Properties

Label 546.2.by.b.115.4
Level $546$
Weight $2$
Character 546.115
Analytic conductor $4.360$
Analytic rank $0$
Dimension $40$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.by (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 115.4
Character \(\chi\) \(=\) 546.115
Dual form 546.2.by.b.19.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.965926 + 0.258819i) q^{2} +1.00000i q^{3} +(0.866025 - 0.500000i) q^{4} +(1.30611 + 0.349971i) q^{5} +(-0.258819 - 0.965926i) q^{6} +(2.64352 + 0.108591i) q^{7} +(-0.707107 + 0.707107i) q^{8} -1.00000 q^{9} +O(q^{10})\) \(q+(-0.965926 + 0.258819i) q^{2} +1.00000i q^{3} +(0.866025 - 0.500000i) q^{4} +(1.30611 + 0.349971i) q^{5} +(-0.258819 - 0.965926i) q^{6} +(2.64352 + 0.108591i) q^{7} +(-0.707107 + 0.707107i) q^{8} -1.00000 q^{9} -1.35218 q^{10} +(0.402566 - 0.402566i) q^{11} +(0.500000 + 0.866025i) q^{12} +(3.33605 - 1.36776i) q^{13} +(-2.58155 + 0.579303i) q^{14} +(-0.349971 + 1.30611i) q^{15} +(0.500000 - 0.866025i) q^{16} +(0.487543 + 0.844450i) q^{17} +(0.965926 - 0.258819i) q^{18} +(2.29914 - 2.29914i) q^{19} +(1.30611 - 0.349971i) q^{20} +(-0.108591 + 2.64352i) q^{21} +(-0.284657 + 0.493040i) q^{22} +(-0.0701717 - 0.0405137i) q^{23} +(-0.707107 - 0.707107i) q^{24} +(-2.74668 - 1.58580i) q^{25} +(-2.86837 + 2.18459i) q^{26} -1.00000i q^{27} +(2.34365 - 1.22772i) q^{28} +(-0.139785 - 0.242115i) q^{29} -1.35218i q^{30} +(0.665884 + 2.48511i) q^{31} +(-0.258819 + 0.965926i) q^{32} +(0.402566 + 0.402566i) q^{33} +(-0.689491 - 0.689491i) q^{34} +(3.41473 + 1.06699i) q^{35} +(-0.866025 + 0.500000i) q^{36} +(0.419419 + 1.56529i) q^{37} +(-1.62574 + 2.81586i) q^{38} +(1.36776 + 3.33605i) q^{39} +(-1.17103 + 0.676092i) q^{40} +(-2.23576 - 0.599071i) q^{41} +(-0.579303 - 2.58155i) q^{42} +(9.48543 + 5.47642i) q^{43} +(0.147349 - 0.549915i) q^{44} +(-1.30611 - 0.349971i) q^{45} +(0.0782664 + 0.0209714i) q^{46} +(-1.48771 + 5.55221i) q^{47} +(0.866025 + 0.500000i) q^{48} +(6.97642 + 0.574124i) q^{49} +(3.06353 + 0.820870i) q^{50} +(-0.844450 + 0.487543i) q^{51} +(2.20522 - 2.85254i) q^{52} +(-4.54058 + 7.86452i) q^{53} +(0.258819 + 0.965926i) q^{54} +(0.666681 - 0.384909i) q^{55} +(-1.94604 + 1.79247i) q^{56} +(2.29914 + 2.29914i) q^{57} +(0.197686 + 0.197686i) q^{58} +(-1.84934 + 6.90183i) q^{59} +(0.349971 + 1.30611i) q^{60} -5.72178i q^{61} +(-1.28639 - 2.22809i) q^{62} +(-2.64352 - 0.108591i) q^{63} -1.00000i q^{64} +(4.83592 - 0.618927i) q^{65} +(-0.493040 - 0.284657i) q^{66} +(-1.53445 - 1.53445i) q^{67} +(0.844450 + 0.487543i) q^{68} +(0.0405137 - 0.0701717i) q^{69} +(-3.57453 - 0.146835i) q^{70} +(0.466117 - 0.124896i) q^{71} +(0.707107 - 0.707107i) q^{72} +(-2.81084 + 0.753163i) q^{73} +(-0.810255 - 1.40340i) q^{74} +(1.58580 - 2.74668i) q^{75} +(0.841543 - 3.14068i) q^{76} +(1.10791 - 1.02048i) q^{77} +(-2.18459 - 2.86837i) q^{78} +(1.45438 + 2.51907i) q^{79} +(0.956138 - 0.956138i) q^{80} +1.00000 q^{81} +2.31463 q^{82} +(2.22649 - 2.22649i) q^{83} +(1.22772 + 2.34365i) q^{84} +(0.341252 + 1.27357i) q^{85} +(-10.5796 - 2.83480i) q^{86} +(0.242115 - 0.139785i) q^{87} +0.569314i q^{88} +(-10.2243 + 2.73959i) q^{89} +1.35218 q^{90} +(8.96745 - 3.25345i) q^{91} -0.0810273 q^{92} +(-2.48511 + 0.665884i) q^{93} -5.74807i q^{94} +(3.80756 - 2.19829i) q^{95} +(-0.965926 - 0.258819i) q^{96} +(-4.34344 - 16.2099i) q^{97} +(-6.88729 + 1.25107i) q^{98} +(-0.402566 + 0.402566i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q - 4q^{7} - 40q^{9} + O(q^{10}) \) \( 40q - 4q^{7} - 40q^{9} - 4q^{11} + 20q^{12} + 4q^{14} + 20q^{16} + 8q^{17} + 8q^{19} - 8q^{21} - 4q^{22} + 24q^{23} + 24q^{25} - 8q^{26} + 4q^{28} - 12q^{29} + 24q^{31} - 4q^{33} + 8q^{34} + 28q^{35} - 8q^{37} - 8q^{38} - 16q^{39} - 20q^{41} - 12q^{42} - 24q^{43} + 8q^{44} - 4q^{46} - 16q^{47} + 4q^{49} - 16q^{50} - 24q^{51} - 4q^{52} - 4q^{53} - 24q^{55} + 12q^{56} + 8q^{57} + 24q^{58} - 12q^{59} - 32q^{62} + 4q^{63} - 4q^{65} - 24q^{67} + 24q^{68} + 8q^{69} + 52q^{70} - 28q^{71} + 108q^{73} + 20q^{74} - 36q^{75} - 4q^{76} + 12q^{77} + 4q^{78} + 40q^{81} - 48q^{82} - 60q^{83} - 8q^{84} - 4q^{85} - 20q^{86} - 36q^{87} - 60q^{89} - 40q^{91} - 16q^{92} - 48q^{95} + 48q^{97} - 8q^{98} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.965926 + 0.258819i −0.683013 + 0.183013i
\(3\) 1.00000i 0.577350i
\(4\) 0.866025 0.500000i 0.433013 0.250000i
\(5\) 1.30611 + 0.349971i 0.584110 + 0.156512i 0.538760 0.842459i \(-0.318893\pi\)
0.0453500 + 0.998971i \(0.485560\pi\)
\(6\) −0.258819 0.965926i −0.105662 0.394338i
\(7\) 2.64352 + 0.108591i 0.999157 + 0.0410434i
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) −1.00000 −0.333333
\(10\) −1.35218 −0.427598
\(11\) 0.402566 0.402566i 0.121378 0.121378i −0.643808 0.765187i \(-0.722647\pi\)
0.765187 + 0.643808i \(0.222647\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) 3.33605 1.36776i 0.925254 0.379349i
\(14\) −2.58155 + 0.579303i −0.689949 + 0.154825i
\(15\) −0.349971 + 1.30611i −0.0903621 + 0.337236i
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 0.487543 + 0.844450i 0.118247 + 0.204809i 0.919073 0.394088i \(-0.128939\pi\)
−0.800826 + 0.598897i \(0.795606\pi\)
\(18\) 0.965926 0.258819i 0.227671 0.0610042i
\(19\) 2.29914 2.29914i 0.527459 0.527459i −0.392355 0.919814i \(-0.628340\pi\)
0.919814 + 0.392355i \(0.128340\pi\)
\(20\) 1.30611 0.349971i 0.292055 0.0782559i
\(21\) −0.108591 + 2.64352i −0.0236964 + 0.576864i
\(22\) −0.284657 + 0.493040i −0.0606891 + 0.105117i
\(23\) −0.0701717 0.0405137i −0.0146318 0.00844768i 0.492666 0.870218i \(-0.336022\pi\)
−0.507298 + 0.861771i \(0.669356\pi\)
\(24\) −0.707107 0.707107i −0.144338 0.144338i
\(25\) −2.74668 1.58580i −0.549337 0.317160i
\(26\) −2.86837 + 2.18459i −0.562534 + 0.428433i
\(27\) 1.00000i 0.192450i
\(28\) 2.34365 1.22772i 0.442909 0.232017i
\(29\) −0.139785 0.242115i −0.0259574 0.0449596i 0.852755 0.522311i \(-0.174930\pi\)
−0.878712 + 0.477352i \(0.841597\pi\)
\(30\) 1.35218i 0.246874i
\(31\) 0.665884 + 2.48511i 0.119596 + 0.446339i 0.999590 0.0286467i \(-0.00911977\pi\)
−0.879993 + 0.474986i \(0.842453\pi\)
