Properties

Label 546.2.cg.b.145.8
Level $546$
Weight $2$
Character 546.145
Analytic conductor $4.360$
Analytic rank $0$
Dimension $40$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.cg (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 145.8
Character \(\chi\) \(=\) 546.145
Dual form 546.2.cg.b.241.8

$q$-expansion

\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(-0.866025 - 0.500000i) q^{3} -1.00000i q^{4} +(0.499350 - 0.133800i) q^{5} +(-0.965926 + 0.258819i) q^{6} +(0.430450 + 2.61050i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.707107 - 0.707107i) q^{2} +(-0.866025 - 0.500000i) q^{3} -1.00000i q^{4} +(0.499350 - 0.133800i) q^{5} +(-0.965926 + 0.258819i) q^{6} +(0.430450 + 2.61050i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(0.500000 + 0.866025i) q^{9} +(0.258483 - 0.447705i) q^{10} +(4.55131 - 1.21952i) q^{11} +(-0.500000 + 0.866025i) q^{12} +(1.50046 - 3.27851i) q^{13} +(2.15028 + 1.54153i) q^{14} +(-0.499350 - 0.133800i) q^{15} -1.00000 q^{16} +1.33604 q^{17} +(0.965926 + 0.258819i) q^{18} +(2.16519 - 8.08058i) q^{19} +(-0.133800 - 0.499350i) q^{20} +(0.932469 - 2.47598i) q^{21} +(2.35593 - 4.08059i) q^{22} +4.09068i q^{23} +(0.258819 + 0.965926i) q^{24} +(-4.09868 + 2.36637i) q^{25} +(-1.25727 - 3.37924i) q^{26} -1.00000i q^{27} +(2.61050 - 0.430450i) q^{28} +(-1.91756 - 3.32131i) q^{29} +(-0.447705 + 0.258483i) q^{30} +(0.785461 - 2.93138i) q^{31} +(-0.707107 + 0.707107i) q^{32} +(-4.55131 - 1.21952i) q^{33} +(0.944725 - 0.944725i) q^{34} +(0.564231 + 1.24596i) q^{35} +(0.866025 - 0.500000i) q^{36} +(-1.49238 - 1.49238i) q^{37} +(-4.18282 - 7.24485i) q^{38} +(-2.93869 + 2.08904i) q^{39} +(-0.447705 - 0.258483i) q^{40} +(-1.92609 + 7.18828i) q^{41} +(-1.09143 - 2.41014i) q^{42} +(8.73281 + 5.04189i) q^{43} +(-1.21952 - 4.55131i) q^{44} +(0.365550 + 0.365550i) q^{45} +(2.89255 + 2.89255i) q^{46} +(-1.67580 - 6.25416i) q^{47} +(0.866025 + 0.500000i) q^{48} +(-6.62943 + 2.24738i) q^{49} +(-1.22493 + 4.57148i) q^{50} +(-1.15705 - 0.668021i) q^{51} +(-3.27851 - 1.50046i) q^{52} +(2.49408 + 4.31988i) q^{53} +(-0.707107 - 0.707107i) q^{54} +(2.10952 - 1.21793i) q^{55} +(1.54153 - 2.15028i) q^{56} +(-5.91540 + 5.91540i) q^{57} +(-3.70444 - 0.992601i) q^{58} +(-0.738873 + 0.738873i) q^{59} +(-0.133800 + 0.499350i) q^{60} +(9.64567 - 5.56893i) q^{61} +(-1.51739 - 2.62820i) q^{62} +(-2.04553 + 1.67803i) q^{63} +1.00000i q^{64} +(0.310590 - 1.83789i) q^{65} +(-4.08059 + 2.35593i) q^{66} +(1.31257 + 4.89856i) q^{67} -1.33604i q^{68} +(2.04534 - 3.54263i) q^{69} +(1.28000 + 0.482054i) q^{70} +(1.85890 + 6.93749i) q^{71} +(0.258819 - 0.965926i) q^{72} +(3.00429 + 0.804997i) q^{73} -2.11055 q^{74} +4.73275 q^{75} +(-8.08058 - 2.16519i) q^{76} +(5.14267 + 11.3562i) q^{77} +(-0.600796 + 3.55514i) q^{78} +(5.35897 - 9.28201i) q^{79} +(-0.499350 + 0.133800i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(3.72093 + 6.44483i) q^{82} +(3.47927 + 3.47927i) q^{83} +(-2.47598 - 0.932469i) q^{84} +(0.667153 - 0.178763i) q^{85} +(9.74018 - 2.60987i) q^{86} +3.83512i q^{87} +(-4.08059 - 2.35593i) q^{88} +(-4.91933 + 4.91933i) q^{89} +0.516965 q^{90} +(9.20442 + 2.50572i) q^{91} +4.09068 q^{92} +(-2.14592 + 2.14592i) q^{93} +(-5.60732 - 3.23739i) q^{94} -4.32474i q^{95} +(0.965926 - 0.258819i) q^{96} +(-14.7177 + 3.94361i) q^{97} +(-3.09857 + 6.27685i) q^{98} +(3.33179 + 3.33179i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q + 4q^{7} + 20q^{9} + O(q^{10}) \) \( 40q + 4q^{7} + 20q^{9} + 8q^{11} - 20q^{12} + 4q^{14} - 40q^{16} + 16q^{17} + 4q^{19} + 4q^{21} - 4q^{22} - 24q^{25} + 8q^{26} - 4q^{28} - 12q^{29} - 8q^{33} - 8q^{34} - 32q^{35} + 40q^{37} + 8q^{38} + 20q^{39} + 20q^{41} + 12q^{42} - 24q^{43} - 4q^{44} + 32q^{46} + 4q^{47} + 32q^{49} - 16q^{50} + 24q^{51} + 16q^{52} - 4q^{53} + 24q^{55} + 12q^{56} + 8q^{57} + 12q^{58} + 24q^{59} + 60q^{61} + 32q^{62} - 4q^{63} + 44q^{65} - 12q^{67} - 8q^{69} - 24q^{70} - 28q^{71} + 60q^{73} - 40q^{74} - 72q^{75} + 4q^{76} - 12q^{77} + 4q^{78} - 20q^{81} - 24q^{82} + 60q^{83} - 8q^{84} - 4q^{85} - 20q^{86} - 36q^{89} - 16q^{92} - 24q^{93} - 48q^{97} - 88q^{98} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) 1.00000i 0.500000i
\(5\) 0.499350 0.133800i 0.223316 0.0598374i −0.145426 0.989369i \(-0.546455\pi\)
0.368742 + 0.929532i \(0.379789\pi\)
\(6\) −0.965926 + 0.258819i −0.394338 + 0.105662i
\(7\) 0.430450 + 2.61050i 0.162695 + 0.986676i
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0.258483 0.447705i 0.0817394 0.141577i
\(11\) 4.55131 1.21952i 1.37227 0.367699i 0.503963 0.863725i \(-0.331875\pi\)
0.868308 + 0.496026i \(0.165208\pi\)
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) 1.50046 3.27851i 0.416154 0.909294i
\(14\) 2.15028 + 1.54153i 0.574686 + 0.411991i
\(15\) −0.499350 0.133800i −0.128932 0.0345471i
\(16\) −1.00000 −0.250000
\(17\) 1.33604 0.324038 0.162019 0.986788i \(-0.448199\pi\)
0.162019 + 0.986788i \(0.448199\pi\)
\(18\) 0.965926 + 0.258819i 0.227671 + 0.0610042i
\(19\) 2.16519 8.08058i 0.496728 1.85381i −0.0234039 0.999726i \(-0.507450\pi\)
0.520131 0.854086i \(-0.325883\pi\)
\(20\) −0.133800 0.499350i −0.0299187 0.111658i
\(21\) 0.932469 2.47598i 0.203481 0.540304i
\(22\) 2.35593 4.08059i 0.502286 0.869985i
\(23\) 4.09068i 0.852966i 0.904496 + 0.426483i \(0.140248\pi\)
−0.904496 + 0.426483i \(0.859752\pi\)
\(24\) 0.258819 + 0.965926i 0.0528312 + 0.197169i
\(25\) −4.09868 + 2.36637i −0.819736 + 0.473275i
\(26\) −1.25727 3.37924i −0.246570 0.662724i
\(27\) 1.00000i 0.192450i
\(28\) 2.61050 0.430450i 0.493338 0.0813475i
\(29\) −1.91756 3.32131i −0.356082 0.616751i 0.631221 0.775603i \(-0.282554\pi\)
−0.987302 + 0.158852i \(0.949221\pi\)
\(30\) −0.447705 + 0.258483i −0.0817394 + 0.0471922i
\(31\) 0.785461 2.93138i 0.141073 0.526492i −0.858826 0.512268i \(-0.828806\pi\)
0.999899 0.0142239i \(-0.00452777\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) −4.55131 1.21952i −0.792281 0.212291i
\(34\) 0.944725 0.944725i 0.162019 0.162019i
\(35\) 0.564231 + 1.24596i 0.0953725 + 0.210605i
\(36\) 0.866025 0.500000i 0.144338 0.0833333i
