Properties

Label 546.2.by.b.115.8
Level $546$
Weight $2$
Character 546.115
Analytic conductor $4.360$
Analytic rank $0$
Dimension $40$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.by (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 115.8
Character \(\chi\) \(=\) 546.115
Dual form 546.2.by.b.19.8

$q$-expansion

\(f(q)\) \(=\) \(q+(0.965926 - 0.258819i) q^{2} +1.00000i q^{3} +(0.866025 - 0.500000i) q^{4} +(-1.45998 - 0.391201i) q^{5} +(0.258819 + 0.965926i) q^{6} +(0.541277 + 2.58979i) q^{7} +(0.707107 - 0.707107i) q^{8} -1.00000 q^{9} +O(q^{10})\) \(q+(0.965926 - 0.258819i) q^{2} +1.00000i q^{3} +(0.866025 - 0.500000i) q^{4} +(-1.45998 - 0.391201i) q^{5} +(0.258819 + 0.965926i) q^{6} +(0.541277 + 2.58979i) q^{7} +(0.707107 - 0.707107i) q^{8} -1.00000 q^{9} -1.51148 q^{10} +(-4.40060 + 4.40060i) q^{11} +(0.500000 + 0.866025i) q^{12} +(2.30092 + 2.77593i) q^{13} +(1.19312 + 2.36145i) q^{14} +(0.391201 - 1.45998i) q^{15} +(0.500000 - 0.866025i) q^{16} +(3.75313 + 6.50061i) q^{17} +(-0.965926 + 0.258819i) q^{18} +(5.46599 - 5.46599i) q^{19} +(-1.45998 + 0.391201i) q^{20} +(-2.58979 + 0.541277i) q^{21} +(-3.11170 + 5.38962i) q^{22} +(-0.0523450 - 0.0302214i) q^{23} +(0.707107 + 0.707107i) q^{24} +(-2.35162 - 1.35771i) q^{25} +(2.94098 + 2.08582i) q^{26} -1.00000i q^{27} +(1.76365 + 1.97219i) q^{28} +(1.60863 + 2.78623i) q^{29} -1.51148i q^{30} +(-2.10867 - 7.86967i) q^{31} +(0.258819 - 0.965926i) q^{32} +(-4.40060 - 4.40060i) q^{33} +(5.30773 + 5.30773i) q^{34} +(0.222875 - 3.99280i) q^{35} +(-0.866025 + 0.500000i) q^{36} +(1.25023 + 4.66593i) q^{37} +(3.86504 - 6.69444i) q^{38} +(-2.77593 + 2.30092i) q^{39} +(-1.30898 + 0.755742i) q^{40} +(-3.84810 - 1.03109i) q^{41} +(-2.36145 + 1.19312i) q^{42} +(3.84700 + 2.22107i) q^{43} +(-1.61073 + 6.01134i) q^{44} +(1.45998 + 0.391201i) q^{45} +(-0.0583833 - 0.0156437i) q^{46} +(0.335258 - 1.25120i) q^{47} +(0.866025 + 0.500000i) q^{48} +(-6.41404 + 2.80359i) q^{49} +(-2.62289 - 0.702801i) q^{50} +(-6.50061 + 3.75313i) q^{51} +(3.38062 + 1.25357i) q^{52} +(-1.81627 + 3.14587i) q^{53} +(-0.258819 - 0.965926i) q^{54} +(8.14632 - 4.70328i) q^{55} +(2.21400 + 1.44852i) q^{56} +(5.46599 + 5.46599i) q^{57} +(2.27495 + 2.27495i) q^{58} +(2.57637 - 9.61514i) q^{59} +(-0.391201 - 1.45998i) q^{60} -0.829226i q^{61} +(-4.07364 - 7.05576i) q^{62} +(-0.541277 - 2.58979i) q^{63} -1.00000i q^{64} +(-2.27335 - 4.95293i) q^{65} +(-5.38962 - 3.11170i) q^{66} +(-0.615467 - 0.615467i) q^{67} +(6.50061 + 3.75313i) q^{68} +(0.0302214 - 0.0523450i) q^{69} +(-0.818131 - 3.91443i) q^{70} +(-0.497499 + 0.133304i) q^{71} +(-0.707107 + 0.707107i) q^{72} +(7.87352 - 2.10970i) q^{73} +(2.41526 + 4.18336i) q^{74} +(1.35771 - 2.35162i) q^{75} +(2.00069 - 7.46668i) q^{76} +(-13.7786 - 9.01470i) q^{77} +(-2.08582 + 2.94098i) q^{78} +(-5.73437 - 9.93222i) q^{79} +(-1.06878 + 1.06878i) q^{80} +1.00000 q^{81} -3.98384 q^{82} +(4.74859 - 4.74859i) q^{83} +(-1.97219 + 1.76365i) q^{84} +(-2.93646 - 10.9590i) q^{85} +(4.29077 + 1.14971i) q^{86} +(-2.78623 + 1.60863i) q^{87} +6.22339i q^{88} +(-2.77244 + 0.742873i) q^{89} +1.51148 q^{90} +(-5.94364 + 7.46144i) q^{91} -0.0604428 q^{92} +(7.86967 - 2.10867i) q^{93} -1.29534i q^{94} +(-10.1185 + 5.84194i) q^{95} +(0.965926 + 0.258819i) q^{96} +(-0.663690 - 2.47693i) q^{97} +(-5.46986 + 4.36813i) q^{98} +(4.40060 - 4.40060i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q - 4q^{7} - 40q^{9} + O(q^{10}) \) \( 40q - 4q^{7} - 40q^{9} - 4q^{11} + 20q^{12} + 4q^{14} + 20q^{16} + 8q^{17} + 8q^{19} - 8q^{21} - 4q^{22} + 24q^{23} + 24q^{25} - 8q^{26} + 4q^{28} - 12q^{29} + 24q^{31} - 4q^{33} + 8q^{34} + 28q^{35} - 8q^{37} - 8q^{38} - 16q^{39} - 20q^{41} - 12q^{42} - 24q^{43} + 8q^{44} - 4q^{46} - 16q^{47} + 4q^{49} - 16q^{50} - 24q^{51} - 4q^{52} - 4q^{53} - 24q^{55} + 12q^{56} + 8q^{57} + 24q^{58} - 12q^{59} - 32q^{62} + 4q^{63} - 4q^{65} - 24q^{67} + 24q^{68} + 8q^{69} + 52q^{70} - 28q^{71} + 108q^{73} + 20q^{74} - 36q^{75} - 4q^{76} + 12q^{77} + 4q^{78} + 40q^{81} - 48q^{82} - 60q^{83} - 8q^{84} - 4q^{85} - 20q^{86} - 36q^{87} - 60q^{89} - 40q^{91} - 16q^{92} - 48q^{95} + 48q^{97} - 8q^{98} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.965926 0.258819i 0.683013 0.183013i
\(3\) 1.00000i 0.577350i
\(4\) 0.866025 0.500000i 0.433013 0.250000i
\(5\) −1.45998 0.391201i −0.652924 0.174950i −0.0828733 0.996560i \(-0.526410\pi\)
−0.570050 + 0.821610i \(0.693076\pi\)
\(6\) 0.258819 + 0.965926i 0.105662 + 0.394338i
\(7\) 0.541277 + 2.58979i 0.204583 + 0.978849i
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) −1.00000 −0.333333
\(10\) −1.51148 −0.477973
\(11\) −4.40060 + 4.40060i −1.32683 + 1.32683i −0.418714 + 0.908118i \(0.637519\pi\)
−0.908118 + 0.418714i \(0.862481\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) 2.30092 + 2.77593i 0.638160 + 0.769904i
\(14\) 1.19312 + 2.36145i 0.318875 + 0.631125i
\(15\) 0.391201 1.45998i 0.101008 0.376966i
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 3.75313 + 6.50061i 0.910268 + 1.57663i 0.813686 + 0.581305i \(0.197458\pi\)
0.0965823 + 0.995325i \(0.469209\pi\)
\(18\) −0.965926 + 0.258819i −0.227671 + 0.0610042i
\(19\) 5.46599 5.46599i 1.25398 1.25398i 0.300065 0.953919i \(-0.402992\pi\)
0.953919 0.300065i \(-0.0970083\pi\)
\(20\) −1.45998 + 0.391201i −0.326462 + 0.0874752i
\(21\) −2.58979 + 0.541277i −0.565139 + 0.118116i
\(22\) −3.11170 + 5.38962i −0.663416 + 1.14907i
\(23\) −0.0523450 0.0302214i −0.0109147 0.00630160i 0.494533 0.869159i \(-0.335339\pi\)
−0.505447 + 0.862857i \(0.668673\pi\)
\(24\) 0.707107 + 0.707107i 0.144338 + 0.144338i
\(25\) −2.35162 1.35771i −0.470324 0.271542i
\(26\) 2.94098 + 2.08582i 0.576773 + 0.409063i
\(27\) 1.00000i 0.192450i
\(28\) 1.76365 + 1.97219i 0.333299 + 0.372708i
\(29\) 1.60863 + 2.78623i 0.298716 + 0.517391i 0.975842 0.218476i \(-0.0701085\pi\)
−0.677127 + 0.735866i \(0.736775\pi\)
\(30\) 1.51148i 0.275958i
\(31\) −2.10867 7.86967i −0.378729 1.41344i −0.847819 0.530285i \(-0.822085\pi\)
0.469091 0.883150i \(-0.344582\pi\)
\(32\) 0.258819 0.965926i 0.0457532 0.170753i
\(33\) −4.40060 4.40060i −0.766047 0.766047i