\(32\) −0.258819 + 0.965926i −0.0457532 + 0.170753i
\(33\) 0.402566 + 0.402566i 0.0700777 + 0.0700777i
\(34\) −0.689491 0.689491i −0.118247 0.118247i
\(35\) 3.41473 + 1.06699i 0.577194 + 0.180354i
\(36\) −0.866025 + 0.500000i −0.144338 + 0.0833333i
\(37\) 0.419419 + 1.56529i 0.0689520 + 0.257332i 0.991794 0.127846i \(-0.0408064\pi\)
−0.922842 + 0.385179i \(0.874140\pi\)
\(38\) −1.62574 + 2.81586i −0.263729 + 0.456793i
\(39\) 1.36776 + 3.33605i 0.219017 + 0.534195i
\(40\) −1.17103 + 0.676092i −0.185155 + 0.106900i
\(41\) −2.23576 0.599071i −0.349168 0.0935592i 0.0799726 0.996797i \(-0.474517\pi\)
−0.429140 + 0.903238i \(0.641183\pi\)
\(42\) −0.579303 2.58155i −0.0893884 0.398342i
\(43\) 9.48543 + 5.47642i 1.44651 + 0.835146i 0.998272 0.0587660i \(-0.0187166\pi\)
0.448243 + 0.893912i \(0.352050\pi\)
\(44\) 0.147349 0.549915i 0.0222137 0.0829028i
\(45\) −1.30611 0.349971i −0.194703 0.0521706i
\(46\) 0.0782664 + 0.0209714i 0.0115398 + 0.00309207i
\(47\) −1.48771 + 5.55221i −0.217005 + 0.809873i 0.768446 + 0.639914i \(0.221030\pi\)
−0.985451 + 0.169959i \(0.945637\pi\)
\(48\) 0.866025 + 0.500000i 0.125000 + 0.0721688i
\(49\) 6.97642 + 0.574124i 0.996631 + 0.0820177i
\(50\) 3.06353 + 0.820870i 0.433248 + 0.116089i
\(51\) −0.844450 + 0.487543i −0.118247 + 0.0682697i
\(52\) 2.20522 2.85254i 0.305809 0.395576i
\(53\) −4.54058 + 7.86452i −0.623697 + 1.08027i 0.365095 + 0.930970i \(0.381037\pi\)
−0.988791 + 0.149304i \(0.952297\pi\)
\(54\) 0.258819 + 0.965926i 0.0352208 + 0.131446i
\(55\) 0.666681 0.384909i 0.0898953 0.0519011i
\(56\) −1.94604 + 1.79247i −0.260050 + 0.239528i
\(57\) 2.29914 + 2.29914i 0.304528 + 0.304528i
\(58\) 0.197686 + 0.197686i 0.0259574 + 0.0259574i
\(59\) −1.84934 + 6.90183i −0.240763 + 0.898541i 0.734702 + 0.678390i \(0.237322\pi\)
−0.975466 + 0.220152i \(0.929345\pi\)
\(60\) 0.349971 + 1.30611i 0.0451811 + 0.168618i
\(61\) 5.72178i 0.732599i −0.930497 0.366299i \(-0.880625\pi\)
0.930497 0.366299i \(-0.119375\pi\)
\(62\) −1.28639 2.22809i −0.163372 0.282968i
\(63\) −2.64352 0.108591i −0.333052 0.0136811i
\(64\) 1.00000i 0.125000i
\(65\) 4.83592 0.618927i 0.599822 0.0767685i
\(66\) −0.493040 0.284657i −0.0606891 0.0350389i
\(67\) −1.53445 1.53445i −0.187463 0.187463i 0.607135 0.794598i \(-0.292319\pi\)
−0.794598 + 0.607135i \(0.792319\pi\)
\(68\) 0.844450 + 0.487543i 0.102405 + 0.0591233i
\(69\) 0.0405137 0.0701717i 0.00487727 0.00844768i
\(70\) −3.57453 0.146835i −0.427238 0.0175501i
\(71\) 0.466117 0.124896i 0.0553179 0.0148224i −0.231054 0.972941i \(-0.574217\pi\)
0.286372 + 0.958119i \(0.407551\pi\)
\(72\) 0.707107 0.707107i 0.0833333 0.0833333i
\(73\) −2.81084 + 0.753163i −0.328984 + 0.0881510i −0.419531 0.907741i \(-0.637805\pi\)
0.0905465 + 0.995892i \(0.471139\pi\)
\(74\) −0.810255 1.40340i −0.0941902 0.163142i
\(75\) 1.58580 2.74668i 0.183112 0.317160i
\(76\) 0.841543 3.14068i 0.0965316 0.360261i
\(77\) 1.10791 1.02048i 0.126258 0.116294i
\(78\) −2.18459 2.86837i −0.247356 0.324779i
\(79\) 1.45438 + 2.51907i 0.163631 + 0.283417i 0.936168 0.351552i \(-0.114346\pi\)