\(37\) −1.49238 1.49238i −0.245346 0.245346i 0.573711 0.819058i \(-0.305503\pi\)
−0.819058 + 0.573711i \(0.805503\pi\)
\(38\) −4.18282 7.24485i −0.678542 1.17527i
\(39\) −2.93869 + 2.08904i −0.470567 + 0.334514i
\(40\) −0.447705 0.258483i −0.0707884 0.0408697i
\(41\) −1.92609 + 7.18828i −0.300805 + 1.12262i 0.635691 + 0.771943i \(0.280715\pi\)
−0.936497 + 0.350677i \(0.885952\pi\)
\(42\) −1.09143 2.41014i −0.168411 0.371893i
\(43\) 8.73281 + 5.04189i 1.33174 + 0.768881i 0.985566 0.169289i \(-0.0541472\pi\)
0.346174 + 0.938170i \(0.387481\pi\)
\(44\) −1.21952 4.55131i −0.183849 0.686135i
\(45\) 0.365550 + 0.365550i 0.0544929 + 0.0544929i
\(46\) 2.89255 + 2.89255i 0.426483 + 0.426483i
\(47\) −1.67580 6.25416i −0.244440 0.912262i −0.973664 0.227987i \(-0.926785\pi\)
0.729224 0.684275i \(-0.239881\pi\)
\(48\) 0.866025 + 0.500000i 0.125000 + 0.0721688i
\(49\) −6.62943 + 2.24738i −0.947061 + 0.321054i
\(50\) −1.22493 + 4.57148i −0.173231 + 0.646505i
\(51\) −1.15705 0.668021i −0.162019 0.0935417i
\(52\) −3.27851 1.50046i −0.454647 0.208077i
\(53\) 2.49408 + 4.31988i 0.342589 + 0.593381i 0.984913 0.173052i \(-0.0553629\pi\)
−0.642324 + 0.766433i \(0.722030\pi\)
\(54\) −0.707107 0.707107i −0.0962250 0.0962250i
\(55\) 2.10952 1.21793i 0.284448 0.164226i
\(56\) 1.54153 2.15028i 0.205995 0.287343i
\(57\) −5.91540 + 5.91540i −0.783513 + 0.783513i
\(58\) −3.70444 0.992601i −0.486416 0.130335i
\(59\) −0.738873 + 0.738873i −0.0961930 + 0.0961930i −0.753566 0.657373i \(-0.771668\pi\)
0.657373 + 0.753566i \(0.271668\pi\)
\(60\) −0.133800 + 0.499350i −0.0172736 + 0.0644658i
\(61\) 9.64567 5.56893i 1.23500 0.713028i 0.266933 0.963715i \(-0.413990\pi\)
0.968068 + 0.250687i \(0.0806564\pi\)
\(62\) −1.51739 2.62820i −0.192709 0.333782i
\(63\) −2.04553 + 1.67803i −0.257713 + 0.211412i
\(64\) 1.00000i 0.125000i
\(65\) 0.310590 1.83789i 0.0385240 0.227962i
\(66\) −4.08059 + 2.35593i −0.502286 + 0.289995i
\(67\) 1.31257 + 4.89856i 0.160355 + 0.598454i 0.998587 + 0.0531402i \(0.0169230\pi\)
−0.838232 + 0.545314i \(0.816410\pi\)
\(68\) 1.33604i 0.162019i
\(69\) 2.04534 3.54263i 0.246230 0.426483i
\(70\) 1.28000 + 0.482054i 0.152989 + 0.0576165i
\(71\) 1.85890 + 6.93749i 0.220610 + 0.823329i 0.984116 + 0.177528i \(0.0568099\pi\)
−0.763505 + 0.645801i \(0.776523\pi\)
\(72\) 0.258819 0.965926i 0.0305021 0.113835i
\(73\) 3.00429 + 0.804997i 0.351625 + 0.0942178i 0.430308 0.902682i \(-0.358405\pi\)
−0.0786830 + 0.996900i \(0.525071\pi\)
\(74\) −2.11055 −0.245346
\(75\) 4.73275 0.546491
\(76\) −8.08058 2.16519i −0.926906 0.248364i
\(77\) 5.14267 + 11.3562i 0.586061 + 1.29416i
\(78\) −0.600796 + 3.55514i −0.0680267 + 0.402541i
\(79\) 5.35897 9.28201i 0.602931 1.04431i −0.389444 0.921050i \(-0.627333\pi\)
0.992375 0.123257i \(-0.0393339\pi\)
\(80\) −0.499350 + 0.133800i −0.0558290 + 0.0149593i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 3.72093 + 6.44483i 0.410907 + 0.711713i
\(83\) 3.47927 + 3.47927i 0.381899 + 0.381899i 0.871786 0.489887i \(-0.162962\pi\)
−0.489887 + 0.871786i \(0.662962\pi\)
\(84\) −2.47598 0.932469i −0.270152 0.101741i
\(85\) 0.667153 0.178763i 0.0723629 0.0193896i
\(86\) 9.74018 2.60987i 1.05031 0.281430i
\(87\) 3.83512i 0.411168i
\(88\) −4.08059 2.35593i −0.434992 0.251143i
\(89\) −4.91933 + 4.91933i −0.521448 + 0.521448i −0.918009 0.396560i \(-0.870204\pi\)
0.396560 + 0.918009i \(0.370204\pi\)
\(90\) 0.516965 0.0544929
\(91\) 9.20442 + 2.50572i 0.964885 + 0.262671i
\(92\) 4.09068 0.426483
\(93\) −2.14592 + 2.14592i −0.222522 + 0.222522i
\(94\) −5.60732 3.23739i −0.578351 0.333911i
\(95\) 4.32474i 0.443709i
\(96\) 0.965926 0.258819i 0.0985844 0.0264156i
\(97\) −14.7177 + 3.94361i −1.49436 + 0.400413i −0.911207 0.411950i \(-0.864848\pi\)
−0.583153 + 0.812362i \(0.698181\pi\)
\(98\) −3.09857 + 6.27685i −0.313003 + 0.634058i
\(99\) 3.33179 + 3.33179i 0.334857 + 0.334857i
\(100\) 2.36637 + 4.09868i 0.236637 + 0.409868i
\(101\) −7.97917 + 13.8203i −0.793957 + 1.37517i 0.129542 + 0.991574i \(0.458649\pi\)
−0.923499 + 0.383600i \(0.874684\pi\)
\(102\) −1.29052 + 0.345793i −0.127780 + 0.0342386i
\(103\) 2.64976 4.58953i 0.261089 0.452220i −0.705443 0.708767i \(-0.749252\pi\)
0.966532 + 0.256548i \(0.0825850\pi\)
\(104\) −3.37924 + 1.25727i −0.331362 + 0.123285i
\(105\) 0.134341 1.36115i 0.0131103 0.132834i
\(106\) 4.81820 + 1.29103i 0.467985 + 0.125396i
\(107\) −13.0348 −1.26012 −0.630059 0.776548i \(-0.716969\pi\)
−0.630059 + 0.776548i \(0.716969\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −15.8583 4.24923i −1.51895 0.407002i −0.599557 0.800332i \(-0.704656\pi\)
−0.919397 + 0.393330i \(0.871323\pi\)
\(110\) 0.630449 2.35287i 0.0601109 0.224337i
\(111\) 0.546250 + 2.03863i 0.0518478 + 0.193499i
\(112\) −0.430450 2.61050i −0.0406737 0.246669i
\(113\) −9.85871 + 17.0758i −0.927430 + 1.60636i −0.139824 + 0.990176i \(0.544654\pi\)
−0.787606 + 0.616179i \(0.788680\pi\)
\(114\) 8.36563i 0.783513i
\(115\) 0.547335 + 2.04268i 0.0510392 + 0.190481i
\(116\) −3.32131 + 1.91756i −0.308376 + 0.178041i
\(117\) 3.58950 0.339815i 0.331850 0.0314159i
\(118\) 1.04492i 0.0961930i
\(119\) 0.575100 + 3.48774i 0.0527193 + 0.319721i
\(120\) 0.258483 + 0.447705i 0.0235961 + 0.0408697i
\(121\) 9.70090 5.60081i 0.881900 0.509165i
\(122\) 2.88269 10.7583i 0.260986 0.974015i
\(123\) 5.26218 5.26218i 0.474475 0.474475i
\(124\) −2.93138 0.785461i −0.263246 0.0705365i
\(125\) −3.55780 + 3.55780i −0.318219 + 0.318219i
\(126\) −0.259864 + 2.63296i −0.0231505 + 0.234563i
\(127\) 3.47627 2.00703i 0.308469 0.178095i −0.337772 0.941228i \(-0.609673\pi\)
0.646241 + 0.763133i \(0.276340\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) −5.04189 8.73281i −0.443914 0.768881i
\(130\) −1.07996 1.51920i −0.0947188 0.133243i
\(131\) −13.2614 7.65648i −1.15866 0.668950i −0.207674 0.978198i \(-0.566589\pi\)
−0.950981 + 0.309248i \(0.899923\pi\)
\(132\) −1.21952 + 4.55131i −0.106146 + 0.396140i
\(133\) 22.0264 + 2.17393i 1.90993 + 0.188503i
\(134\) 4.39193 + 2.53568i 0.379405 + 0.219050i
\(135\) −0.133800 0.499350i −0.0115157 0.0429772i
\(136\) −0.944725 0.944725i −0.0810095 0.0810095i
\(137\) 13.3624 + 13.3624i 1.14163 + 1.14163i 0.988152 + 0.153476i \(0.0490467\pi\)