\(34\) 5.30773 + 5.30773i 0.910268 + 0.910268i
\(35\) 0.222875 3.99280i 0.0376727 0.674906i
\(36\) −0.866025 + 0.500000i −0.144338 + 0.0833333i
\(37\) 1.25023 + 4.66593i 0.205537 + 0.767074i 0.989285 + 0.145996i \(0.0466386\pi\)
−0.783748 + 0.621079i \(0.786695\pi\)
\(38\) 3.86504 6.69444i 0.626992 1.08598i
\(39\) −2.77593 + 2.30092i −0.444504 + 0.368442i
\(40\) −1.30898 + 0.755742i −0.206969 + 0.119493i
\(41\) −3.84810 1.03109i −0.600972 0.161030i −0.0545089 0.998513i \(-0.517359\pi\)
−0.546463 + 0.837483i \(0.684026\pi\)
\(42\) −2.36145 + 1.19312i −0.364380 + 0.184102i
\(43\) 3.84700 + 2.22107i 0.586662 + 0.338709i 0.763777 0.645481i \(-0.223343\pi\)
−0.177114 + 0.984190i \(0.556676\pi\)
\(44\) −1.61073 + 6.01134i −0.242827 + 0.906243i
\(45\) 1.45998 + 0.391201i 0.217641 + 0.0583168i
\(46\) −0.0583833 0.0156437i −0.00860814 0.00230654i
\(47\) 0.335258 1.25120i 0.0489024 0.182506i −0.937155 0.348915i \(-0.886550\pi\)
0.986057 + 0.166408i \(0.0532170\pi\)
\(48\) 0.866025 + 0.500000i 0.125000 + 0.0721688i
\(49\) −6.41404 + 2.80359i −0.916291 + 0.400512i
\(50\) −2.62289 0.702801i −0.370933 0.0993911i
\(51\) −6.50061 + 3.75313i −0.910268 + 0.525543i
\(52\) 3.38062 + 1.25357i 0.468807 + 0.173838i
\(53\) −1.81627 + 3.14587i −0.249484 + 0.432119i −0.963383 0.268130i \(-0.913594\pi\)
0.713899 + 0.700249i \(0.246928\pi\)
\(54\) −0.258819 0.965926i −0.0352208 0.131446i
\(55\) 8.14632 4.70328i 1.09845 0.634190i
\(56\) 2.21400 + 1.44852i 0.295858 + 0.193566i
\(57\) 5.46599 + 5.46599i 0.723988 + 0.723988i
\(58\) 2.27495 + 2.27495i 0.298716 + 0.298716i
\(59\) 2.57637 9.61514i 0.335415 1.25178i −0.568005 0.823025i \(-0.692284\pi\)
0.903419 0.428759i \(-0.141049\pi\)
\(60\) −0.391201 1.45998i −0.0505038 0.188483i
\(61\) 0.829226i 0.106172i −0.998590 0.0530858i \(-0.983094\pi\)
0.998590 0.0530858i \(-0.0169057\pi\)
\(62\) −4.07364 7.05576i −0.517353 0.896082i
\(63\) −0.541277 2.58979i −0.0681944 0.326283i
\(64\) 1.00000i 0.125000i
\(65\) −2.27335 4.95293i −0.281975 0.614335i
\(66\) −5.38962 3.11170i −0.663416 0.383023i
\(67\) −0.615467 0.615467i −0.0751913 0.0751913i 0.668511 0.743702i \(-0.266932\pi\)
−0.743702 + 0.668511i \(0.766932\pi\)
\(68\) 6.50061 + 3.75313i 0.788315 + 0.455134i
\(69\) 0.0302214 0.0523450i 0.00363823 0.00630160i
\(70\) −0.818131 3.91443i −0.0977854 0.467864i
\(71\) −0.497499 + 0.133304i −0.0590423 + 0.0158203i −0.288219 0.957564i \(-0.593063\pi\)
0.229177 + 0.973385i \(0.426397\pi\)
\(72\) −0.707107 + 0.707107i −0.0833333 + 0.0833333i
\(73\) 7.87352 2.10970i 0.921525 0.246922i 0.233288 0.972408i \(-0.425051\pi\)
0.688237 + 0.725486i \(0.258385\pi\)
\(74\) 2.41526 + 4.18336i 0.280769 + 0.486306i
\(75\) 1.35771 2.35162i 0.156775 0.271542i
\(76\) 2.00069 7.46668i 0.229495 0.856487i
\(77\) −13.7786 9.01470i −1.57022 1.02732i
\(78\) −2.08582 + 2.94098i −0.236173 + 0.333000i
\(79\) −5.73437 9.93222i −0.645167 1.11746i −0.984263 0.176711i \(-0.943454\pi\)
0.339096 0.940752i \(-0.389879\pi\)
\(80\) −1.06878 + 1.06878i −0.119493 + 0.119493i
\(81\) 1.00000 0.111111
\(82\) −3.98384 −0.439942
\(83\) 4.74859 4.74859i 0.521226 0.521226i −0.396716 0.917942i \(-0.629850\pi\)
0.917942 + 0.396716i \(0.129850\pi\)
\(84\) −1.97219 + 1.76365i −0.215183 + 0.192431i
\(85\) −2.93646 10.9590i −0.318503 1.18867i
\(86\) 4.29077 + 1.14971i 0.462686 + 0.123976i
\(87\) −2.78623 + 1.60863i −0.298716 + 0.172464i
\(88\) 6.22339i 0.663416i
\(89\) −2.77244 + 0.742873i −0.293878 + 0.0787443i −0.402746 0.915312i \(-0.631944\pi\)
0.108868 + 0.994056i \(0.465277\pi\)
\(90\) 1.51148 0.159324
\(91\) −5.94364 + 7.46144i −0.623063 + 0.782172i
\(92\) −0.0604428 −0.00630160
\(93\) 7.86967 2.10867i 0.816047 0.218659i
\(94\) 1.29534i 0.133604i
\(95\) −10.1185 + 5.84194i −1.03814 + 0.599371i
\(96\) 0.965926 + 0.258819i 0.0985844 + 0.0264156i
\(97\) −0.663690 2.47693i −0.0673876 0.251494i 0.924012 0.382363i \(-0.124890\pi\)
−0.991400 + 0.130870i \(0.958223\pi\)
\(98\) −5.46986 + 4.36813i −0.552540 + 0.441248i
\(99\) 4.40060 4.40060i 0.442277 0.442277i
\(100\) −2.71542 −0.271542
\(101\) 8.05624 0.801626 0.400813 0.916160i \(-0.368728\pi\)
0.400813 + 0.916160i \(0.368728\pi\)
\(102\) −5.30773 + 5.30773i −0.525543 + 0.525543i
\(103\) 6.92712 + 11.9981i 0.682549 + 1.18221i 0.974200 + 0.225685i \(0.0724620\pi\)
−0.291651 + 0.956525i \(0.594205\pi\)
\(104\) 3.58987 + 0.335884i 0.352016 + 0.0329361i
\(105\) 3.99280 + 0.222875i 0.389657 + 0.0217504i
\(106\) −0.940170 + 3.50876i −0.0913174 + 0.340801i
\(107\) 5.18435 8.97955i 0.501190 0.868086i −0.498809 0.866712i \(-0.666229\pi\)
0.999999 0.00137430i \(-0.000437454\pi\)
\(108\) −0.500000 0.866025i −0.0481125 0.0833333i
\(109\) 13.5916 3.64186i 1.30184 0.348827i 0.459693 0.888078i \(-0.347959\pi\)
0.842145 + 0.539251i \(0.181293\pi\)
\(110\) 6.65144 6.65144i 0.634190 0.634190i
\(111\) −4.66593 + 1.25023i −0.442871 + 0.118667i
\(112\) 2.51346 + 0.826136i 0.237500 + 0.0780626i
\(113\) −5.52604 + 9.57138i −0.519846 + 0.900400i 0.479888 + 0.877330i \(0.340677\pi\)
−0.999734 + 0.0230698i \(0.992656\pi\)
\(114\) 6.69444 + 3.86504i 0.626992 + 0.361994i
\(115\) 0.0646001 + 0.0646001i 0.00602399 + 0.00602399i
\(116\) 2.78623 + 1.60863i 0.258695 + 0.149358i
\(117\) −2.30092 2.77593i −0.212720 0.256635i
\(118\) 9.95432i 0.916370i
\(119\) −14.8038 + 13.2385i −1.35706 + 1.21357i
\(120\) −0.755742 1.30898i −0.0689895 0.119493i
\(121\) 27.7306i 2.52097i
\(122\) −0.214619 0.800971i −0.0194307 0.0725165i
\(123\) 1.03109 3.84810i 0.0929706 0.346971i
\(124\) −5.76100 5.76100i −0.517353 0.517353i
\(125\) 8.24609 + 8.24609i 0.737553 + 0.737553i
\(126\) −1.19312 2.36145i −0.106292 0.210375i
\(127\) −5.30387 + 3.06219i −0.470643 + 0.271726i −0.716509 0.697578i \(-0.754261\pi\)
0.245866 + 0.969304i \(0.420928\pi\)
\(128\) −0.258819 0.965926i −0.0228766 0.0853766i
\(129\) −2.22107 + 3.84700i −0.195554 + 0.338709i
\(130\) −3.47780 4.19577i −0.305023 0.367994i
\(131\) 10.0027 5.77506i 0.873939 0.504569i 0.00528386 0.999986i \(-0.498318\pi\)
0.868655 + 0.495417i \(0.164985\pi\)
\(132\) −6.01134 1.61073i −0.523220 0.140196i
\(133\) 17.1144 + 11.1972i 1.48400 + 0.970917i
\(134\) −0.753791 0.435201i −0.0651176 0.0375957i