−0.772537 + 0.634969i \(0.781013\pi\)
\(80\) 0.956138 0.956138i 0.106900 0.106900i
\(81\) 1.00000 0.111111
\(82\) 2.31463 0.255608
\(83\) 2.22649 2.22649i 0.244389 0.244389i −0.574274 0.818663i \(-0.694716\pi\)
0.818663 + 0.574274i \(0.194716\pi\)
\(84\) 1.22772 + 2.34365i 0.133955 + 0.255713i
\(85\) 0.341252 + 1.27357i 0.0370140 + 0.138138i
\(86\) −10.5796 2.83480i −1.14083 0.305685i
\(87\) 0.242115 0.139785i 0.0259574 0.0149865i
\(88\) 0.569314i 0.0606891i
\(89\) −10.2243 + 2.73959i −1.08377 + 0.290396i −0.756141 0.654409i \(-0.772918\pi\)
−0.327633 + 0.944805i \(0.606251\pi\)
\(90\) 1.35218 0.142533
\(91\) 8.96745 3.25345i 0.940044 0.341054i
\(92\) −0.0810273 −0.00844768
\(93\) −2.48511 + 0.665884i −0.257694 + 0.0690489i
\(94\) 5.74807i 0.592868i
\(95\) 3.80756 2.19829i 0.390647 0.225540i
\(96\) −0.965926 0.258819i −0.0985844 0.0264156i
\(97\) −4.34344 16.2099i −0.441009 1.64587i −0.726263 0.687417i \(-0.758745\pi\)
0.285254 0.958452i \(-0.407922\pi\)
\(98\) −6.88729 + 1.25107i −0.695722 + 0.126377i
\(99\) −0.402566 + 0.402566i −0.0404594 + 0.0404594i
\(100\) −3.17160 −0.317160
\(101\) −1.56526 −0.155749 −0.0778744 0.996963i \(-0.524813\pi\)
−0.0778744 + 0.996963i \(0.524813\pi\)
\(102\) 0.689491 0.689491i 0.0682697 0.0682697i
\(103\) −3.08156 5.33742i −0.303635 0.525911i 0.673321 0.739350i \(-0.264867\pi\)
−0.976957 + 0.213439i \(0.931534\pi\)
\(104\) −1.39179 + 3.32610i −0.136476 + 0.326151i
\(105\) −1.06699 + 3.41473i −0.104127 + 0.333243i
\(106\) 2.35038 8.77173i 0.228289 0.851986i
\(107\) 7.03449 12.1841i 0.680050 1.17788i −0.294915 0.955523i \(-0.595291\pi\)
0.974965 0.222358i \(-0.0713753\pi\)
\(108\) −0.500000 0.866025i −0.0481125 0.0833333i
\(109\) −18.3713 + 4.92259i −1.75966 + 0.471498i −0.986644 0.162893i \(-0.947917\pi\)
−0.773012 + 0.634392i \(0.781251\pi\)
\(110\) −0.544343 + 0.544343i −0.0519011 + 0.0519011i
\(111\) −1.56529 + 0.419419i −0.148571 + 0.0398095i
\(112\) 1.41580 2.23506i 0.133781 0.211193i
\(113\) 9.09354 15.7505i 0.855448 1.48168i −0.0207805 0.999784i \(-0.506615\pi\)
0.876229 0.481896i \(-0.160052\pi\)
\(114\) −2.81586 1.62574i −0.263729 0.152264i
\(115\) −0.0774734 0.0774734i −0.00722443 0.00722443i
\(116\) −0.242115 0.139785i −0.0224798 0.0129787i
\(117\) −3.33605 + 1.36776i −0.308418 + 0.126450i
\(118\) 7.14530i 0.657778i
\(119\) 1.19713 + 2.28526i 0.109741 + 0.209490i
\(120\) −0.676092 1.17103i −0.0617185 0.106900i
\(121\) 10.6759i 0.970535i
\(122\) 1.48091 + 5.52681i 0.134075 + 0.500374i
\(123\) 0.599071 2.23576i 0.0540164 0.201592i
\(124\) 1.81923 + 1.81923i 0.163372 + 0.163372i
\(125\) −7.81318 7.81318i −0.698832 0.698832i
\(126\) 2.58155 0.579303i 0.229983 0.0516084i
\(127\) 7.52749 4.34600i 0.667957 0.385645i −0.127345 0.991858i \(-0.540646\pi\)
0.795302 + 0.606213i \(0.207312\pi\)
\(128\) 0.258819 + 0.965926i 0.0228766 + 0.0853766i
\(129\) −5.47642 + 9.48543i −0.482172 + 0.835146i
\(130\) −4.51095 + 1.84947i −0.395637 + 0.162209i
\(131\) −5.23185 + 3.02061i −0.457109 + 0.263912i −0.710828 0.703366i \(-0.751679\pi\)