0.153476 + 0.988152i \(0.450953\pi\)
\(138\) −1.05875 3.95129i −0.0901265 0.336356i
\(139\) −2.82809 1.63280i −0.239876 0.138492i 0.375244 0.926926i \(-0.377559\pi\)
−0.615120 + 0.788434i \(0.710892\pi\)
\(140\) 1.24596 0.564231i 0.105303 0.0476863i
\(141\) −1.67580 + 6.25416i −0.141127 + 0.526695i
\(142\) 6.21999 + 3.59111i 0.521970 + 0.301359i
\(143\) 2.83086 16.7513i 0.236729 1.40082i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) −1.40192 1.40192i −0.116424 0.116424i
\(146\) 2.69357 1.55513i 0.222922 0.128704i
\(147\) 6.86494 + 1.36842i 0.566211 + 0.112866i
\(148\) −1.49238 + 1.49238i −0.122673 + 0.122673i
\(149\) −4.60358 1.23353i −0.377140 0.101054i 0.0652692 0.997868i \(-0.479209\pi\)
−0.442409 + 0.896813i \(0.645876\pi\)
\(150\) 3.34656 3.34656i 0.273245 0.273245i
\(151\) −1.82504 + 6.81115i −0.148520 + 0.554283i 0.851054 + 0.525079i \(0.175964\pi\)
−0.999573 + 0.0292047i \(0.990703\pi\)
\(152\) −7.24485 + 4.18282i −0.587635 + 0.339271i
\(153\) 0.668021 + 1.15705i 0.0540063 + 0.0935417i
\(154\) 11.6665 + 4.39367i 0.940113 + 0.354052i
\(155\) 1.56888i 0.126015i
\(156\) 2.08904 + 2.93869i 0.167257 + 0.235284i
\(157\) −6.74226 + 3.89265i −0.538091 + 0.310667i −0.744305 0.667840i \(-0.767219\pi\)
0.206214 + 0.978507i \(0.433886\pi\)
\(158\) −2.77401 10.3527i −0.220688 0.823619i
\(159\) 4.98817i 0.395587i
\(160\) −0.258483 + 0.447705i −0.0204348 + 0.0353942i
\(161\) −10.6787 + 1.76083i −0.841601 + 0.138773i
\(162\) 0.258819 + 0.965926i 0.0203347 + 0.0758903i
\(163\) −1.78741 + 6.67072i −0.140001 + 0.522491i 0.859926 + 0.510419i \(0.170510\pi\)
−0.999927 + 0.0120724i \(0.996157\pi\)
\(164\) 7.18828 + 1.92609i 0.561310 + 0.150403i
\(165\) −2.43587 −0.189632
\(166\) 4.92043 0.381899
\(167\) 8.03262 + 2.15233i 0.621583 + 0.166553i 0.555847 0.831285i \(-0.312394\pi\)
0.0657355 + 0.997837i \(0.479061\pi\)
\(168\) −2.41014 + 1.09143i −0.185946 + 0.0842057i
\(169\) −8.49722 9.83856i −0.653633 0.756812i
\(170\) 0.345344 0.598153i 0.0264867 0.0458762i
\(171\) 8.08058 2.16519i 0.617937 0.165576i
\(172\) 5.04189 8.73281i 0.384440 0.665870i
\(173\) −4.74061 8.21097i −0.360422 0.624269i 0.627608 0.778529i \(-0.284034\pi\)
−0.988030 + 0.154260i \(0.950701\pi\)
\(174\) 2.71184 + 2.71184i 0.205584 + 0.205584i
\(175\) −7.94170 9.68100i −0.600336 0.731815i
\(176\) −4.55131 + 1.21952i −0.343068 + 0.0919247i
\(177\) 1.00932 0.270446i 0.0758650 0.0203280i
\(178\) 6.95699i 0.521448i
\(179\) 1.13620 + 0.655984i 0.0849234 + 0.0490306i 0.541860 0.840469i \(-0.317720\pi\)
−0.456937 + 0.889499i \(0.651053\pi\)
\(180\) 0.365550 0.365550i 0.0272465 0.0272465i
\(181\) −21.6016 −1.60563 −0.802816 0.596227i \(-0.796666\pi\)
−0.802816 + 0.596227i \(0.796666\pi\)
\(182\) 8.28032 4.73669i 0.613778 0.351107i
\(183\) −11.1379 −0.823334
\(184\) 2.89255 2.89255i 0.213241 0.213241i
\(185\) −0.944903 0.545540i −0.0694707 0.0401089i
\(186\) 3.03479i 0.222522i
\(187\) 6.08074 1.62933i 0.444668 0.119148i
\(188\) −6.25416 + 1.67580i −0.456131 + 0.122220i
\(189\) 2.61050 0.430450i 0.189886 0.0313107i
\(190\) −3.05805 3.05805i −0.221854 0.221854i
\(191\) 4.27639 + 7.40693i 0.309429 + 0.535946i 0.978238 0.207488i \(-0.0665288\pi\)
−0.668809 + 0.743435i \(0.733195\pi\)
\(192\) 0.500000 0.866025i 0.0360844 0.0625000i
\(193\) 21.4404 5.74494i 1.54331 0.413530i 0.615979 0.787763i \(-0.288761\pi\)
0.927335 + 0.374233i \(0.122094\pi\)
\(194\) −7.61846 + 13.1956i −0.546974 + 0.947386i
\(195\) −1.18792 + 1.43636i −0.0850688 + 0.102860i
\(196\) 2.24738 + 6.62943i 0.160527 + 0.473530i
\(197\) 11.3859 + 3.05084i 0.811211 + 0.217363i 0.640500 0.767958i \(-0.278727\pi\)
0.170711 + 0.985321i \(0.445394\pi\)
\(198\) 4.71186 0.334857
\(199\) 8.52764 0.604509 0.302254 0.953227i \(-0.402261\pi\)
0.302254 + 0.953227i \(0.402261\pi\)
\(200\) 4.57148 + 1.22493i 0.323253 + 0.0866153i
\(201\) 1.31257 4.89856i 0.0925812 0.345518i
\(202\) 4.13032 + 15.4146i 0.290608 + 1.08457i
\(203\) 7.84486 6.43544i 0.550601 0.451680i
\(204\) −0.668021 + 1.15705i −0.0467709 + 0.0810095i
\(205\) 3.84718i 0.268698i
\(206\) −1.37162 5.11895i −0.0955652 0.356654i
\(207\) −3.54263 + 2.04534i −0.246230 + 0.142161i
\(208\) −1.50046 + 3.27851i −0.104038 + 0.227324i
\(209\) 39.4177i 2.72658i
\(210\) −0.867484 1.05747i −0.0598621 0.0729724i
\(211\) 3.42891 + 5.93904i 0.236056 + 0.408861i 0.959579 0.281439i \(-0.0908119\pi\)
−0.723523 + 0.690300i \(0.757479\pi\)
\(212\) 4.31988 2.49408i 0.296691 0.171294i
\(213\) 1.85890 6.93749i 0.127369 0.475349i
\(214\) −9.21696 + 9.21696i −0.630059 + 0.630059i
\(215\) 5.03533 + 1.34921i 0.343407 + 0.0920156i
\(216\) −0.707107 + 0.707107i −0.0481125 + 0.0481125i
\(217\) 7.99047 + 0.788633i 0.542429 + 0.0535359i
\(218\) −14.2182 + 8.20888i −0.962978 + 0.555976i
\(219\) −2.19929 2.19929i −0.148614 0.148614i
\(220\) −1.21793 2.10952i −0.0821131 0.142224i
\(221\) 2.00468 4.38023i 0.134850 0.294646i
\(222\) 1.82779 + 1.05527i 0.122673 + 0.0708254i
\(223\) 0.744868 2.77988i 0.0498800 0.186155i −0.936491 0.350692i \(-0.885946\pi\)
0.986371 + 0.164537i \(0.0526131\pi\)
\(224\) −2.15028 1.54153i −0.143671 0.102998i
\(225\) −4.09868 2.36637i −0.273245 0.157758i
\(226\) 5.10325 + 19.0456i 0.339463 + 1.26689i
\(227\) −11.5192 11.5192i −0.764555 0.764555i 0.212587 0.977142i \(-0.431811\pi\)
−0.977142 + 0.212587i \(0.931811\pi\)
\(228\) 5.91540 + 5.91540i 0.391757 + 0.391757i
\(229\) 0.251684 + 0.939299i 0.0166318 + 0.0620706i 0.973743 0.227650i \(-0.0731042\pi\)
−0.957111 + 0.289721i \(0.906438\pi\)
\(230\) 1.83142 + 1.05737i 0.120760 + 0.0697209i
\(231\) 1.22444 12.4061i 0.0805625 0.816264i
\(232\) −0.992601 + 3.70444i −0.0651675 + 0.243208i
\(233\) −22.4595 12.9670i −1.47137 0.849498i −0.471890 0.881657i \(-0.656428\pi\)
−0.999483 + 0.0321599i \(0.989761\pi\)
\(234\) 2.29788 2.77845i 0.150217 0.181633i
\(235\) −1.67362 2.89879i −0.109175 0.189096i
\(236\) 0.738873 + 0.738873i 0.0480965 + 0.0480965i
\(237\) −9.28201 + 5.35897i −0.602931 + 0.348102i
\(238\) 2.87286 + 2.05955i 0.186220 + 0.133501i
\(239\) 7.45111 7.45111i 0.481972 0.481972i −0.423789 0.905761i \(-0.639300\pi\)