\(135\) −0.391201 + 1.45998i −0.0336692 + 0.125655i
\(136\) 7.25049 + 1.94276i 0.621725 + 0.166591i
\(137\) 4.10069 + 1.09878i 0.350346 + 0.0938749i 0.429700 0.902972i \(-0.358619\pi\)
−0.0793545 + 0.996846i \(0.525286\pi\)
\(138\) 0.0156437 0.0583833i 0.00133168 0.00496991i
\(139\) 7.54445 + 4.35579i 0.639912 + 0.369454i 0.784581 0.620027i \(-0.212878\pi\)
−0.144668 + 0.989480i \(0.546212\pi\)
\(140\) −1.80338 3.56930i −0.152414 0.301661i
\(141\) 1.25120 + 0.335258i 0.105370 + 0.0282338i
\(142\) −0.446045 + 0.257524i −0.0374313 + 0.0216110i
\(143\) −22.3412 2.09034i −1.86826 0.174803i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) −1.25860 4.69715i −0.104521 0.390077i
\(146\) 7.05920 4.07563i 0.584224 0.337302i
\(147\) −2.80359 6.41404i −0.231236 0.529021i
\(148\) 3.41570 + 3.41570i 0.280769 + 0.280769i
\(149\) −3.84805 3.84805i −0.315245 0.315245i 0.531693 0.846937i \(-0.321556\pi\)
−0.846937 + 0.531693i \(0.821556\pi\)
\(150\) 0.702801 2.62289i 0.0573835 0.214158i
\(151\) −3.54781 13.2406i −0.288717 1.07751i −0.946080 0.323932i \(-0.894995\pi\)
0.657363 0.753574i \(-0.271672\pi\)
\(152\) 7.73007i 0.626992i
\(153\) −3.75313 6.50061i −0.303423 0.525543i
\(154\) −15.6423 5.14137i −1.26049 0.414304i
\(155\) 12.3145i 0.989124i
\(156\) −1.25357 + 3.38062i −0.100366 + 0.270666i
\(157\) 19.3289 + 11.1595i 1.54261 + 0.890628i 0.998673 + 0.0515038i \(0.0164014\pi\)
0.543940 + 0.839124i \(0.316932\pi\)
\(158\) −8.10963 8.10963i −0.645167 0.645167i
\(159\) −3.14587 1.81627i −0.249484 0.144040i
\(160\) −0.755742 + 1.30898i −0.0597467 + 0.103484i
\(161\) 0.0499340 0.151921i 0.00393535 0.0119730i
\(162\) 0.965926 0.258819i 0.0758903 0.0203347i
\(163\) −8.34888 + 8.34888i −0.653935 + 0.653935i −0.953938 0.300003i \(-0.903012\pi\)
0.300003 + 0.953938i \(0.403012\pi\)
\(164\) −3.84810 + 1.03109i −0.300486 + 0.0805149i
\(165\) 4.70328 + 8.14632i 0.366150 + 0.634190i
\(166\) 3.35776 5.81582i 0.260613 0.451395i
\(167\) 2.31131 8.62592i 0.178854 0.667493i −0.817009 0.576625i \(-0.804369\pi\)
0.995863 0.0908680i \(-0.0289641\pi\)
\(168\) −1.44852 + 2.21400i −0.111756 + 0.170814i
\(169\) −2.41156 + 12.7744i −0.185504 + 0.982643i
\(170\) −5.67280 9.82558i −0.435084 0.753587i
\(171\) −5.46599 + 5.46599i −0.417995 + 0.417995i
\(172\) 4.44213 0.338709
\(173\) −22.1636 −1.68507 −0.842533 0.538645i \(-0.818937\pi\)
−0.842533 + 0.538645i \(0.818937\pi\)
\(174\) −2.27495 + 2.27495i −0.172464 + 0.172464i
\(175\) 2.24330 6.82510i 0.169578 0.515929i
\(176\) 1.61073 + 6.01134i 0.121414 + 0.453122i
\(177\) 9.61514 + 2.57637i 0.722718 + 0.193652i
\(178\) −2.48570 + 1.43512i −0.186311 + 0.107567i
\(179\) 9.83448i 0.735064i −0.930011 0.367532i \(-0.880203\pi\)
0.930011 0.367532i \(-0.119797\pi\)
\(180\) 1.45998 0.391201i 0.108821 0.0291584i
\(181\) 11.3170 0.841186 0.420593 0.907249i \(-0.361822\pi\)
0.420593 + 0.907249i \(0.361822\pi\)
\(182\) −3.80996 + 8.74553i −0.282413 + 0.648262i
\(183\) 0.829226 0.0612982
\(184\) −0.0583833 + 0.0156437i −0.00430407 + 0.00115327i
\(185\) 7.30127i 0.536800i
\(186\) 7.05576 4.07364i 0.517353 0.298694i
\(187\) −45.1227 12.0906i −3.29970 0.884151i
\(188\) −0.335258 1.25120i −0.0244512 0.0912531i
\(189\) 2.58979 0.541277i 0.188380 0.0393721i
\(190\) −8.26176 + 8.26176i −0.599371 + 0.599371i
\(191\) −12.6308 −0.913932 −0.456966 0.889484i \(-0.651064\pi\)
−0.456966 + 0.889484i \(0.651064\pi\)
\(192\) 1.00000 0.0721688
\(193\) −1.40376 + 1.40376i −0.101045 + 0.101045i −0.755822 0.654777i \(-0.772762\pi\)
0.654777 + 0.755822i \(0.272762\pi\)
\(194\) −1.28215 2.22075i −0.0920531 0.159441i
\(195\) 4.95293 2.27335i 0.354686 0.162798i
\(196\) −4.15293 + 5.63500i −0.296638 + 0.402500i
\(197\) −0.930208 + 3.47158i −0.0662746 + 0.247340i −0.991113 0.133019i \(-0.957533\pi\)
0.924839 + 0.380359i \(0.124200\pi\)
\(198\) 3.11170 5.38962i 0.221139 0.383023i
\(199\) 5.09416 + 8.82335i 0.361116 + 0.625471i 0.988145 0.153525i \(-0.0490626\pi\)
−0.627029 + 0.778996i \(0.715729\pi\)
\(200\) −2.62289 + 0.702801i −0.185466 + 0.0496955i
\(201\) 0.615467 0.615467i 0.0434117 0.0434117i
\(202\) 7.78173 2.08511i 0.547521 0.146708i
\(203\) −6.34505 + 5.67415i −0.445335 + 0.398247i
\(204\) −3.75313 + 6.50061i −0.262772 + 0.455134i
\(205\) 5.21479 + 3.01076i 0.364216 + 0.210280i
\(206\) 9.79642 + 9.79642i 0.682549 + 0.682549i
\(207\) 0.0523450 + 0.0302214i 0.00363823 + 0.00210053i
\(208\) 3.55448 0.604689i 0.246459 0.0419276i
\(209\) 48.1073i 3.32765i
\(210\) 3.91443 0.818131i 0.270121 0.0564564i
\(211\) 12.7116 + 22.0172i 0.875104 + 1.51573i 0.856652 + 0.515895i \(0.172541\pi\)
0.0184528 + 0.999830i \(0.494126\pi\)
\(212\) 3.63254i 0.249484i
\(213\) −0.133304 0.497499i −0.00913387 0.0340881i
\(214\) 2.68362 10.0154i 0.183448 0.684638i
\(215\) −4.74767 4.74767i −0.323788 0.323788i
\(216\) −0.707107 0.707107i −0.0481125 0.0481125i
\(217\) 19.2394 9.72069i 1.30606 0.659884i
\(218\) 12.1859 7.03553i 0.825333 0.476506i
\(219\) 2.10970 + 7.87352i 0.142560 + 0.532043i
\(220\) 4.70328 8.14632i 0.317095 0.549225i
\(221\) −9.40959 + 25.3758i −0.632958 + 1.70696i
\(222\) −4.18336 + 2.41526i −0.280769 + 0.162102i
\(223\) −10.2954 2.75865i −0.689432 0.184733i −0.102940 0.994688i \(-0.532825\pi\)
−0.586492 + 0.809955i \(0.699492\pi\)
\(224\) 2.64164 + 0.147454i 0.176502 + 0.00985221i
\(225\) 2.35162 + 1.35771i 0.156775 + 0.0905138i
\(226\) −2.86049 + 10.6755i −0.190277 + 0.710123i
\(227\) 2.56781 + 0.688042i 0.170431 + 0.0456670i 0.343026 0.939326i \(-0.388548\pi\)
−0.172594 + 0.984993i \(0.555215\pi\)
\(228\) 7.46668 + 2.00069i 0.494493 + 0.132499i
\(229\) 0.650085 2.42615i 0.0429588 0.160324i −0.941114 0.338088i \(-0.890220\pi\)
0.984073 + 0.177764i \(0.0568864\pi\)
\(230\) 0.0791186 + 0.0456792i 0.00521693 + 0.00301200i
\(231\) 9.01470 13.7786i 0.593124 0.906565i
\(232\) 3.10764 + 0.832690i 0.204027 + 0.0546688i
\(233\) 17.7000 10.2191i 1.15957 0.669475i 0.208365 0.978051i \(-0.433186\pi\)
0.951200 + 0.308576i \(0.0998523\pi\)
\(234\) −2.94098 2.08582i −0.192258 0.136354i
\(235\) −0.978941 + 1.69558i −0.0638591 + 0.110607i
\(236\) −2.57637 9.61514i −0.167707 0.625892i
\(237\) 9.93222 5.73437i 0.645167 0.372487i