0.253719 + 0.967278i \(0.418346\pi\)
\(132\) 0.549915 + 0.147349i 0.0478640 + 0.0128251i
\(133\) 6.32749 5.82816i 0.548663 0.505365i
\(134\) 1.87931 + 1.08502i 0.162348 + 0.0937316i
\(135\) 0.349971 1.30611i 0.0301207 0.112412i
\(136\) −0.941862 0.252371i −0.0807640 0.0216406i
\(137\) −4.25919 1.14125i −0.363888 0.0975034i 0.0722423 0.997387i \(-0.476985\pi\)
−0.436130 + 0.899884i \(0.643651\pi\)
\(138\) −0.0209714 + 0.0782664i −0.00178521 + 0.00666248i
\(139\) −3.93291 2.27067i −0.333585 0.192596i 0.323846 0.946110i \(-0.395024\pi\)
−0.657432 + 0.753514i \(0.728357\pi\)
\(140\) 3.49073 0.783325i 0.295021 0.0662030i
\(141\) −5.55221 1.48771i −0.467580 0.125288i
\(142\) −0.417909 + 0.241280i −0.0350702 + 0.0202478i
\(143\) 0.792365 1.89359i 0.0662609 0.158350i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) −0.0978414 0.365149i −0.00812528 0.0303240i
\(146\) 2.52013 1.45500i 0.208568 0.120417i
\(147\) −0.574124 + 6.97642i −0.0473529 + 0.575405i
\(148\) 1.14587 + 1.14587i 0.0941902 + 0.0941902i
\(149\) −8.07270 8.07270i −0.661341 0.661341i 0.294355 0.955696i \(-0.404895\pi\)
−0.955696 + 0.294355i \(0.904895\pi\)
\(150\) −0.820870 + 3.06353i −0.0670238 + 0.250136i
\(151\) 0.614206 + 2.29225i 0.0499834 + 0.186541i 0.986404 0.164339i \(-0.0525492\pi\)
−0.936420 + 0.350880i \(0.885883\pi\)
\(152\) 3.25147i 0.263729i
\(153\) −0.487543 0.844450i −0.0394156 0.0682697i
\(154\) −0.806037 + 1.27245i −0.0649523 + 0.102537i
\(155\) 3.47887i 0.279429i
\(156\) 2.85254 + 2.20522i 0.228386 + 0.176559i
\(157\) −15.0264 8.67548i −1.19924 0.692379i −0.238851 0.971056i \(-0.576771\pi\)
−0.960385 + 0.278677i \(0.910104\pi\)
\(158\) −2.05681 2.05681i −0.163631 0.163631i
\(159\) −7.86452 4.54058i −0.623697 0.360091i
\(160\) −0.676092 + 1.17103i −0.0534498 + 0.0925777i
\(161\) −0.181101 0.114719i −0.0142728 0.00904111i
\(162\) −0.965926 + 0.258819i −0.0758903 + 0.0203347i
\(163\) −5.99975 + 5.99975i −0.469937 + 0.469937i −0.901894 0.431957i \(-0.857823\pi\)
0.431957 + 0.901894i \(0.357823\pi\)
\(164\) −2.23576 + 0.599071i −0.174584 + 0.0467796i
\(165\) 0.384909 + 0.666681i 0.0299651 + 0.0519011i
\(166\) −1.57437 + 2.72689i −0.122195 + 0.211647i
\(167\) 4.82117 17.9928i 0.373073 1.39233i −0.483067 0.875583i \(-0.660477\pi\)
0.856140 0.516744i \(-0.172856\pi\)
\(168\) −1.79247 1.94604i −0.138292 0.150140i
\(169\) 9.25845 9.12585i 0.712189 0.701988i
\(170\) −0.659248 1.14185i −0.0505620 0.0875760i
\(171\) −2.29914 + 2.29914i −0.175820 + 0.175820i
\(172\) 10.9528 0.835146
\(173\) −10.2465 −0.779027 −0.389514 0.921021i \(-0.627357\pi\)
−0.389514 + 0.921021i \(0.627357\pi\)
\(174\) −0.197686 + 0.197686i −0.0149865 + 0.0149865i
\(175\) −7.08872 4.49036i −0.535857 0.339439i
\(176\) −0.147349 0.549915i −0.0111069 0.0414514i
\(177\) −6.90183 1.84934i −0.518773 0.139005i
\(178\) 9.16686 5.29249i 0.687085 0.396689i
\(179\) 5.16079i 0.385736i −0.981225 0.192868i \(-0.938221\pi\)
0.981225 0.192868i \(-0.0617789\pi\)
\(180\) −1.30611 + 0.349971i −0.0973516 + 0.0260853i