0.905761 + 0.423789i \(0.139300\pi\)
\(240\) 0.499350 + 0.133800i 0.0322329 + 0.00863678i
\(241\) −15.4606 + 15.4606i −0.995902 + 0.995902i −0.999992 0.00408955i \(-0.998698\pi\)
0.00408955 + 0.999992i \(0.498698\pi\)
\(242\) 2.89919 10.8199i 0.186367 0.695532i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) −5.56893 9.64567i −0.356514 0.617501i
\(245\) −3.00970 + 2.00925i −0.192283 + 0.128366i
\(246\) 7.44185i 0.474475i
\(247\) −23.2435 19.2232i −1.47895 1.22314i
\(248\) −2.62820 + 1.51739i −0.166891 + 0.0963547i
\(249\) −1.27350 4.75277i −0.0807048 0.301194i
\(250\) 5.03149i 0.318219i
\(251\) −12.3347 + 21.3643i −0.778557 + 1.34850i 0.154216 + 0.988037i \(0.450715\pi\)
−0.932773 + 0.360464i \(0.882619\pi\)
\(252\) 1.67803 + 2.04553i 0.105706 + 0.128857i
\(253\) 4.98866 + 18.6179i 0.313635 + 1.17050i
\(254\) 1.03891 3.87728i 0.0651872 0.243282i
\(255\) −0.667153 0.178763i −0.0417787 0.0111946i
\(256\) 1.00000 0.0625000
\(257\) 30.1144 1.87849 0.939243 0.343252i \(-0.111529\pi\)
0.939243 + 0.343252i \(0.111529\pi\)
\(258\) −9.74018 2.60987i −0.606397 0.162484i
\(259\) 3.25347 4.53827i 0.202161 0.281994i
\(260\) −1.83789 0.310590i −0.113981 0.0192620i
\(261\) 1.91756 3.32131i 0.118694 0.205584i
\(262\) −14.7912 + 3.96329i −0.913803 + 0.244853i
\(263\) −9.05557 + 15.6847i −0.558390 + 0.967161i 0.439241 + 0.898369i \(0.355248\pi\)
−0.997631 + 0.0687912i \(0.978086\pi\)
\(264\) 2.35593 + 4.08059i 0.144997 + 0.251143i
\(265\) 1.82342 + 1.82342i 0.112012 + 0.112012i
\(266\) 17.1122 14.0378i 1.04922 0.860712i
\(267\) 6.71993 1.80060i 0.411253 0.110195i
\(268\) 4.89856 1.31257i 0.299227 0.0801777i
\(269\) 11.7544i 0.716678i −0.933592 0.358339i \(-0.883343\pi\)
0.933592 0.358339i \(-0.116657\pi\)
\(270\) −0.447705 0.258483i −0.0272465 0.0157307i
\(271\) 18.5182 18.5182i 1.12490 1.12490i 0.133903 0.990994i \(-0.457249\pi\)
0.990994 0.133903i \(-0.0427511\pi\)
\(272\) −1.33604 −0.0810095
\(273\) −6.71840 6.77223i −0.406616 0.409874i
\(274\) 18.8973 1.14163
\(275\) −15.7685 + 15.7685i −0.950877 + 0.950877i
\(276\) −3.54263 2.04534i −0.213241 0.123115i
\(277\) 25.9831i 1.56117i −0.625048 0.780586i \(-0.714921\pi\)
0.625048 0.780586i \(-0.285079\pi\)
\(278\) −3.15433 + 0.845200i −0.189184 + 0.0506917i
\(279\) 2.93138 0.785461i 0.175497 0.0470243i
\(280\) 0.482054 1.28000i 0.0288082 0.0764945i
\(281\) 11.1800 + 11.1800i 0.666942 + 0.666942i 0.957007 0.290065i \(-0.0936770\pi\)
−0.290065 + 0.957007i \(0.593677\pi\)
\(282\) 3.23739 + 5.60732i 0.192784 + 0.333911i
\(283\) −6.08447 + 10.5386i −0.361684 + 0.626456i −0.988238 0.152923i \(-0.951132\pi\)
0.626554 + 0.779378i \(0.284465\pi\)
\(284\) 6.93749 1.85890i 0.411665 0.110305i
\(285\) −2.16237 + 3.74533i −0.128088 + 0.221854i
\(286\) −9.84326 13.8467i −0.582044 0.818773i
\(287\) −19.5941 1.93387i −1.15660 0.114153i
\(288\) −0.965926 0.258819i −0.0569177 0.0152511i
\(289\) −15.2150 −0.894999
\(290\) −1.98262 −0.116424
\(291\) 14.7177 + 3.94361i 0.862769 + 0.231178i
\(292\) 0.804997 3.00429i 0.0471089 0.175813i
\(293\) 0.894661 + 3.33892i 0.0522666 + 0.195062i 0.987123 0.159965i \(-0.0511383\pi\)
−0.934856 + 0.355027i \(0.884472\pi\)
\(294\) 5.82187 3.88663i 0.339538 0.226673i
\(295\) −0.270095 + 0.467817i −0.0157255 + 0.0272374i
\(296\) 2.11055i 0.122673i
\(297\) −1.21952 4.55131i −0.0707637 0.264094i
\(298\) −4.12746 + 2.38299i −0.239097 + 0.138043i
\(299\) 13.4113 + 6.13791i 0.775597 + 0.354965i
\(300\) 4.73275i 0.273245i
\(301\) −9.40281 + 24.9673i −0.541969 + 1.43909i
\(302\) 3.52571 + 6.10671i 0.202882 + 0.351402i
\(303\) 13.8203 7.97917i 0.793957 0.458391i
\(304\) −2.16519 + 8.08058i −0.124182 + 0.463453i
\(305\) 4.07144 4.07144i 0.233130 0.233130i
\(306\) 1.29052 + 0.345793i 0.0737740 + 0.0197677i
\(307\) −0.304805 + 0.304805i −0.0173961 + 0.0173961i −0.715751 0.698355i \(-0.753916\pi\)
0.698355 + 0.715751i \(0.253916\pi\)
\(308\) 11.3562 5.14267i 0.647082 0.293031i
\(309\) −4.58953 + 2.64976i −0.261089 + 0.150740i
\(310\) −1.10937 1.10937i −0.0630077 0.0630077i
\(311\) 2.10107 + 3.63915i 0.119140 + 0.206357i 0.919427 0.393260i \(-0.128653\pi\)
−0.800287 + 0.599617i \(0.795319\pi\)
\(312\) 3.55514 + 0.600796i 0.201270 + 0.0340134i
\(313\) −14.6700 8.46970i −0.829195 0.478736i 0.0243821 0.999703i \(-0.492238\pi\)
−0.853577 + 0.520967i \(0.825572\pi\)
\(314\) −2.01498 + 7.52002i −0.113712 + 0.424379i
\(315\) −0.796916 + 1.11162i −0.0449011 + 0.0626326i
\(316\) −9.28201 5.35897i −0.522154 0.301466i
\(317\) −3.52750 13.1648i −0.198124 0.739410i −0.991436 0.130594i \(-0.958312\pi\)
0.793312 0.608816i \(-0.208355\pi\)
\(318\) −3.52717 3.52717i −0.197794 0.197794i
\(319\) −12.7778 12.7778i −0.715419 0.715419i
\(320\) 0.133800 + 0.499350i 0.00747967 + 0.0279145i
\(321\) 11.2884 + 6.51738i 0.630059 + 0.363765i
\(322\) −6.30590 + 8.79610i −0.351414 + 0.490187i
\(323\) 2.89278 10.7960i 0.160959 0.600706i
\(324\) 0.866025 + 0.500000i 0.0481125 + 0.0277778i
\(325\) 1.60826 + 16.9882i 0.0892101 + 0.942336i
\(326\) 3.45302 + 5.98080i 0.191245 + 0.331246i
\(327\) 11.6091 + 11.6091i 0.641985 + 0.641985i
\(328\) 6.44483 3.72093i 0.355856 0.205454i
\(329\) 15.6051 7.06677i 0.860339 0.389604i
\(330\) −1.72242 + 1.72242i −0.0948160 + 0.0948160i
\(331\) −10.1434 2.71791i −0.557530 0.149390i −0.0309588 0.999521i \(-0.509856\pi\)
−0.526571 + 0.850131i \(0.676523\pi\)
\(332\) 3.47927 3.47927i 0.190950 0.190950i
\(333\) 0.546250 2.03863i 0.0299343 0.111716i
\(334\) 7.20185 4.15799i 0.394068 0.227515i
\(335\) 1.31086 + 2.27047i 0.0716199 + 0.124049i
\(336\) −0.932469 + 2.47598i −0.0508704 + 0.135076i
\(337\) 17.2984i 0.942303i −0.882052 0.471151i \(-0.843839\pi\)
0.882052 0.471151i \(-0.156161\pi\)
\(338\) −12.9654 0.948467i −0.705222 0.0515898i
\(339\) 17.0758 9.85871i 0.927430 0.535452i
\(340\) −0.178763 0.667153i −0.00969479 0.0361814i
\(341\) 14.2995i 0.774362i
\(342\) 4.18282 7.24485i 0.226181 0.391757i
\(343\) −8.72043 16.3387i −0.470859 0.882209i
\(344\) −2.60987 9.74018i −0.140715 0.525155i
\(345\) 0.547335 2.04268i 0.0294675 0.109974i
\(346\) −9.15815 2.45392i −0.492345 0.131924i
\(347\) 28.5418 1.53221 0.766103 0.642717i \(-0.222193\pi\)