\(238\) −10.8730 + 16.6189i −0.704789 + 1.07724i
\(239\) −12.0931 12.0931i −0.782235 0.782235i 0.197972 0.980208i \(-0.436564\pi\)
−0.980208 + 0.197972i \(0.936564\pi\)
\(240\) −1.06878 1.06878i −0.0689895 0.0689895i
\(241\) −1.73894 + 6.48980i −0.112015 + 0.418045i −0.999046 0.0436640i \(-0.986097\pi\)
0.887031 + 0.461709i \(0.152764\pi\)
\(242\) −7.17721 26.7857i −0.461369 1.72185i
\(243\) 1.00000i 0.0641500i
\(244\) −0.414613 0.718131i −0.0265429 0.0459736i
\(245\) 10.4611 1.58401i 0.668338 0.101199i
\(246\) 3.98384i 0.254001i
\(247\) 27.7500 + 2.59640i 1.76569 + 0.165205i
\(248\) −7.05576 4.07364i −0.448041 0.258677i
\(249\) 4.74859 + 4.74859i 0.300930 + 0.300930i
\(250\) 10.0994 + 5.83086i 0.638739 + 0.368776i
\(251\) 10.3549 17.9352i 0.653596 1.13206i −0.328648 0.944453i \(-0.606593\pi\)
0.982244 0.187609i \(-0.0600738\pi\)
\(252\) −1.76365 1.97219i −0.111100 0.124236i
\(253\) 0.363342 0.0973572i 0.0228431 0.00612079i
\(254\) −4.33060 + 4.33060i −0.271726 + 0.271726i
\(255\) 10.9590 2.93646i 0.686280 0.183888i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −4.75383 + 8.23387i −0.296536 + 0.513615i −0.975341 0.220704i \(-0.929165\pi\)
0.678805 + 0.734318i \(0.262498\pi\)
\(258\) −1.14971 + 4.29077i −0.0715777 + 0.267132i
\(259\) −11.4071 + 5.76340i −0.708801 + 0.358120i
\(260\) −4.44524 3.15268i −0.275682 0.195521i
\(261\) −1.60863 2.78623i −0.0995719 0.172464i
\(262\) 8.16716 8.16716i 0.504569 0.504569i
\(263\) 17.8280 1.09932 0.549661 0.835388i \(-0.314757\pi\)
0.549661 + 0.835388i \(0.314757\pi\)
\(264\) −6.22339 −0.383023
\(265\) 3.88239 3.88239i 0.238493 0.238493i
\(266\) 19.4293 + 6.38610i 1.19128 + 0.391557i
\(267\) −0.742873 2.77244i −0.0454631 0.169670i
\(268\) −0.840744 0.225277i −0.0513566 0.0137610i
\(269\) −7.92939 + 4.57804i −0.483464 + 0.279128i −0.721859 0.692040i \(-0.756712\pi\)
0.238395 + 0.971168i \(0.423379\pi\)
\(270\) 1.51148i 0.0919860i
\(271\) −16.4254 + 4.40116i −0.997769 + 0.267351i −0.720511 0.693444i \(-0.756093\pi\)
−0.277258 + 0.960795i \(0.589426\pi\)
\(272\) 7.50626 0.455134
\(273\) −7.46144 5.94364i −0.451587 0.359726i
\(274\) 4.24535 0.256471
\(275\) 16.3233 4.37381i 0.984330 0.263751i
\(276\) 0.0604428i 0.00363823i
\(277\) −9.98812 + 5.76664i −0.600128 + 0.346484i −0.769092 0.639138i \(-0.779291\pi\)
0.168964 + 0.985622i \(0.445958\pi\)
\(278\) 8.41475 + 2.25472i 0.504683 + 0.135229i
\(279\) 2.10867 + 7.86967i 0.126243 + 0.471145i
\(280\) −2.66574 2.98093i −0.159308 0.178145i
\(281\) 10.6233 10.6233i 0.633736 0.633736i −0.315267 0.949003i \(-0.602094\pi\)
0.949003 + 0.315267i \(0.102094\pi\)
\(282\) 1.29534 0.0771362
\(283\) 12.0916 0.718771 0.359386 0.933189i \(-0.382986\pi\)
0.359386 + 0.933189i \(0.382986\pi\)
\(284\) −0.364195 + 0.364195i −0.0216110 + 0.0216110i
\(285\) −5.84194 10.1185i −0.346047 0.599371i
\(286\) −22.1209 + 3.76322i −1.30804 + 0.222524i
\(287\) 0.587435 10.5239i 0.0346752 0.621205i
\(288\) −0.258819 + 0.965926i −0.0152511 + 0.0569177i
\(289\) −19.6720 + 34.0729i −1.15718 + 2.00429i
\(290\) −2.43142 4.21135i −0.142778 0.247299i
\(291\) 2.47693 0.663690i 0.145200 0.0389062i
\(292\) 5.76381 5.76381i 0.337302 0.337302i
\(293\) −7.51103 + 2.01257i −0.438799 + 0.117576i −0.471454 0.881891i \(-0.656271\pi\)
0.0326547 + 0.999467i \(0.489604\pi\)
\(294\) −4.36813 5.46986i −0.254755 0.319009i
\(295\) −7.52290 + 13.0300i −0.438000 + 0.758639i
\(296\) 4.18336 + 2.41526i 0.243153 + 0.140384i
\(297\) 4.40060 + 4.40060i 0.255349 + 0.255349i
\(298\) −4.71289 2.72099i −0.273010 0.157622i
\(299\) −0.0365491 0.214843i −0.00211369 0.0124247i
\(300\) 2.71542i 0.156775i
\(301\) −3.66981 + 11.1651i −0.211524 + 0.643548i
\(302\) −6.85385 11.8712i −0.394395 0.683111i
\(303\) 8.05624i 0.462819i
\(304\) −2.00069 7.46668i −0.114747 0.428243i
\(305\) −0.324394 + 1.21065i −0.0185747 + 0.0693219i
\(306\) −5.30773 5.30773i −0.303423 0.303423i
\(307\) −0.870087 0.870087i −0.0496585 0.0496585i 0.681841 0.731500i \(-0.261179\pi\)
−0.731500 + 0.681841i \(0.761179\pi\)
\(308\) −16.4400 0.917667i −0.936754 0.0522889i
\(309\) −11.9981 + 6.92712i −0.682549 + 0.394070i
\(310\) 3.18723 + 11.8949i 0.181022 + 0.675584i
\(311\) −8.97807 + 15.5505i −0.509100 + 0.881787i 0.490845 + 0.871247i \(0.336688\pi\)
−0.999944 + 0.0105396i \(0.996645\pi\)
\(312\) −0.335884 + 3.58987i −0.0190157 + 0.203236i
\(313\) 0.403027 0.232688i 0.0227804 0.0131523i −0.488567 0.872527i \(-0.662480\pi\)
0.511347 + 0.859374i \(0.329147\pi\)
\(314\) 21.5586 + 5.77660i 1.21662 + 0.325992i
\(315\) −0.222875 + 3.99280i −0.0125576 + 0.224969i
\(316\) −9.93222 5.73437i −0.558731 0.322584i
\(317\) −0.0422978 + 0.157858i −0.00237568 + 0.00886617i −0.967103 0.254383i \(-0.918128\pi\)
0.964728 + 0.263249i \(0.0847942\pi\)
\(318\) −3.50876 0.940170i −0.196762 0.0527221i
\(319\) −19.3401 5.18216i −1.08284 0.290145i
\(320\) −0.391201 + 1.45998i −0.0218688 + 0.0816155i
\(321\) 8.97955 + 5.18435i 0.501190 + 0.289362i
\(322\) 0.00891256 0.159668i 0.000496677 0.00889795i
\(323\) 56.0468 + 15.0177i 3.11853 + 0.835607i
\(324\) 0.866025 0.500000i 0.0481125 0.0277778i
\(325\) −1.64198 9.65190i −0.0910807 0.535391i
\(326\) −5.90355 + 10.2252i −0.326967 + 0.566324i
\(327\) 3.64186 + 13.5916i 0.201395 + 0.751617i
\(328\) −3.45011 + 1.99192i −0.190500 + 0.109985i
\(329\) 3.42181 + 0.191003i 0.188651 + 0.0105303i
\(330\) 6.65144 + 6.65144i 0.366150 + 0.366150i
\(331\) −8.31583 8.31583i −0.457079 0.457079i 0.440616 0.897696i \(-0.354760\pi\)
−0.897696 + 0.440616i \(0.854760\pi\)
\(332\) 1.73811 6.48670i 0.0953909 0.356004i
\(333\) −1.25023 4.66593i −0.0685123 0.255691i
\(334\) 8.93020i 0.488639i
\(335\) 0.657800 + 1.13934i 0.0359394 + 0.0622489i
\(336\) −0.826136 + 2.51346i −0.0450694 + 0.137121i
\(337\) 18.5295i 1.00937i −0.863304 0.504684i \(-0.831609\pi\)
0.863304 0.504684i \(-0.168391\pi\)
\(338\) 0.976863 + 12.9632i 0.0531343 + 0.705108i
\(339\) −9.57138 5.52604i −0.519846 0.300133i
\(340\) −8.02255 8.02255i −0.435084 0.435084i
\(341\) 43.9107 + 25.3519i 2.37790 + 1.37288i
\(342\) −3.86504 + 6.69444i −0.208997 + 0.361994i
\(343\) −10.7325 15.0935i −0.579499 0.814973i
\(344\) 4.29077 1.14971i 0.231343 0.0619881i