\(181\) −4.50812 −0.335086 −0.167543 0.985865i \(-0.553583\pi\)
−0.167543 + 0.985865i \(0.553583\pi\)
\(182\) −7.81983 + 5.46353i −0.579645 + 0.404984i
\(183\) 5.72178 0.422966
\(184\) 0.0782664 0.0209714i 0.00576988 0.00154603i
\(185\) 2.19123i 0.161102i
\(186\) 2.22809 1.28639i 0.163372 0.0943226i
\(187\) 0.536215 + 0.143678i 0.0392119 + 0.0105068i
\(188\) 1.48771 + 5.55221i 0.108502 + 0.404936i
\(189\) 0.108591 2.64352i 0.00789881 0.192288i
\(190\) −3.10886 + 3.10886i −0.225540 + 0.225540i
\(191\) 14.5531 1.05302 0.526512 0.850168i \(-0.323500\pi\)
0.526512 + 0.850168i \(0.323500\pi\)
\(192\) 1.00000 0.0721688
\(193\) −15.1981 + 15.1981i −1.09398 + 1.09398i −0.0988833 + 0.995099i \(0.531527\pi\)
−0.995099 + 0.0988833i \(0.968473\pi\)
\(194\) 8.39088 + 14.5334i 0.602430 + 1.04344i
\(195\) 0.618927 + 4.83592i 0.0443223 + 0.346308i
\(196\) 6.32882 2.99100i 0.452058 0.213643i
\(197\) 3.63389 13.5619i 0.258904 0.966243i −0.706973 0.707241i \(-0.749940\pi\)
0.965877 0.259002i \(-0.0833937\pi\)
\(198\) 0.284657 0.493040i 0.0202297 0.0350389i
\(199\) 2.55850 + 4.43145i 0.181367 + 0.314137i 0.942346 0.334639i \(-0.108614\pi\)
−0.760979 + 0.648776i \(0.775281\pi\)
\(200\) 3.06353 0.820870i 0.216624 0.0580443i
\(201\) 1.53445 1.53445i 0.108232 0.108232i
\(202\) 1.51192 0.405118i 0.106378 0.0285040i
\(203\) −0.343233 0.655215i −0.0240903 0.0459871i
\(204\) −0.487543 + 0.844450i −0.0341349 + 0.0591233i
\(205\) −2.71049 1.56490i −0.189309 0.109298i
\(206\) 4.35798 + 4.35798i 0.303635 + 0.303635i
\(207\) 0.0701717 + 0.0405137i 0.00487727 + 0.00281589i
\(208\) 0.483507 3.57298i 0.0335252 0.247742i
\(209\) 1.85111i 0.128044i
\(210\) 0.146835 3.57453i 0.0101326 0.246666i
\(211\) 5.94537 + 10.2977i 0.409296 + 0.708922i 0.994811 0.101740i \(-0.0324408\pi\)
−0.585515 + 0.810662i \(0.699108\pi\)
\(212\) 9.08116i 0.623697i
\(213\) 0.124896 + 0.466117i 0.00855771 + 0.0319378i
\(214\) −3.64132 + 13.5896i −0.248916 + 0.928966i
\(215\) 10.4724 + 10.4724i 0.714213 + 0.714213i
\(216\) 0.707107 + 0.707107i 0.0481125 + 0.0481125i
\(217\) 1.49042 + 6.64176i 0.101176 + 0.450872i
\(218\) 16.4713 9.50971i 1.11558 0.644079i
\(219\) −0.753163 2.81084i −0.0508940 0.189939i
\(220\) 0.384909 0.666681i 0.0259505 0.0449477i
\(221\) 2.78148 + 2.15028i 0.187102 + 0.144644i
\(222\) 1.40340 0.810255i 0.0941902 0.0543807i
\(223\) 7.79102 + 2.08760i 0.521725 + 0.139796i 0.510065 0.860136i \(-0.329622\pi\)
0.0116608 + 0.999932i \(0.496288\pi\)
\(224\) −0.789084 + 2.52534i −0.0527229 + 0.168731i
\(225\) 2.74668 + 1.58580i 0.183112 + 0.105720i
\(226\) −4.70716 + 17.5674i −0.313116 + 1.16856i
\(227\) −15.6448 4.19201i −1.03838 0.278233i −0.300938 0.953644i \(-0.597300\pi\)
−0.737442 + 0.675410i \(0.763967\pi\)
\(228\) 3.14068 + 0.841543i 0.207997 + 0.0557326i
\(229\) −6.94386 + 25.9148i −0.458863 + 1.71250i 0.217612 + 0.976035i \(0.430173\pi\)
−0.676475 + 0.736465i \(0.736493\pi\)
\(230\) 0.0948851 + 0.0547819i 0.00625654 + 0.00361221i
\(231\) 1.02048 + 1.10791i 0.0671424 + 0.0728949i
\(232\) 0.270044 + 0.0723580i 0.0177292 + 0.00475054i
