Properties

Label 546.2.c.a
Level $546$
Weight $2$
Character orbit 546.c
Analytic conductor $4.360$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [546,2,Mod(337,546)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(546, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("546.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,-2,0,0,0,0,2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} - q^{3} - q^{4} - i q^{5} - i q^{6} + i q^{7} - i q^{8} + q^{9} + q^{10} - i q^{11} + q^{12} + ( - 2 i + 3) q^{13} - q^{14} + i q^{15} + q^{16} + q^{17} + i q^{18} + i q^{19} + i q^{20} + \cdots - i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{4} + 2 q^{9} + 2 q^{10} + 2 q^{12} + 6 q^{13} - 2 q^{14} + 2 q^{16} + 2 q^{17} + 2 q^{22} + 6 q^{23} + 8 q^{25} + 4 q^{26} - 2 q^{27} + 18 q^{29} - 2 q^{30} + 2 q^{35} - 2 q^{36} - 2 q^{38}+ \cdots + 2 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
1.00000i
1.00000i
1.00000i −1.00000 −1.00000 1.00000i 1.00000i 1.00000i 1.00000i 1.00000 1.00000
337.2 1.00000i −1.00000 −1.00000 1.00000i 1.00000i 1.00000i 1.00000i 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 546.2.c.a 2
3.b odd 2 1 1638.2.c.f 2
4.b odd 2 1 4368.2.h.k 2
7.b odd 2 1 3822.2.c.e 2
13.b even 2 1 inner 546.2.c.a 2
13.d odd 4 1 7098.2.a.d 1
13.d odd 4 1 7098.2.a.s 1
39.d odd 2 1 1638.2.c.f 2
52.b odd 2 1 4368.2.h.k 2
91.b odd 2 1 3822.2.c.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.c.a 2 1.a even 1 1 trivial
546.2.c.a 2 13.b even 2 1 inner
1638.2.c.f 2 3.b odd 2 1
1638.2.c.f 2 39.d odd 2 1
3822.2.c.e 2 7.b odd 2 1
3822.2.c.e 2 91.b odd 2 1
4368.2.h.k 2 4.b odd 2 1
4368.2.h.k 2 52.b odd 2 1
7098.2.a.d 1 13.d odd 4 1
7098.2.a.s 1 13.d odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(546, [\chi])\):

\( T_{5}^{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 1 \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{2} + 1 \) Copy content Toggle raw display
$13$ \( T^{2} - 6T + 13 \) Copy content Toggle raw display
$17$ \( (T - 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 1 \) Copy content Toggle raw display
$23$ \( (T - 3)^{2} \) Copy content Toggle raw display
$29$ \( (T - 9)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 16 \) Copy content Toggle raw display
$37$ \( T^{2} + 81 \) Copy content Toggle raw display
$41$ \( T^{2} + 64 \) Copy content Toggle raw display
$43$ \( (T - 7)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 64 \) Copy content Toggle raw display
$53$ \( (T + 10)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 36 \) Copy content Toggle raw display
$61$ \( (T - 11)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 144 \) Copy content Toggle raw display
$71$ \( T^{2} + 36 \) Copy content Toggle raw display
$73$ \( T^{2} + 121 \) Copy content Toggle raw display
$79$ \( (T + 12)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 36 \) Copy content Toggle raw display
$89$ \( T^{2} + 144 \) Copy content Toggle raw display
$97$ \( T^{2} + 4 \) Copy content Toggle raw display
show more
show less