\(345\) −0.0646001 + 0.0646001i −0.00347795 + 0.00347795i
\(346\) −21.4084 + 5.73636i −1.15092 + 0.308389i
\(347\) 14.9443 + 25.8842i 0.802250 + 1.38954i 0.918132 + 0.396274i \(0.129697\pi\)
−0.115883 + 0.993263i \(0.536970\pi\)
\(348\) −1.60863 + 2.78623i −0.0862318 + 0.149358i
\(349\) −2.72772 + 10.1800i −0.146012 + 0.544923i 0.853697 + 0.520771i \(0.174355\pi\)
−0.999708 + 0.0241523i \(0.992311\pi\)
\(350\) 0.400400 7.17315i 0.0214023 0.383421i
\(351\) 2.77593 2.30092i 0.148168 0.122814i
\(352\) 3.11170 + 5.38962i 0.165854 + 0.287268i
\(353\) 25.1379 25.1379i 1.33796 1.33796i 0.439921 0.898037i \(-0.355007\pi\)
0.898037 0.439921i \(-0.144993\pi\)
\(354\) 9.95432 0.529066
\(355\) 0.778488 0.0413179
\(356\) −2.02957 + 2.02957i −0.107567 + 0.107567i
\(357\) −13.2385 14.8038i −0.700653 0.783498i
\(358\) −2.54535 9.49938i −0.134526 0.502058i
\(359\) 1.48348 + 0.397498i 0.0782952 + 0.0209791i 0.297754 0.954643i \(-0.403762\pi\)
−0.219459 + 0.975622i \(0.570429\pi\)
\(360\) 1.30898 0.755742i 0.0689895 0.0398311i
\(361\) 40.7540i 2.14495i
\(362\) 10.9314 2.92906i 0.574541 0.153948i
\(363\) 27.7306 1.45548
\(364\) −1.41663 + 9.43362i −0.0742513 + 0.494456i
\(365\) −12.3205 −0.644885
\(366\) 0.800971 0.214619i 0.0418674 0.0112183i
\(367\) 5.51299i 0.287776i −0.989594 0.143888i \(-0.954040\pi\)
0.989594 0.143888i \(-0.0459605\pi\)
\(368\) −0.0523450 + 0.0302214i −0.00272867 + 0.00157540i
\(369\) 3.84810 + 1.03109i 0.200324 + 0.0536766i
\(370\) −1.88971 7.05248i −0.0982412 0.366641i
\(371\) −9.13025 3.00097i −0.474019 0.155803i
\(372\) 5.76100 5.76100i 0.298694 0.298694i
\(373\) −18.9455 −0.980959 −0.490480 0.871453i \(-0.663178\pi\)
−0.490480 + 0.871453i \(0.663178\pi\)
\(374\) −46.7144 −2.41555
\(375\) −8.24609 + 8.24609i −0.425826 + 0.425826i
\(376\) −0.647669 1.12180i −0.0334010 0.0578522i
\(377\) −4.03305 + 10.8763i −0.207713 + 0.560160i
\(378\) 2.36145 1.19312i 0.121460 0.0613675i
\(379\) −8.95565 + 33.4229i −0.460021 + 1.71682i 0.212872 + 0.977080i \(0.431718\pi\)
−0.672892 + 0.739740i \(0.734948\pi\)
\(380\) −5.84194 + 10.1185i −0.299685 + 0.519070i
\(381\) −3.06219 5.30387i −0.156881 0.271726i
\(382\) −12.2004 + 3.26909i −0.624227 + 0.167261i
\(383\) −16.4515 + 16.4515i −0.840631 + 0.840631i −0.988941 0.148310i \(-0.952617\pi\)
0.148310 + 0.988941i \(0.452617\pi\)
\(384\) 0.965926 0.258819i 0.0492922 0.0132078i
\(385\) 16.5899 + 18.5515i 0.845501 + 0.945472i
\(386\) −0.992608 + 1.71925i −0.0505224 + 0.0875073i
\(387\) −3.84700 2.22107i −0.195554 0.112903i
\(388\) −1.81324 1.81324i −0.0920531 0.0920531i
\(389\) −17.4192 10.0570i −0.883190 0.509910i −0.0114814 0.999934i \(-0.503655\pi\)
−0.871709 + 0.490024i \(0.836988\pi\)
\(390\) 4.19577 3.47780i 0.212461 0.176105i
\(391\) 0.453699i 0.0229446i
\(392\) −2.55298 + 6.51785i −0.128945 + 0.329201i
\(393\) 5.77506 + 10.0027i 0.291313 + 0.504569i
\(394\) 3.59405i 0.181065i
\(395\) 4.48658 + 16.7442i 0.225745 + 0.842490i
\(396\) 1.61073 6.01134i 0.0809424 0.302081i
\(397\) −10.7059 10.7059i −0.537313 0.537313i 0.385426 0.922739i \(-0.374055\pi\)
−0.922739 + 0.385426i \(0.874055\pi\)
\(398\) 7.20424 + 7.20424i 0.361116 + 0.361116i
\(399\) −11.1972 + 17.1144i −0.560559 + 0.856791i
\(400\) −2.35162 + 1.35771i −0.117581 + 0.0678854i
\(401\) −4.90270 18.2971i −0.244829 0.913716i −0.973469 0.228818i \(-0.926514\pi\)
0.728640 0.684897i \(-0.240153\pi\)
\(402\) 0.435201 0.753791i 0.0217059 0.0375957i
\(403\) 16.9938 23.9610i 0.846520 1.19358i
\(404\) 6.97691 4.02812i 0.347114 0.200407i
\(405\) −1.45998 0.391201i −0.0725471 0.0194389i
\(406\) −4.66027 + 7.12303i −0.231285 + 0.353510i
\(407\) −26.0347 15.0311i −1.29049 0.745066i
\(408\) −1.94276 + 7.25049i −0.0961811 + 0.358953i
\(409\) 26.2713 + 7.03936i 1.29903 + 0.348074i 0.841083 0.540906i \(-0.181918\pi\)
0.457947 + 0.888980i \(0.348585\pi\)
\(410\) 5.81634 + 1.55848i 0.287248 + 0.0769680i
\(411\) −1.09878 + 4.10069i −0.0541987 + 0.202272i
\(412\) 11.9981 + 6.92712i 0.591105 + 0.341275i
\(413\) 26.2957 + 1.46781i 1.29393 + 0.0722261i
\(414\) 0.0583833 + 0.0156437i 0.00286938 + 0.000768848i
\(415\) −8.79051 + 5.07521i −0.431509 + 0.249132i
\(416\) 3.27686 1.50405i 0.160661 0.0737422i
\(417\) −4.35579 + 7.54445i −0.213304 + 0.369454i
\(418\) 12.4511 + 46.4681i 0.609002 + 2.27283i
\(419\) −6.33740 + 3.65890i −0.309602 + 0.178749i −0.646748 0.762703i \(-0.723872\pi\)
0.337146 + 0.941452i \(0.390538\pi\)
\(420\) 3.56930 1.80338i 0.174164 0.0879961i
\(421\) −14.2023 14.2023i −0.692178 0.692178i 0.270532 0.962711i \(-0.412800\pi\)
−0.962711 + 0.270532i \(0.912800\pi\)
\(422\) 17.9770 + 17.9770i 0.875104 + 0.875104i
\(423\) −0.335258 + 1.25120i −0.0163008 + 0.0608354i
\(424\) 0.940170 + 3.50876i 0.0456587 + 0.170401i
\(425\) 20.3826i 0.988702i
\(426\) −0.257524 0.446045i −0.0124771 0.0216110i
\(427\) 2.14752 0.448841i 0.103926 0.0217209i
\(428\) 10.3687i 0.501190i
\(429\) 2.09034 22.3412i 0.100922 1.07864i
\(430\) −5.81468 3.35711i −0.280409 0.161894i
\(431\) 2.22484 + 2.22484i 0.107167 + 0.107167i 0.758657 0.651490i \(-0.225856\pi\)
−0.651490 + 0.758657i \(0.725856\pi\)
\(432\) −0.866025 0.500000i −0.0416667 0.0240563i
\(433\) −0.586750 + 1.01628i −0.0281974 + 0.0488394i −0.879780 0.475381i \(-0.842310\pi\)
0.851582 + 0.524221i \(0.175643\pi\)
\(434\) 16.0680 14.3690i 0.771287 0.689734i
\(435\) 4.69715 1.25860i 0.225211 0.0603451i
\(436\) 9.94974 9.94974i 0.476506 0.476506i
\(437\) −0.451307 + 0.120927i −0.0215889 + 0.00578474i
\(438\) 4.07563 + 7.05920i 0.194741 + 0.337302i
\(439\) −14.0026 + 24.2533i −0.668310 + 1.15755i 0.310067 + 0.950715i \(0.399649\pi\)
−0.978376 + 0.206832i \(0.933685\pi\)
\(440\) 2.43460 9.08604i 0.116065 0.433160i
\(441\) 6.41404 2.80359i 0.305430 0.133504i
\(442\) −2.52123 + 26.9465i −0.119923 + 1.28172i
\(443\) −7.27687 12.6039i −0.345734 0.598830i 0.639752 0.768581i \(-0.279037\pi\)
−0.985487 + 0.169751i \(0.945704\pi\)
\(444\) −3.41570 + 3.41570i −0.162102 + 0.162102i
\(445\) 4.33832 0.205656
\(446\) −10.6586 −0.504699
\(447\) 3.84805 3.84805i 0.182007 0.182007i
\(448\) 2.58979 0.541277i 0.122356 0.0255729i
\(449\) 8.54677 + 31.8970i 0.403347 + 1.50531i 0.807084 + 0.590437i \(0.201044\pi\)
