367545\pi\)
0.807392 + 0.590016i \(0.200878\pi\)
\(744\) −4.03909 −0.148080
\(745\) 3.61860 0.132575
\(746\) 14.7552 3.95363i 0.540225 0.144753i
\(747\) −2.75730 10.2904i −0.100884 0.376505i
\(748\) −0.981647 + 3.66356i −0.0358926 + 0.133953i
\(749\) 2.54214 + 1.96567i 0.0928879 + 0.0718241i
\(750\) 4.55662 + 7.89230i 0.166384 + 0.288186i
\(751\) 37.0359i 1.35146i 0.737149 + 0.675730i \(0.236171\pi\)
−0.737149 + 0.675730i \(0.763829\pi\)
\(752\) 0.821480 3.06581i 0.0299563 0.111798i
\(753\) −12.5297 7.23404i −0.456609 0.263623i
\(754\) 14.8677 + 30.0239i 0.541450 + 1.09340i
\(755\) 5.00838i 0.182273i
\(756\) −2.09303 1.61840i −0.0761228 0.0588607i
\(757\) −21.9087 + 37.9470i −0.796286 + 1.37921i 0.125733 + 0.992064i \(0.459872\pi\)
−0.922019 + 0.387144i \(0.873461\pi\)
\(758\) 13.1746 + 7.60636i 0.478523 + 0.276275i
\(759\) 1.21992 + 4.55281i 0.0442803 + 0.165256i
\(760\) 2.06951 + 2.06951i 0.0750689 + 0.0750689i
\(761\) 22.5899 6.05293i 0.818882 0.219419i 0.175024 0.984564i \(-0.444000\pi\)
0.643857 + 0.765145i \(0.277333\pi\)
\(762\) −6.42818 6.42818i −0.232868 0.232868i
\(763\) −26.4195 11.0582i −0.956451 0.400335i
\(764\) −6.32412 3.65123i −0.228799 0.132097i
\(765\) 0.643510 0.643510i 0.0232662 0.0232662i
\(766\) 7.15218 12.3879i 0.258419 0.447595i
\(767\) 15.4558 23.2141i 0.558078 0.838211i
\(768\) −0.866025 + 0.500000i −0.0312500 + 0.0180422i
\(769\) 11.6639 + 43.5304i 0.420613 + 1.56975i 0.773321 + 0.634014i \(0.218594\pi\)
−0.352709 + 0.935733i \(0.614739\pi\)
\(770\) 4.39724 10.5056i 0.158466 0.378594i
\(771\) −11.1273 + 6.42437i −0.400741 + 0.231368i
\(772\) −5.34146 + 19.9346i −0.192243 + 0.717462i
\(773\) −33.0192 + 33.0192i −1.18762 + 1.18762i −0.209894 + 0.977724i \(0.567312\pi\)
−0.977724 + 0.209894i \(0.932688\pi\)
\(774\) 3.77977 3.77977i 0.