0.766103 + 0.642717i \(0.222193\pi\)
\(348\) 3.83512 0.205584
\(349\) 18.0969 + 4.84905i 0.968704 + 0.259563i 0.708281 0.705931i \(-0.249471\pi\)
0.260423 + 0.965495i \(0.416138\pi\)
\(350\) −12.4611 1.22987i −0.666075 0.0657394i
\(351\) −3.27851 1.50046i −0.174994 0.0800888i
\(352\) −2.35593 + 4.08059i −0.125572 + 0.217496i
\(353\) 2.63247 0.705367i 0.140112 0.0375429i −0.188081 0.982153i \(-0.560227\pi\)
0.328193 + 0.944611i \(0.393560\pi\)
\(354\) 0.522462 0.904930i 0.0277685 0.0480965i
\(355\) 1.85648 + 3.21552i 0.0985317 + 0.170662i
\(356\) 4.91933 + 4.91933i 0.260724 + 0.260724i
\(357\) 1.24582 3.30802i 0.0659357 0.175079i
\(358\) 1.26726 0.339562i 0.0669770 0.0179464i
\(359\) 27.7541 7.43669i 1.46480 0.392493i 0.563658 0.826008i \(-0.309393\pi\)
0.901146 + 0.433515i \(0.142727\pi\)
\(360\) 0.516965i 0.0272465i
\(361\) −44.1533 25.4919i −2.32386 1.34168i
\(362\) −15.2746 + 15.2746i −0.802816 + 0.802816i
\(363\) −11.2016 −0.587933
\(364\) 2.50572 9.20442i 0.131336 0.482443i
\(365\) 1.60790 0.0841614
\(366\) −7.87566 + 7.87566i −0.411667 + 0.411667i
\(367\) 22.8014 + 13.1644i 1.19022 + 0.687176i 0.958358 0.285571i \(-0.0921833\pi\)
0.231867 + 0.972748i \(0.425517\pi\)
\(368\) 4.09068i 0.213241i
\(369\) −7.18828 + 1.92609i −0.374207 + 0.100268i
\(370\) −1.05390 + 0.282392i −0.0547898 + 0.0146809i
\(371\) −10.2035 + 8.37030i −0.529738 + 0.434564i
\(372\) 2.14592 + 2.14592i 0.111261 + 0.111261i
\(373\) 4.10677 + 7.11313i 0.212640 + 0.368304i 0.952540 0.304413i \(-0.0984604\pi\)
−0.739900 + 0.672717i \(0.765127\pi\)
\(374\) 3.14762 5.45184i 0.162760 0.281908i
\(375\) 4.86005 1.30225i 0.250972 0.0672477i
\(376\) −3.23739 + 5.60732i −0.166956 + 0.289176i
\(377\) −13.7662 + 1.30323i −0.708993 + 0.0671197i
\(378\) 1.54153 2.15028i 0.0792877 0.110598i
\(379\) −0.839171 0.224855i −0.0431053 0.0115500i 0.237202 0.971460i \(-0.423770\pi\)
−0.280307 + 0.959910i \(0.590436\pi\)
\(380\) −4.32474 −0.221854
\(381\) −4.01405 −0.205646
\(382\) 8.26135 + 2.21362i 0.422688 + 0.113259i
\(383\) 1.09107 4.07191i 0.0557509 0.208065i −0.932432 0.361346i \(-0.882317\pi\)
0.988183 + 0.153281i \(0.0489840\pi\)
\(384\) −0.258819 0.965926i −0.0132078 0.0492922i
\(385\) 4.08746 + 4.98265i 0.208316 + 0.253939i
\(386\) 11.0984 19.2229i 0.564892 0.978422i
\(387\) 10.0838i 0.512587i
\(388\) 3.94361 + 14.7177i 0.200206 + 0.747180i
\(389\) 13.6483 7.87984i 0.691995 0.399524i −0.112364 0.993667i \(-0.535842\pi\)
0.804359 + 0.594144i \(0.202509\pi\)
\(390\) 0.175672 + 1.85565i 0.00889552 + 0.0939644i
\(391\) 5.46532i 0.276393i
\(392\) 6.27685 + 3.09857i 0.317029 + 0.156502i
\(393\) 7.65648 + 13.2614i 0.386218 + 0.668950i
\(394\) 10.2083 5.89377i 0.514287 0.296924i
\(395\) 1.43406 5.35200i 0.0721556 0.269288i
\(396\) 3.33179 3.33179i 0.167429 0.167429i
\(397\) 27.5387 + 7.37897i 1.38213 + 0.370340i 0.871893 0.489696i \(-0.162892\pi\)
0.510233 + 0.860036i \(0.329559\pi\)
\(398\) 6.02995 6.02995i 0.302254 0.302254i
\(399\) −17.9884 12.8959i −0.900548 0.645600i
\(400\) 4.09868 2.36637i 0.204934 0.118319i
\(401\) −1.54647 1.54647i −0.0772268 0.0772268i 0.667438 0.744665i \(-0.267391\pi\)
−0.744665 + 0.667438i \(0.767391\pi\)
\(402\) −2.53568 4.39193i −0.126468 0.219050i
\(403\) −8.43200 6.97357i −0.420028 0.347378i
\(404\) 13.8203 + 7.97917i 0.687587 + 0.396978i
\(405\) −0.133800 + 0.499350i −0.00664860 + 0.0248129i
\(406\) 0.996609 10.0977i 0.0494609 0.501141i
\(407\) −8.61229 4.97231i −0.426895 0.246468i
\(408\) 0.345793 + 1.29052i 0.0171193 + 0.0638902i
\(409\) −8.70860 8.70860i −0.430613 0.430613i 0.458224 0.888837i \(-0.348486\pi\)
−0.888837 + 0.458224i \(0.848486\pi\)
\(410\) 2.72036 + 2.72036i 0.134349 + 0.134349i
\(411\) −4.89098 18.2534i −0.241254 0.900374i
\(412\) −4.58953 2.64976i −0.226110 0.130545i
\(413\) −2.24688 1.61078i −0.110561 0.0792613i
\(414\) −1.05875 + 3.95129i −0.0520345 + 0.194196i
\(415\) 2.20290 + 1.27184i 0.108136 + 0.0624324i
\(416\) 1.25727 + 3.37924i 0.0616426 + 0.165681i
\(417\) 1.63280 + 2.82809i 0.0799586 + 0.138492i
\(418\) −27.8725 27.8725i −1.36329 1.36329i
\(419\) −0.142938 + 0.0825252i −0.00698297 + 0.00403162i −0.503487 0.864003i \(-0.667950\pi\)
0.496504 + 0.868034i \(0.334617\pi\)
\(420\) −1.36115 0.134341i −0.0664172 0.00655516i
\(421\) −16.5566 + 16.5566i −0.806921 + 0.806921i −0.984167 0.177246i \(-0.943281\pi\)
0.177246 + 0.984167i \(0.443281\pi\)
\(422\) 6.62414 + 1.77493i 0.322458 + 0.0864024i
\(423\) 4.57836 4.57836i 0.222607 0.222607i
\(424\) 1.29103 4.81820i 0.0626981 0.233992i
\(425\) −5.47601 + 3.16158i −0.265626 + 0.153359i
\(426\) −3.59111 6.21999i −0.173990 0.301359i
\(427\) 18.6897 + 22.7829i 0.904457 + 1.10254i
\(428\) 13.0348i 0.630059i
\(429\) −10.8273 + 13.0917i −0.522746 + 0.632071i
\(430\) 4.51456 2.60648i 0.217711 0.125696i
\(431\) −2.66592 9.94935i −0.128413 0.479243i 0.871525 0.490350i \(-0.163131\pi\)
−0.999938 + 0.0111069i \(0.996464\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) −4.50149 + 7.79682i −0.216328 + 0.374691i −0.953683 0.300815i \(-0.902741\pi\)
0.737355 + 0.675506i \(0.236075\pi\)
\(434\) 6.20777 5.09247i 0.297982 0.244446i
\(435\) 0.513140 + 1.91507i 0.0246032 + 0.0918203i
\(436\) −4.24923 + 15.8583i −0.203501 + 0.759477i
\(437\) 33.0551 + 8.85708i 1.58124 + 0.423692i
\(438\) −3.11027 −0.148614
\(439\) −12.9665 −0.618858 −0.309429 0.950923i \(-0.600138\pi\)
−0.309429 + 0.950923i \(0.600138\pi\)
\(440\) −2.35287 0.630449i −0.112169 0.0300555i
\(441\) −5.26100 4.61756i −0.250524 0.219884i
\(442\) −1.67976 4.51481i −0.0798982 0.214748i
\(443\) 3.41867 5.92130i 0.162426 0.281330i −0.773312 0.634025i \(-0.781402\pi\)
0.935738 + 0.352696i \(0.114735\pi\)
\(444\) 2.03863 0.546250i 0.0967493 0.0259239i
\(445\) −1.79826 + 3.11468i −0.0852457 + 0.147650i
\(446\) −1.43897 2.49238i −0.0681374 0.118017i
\(447\) 3.37005 + 3.37005i 0.159398 + 0.159398i
\(448\) −2.61050 + 0.430450i −0.123335 + 0.0203369i
\(449\) −30.0578 + 8.05396i −1.41852 + 0.380090i −0.884957 0.465673i \(-0.845812\pi\)
−0.533558 + 0.845763i \(0.679146\pi\)
\(450\) −4.57148 + 1.22493i −0.215502 + 0.0577435i
\(451\) 35.0650i 1.65114i