−0.403737 + 0.914875i \(0.632289\pi\)
\(450\) 2.62289 + 0.702801i 0.123644 + 0.0331304i
\(451\) 21.4714 12.3965i 1.01105 0.583729i
\(452\) 11.0521i 0.519846i
\(453\) 13.2406 3.54781i 0.622098 0.166691i
\(454\) 2.65839 0.124765
\(455\) 11.5965 8.56841i 0.543654 0.401693i
\(456\) 7.73007 0.361994
\(457\) −22.6788 + 6.07676i −1.06087 + 0.284259i −0.746736 0.665120i \(-0.768380\pi\)
−0.314132 + 0.949379i \(0.601714\pi\)
\(458\) 2.51173i 0.117366i
\(459\) 6.50061 3.75313i 0.303423 0.175181i
\(460\) 0.0882454 + 0.0236453i 0.00411446 + 0.00110247i
\(461\) −7.65826 28.5810i −0.356681 1.33115i −0.878356 0.478007i \(-0.841359\pi\)
0.521675 0.853144i \(-0.325307\pi\)
\(462\) 5.14137 15.6423i 0.239198 0.727744i
\(463\) −15.1405 + 15.1405i −0.703641 + 0.703641i −0.965190 0.261549i \(-0.915767\pi\)
0.261549 + 0.965190i \(0.415767\pi\)
\(464\) 3.21727 0.149358
\(465\) −12.3145 −0.571071
\(466\) 14.4520 14.4520i 0.669475 0.669475i
\(467\) −14.4895 25.0965i −0.670493 1.16133i −0.977765 0.209706i \(-0.932749\pi\)
0.307272 0.951622i \(-0.400584\pi\)
\(468\) −3.38062 1.25357i −0.156269 0.0579461i
\(469\) 1.26079 1.92707i 0.0582181 0.0889838i
\(470\) −0.506737 + 1.89117i −0.0233740 + 0.0872331i
\(471\) −11.1595 + 19.3289i −0.514204 + 0.890628i
\(472\) −4.97716 8.62070i −0.229092 0.396800i
\(473\) −26.7032 + 7.15509i −1.22781 + 0.328991i
\(474\) 8.10963 8.10963i 0.372487 0.372487i
\(475\) −20.2751 + 5.43270i −0.930287 + 0.249270i
\(476\) −6.20120 + 18.8667i −0.284231 + 0.864754i
\(477\) 1.81627 3.14587i 0.0831613 0.144040i
\(478\) −14.8109 8.55109i −0.677435 0.391118i
\(479\) −20.7600 20.7600i −0.948550 0.948550i 0.0501896 0.998740i \(-0.484017\pi\)
−0.998740 + 0.0501896i \(0.984017\pi\)
\(480\) −1.30898 0.755742i −0.0597467 0.0344948i
\(481\) −10.0756 + 14.2065i −0.459408 + 0.647760i
\(482\) 6.71874i 0.306030i
\(483\) 0.151921 + 0.0499340i 0.00691263 + 0.00227208i
\(484\) −13.8653 24.0154i −0.630242 1.09161i
\(485\) 3.87590i 0.175996i
\(486\) 0.258819 + 0.965926i 0.0117403 + 0.0438153i
\(487\) 7.43946 27.7645i 0.337114 1.25813i −0.564445 0.825471i \(-0.690910\pi\)
0.901559 0.432657i \(-0.142424\pi\)
\(488\) −0.586351 0.586351i −0.0265429 0.0265429i
\(489\) −8.34888 8.34888i −0.377549 0.377549i
\(490\) 9.69472 4.23758i 0.437963 0.191434i
\(491\) 27.7851 16.0417i 1.25392 0.723953i 0.282038 0.959403i \(-0.408990\pi\)
0.971887 + 0.235450i \(0.0756563\pi\)
\(492\) −1.03109 3.84810i −0.0464853 0.173486i
\(493\) −12.0748 + 20.9142i −0.543823 + 0.941928i
\(494\) 27.4764 4.67429i 1.23622 0.210306i
\(495\) −8.14632 + 4.70328i −0.366150 + 0.211397i
\(496\) −7.86967 2.10867i −0.353359 0.0946822i
\(497\) −0.614515 1.21626i −0.0275648 0.0545569i
\(498\) 5.81582 + 3.35776i 0.260613 + 0.150465i
\(499\) 0.861922 3.21674i 0.0385849 0.144001i −0.943946 0.330099i \(-0.892918\pi\)
0.982531 + 0.186099i \(0.0595844\pi\)
\(500\) 11.2644 + 3.01828i 0.503758 + 0.134981i
\(501\) 8.62592 + 2.31131i 0.385377 + 0.103262i
\(502\) 5.36010 20.0042i 0.239233 0.892829i
\(503\) −35.7390 20.6339i −1.59352 0.920020i −0.992696 0.120640i \(-0.961505\pi\)
−0.600825 0.799380i \(-0.705161\pi\)
\(504\) −2.21400 1.44852i −0.0986194 0.0645222i
\(505\) −11.7620 3.15161i −0.523401 0.140245i
\(506\) 0.325764 0.188080i 0.0144820 0.00836116i
\(507\) −12.7744 2.41156i −0.567329 0.107101i
\(508\) −3.06219 + 5.30387i −0.135863 + 0.235321i
\(509\) 6.68840 + 24.9615i 0.296458 + 1.10640i 0.940052 + 0.341030i \(0.110776\pi\)
−0.643594 + 0.765367i \(0.722557\pi\)
\(510\) 9.82558 5.67280i 0.435084 0.251196i
\(511\) 9.72544 + 19.2488i 0.430228 + 0.851518i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) −5.46599 5.46599i −0.241329 0.241329i
\(514\) −2.46076 + 9.18369i −0.108540 + 0.405075i
\(515\) −5.41979 20.2269i −0.238824 0.891305i
\(516\) 4.44213i 0.195554i
\(517\) 4.03070 + 6.98137i 0.177270 + 0.307040i
\(518\) −9.52670 + 8.51938i −0.418579 + 0.374320i
\(519\) 22.1636i 0.972873i
\(520\) −5.10975 1.89475i −0.224077 0.0830901i
\(521\) −8.66539 5.00297i −0.379638 0.219184i 0.298023 0.954559i \(-0.403673\pi\)
−0.677661 + 0.735375i \(0.737006\pi\)
\(522\) −2.27495 2.27495i −0.0995719 0.0995719i
\(523\) −34.5919 19.9716i −1.51260 0.873299i −0.999891 0.0147357i \(-0.995309\pi\)
−0.512707 0.858564i \(-0.671357\pi\)
\(524\) 5.77506 10.0027i 0.252284 0.436970i
\(525\) 6.82510 + 2.24330i 0.297872 + 0.0979058i
\(526\) 17.2205 4.61423i 0.750851 0.201190i
\(527\) 43.2436 43.2436i 1.88372 1.88372i
\(528\) −6.01134 + 1.61073i −0.261610 + 0.0700981i
\(529\) −11.4982 19.9154i −0.499921 0.865888i
\(530\) 2.74526 4.75493i 0.119247 0.206541i
\(531\) −2.57637 + 9.61514i −0.111805 + 0.417261i
\(532\) 20.4201 + 1.13983i 0.885322 + 0.0494180i
\(533\) −5.99191 13.0545i −0.259538 0.565453i
\(534\) −1.43512 2.48570i −0.0621037 0.107567i
\(535\) −11.0819 + 11.0819i −0.479111 + 0.479111i
\(536\) −0.870402 −0.0375957
\(537\) 9.83448 0.424389
\(538\) −6.47432 + 6.47432i −0.279128 + 0.279128i
\(539\) 15.8882 40.5631i 0.684352 1.74718i
\(540\) 0.391201 + 1.45998i 0.0168346 + 0.0628276i
\(541\) −21.8557 5.85623i −0.939652 0.251779i −0.243686 0.969854i \(-0.578357\pi\)
−0.695966 + 0.718075i \(0.745023\pi\)
\(542\) −14.7266 + 8.50239i −0.632560 + 0.365209i
\(543\) 11.3170i 0.485659i
\(544\) 7.25049 1.94276i 0.310862 0.0832953i
\(545\) −21.2682 −0.911029
\(546\) −8.74553 3.80996i −0.374274 0.163051i
\(547\) 35.2646 1.50781 0.753904 0.656985i \(-0.228168\pi\)
0.753904 + 0.656985i \(0.228168\pi\)
\(548\) 4.10069 1.09878i 0.175173 0.0469374i
\(549\) 0.829226i 0.0353905i
\(550\) 14.6350 8.44955i 0.624041 0.360290i
\(551\) 24.0223 + 6.43675i 1.02338 + 0.274215i
\(552\) −0.0156437 0.0583833i −0.000665842 0.00248496i
\(553\) 22.6185 20.2269i 0.961837 0.860136i
\(554\) −8.15527 + 8.15527i −0.346484 + 0.346484i
\(555\) 7.30127 0.309922
\(556\) 8.71159 0.369454
\(557\) 7.82849 7.82849i 0.331704 0.331704i −0.521530 0.853233i \(-0.674638\pi\)
0.853233 + 0.521530i \(0.174638\pi\)
\(558\) 4.07364 + 7.05576i 0.172451 + 0.298694i
\(559\) 2.68611 + 15.7895i 0.113610 + 0.667824i
\(560\) −3.34643 2.18941i −0.141412 0.0925196i
\(561\) 12.0906 45.1227i 0.510465 1.90508i