\(233\) 22.8801 13.2098i 1.49893 0.865406i 0.498928 0.866644i \(-0.333727\pi\)
0.999999 + 0.00123761i \(0.000393945\pi\)
\(234\) 2.86837 2.18459i 0.187511 0.142811i
\(235\) −3.88622 + 6.73113i −0.253509 + 0.439091i
\(236\) 1.84934 + 6.90183i 0.120382 + 0.449271i
\(237\) −2.51907 + 1.45438i −0.163631 + 0.0944723i
\(238\) −1.74781 1.89756i −0.113294 0.123000i
\(239\) 7.85321 + 7.85321i 0.507982 + 0.507982i 0.913907 0.405925i \(-0.133050\pi\)
−0.405925 + 0.913907i \(0.633050\pi\)
\(240\) 0.956138 + 0.956138i 0.0617185 + 0.0617185i
\(241\) −1.17845 + 4.39803i −0.0759106 + 0.283302i −0.993438 0.114370i \(-0.963515\pi\)
0.917528 + 0.397672i \(0.130182\pi\)
\(242\) −2.76312 10.3121i −0.177620 0.662888i
\(243\) 1.00000i 0.0641500i
\(244\) −2.86089 4.95521i −0.183150 0.317225i
\(245\) 8.91104 + 3.19141i 0.569305 + 0.203892i
\(246\) 2.31463i 0.147576i
\(247\) 4.52536 10.8147i 0.287942 0.688124i
\(248\) −2.22809 1.28639i −0.141484 0.0816858i
\(249\) 2.22649 + 2.22649i 0.141098 + 0.141098i
\(250\) 9.56915 + 5.52475i 0.605206 + 0.349416i
\(251\) 4.91255 8.50878i 0.310077 0.537069i −0.668302 0.743890i \(-0.732978\pi\)
0.978379 + 0.206821i \(0.0663118\pi\)
\(252\) −2.34365 + 1.22772i −0.147636 + 0.0773390i
\(253\) −0.0445582 + 0.0119393i −0.00280135 + 0.000750619i
\(254\) −6.14617 + 6.14617i −0.385645 + 0.385645i
\(255\) −1.27357 + 0.341252i −0.0797541 + 0.0213700i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −6.49748 + 11.2540i −0.405302 + 0.702003i −0.994357 0.106090i \(-0.966167\pi\)
0.589055 + 0.808093i \(0.299500\pi\)
\(258\) 2.83480 10.5796i 0.176487 0.658659i
\(259\) 0.938766 + 4.18343i 0.0583321 + 0.259946i
\(260\) 3.87857 2.95397i 0.240539 0.183197i
\(261\) 0.139785 + 0.242115i 0.00865247 + 0.0149865i
\(262\) 4.27179 4.27179i 0.263912 0.263912i
\(263\) 19.5019 1.20254 0.601270 0.799046i \(-0.294662\pi\)
0.601270 + 0.799046i \(0.294662\pi\)
\(264\) −0.569314 −0.0350389
\(265\) −8.68285 + 8.68285i −0.533383 + 0.533383i
\(266\) −4.60345 + 7.26724i −0.282255 + 0.445583i
\(267\) −2.73959 10.2243i −0.167660 0.625717i
\(268\) −2.09610 0.561649i −0.128040 0.0343082i
\(269\) 25.5520 14.7525i 1.55794 0.899475i 0.560481 0.828167i \(-0.310616\pi\)
0.997454 0.0713074i \(-0.0227171\pi\)
\(270\) 1.35218i 0.0822913i
\(271\) −7.27817 + 1.95018i −0.442117 + 0.118465i −0.473009 0.881058i \(-0.656832\pi\)
0.0308915 + 0.999523i \(0.490165\pi\)
\(272\) 0.975087 0.0591233
\(273\) 3.25345 + 8.96745i 0.196908 + 0.542735i
\(274\) 4.40944 0.266384
\(275\) −1.74411 + 0.467333i −0.105174 + 0.0281812i
\(276\) 0.0810273i 0.00487727i
\(277\) 6.80836 3.93081i 0.409075 0.236179i −0.281317 0.959615i \(-0.590771\pi\)
0.690392 + 0.723435i \(0.257438\pi\)
\(278\) 4.38659 + 1.17538i 0.263090 + 0.0704949i
\(279\) −0.665884 2.48511i −0.0398654 0.148780i
\(280\) −3.16905 + 1.66010i −0.189387 + 0.0992100i
\(281\) −14.1756 + 14.1756i −0.845648 + 0.845648i −0.989587 0.143939i \(-0.954023\pi\)
0.143939 + 0.989587i \(0.454023\pi\)
\(282\) 5.74807 0.342292
\(283\) −19.8154 −1.17791 −0.588953 0.808167i \(-0.700460\pi\)