\(452\) 17.0758 + 9.85871i 0.803178 + 0.463715i
\(453\) 4.98611 4.98611i 0.234268 0.234268i
\(454\) −16.2906 −0.764555
\(455\) 4.93149 + 0.0196780i 0.231192 + 0.000922521i
\(456\) 8.36563 0.391757
\(457\) 1.60045 1.60045i 0.0748657 0.0748657i −0.668682 0.743548i \(-0.733141\pi\)
0.743548 + 0.668682i \(0.233141\pi\)
\(458\) 0.842152 + 0.486217i 0.0393512 + 0.0227194i
\(459\) 1.33604i 0.0623611i
\(460\) 2.04268 0.547335i 0.0952405 0.0255196i
\(461\) 28.4430 7.62128i 1.32472 0.354959i 0.473978 0.880537i \(-0.342818\pi\)
0.850745 + 0.525578i \(0.176151\pi\)
\(462\) −7.90665 9.63827i −0.367851 0.448413i
\(463\) 3.14619 + 3.14619i 0.146216 + 0.146216i 0.776425 0.630209i \(-0.217031\pi\)
−0.630209 + 0.776425i \(0.717031\pi\)
\(464\) 1.91756 + 3.32131i 0.0890204 + 0.154188i
\(465\) −0.784440 + 1.35869i −0.0363775 + 0.0630077i
\(466\) −25.0504 + 6.71222i −1.16044 + 0.310938i
\(467\) −4.54212 + 7.86718i −0.210184 + 0.364049i −0.951772 0.306806i \(-0.900740\pi\)
0.741588 + 0.670856i \(0.234073\pi\)
\(468\) −0.339815 3.58950i −0.0157079 0.165925i
\(469\) −12.2227 + 5.53504i −0.564392 + 0.255584i
\(470\) −3.23318 0.866328i −0.149135 0.0399607i
\(471\) 7.78530 0.358728
\(472\) 1.04492 0.0480965
\(473\) 45.8944 + 12.2974i 2.11023 + 0.565433i
\(474\) −2.77401 + 10.3527i −0.127414 + 0.475517i
\(475\) 10.2473 + 38.2433i 0.470177 + 1.75473i
\(476\) 3.48774 0.575100i 0.159860 0.0263597i
\(477\) −2.49408 + 4.31988i −0.114196 + 0.197794i
\(478\) 10.5375i 0.481972i
\(479\) 8.55674 + 31.9342i 0.390967 + 1.45911i 0.828542 + 0.559928i \(0.189171\pi\)
−0.437574 + 0.899182i \(0.644162\pi\)
\(480\) 0.447705 0.258483i 0.0204348 0.0117981i
\(481\) −7.13206 + 2.65353i −0.325194 + 0.120990i
\(482\) 21.8645i 0.995902i
\(483\) 10.1285 + 3.81443i 0.460861 + 0.173563i
\(484\) −5.60081 9.70090i −0.254582 0.440950i
\(485\) −6.82165 + 3.93848i −0.309755 + 0.178837i
\(486\) 0.258819 0.965926i 0.0117403 0.0438153i
\(487\) −21.7330 + 21.7330i −0.984815 + 0.984815i −0.999886 0.0150712i \(-0.995203\pi\)
0.0150712 + 0.999886i \(0.495203\pi\)
\(488\) −10.7583 2.88269i −0.487007 0.130493i
\(489\) 4.88330 4.88330i 0.220831 0.220831i
\(490\) −0.707427 + 3.54894i −0.0319583 + 0.160325i
\(491\) 21.6578 12.5041i 0.977402 0.564303i 0.0759169 0.997114i \(-0.475812\pi\)
0.901485 + 0.432811i \(0.142478\pi\)
\(492\) −5.26218 5.26218i −0.237238 0.237238i
\(493\) −2.56194 4.43741i −0.115384 0.199851i
\(494\) −30.0285 + 2.84277i −1.35104 + 0.127902i
\(495\) 2.10952 + 1.21793i 0.0948160 + 0.0547420i
\(496\) −0.785461 + 2.93138i −0.0352683 + 0.131623i
\(497\) −17.3102 + 7.83890i −0.776467 + 0.351623i
\(498\) −4.26122 2.46021i −0.190950 0.110245i
\(499\) −1.46269 5.45883i −0.0654789 0.244371i 0.925427 0.378925i \(-0.123706\pi\)
−0.990906 + 0.134555i \(0.957040\pi\)
\(500\) 3.55780 + 3.55780i 0.159110 + 0.159110i
\(501\) −5.88028 5.88028i −0.262712 0.262712i
\(502\) 6.38489 + 23.8287i 0.284972 + 1.06353i
\(503\) −34.3416 19.8272i −1.53122 0.884049i −0.999306 0.0372498i \(-0.988140\pi\)
−0.531912 0.846799i \(-0.678526\pi\)
\(504\) 2.63296 + 0.259864i 0.117281 + 0.0115753i
\(505\) −2.13523 + 7.96880i −0.0950166 + 0.354607i
\(506\) 16.6924 + 9.63736i 0.742067 + 0.428433i
\(507\) 2.43953 + 12.7691i 0.108343 + 0.567093i
\(508\) −2.00703 3.47627i −0.0890474 0.154235i
\(509\) −11.9731 11.9731i −0.530700 0.530700i 0.390081 0.920781i \(-0.372447\pi\)
−0.920781 + 0.390081i \(0.872447\pi\)
\(510\) −0.598153 + 0.345344i −0.0264867 + 0.0152921i
\(511\) −0.808247 + 8.18921i −0.0357548 + 0.362269i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) −8.08058 2.16519i −0.356766 0.0955953i
\(514\) 21.2941 21.2941i 0.939243 0.939243i
\(515\) 0.709079 2.64632i 0.0312458 0.116611i
\(516\) −8.73281 + 5.04189i −0.384440 + 0.221957i
\(517\) −15.2541 26.4209i −0.670876 1.16199i
\(518\) −0.908487 5.50959i −0.0399166 0.242078i
\(519\) 9.48122i 0.416179i
\(520\) −1.51920 + 1.07996i −0.0666214 + 0.0473594i
\(521\) 31.5750 18.2298i 1.38333 0.798663i 0.390773 0.920487i \(-0.372208\pi\)
0.992552 + 0.121824i \(0.0388743\pi\)
\(522\) −0.992601 3.70444i −0.0434450 0.162139i
\(523\) 6.97874i 0.305159i 0.988291 + 0.152580i \(0.0487580\pi\)
−0.988291 + 0.152580i \(0.951242\pi\)
\(524\) −7.65648 + 13.2614i −0.334475 + 0.579328i
\(525\) 2.03721 + 12.3548i 0.0889112 + 0.539209i
\(526\) 4.68751 + 17.4940i 0.204385 + 0.762776i
\(527\) 1.04941 3.91645i 0.0457130 0.170603i
\(528\) 4.55131 + 1.21952i 0.198070 + 0.0530728i
\(529\) 6.26633 0.272449
\(530\) 2.57871 0.112012
\(531\) −1.00932 0.270446i −0.0438007 0.0117364i
\(532\) 2.17393 22.0264i 0.0942517 0.954964i
\(533\) 20.6768 + 17.1004i 0.895611 + 0.740703i
\(534\) 3.47849 6.02493i 0.150529 0.260724i
\(535\) −6.50890 + 1.74406i −0.281404 + 0.0754021i
\(536\) 2.53568 4.39193i 0.109525 0.189702i
\(537\) −0.655984 1.13620i −0.0283078 0.0490306i
\(538\) −8.31161 8.31161i −0.358339 0.358339i
\(539\) −27.4318 + 18.3132i −1.18157 + 0.788807i
\(540\) −0.499350 + 0.133800i −0.0214886 + 0.00575785i
\(541\) −38.1430 + 10.2204i −1.63990 + 0.439409i −0.956759 0.290881i \(-0.906052\pi\)
−0.683137 + 0.730290i \(0.739385\pi\)
\(542\) 26.1886i 1.12490i
\(543\) 18.7075 + 10.8008i 0.802816 + 0.463506i
\(544\) −0.944725 + 0.944725i −0.0405047 + 0.0405047i
\(545\) −8.48741 −0.363561
\(546\) −9.53932 0.0380645i −0.408245 0.00162901i
\(547\) 27.6065 1.18037 0.590185 0.807268i \(-0.299055\pi\)
0.590185 + 0.807268i \(0.299055\pi\)
\(548\) 13.3624 13.3624i 0.570814 0.570814i
\(549\) 9.64567 + 5.56893i 0.411667 + 0.237676i
\(550\) 22.3000i 0.950877i
\(551\) −30.9900 + 8.30374i −1.32022 + 0.353751i
\(552\) −3.95129 + 1.05875i −0.168178 + 0.0450632i
\(553\) 26.5374 + 9.99415i 1.12849 + 0.424994i
\(554\) −18.3728 18.3728i −0.780586 0.780586i
\(555\) 0.545540 + 0.944903i 0.0231569 + 0.0401089i
\(556\) −1.63280 + 2.82809i −0.0692462 + 0.119938i
\(557\) −6.39216 + 1.71277i −0.270844 + 0.0725725i −0.391685 0.920099i \(-0.628108\pi\)
0.120841 + 0.992672i \(0.461441\pi\)
\(558\) 1.51739 2.62820i 0.0642364 0.111261i
\(559\) 29.6331 21.0654i 1.25335 0.890972i
\(560\) −0.564231 1.24596i −0.0238431 0.0526514i
\(561\) −6.08074 1.62933i −0.256729 0.0687904i