\(562\) 7.51184 13.0109i 0.316868 0.548831i
\(563\) −7.90232 13.6872i −0.333043 0.576848i 0.650064 0.759880i \(-0.274742\pi\)
−0.983107 + 0.183032i \(0.941409\pi\)
\(564\) 1.25120 0.335258i 0.0526850 0.0141169i
\(565\) 11.8122 11.8122i 0.496945 0.496945i
\(566\) 11.6796 3.12954i 0.490930 0.131544i
\(567\) 0.541277 + 2.58979i 0.0227315 + 0.108761i
\(568\) −0.257524 + 0.446045i −0.0108055 + 0.0187157i
\(569\) 34.2970 + 19.8014i 1.43781 + 0.830118i 0.997697 0.0678257i \(-0.0216062\pi\)
0.440110 + 0.897944i \(0.354940\pi\)
\(570\) −8.26176 8.26176i −0.346047 0.346047i
\(571\) 9.31305 + 5.37689i 0.389739 + 0.225016i 0.682047 0.731308i \(-0.261090\pi\)
−0.292308 + 0.956324i \(0.594423\pi\)
\(572\) −20.3932 + 9.36031i −0.852683 + 0.391374i
\(573\) 12.6308i 0.527659i
\(574\) −2.15636 10.3173i −0.0900047 0.430637i
\(575\) 0.0820636 + 0.142138i 0.00342229 + 0.00592758i
\(576\) 1.00000i 0.0416667i
\(577\) −5.14672 19.2078i −0.214261 0.799633i −0.986425 0.164210i \(-0.947493\pi\)
0.772165 0.635423i \(-0.219174\pi\)
\(578\) −10.1830 + 38.0033i −0.423556 + 1.58073i
\(579\) −1.40376 1.40376i −0.0583382 0.0583382i
\(580\) −3.43855 3.43855i −0.142778 0.142778i
\(581\) 14.8682 + 9.72756i 0.616836 + 0.403567i
\(582\) 2.22075 1.28215i 0.0920531 0.0531469i
\(583\) −5.85105 21.8364i −0.242326 0.904372i
\(584\) 4.07563 7.05920i 0.168651 0.292112i
\(585\) 2.27335 + 4.95293i 0.0939915 + 0.204778i
\(586\) −6.73420 + 3.88799i −0.278187 + 0.160612i
\(587\) 14.9755 + 4.01267i 0.618104 + 0.165621i 0.554266 0.832340i \(-0.312999\pi\)
0.0638384 + 0.997960i \(0.479666\pi\)
\(588\) −5.63500 4.15293i −0.232383 0.171264i
\(589\) −54.5415 31.4896i −2.24734 1.29750i
\(590\) −3.89414 + 14.5331i −0.160319 + 0.598319i
\(591\) −3.47158 0.930208i −0.142802 0.0382636i
\(592\) 4.66593 + 1.25023i 0.191769 + 0.0513842i
\(593\) 11.2653 42.0426i 0.462609 1.72648i −0.202086 0.979368i \(-0.564772\pi\)
0.664696 0.747114i \(-0.268561\pi\)
\(594\) 5.38962 + 3.11170i 0.221139 + 0.127674i
\(595\) 26.7921 13.5367i 1.09837 0.554949i
\(596\) −5.25654 1.40849i −0.215316 0.0576938i
\(597\) −8.82335 + 5.09416i −0.361116 + 0.208490i
\(598\) −0.0909091 0.198063i −0.00371755 0.00809939i
\(599\) −5.85128 + 10.1347i −0.239077 + 0.414093i −0.960450 0.278454i \(-0.910178\pi\)
0.721373 + 0.692547i \(0.243511\pi\)
\(600\) −0.702801 2.62289i −0.0286917 0.107079i
\(601\) 13.8487 7.99556i 0.564901 0.326146i −0.190209 0.981744i \(-0.560917\pi\)
0.755110 + 0.655598i \(0.227583\pi\)
\(602\) −0.655012 + 11.7345i −0.0266963 + 0.478263i
\(603\) 0.615467 + 0.615467i 0.0250638 + 0.0250638i
\(604\) −9.69280 9.69280i −0.394395 0.394395i
\(605\) −10.8482 + 40.4862i −0.441044 + 1.64600i
\(606\) 2.08511 + 7.78173i 0.0847018 + 0.316111i
\(607\) 6.38329i 0.259090i 0.991574 + 0.129545i \(0.0413516\pi\)
−0.991574 + 0.129545i \(0.958648\pi\)
\(608\) −3.86504 6.69444i −0.156748 0.271495i
\(609\) −5.67415 6.34505i −0.229928 0.257114i
\(610\) 1.25336i 0.0507472i
\(611\) 4.24464 1.94826i 0.171720 0.0788180i
\(612\) −6.50061 3.75313i −0.262772 0.151711i
\(613\) 33.2418 + 33.2418i 1.34262 + 1.34262i 0.893441 + 0.449181i \(0.148284\pi\)
0.449181 + 0.893441i \(0.351716\pi\)
\(614\) −1.06564 0.615245i −0.0430055 0.0248293i
\(615\) −3.01076 + 5.21479i −0.121405 + 0.210280i
\(616\) −16.1173 + 3.36858i −0.649384 + 0.135724i
\(617\) −16.0799 + 4.30860i −0.647354 + 0.173458i −0.567532 0.823351i \(-0.692102\pi\)
−0.0798215 + 0.996809i \(0.525435\pi\)
\(618\) −9.79642 + 9.79642i −0.394070 + 0.394070i
\(619\) 27.3998 7.34176i 1.10129 0.295090i 0.338001 0.941146i \(-0.390249\pi\)
0.763290 + 0.646055i \(0.223583\pi\)
\(620\) 6.15725 + 10.6647i 0.247281 + 0.428303i
\(621\) −0.0302214 + 0.0523450i −0.00121274 + 0.00210053i
\(622\) −4.64739 + 17.3443i −0.186343 + 0.695443i
\(623\) −3.42454 6.77794i −0.137201 0.271552i
\(624\) 0.604689 + 3.55448i 0.0242069 + 0.142293i
\(625\) −2.02472 3.50692i −0.0809889 0.140277i
\(626\) 0.329070 0.329070i 0.0131523 0.0131523i
\(627\) −48.1073 −1.92122
\(628\) 22.3191 0.890628
\(629\) −25.6391 + 25.6391i −1.02230 + 1.02230i
\(630\) 0.818131 + 3.91443i 0.0325951 + 0.155955i
\(631\) −6.29363 23.4882i −0.250546 0.935049i −0.970515 0.241043i \(-0.922511\pi\)
0.719969 0.694006i \(-0.244156\pi\)
\(632\) −11.0780 2.96833i −0.440657 0.118074i
\(633\) −22.0172 + 12.7116i −0.875104 + 0.505242i
\(634\) 0.163426i 0.00649049i
\(635\) 8.94149 2.39587i 0.354832 0.0950770i
\(636\) −3.63254 −0.144040
\(637\) −22.5407 11.3541i −0.893096 0.449866i
\(638\) −20.0223 −0.792691
\(639\) 0.497499 0.133304i 0.0196808 0.00527344i
\(640\) 1.51148i 0.0597467i
\(641\) 24.0979 13.9129i 0.951808 0.549527i 0.0581661 0.998307i \(-0.481475\pi\)
0.893642 + 0.448780i \(0.148141\pi\)
\(642\) 10.0154 + 2.68362i 0.395276 + 0.105914i
\(643\) −5.95094 22.2092i −0.234682 0.875846i −0.978292 0.207232i \(-0.933555\pi\)
0.743610 0.668614i \(-0.233112\pi\)
\(644\) −0.0327163 0.156534i −0.00128920 0.00616831i
\(645\) 4.74767 4.74767i 0.186939 0.186939i
\(646\) 58.0240 2.28292
\(647\) 11.5639 0.454623 0.227312 0.973822i \(-0.427006\pi\)
0.227312 + 0.973822i \(0.427006\pi\)
\(648\) 0.707107 0.707107i 0.0277778 0.0277778i
\(649\) 30.9748 + 53.6500i 1.21587 + 2.10595i
\(650\) −4.08413 8.89804i −0.160193 0.349010i
\(651\) 9.72069 + 19.2394i 0.380984 + 0.754053i
\(652\) −3.05590 + 11.4048i −0.119678 + 0.446646i
\(653\) −4.11787 + 7.13236i −0.161145 + 0.279111i −0.935279 0.353910i \(-0.884852\pi\)
0.774135 + 0.633021i \(0.218185\pi\)
\(654\) 7.03553 + 12.1859i 0.275111 + 0.476506i
\(655\) −16.8630 + 4.51841i −0.658890 + 0.176549i
\(656\) −2.81700 + 2.81700i −0.109985 + 0.109985i
\(657\) −7.87352 + 2.10970i −0.307175 + 0.0823073i
\(658\) 3.35465 0.701136i 0.130778 0.0273331i
\(659\) −12.9134 + 22.3667i −0.503036 + 0.871283i 0.496958 + 0.867774i \(0.334450\pi\)
−0.999994 + 0.00350872i \(0.998883\pi\)
\(660\) 8.14632 + 4.70328i 0.317095 + 0.183075i
\(661\) −19.3713 19.3713i −0.753456 0.753456i 0.221666 0.975123i \(-0.428850\pi\)
−0.975123 + 0.221666i \(0.928850\pi\)
\(662\) −10.1848 5.88018i −0.395842 0.228540i
\(663\) −25.3758 9.40959i −0.985514 0.365438i
\(664\) 6.71552i 0.260613i
\(665\) −20.6063 23.0428i −0.799080 0.893562i
\(666\) −2.41526 4.18336i −0.0935896 0.162102i
\(667\) 0.194461i 0.00752954i
\(668\) −2.31131 8.62592i −0.0894272 0.333747i
\(669\) 2.75865 10.2954i 0.106655 0.398044i
\(670\) 0.930269 + 0.930269i 0.0359394 + 0.0359394i
\(671\) 3.64910 + 3.64910i 0.140872 + 0.140872i
\(672\) −0.147454 + 2.64164i −0.00568818 + 0.101903i
\(673\) −19.5143 + 11.2666i −0.752220 + 0.434294i −0.826495 0.562943i \(-0.809669\pi\)
0.0742756 + 0.997238i \(0.476336\pi\)
\(674\) −4.79580 17.8982i −0.184727 0.689411i
\(675\) −1.35771 + 2.35162i −0.0522582 + 0.0905138i
\(676\) 4.29871 + 12.2687i 0.165335 + 0.471873i
\(677\) −3.48362 + 2.01127i −0.133886 + 0.0772994i −0.565447 0.824785i \(-0.691296\pi\)
0.431561 + 0.902084i \(0.357963\pi\)
\(678\) −10.6755 2.86049i −0.409990 0.109856i
\(679\) 6.05548 3.05952i 0.232388 0.117414i
\(680\) −9.82558 5.67280i −0.376794 0.217542i
\(681\) −0.688042 + 2.56781i −0.0263658 + 0.0983987i
\(682\) 48.9761 + 13.1231i 1.87539 + 0.502509i
\(683\) −3.15425 0.845179i −0.120694 0.0323399i 0.197966 0.980209i \(-0.436566\pi\)
−0.318660 + 0.947869i \(0.603233\pi\)
\(684\) −2.00069 + 7.46668i −0.0764983 + 0.285496i
\(685\) −5.55709 3.20839i −0.212326 0.122586i
\(686\) −14.2733 11.8014i −0.544956 0.450581i
\(687\) 2.42615 + 0.650085i 0.0925633 + 0.0248023i
\(688\) 3.84700 2.22107i 0.146666 0.0846774i
\(689\) −12.9118 + 2.19656i −0.491900 + 0.0836821i
\(690\) −0.0456792 + 0.0791186i −0.00173898 + 0.00301200i
\(691\) 4.35797 + 16.2642i 0.165785 + 0.618718i 0.997939 + 0.0641730i \(0.0204410\pi\)
−0.832154 + 0.554545i \(0.812892\pi\)
\(692\) −19.1942 + 11.0818i −0.729655 + 0.421267i
\(693\) 13.7786 + 9.01470i 0.523405 + 0.342440i
\(694\) 21.1344 + 21.1344i 0.802250 + 0.802250i
\(695\) −9.31078 9.31078i −0.353178 0.353178i
\(696\) −0.832690 + 3.10764i −0.0315630 + 0.117795i
\(697\) −7.73966 28.8848i −0.293161 1.09409i
\(698\) 10.5391i 0.398911i
\(699\) 10.2191 + 17.7000i 0.386522 + 0.669475i
\(700\) −1.46979 7.03236i −0.0555529 0.265798i
\(701\) 7.65213i 0.289017i 0.989504 + 0.144509i \(0.0461601\pi\)
−0.989504 + 0.144509i \(0.953840\pi\)
\(702\) 2.08582 2.94098i 0.0787242 0.111000i
\(703\) 32.3377 + 18.6702i 1.21964 + 0.704159i
\(704\) 4.40060 + 4.40060i 0.165854 + 0.165854i
\(705\) −1.69558 0.978941i −0.0638591 0.0368691i
\(706\) 17.7752 30.7876i 0.668979 1.15871i
\(707\) 4.36066 + 20.8640i 0.163999 + 0.784671i
\(708\) 9.61514 2.57637i 0.361359 0.0968258i
\(709\) 3.57691 3.57691i 0.134334 0.134334i −0.636743 0.771076i \(-0.719719\pi\)
0.771076 + 0.636743i \(0.219719\pi\)
\(710\) 0.751962 0.201488i 0.0282206 0.00756170i
\(711\) 5.73437 + 9.93222i 0.215056 + 0.372487i
\(712\) −1.43512 + 2.48570i −0.0537834 + 0.0931556i
\(713\) −0.127454 + 0.475665i −0.00477319 + 0.0178138i
\(714\) −16.6189 10.8730i −0.621945 0.406910i
\(715\) 31.8000 + 11.7917i 1.18925 + 0.440986i
\(716\) −4.91724 8.51691i −0.183766 0.318292i
\(717\) 12.0931 12.0931i 0.451624 0.451624i
\(718\) 1.53581 0.0573161
\(719\) 28.5362 1.06422 0.532110 0.846675i \(-0.321399\pi\)
0.532110 + 0.846675i \(0.321399\pi\)
\(720\) 1.06878 1.06878i 0.0398311 0.0398311i
\(721\) −27.3231 + 24.4341i −1.01757 + 0.909973i
\(722\) −10.5479 39.3654i −0.392553 1.46503i
\(723\) −6.48980 1.73894i −0.241358 0.0646718i
\(724\) 9.80082 5.65850i 0.364244 0.210297i
\(725\) 8.73621i 0.324455i
\(726\) 26.7857 7.17721i 0.994112 0.266371i
\(727\) −23.9463 −0.888119 −0.444060 0.895997i \(-0.646462\pi\)
−0.444060 + 0.895997i \(0.646462\pi\)
\(728\) 1.07325 + 9.47883i 0.0397771 + 0.351309i
\(729\) −1.00000 −0.0370370
\(730\) −11.9007 + 3.18878i −0.440465 + 0.118022i
\(731\) 33.3438i 1.23327i
\(732\) 0.718131 0.414613i 0.0265429 0.0153245i
\(733\) 44.8705 + 12.0230i 1.65733 + 0.444080i 0.961652 0.274274i \(-0.0884374\pi\)
0.695678 + 0.718354i \(0.255104\pi\)
\(734\) −1.42687 5.32514i −0.0526666 0.196554i
\(735\) 1.58401 + 10.4611i 0.0584270 + 0.385865i
\(736\) −0.0427395 + 0.0427395i −0.00157540 + 0.00157540i
\(737\) 5.41686 0.199532
\(738\) 3.98384 0.146647
\(739\) −13.2967 + 13.2967i −0.489128 + 0.489128i −0.908031 0.418903i \(-0.862415\pi\)
0.418903 + 0.908031i \(0.362415\pi\)
\(740\) −3.65063 6.32308i −0.134200 0.232441i
\(741\) −2.59640 + 27.7500i −0.0953813 + 1.01942i
\(742\) −9.59586 0.535634i −0.352275 0.0196637i
\(743\) −2.11279 + 7.88504i −0.0775108 + 0.289274i −0.993791 0.111264i \(-0.964510\pi\)
0.916280 + 0.400538i \(0.131177\pi\)
\(744\) 4.07364 7.05576i 0.149347 0.258677i
\(745\) 4.11273 + 7.12345i 0.150679 + 0.260983i
\(746\) −18.2999 + 4.90345i −0.670008 + 0.179528i
\(747\) −4.74859 + 4.74859i −0.173742 + 0.173742i
\(748\) −45.1227 + 12.0906i −1.64985 + 0.442075i
\(749\) 26.0613 + 8.56596i 0.952260 + 0.312993i
\(750\) −5.83086 + 10.0994i −0.212913 + 0.368776i
\(751\) −4.82305 2.78459i −0.175995 0.101611i 0.409414 0.912349i \(-0.365733\pi\)
−0.585410 + 0.810738i \(0.699066\pi\)
\(752\) −0.915942 0.915942i −0.0334010 0.0334010i
\(753\) 17.9352 + 10.3549i 0.653596 + 0.377354i
\(754\) −1.08063 + 11.5496i −0.0393541 + 0.420611i
\(755\) 20.7190i 0.754040i
\(756\) 1.97219 1.76365i 0.0717277 0.0641435i
\(757\) −15.2061 26.3377i −0.552675 0.957262i −0.998080 0.0619325i \(-0.980274\pi\)
0.445405 0.895329i \(-0.353060\pi\)
\(758\) 34.6020i 1.25680i
\(759\) 0.0973572 + 0.363342i 0.00353384 + 0.0131885i
\(760\) −3.02401 + 11.2858i −0.109692 + 0.409378i
\(761\) −3.43260 3.43260i −0.124432 0.124432i 0.642149 0.766580i \(-0.278043\pi\)
−0.766580 + 0.642149i \(0.778043\pi\)
\(762\) −4.33060 4.33060i −0.156881 0.156881i
\(763\) 16.7885 + 33.2281i 0.607783 + 1.20294i
\(764\) −10.9386 + 6.31539i −0.395744 + 0.228483i
\(765\) 2.93646 + 10.9590i 0.106168 + 0.396224i
\(766\) −11.6330 + 20.1489i −0.420316 + 0.728008i
\(767\) 32.6189 14.9718i 1.17780 0.540601i
\(768\) 0.866025 0.500000i 0.0312500 0.0180422i
\(769\) −21.1806 5.67534i −0.763794 0.204658i −0.144166 0.989554i \(-0.546050\pi\)
−0.619628 + 0.784896i \(0.712717\pi\)
\(770\) 20.8261 + 13.6256i 0.750521 + 0.491032i
\(771\) −8.23387 4.75383i −0.296536 0.171205i
\(772\) −0.513811 + 1.91757i −0.0184925 + 0.0690149i
\(773\) −2.56163 0.686385i −0.0921353 0.0246876i 0.212457 0.977170i \(-0.431853\pi\)
&