\(562\) 15.8109 0.666942
\(563\) −25.3413 −1.06801 −0.534005 0.845481i \(-0.679314\pi\)
−0.534005 + 0.845481i \(0.679314\pi\)
\(564\) 6.25416 + 1.67580i 0.263347 + 0.0705637i
\(565\) −2.63820 + 9.84590i −0.110990 + 0.414220i
\(566\) 3.14955 + 11.7543i 0.132386 + 0.494070i
\(567\) −2.47598 0.932469i −0.103982 0.0391600i
\(568\) 3.59111 6.21999i 0.150680 0.260985i
\(569\) 4.07156i 0.170689i 0.996352 + 0.0853444i \(0.0271991\pi\)
−0.996352 + 0.0853444i \(0.972801\pi\)
\(570\) 1.11933 + 4.17738i 0.0468834 + 0.174971i
\(571\) −1.45716 + 0.841291i −0.0609802 + 0.0352069i −0.530180 0.847885i \(-0.677876\pi\)
0.469200 + 0.883092i \(0.344542\pi\)
\(572\) −16.7513 2.83086i −0.700409 0.118364i
\(573\) 8.55278i 0.357298i
\(574\) −15.2226 + 12.4877i −0.635377 + 0.521225i
\(575\) −9.68008 16.7664i −0.403687 0.699207i
\(576\) −0.866025 + 0.500000i −0.0360844 + 0.0208333i
\(577\) −8.75768 + 32.6841i −0.364587 + 1.36066i 0.503393 + 0.864058i \(0.332085\pi\)
−0.867980 + 0.496600i \(0.834582\pi\)
\(578\) −10.7586 + 10.7586i −0.447500 + 0.447500i
\(579\) −21.4404 5.74494i −0.891033 0.238751i
\(580\) −1.40192 + 1.40192i −0.0582118 + 0.0582118i
\(581\) −7.58498 + 10.5803i −0.314678 + 0.438944i
\(582\) 13.1956 7.61846i 0.546974 0.315795i
\(583\) 16.6195 + 16.6195i 0.688310 + 0.688310i
\(584\) −1.55513 2.69357i −0.0643519 0.111461i
\(585\) 1.74695 0.649963i 0.0722275 0.0268727i
\(586\) 2.99359 + 1.72835i 0.123664 + 0.0713975i
\(587\) −5.73741 + 21.4123i −0.236808 + 0.883781i 0.740517 + 0.672038i \(0.234581\pi\)
−0.977325 + 0.211743i \(0.932086\pi\)
\(588\) 1.36842 6.86494i 0.0564328 0.283105i
\(589\) −21.9866 12.6940i −0.905942 0.523046i
\(590\) 0.139811 + 0.521783i 0.00575594 + 0.0214814i
\(591\) −8.33505 8.33505i −0.342858 0.342858i
\(592\) 1.49238 + 1.49238i 0.0613366 + 0.0613366i
\(593\) 9.61407 + 35.8802i 0.394803 + 1.47342i 0.822116 + 0.569320i \(0.192793\pi\)
−0.427313 + 0.904104i \(0.640540\pi\)
\(594\) −4.08059 2.35593i −0.167429 0.0966650i
\(595\) 0.753837 + 1.66465i 0.0309043 + 0.0682442i
\(596\) −1.23353 + 4.60358i −0.0505272 + 0.188570i
\(597\) −7.38516 4.26382i −0.302254 0.174507i
\(598\) 13.8234 5.14308i 0.565281 0.210316i
\(599\) −22.8545 39.5852i −0.933811 1.61741i −0.776740 0.629822i \(-0.783128\pi\)
−0.157071 0.987587i \(-0.550205\pi\)
\(600\) −3.34656 3.34656i −0.136623 0.136623i
\(601\) 13.4905 7.78875i 0.550289 0.317710i −0.198949 0.980010i \(-0.563753\pi\)
0.749239 + 0.662300i \(0.230420\pi\)
\(602\) 11.0057 + 24.3033i 0.448561 + 0.990530i
\(603\) −3.58600 + 3.58600i −0.146033 + 0.146033i
\(604\) 6.81115 + 1.82504i 0.277142 + 0.0742599i
\(605\) 4.09475 4.09475i 0.166475 0.166475i
\(606\) 4.13032 15.4146i 0.167783 0.626174i
\(607\) −22.2787 + 12.8626i −0.904263 + 0.522076i −0.878581 0.477594i \(-0.841509\pi\)
−0.0256821 + 0.999670i \(0.508176\pi\)
\(608\) 4.18282 + 7.24485i 0.169636 + 0.293817i
\(609\) −10.0116 + 1.65083i −0.405689 + 0.0668949i
\(610\) 5.75788i 0.233130i
\(611\) −23.0188 3.89002i −0.931240 0.157373i
\(612\) 1.15705 0.668021i 0.0467709 0.0270032i
\(613\) −1.37205 5.12055i −0.0554164 0.206817i 0.932666 0.360740i \(-0.117476\pi\)
−0.988083 + 0.153923i \(0.950809\pi\)
\(614\) 0.431059i 0.0173961i
\(615\) 1.92359 3.33175i 0.0775666 0.134349i
\(616\) 4.39367 11.6665i 0.177026 0.470056i
\(617\) 11.0875 + 41.3792i 0.446367 + 1.66586i 0.712302 + 0.701873i \(0.247652\pi\)
−0.265936 + 0.963991i \(0.585681\pi\)
\(618\) −1.37162 + 5.11895i −0.0551746 + 0.205914i
\(619\) −4.18483 1.12132i −0.168203 0.0450697i 0.173735 0.984792i \(-0.444416\pi\)
−0.341937 + 0.939723i \(0.611083\pi\)
\(620\) −1.56888 −0.0630077
\(621\) 4.09068 0.164153
\(622\) 4.05895 + 1.08759i 0.162749 + 0.0436084i
\(623\) −14.9595 10.7244i −0.599338 0.429664i
\(624\) 2.93869 2.08904i 0.117642 0.0836285i
\(625\) 10.5313 18.2408i 0.421253 0.729631i
\(626\) −16.3622 + 4.38424i −0.653965 + 0.175229i
\(627\) −19.7088 + 34.1367i −0.787096 + 1.36329i
\(628\) 3.89265 + 6.74226i 0.155334 + 0.269046i
\(629\) −1.99389 1.99389i −0.0795016 0.0795016i
\(630\) 0.222528 + 1.34954i 0.00886572 + 0.0537669i
\(631\) 0.711348 0.190605i 0.0283183 0.00758787i −0.244632 0.969616i \(-0.578667\pi\)
0.272950 + 0.962028i \(0.412001\pi\)
\(632\) −10.3527 + 2.77401i −0.411810 + 0.110344i
\(633\) 6.85782i 0.272574i
\(634\) −11.8033 6.81461i −0.468767 0.270643i
\(635\) 1.46733 1.46733i 0.0582294 0.0582294i
\(636\) −4.98817 −0.197794
\(637\) −2.57915 + 25.1067i −0.102190 + 0.994765i
\(638\) −18.0705 −0.715419
\(639\) −5.07860 + 5.07860i −0.200906 + 0.200906i
\(640\) 0.447705 + 0.258483i 0.0176971 + 0.0102174i
\(641\) 3.90544i 0.154256i −0.997021 0.0771278i \(-0.975425\pi\)
0.997021 0.0771278i \(-0.0245749\pi\)
\(642\) 12.5906 3.37364i 0.496912 0.133147i
\(643\) 24.5573 6.58011i 0.968446 0.259494i 0.260275 0.965535i \(-0.416187\pi\)
0.708172 + 0.706040i \(0.249520\pi\)
\(644\) 1.76083 + 10.6787i 0.0693866 + 0.420801i
\(645\) −3.68612 3.68612i −0.145141 0.145141i
\(646\) −5.58842 9.67943i −0.219874 0.380832i
\(647\) −18.8076 + 32.5757i −0.739402 + 1.28068i 0.213363 + 0.976973i \(0.431558\pi\)
−0.952765 + 0.303709i \(0.901775\pi\)
\(648\) 0.965926 0.258819i 0.0379452 0.0101674i
\(649\) −2.46177 + 4.26391i −0.0966328 + 0.167373i
\(650\) 13.1497 + 10.8753i 0.515773 + 0.426563i
\(651\) −6.52564 4.67821i −0.255760 0.183354i
\(652\) 6.67072 + 1.78741i 0.261245 + 0.0700005i
\(653\) 25.1888 0.985713 0.492856 0.870111i \(-0.335953\pi\)
0.492856 + 0.870111i \(0.335953\pi\)
\(654\) 16.4178 0.641985
\(655\) −7.64653 2.04888i −0.298775 0.0800564i
\(656\) 1.92609 7.18828i 0.0752013 0.280655i
\(657\) 0.804997 + 3.00429i 0.0314059 + 0.117208i
\(658\) 6.03753 16.0315i 0.235368 0.624971i
\(659\) 4.07472 7.05762i 0.158729 0.274926i −0.775682 0.631124i \(-0.782594\pi\)
0.934410 + 0.356198i \(0.115927\pi\)
\(660\) 2.43587i 0.0948160i
\(661\) −1.32521 4.94575i −0.0515447 0.192367i 0.935353 0.353716i \(-0.115082\pi\)
−0.986897 + 0.161349i \(0.948416\pi\)
\(662\) −9.09430 + 5.25060i −0.353460 + 0.204070i
\(663\) −3.92622 + 2.79105i −0.152482 + 0.108395i
\(664\) 4.92043i 0.190950i
\(665\) 11.2897 1.86159i 0.437797 0.0721892i
\(666\) −1.05527 1.82779i −0.0408911 0.0708254i
\(667\) 13.5864 7.84412i 0.526068 0.303725i
\(668\) 2.15233 8.03262i 0.0832763 0.310791i
\(669\) −2.03502 + 2.03502i −0.0786783 + 0.0786783i
\(670\) 2.53239 + 0.678551i 0.0978346 + 0.0262147i
\(671\) 37.1090 37.1090i 1.43258 1.43258i
\(672\) 1.09143 + 2.41014i 0.0421028 + 0.0929732i
\(673\) 38.4936 22.2243i 1.48382 0.856683i 0.483988 0.875075i \(-0.339188\pi\)
0.999831 + 0.0183913i \(0.00585447\pi\)
\(674\) −12.2318 12.2318i −0.471151 0.471151i
\(675\) 2.36637 + 4.09868i 0.0910818 + 0.157758i
\(676\) −9.83856 + 8.49722i −0.378406 + 0.326816i
\(677\) 7.89020 + 4.55541i 0.303245 + 0.175079i 0.643900 0.765110i \(-0.277315\pi\)
−0.340655 + 0.940188i \(0.610649\pi\)
\(678\) 5.10325 19.0456i 0.195989 0.731441i
\(679\) −16.6300 36.7231i −0.638202 1.40930i
\(680\) −0.598153 0.345344i −0.0229381 0.0132433i
\(681\) 4.21632 + 15.7355i 0.161570 + 0.602986i
\(682\) −10.1113 10.1113i −0.387181 0.387181i
\(683\) 16.9608 + 16.9608i 0.648986 + 0.648986i 0.952748 0.303762i \(-0.0982427\pi\)
−0.303762 + 0.952748i \(0.598243\pi\)
\(684\) −2.16519 8.08058i −0.0827879 0.308969i
\(685\) 8.46042 + 4.88463i 0.323256 + 0.186632i
\(686\) −17.7195 5.38695i −0.676534 0.205675i
\(687\) 0.251684 0.939299i 0.00960236 0.0358365i
\(688\) −8.73281 5.04189i −0.332935 0.192220i
\(689\) 17.9050 1.69505i 0.682128 0.0645764i
\(690\) −1.05737 1.83142i −0.0402534 0.0697209i
\(691\) 18.1778 + 18.1778i 0.691516 + 0.691516i 0.962565 0.271049i \(-0.0873707\pi\)
−0.271049 + 0.962565i \(0.587371\pi\)
\(692\) −8.21097 + 4.74061i −0.312134 + 0.180211i
\(693\) −7.26347 + 10.1318i −0.275916 + 0.384875i
\(694\) 20.1821 20.1821i 0.766103 0.766103i
\(695\) −1.63068 0.436939i −0.0618551 0.0165740i
\(696\) 2.71184 2.71184i 0.102792 0.102792i
\(697\) −2.57334 + 9.60384i −0.0974723 + 0.363772i
\(698\) 16.2252 9.36764i 0.614134 0.354570i
\(699\) 12.9670 + 22.4595i 0.490458 + 0.849498i
\(700\) −9.68100 + 7.94170i −0.365907 + 0.300168i
\(701\) 37.7415i 1.42548i −0.701430 0.712738i \(-0.747455\pi\)
0.701430 0.712738i \(-0.252545\pi\)
\(702\) −3.37924 + 1.25727i −0.127541 + 0.0474525i
\(703\) −15.2906 + 8.82804i −0.576697 + 0.332956i
\(704\) 1.21952 + 4.55131i 0.0459624 + 0.171534i
\(705\) 3.34723i 0.126064i
\(706\) 1.36267 2.36021i 0.0512846 0.0888275i
\(707\) −39.5126 14.8807i −1.48602 0.559645i
\(708\) −0.270446 1.00932i −0.0101640 0.0379325i
\(709\) 4.24654 15.8483i 0.159482 0.595196i −0.839198 0.543827i \(-0.816975\pi\)
0.998680 0.0513690i \(-0.0163585\pi\)
\(710\) 3.58644 + 0.960984i 0.134597 + 0.0360651i
\(711\) 10.7179 0.401954
\(712\) 6.95699 0.260724
\(713\) 11.9913 + 3.21307i 0.449079 + 0.120330i
\(714\) −1.45820 3.22005i −0.0545717 0.120507i
\(715\) −0.827744 8.74355i −0.0309559 0.326990i
\(716\) 0.655984 1.13620i 0.0245153 0.0424617i
\(717\) −10.1784 + 2.72730i −0.380119 + 0.101853i
\(718\) 14.3666 24.8836i 0.536156 0.928649i
\(719\) −21.3926 37.0531i −0.797810 1.38185i −0.921040 0.389469i \(-0.872659\pi\)
0.123230 0.992378i \(-0.460675\pi\)
\(720\) −0.365550 0.365550i −0.0136232 0.0136232i
\(721\) 13.1216 + 4.94165i 0.488672 + 0.184037i
\(722\) −49.2466 + 13.1956i −1.83277 + 0.491089i
\(723\) 21.1195 5.65896i 0.785443 0.210459i
\(724\) 21.6016i 0.802816i
\(725\) 15.7189 + 9.07532i 0.583786 + 0.337049i
\(726\) −7.92075 + 7.92075i −0.293967 + 0.293967i
\(727\) 35.0382 1.29950 0.649748 0.760150i \(-0.274874\pi\)
0.649748 + 0.760150i \(0.274874\pi\)
\(728\) −4.73669 8.28032i −0.175554 0.306889i
\(729\) −1.00000 −0.0370370
\(730\) 1.13696 1.13696i 0.0420807 0.0420807i
\(731\) 11.6674 + 6.73618i 0.431535 + 0.249147i
\(732\) 11.1379i 0.411667i
\(733\) −0.544762 + 0.145969i −0.0201213 + 0.00539147i −0.268866 0.963178i \(-0.586649\pi\)
0.248744 + 0.968569i \(0.419982\pi\)
\(734\) 25.4317 6.81440i 0.938700 0.251524i
\(735\) 3.61110 0.235210i 0.133198 0.00867585i
\(736\) −2.89255 2.89255i −0.106621 0.106621i
\(737\) 11.9478 + 20.6942i 0.440102 + 0.762279i
\(738\) −3.72093 + 6.44483i −0.136969 + 0.237238i
\(739\) 5.87642 1.57458i 0.216168 0.0579220i −0.149110 0.988821i \(-0.547641\pi\)
0.365277 + 0.930899i \(0.380974\pi\)
\(740\) −0.545540 + 0.944903i −0.0200545 + 0.0347353i
\(741\) 10.5178 + 28.2695i 0.386382 + 1.03851i
\(742\) −1.29625 + 13.1336i −0.0475867 + 0.482151i
\(743\) −16.3758 4.38787i −0.600768 0.160975i −0.0543983 0.998519i \(-0.517324\pi\)
−0.546370 + 0.837544i \(0.683991\pi\)
\(744\) 3.03479 0.111261
\(745\) −2.46384 −0.0902682
\(746\) 7.93367 + 2.12582i 0.290472 + 0.0778318i
\(747\) −1.27350 + 4.75277i −0.0465949 + 0.173895i
\(748\) −1.62933 6.08074i −0.0595742 0.222334i
\(749\) −5.61081 34.0272i −0.205015 1.24333i
\(750\) 2.51575 4.35740i 0.0918620 0.159110i
\(751\) 49.4330i 1.80384i −0.431906 0.901919i \(-0.642159\pi\)
0.431906 0.901919i \(-0.357841\pi\)
\(752\) 1.67580 + 6.25416i 0.0611100 + 0.228066i
\(753\) 21.3643 12.3347i 0.778557 0.449500i
\(754\) −8.81262 + 10.6557i −0.320937 + 0.388056i
\(755\) 3.64534i 0.132667i
\(756\) −0.430450 2.61050i −0.0156553 0.0949430i
\(757\) −8.63889 14.9630i −0.313986 0.543839i 0.665236 0.746633i \(-0.268331\pi\)
−0.979221 + 0.202794i \(0.934998\pi\)
\(758\) −0.752381 + 0.434387i −0.0273277 + 0.0157776i
\(759\) 4.98866 18.6179i 0.181077 0.675789i
\(760\) −3.05805 + 3.05805i −0.110927 + 0.110927i
\(761\) 5.55114 + 1.48742i 0.201229 + 0.0539190i 0.358025 0.933712i \(-0.383450\pi\)
−0.156797 + 0.987631i \(0.550117\pi\)
\(762\) −2.83836 + 2.83836i −0.102823 + 0.102823i
\(763\) 4.26639 43.2273i 0.154454 1.56493i
\(764\) 7.40693 4.27639i 0.267973 0.154714i
\(765\) 0.488390 + 0.488390i 0.0176578 + 0.0176578i
\(766\) −2.10778 3.65078i −0.0761571 0.131908i
\(767\) 1.31375 + 3.53105i 0.0474367 + 0.127499i
\(768\) −0.866025 0.500000i −0.0312500 0.0180422i
\(769\) −3.92845 + 14.6612i −0.141663 + 0.528695i 0.858218 + 0.513286i \(0.171572\pi\)
−0.999881 + 0.0154095i \(0.995095\pi\)
\(770\) 6.41354 + 0.632995i 0.231128 + 0.0228115i
\(771\) −26.0799 15.0572i −0.939243 0.542272i
\(772\) −5.74494 21.4404i −0.206765 0.771657i
\(773\) −5.78121 5.78121i −0.207936 0.207936i 0.595454 0.803390i \(-0.296972\pi\)
−0.803390 + 0.595454i \(0.796972\pi\)
\(774\) 7.13031 + 7.13031i