−0.588953 + 0.808167i \(0.700460\pi\)
\(284\) 0.341221 0.341221i 0.0202478 0.0202478i
\(285\) 2.19829 + 3.80756i 0.130216 + 0.225540i
\(286\) −0.275268 + 2.03415i −0.0162769 + 0.120282i
\(287\) −5.84524 1.82644i −0.345033 0.107811i
\(288\) 0.258819 0.965926i 0.0152511 0.0569177i
\(289\) 8.02460 13.8990i 0.472035 0.817589i
\(290\) 0.189015 + 0.327384i 0.0110993 + 0.0192246i
\(291\) 16.2099 4.34344i 0.950243 0.254617i
\(292\) −2.05768 + 2.05768i −0.120417 + 0.120417i
\(293\) −28.8649 + 7.73434i −1.68631 + 0.451845i −0.969433 0.245357i \(-0.921095\pi\)
−0.716875 + 0.697202i \(0.754428\pi\)
\(294\) −1.25107 6.88729i −0.0729638 0.401675i
\(295\) −4.83088 + 8.36733i −0.281265 + 0.487165i
\(296\) −1.40340 0.810255i −0.0815711 0.0470951i
\(297\) −0.402566 0.402566i −0.0233592 0.0233592i
\(298\) 9.88700 + 5.70826i 0.572738 + 0.330671i
\(299\) −0.289509 0.0391773i −0.0167428 0.00226568i
\(300\) 3.17160i 0.183112i
\(301\) 24.4803 + 15.5071i 1.41102 + 0.893812i
\(302\) −1.18656 2.05517i −0.0682786 0.118262i
\(303\) 1.56526i 0.0899216i
\(304\) −0.841543 3.14068i −0.0482658 0.180130i
\(305\) 2.00246 7.47327i 0.114660 0.427918i
\(306\) 0.689491 + 0.689491i 0.0394156 + 0.0394156i
\(307\) −1.31631 1.31631i −0.0751256 0.0751256i 0.668546 0.743671i \(-0.266917\pi\)
−0.743671 + 0.668546i \(0.766917\pi\)
\(308\) 0.449237 1.43771i 0.0255976 0.0819213i
\(309\) 5.33742 3.08156i 0.303635 0.175304i
\(310\) −0.900397 3.36033i −0.0511391 0.190854i
\(311\) −11.9503 + 20.6986i −0.677641 + 1.17371i 0.298049 + 0.954551i \(0.403664\pi\)
−0.975689 + 0.219158i \(0.929669\pi\)
\(312\) −3.32610 1.39179i −0.188303 0.0787945i
\(313\) 3.83190 2.21235i 0.216592 0.125049i −0.387779 0.921752i \(-0.626758\pi\)
0.604371 + 0.796703i \(0.293424\pi\)
\(314\) 16.7597 + 4.49076i 0.945807 + 0.253428i
\(315\) −3.41473 1.06699i −0.192398 0.0601179i
\(316\) 2.51907 + 1.45438i 0.141709 + 0.0818154i
\(317\) 3.50687 13.0878i 0.196966 0.735086i −0.794784 0.606893i \(-0.792416\pi\)
0.991749 0.128193i \(-0.0409177\pi\)
\(318\) 8.77173 + 2.35038i 0.491894 + 0.131803i
\(319\) −0.153740 0.0411945i −0.00860778 0.00230645i
\(320\) 0.349971 1.30611i 0.0195640 0.0730137i
\(321\) 12.1841 + 7.03449i 0.680050 + 0.392627i
\(322\) 0.204622 + 0.0639374i 0.0114031 + 0.00356309i
\(323\) 3.06244 + 0.820578i 0.170399 + 0.0456582i
\(324\) 0.866025 0.500000i 0.0481125 0.0277778i
\(325\) −11.3321 1.53349i −0.628590 0.0850628i
\(326\) 4.24247 7.34817i 0.234968 0.406977i
\(327\) −4.92259 18.3713i −0.272220 1.01594i
\(328\) 2.00453 1.15732i 0.110682 0.0639021i
\(329\) −4.53571 + 14.5158i −0.250062 + 0.800284i
\(330\) −0.544343 0.544343i −0.0299651 0.0299651i
\(331\) −12.2693 12.2693i −0.674384 0.674384i 0.284339 0.958724i \(-0.408226\pi\)
−0.958724 + 0.284339i \(0.908226\pi\)
\(332\) 0.814953 3.04145i 0.0447263 0.166921i
\(333\) −0.419419 1.56529i −0.0229840 0.0857775i
\(334\) 18.6276i 1.01925i
\(335\) −1.46715 2.54118i −0.0801589 0.138839i
\(336\) 2.23506 + 1.41580i 0.121933 + 0.0772384i
\(337\) 11.6579i 0.635046i 0.948251 + 0.317523i \(0.102851\pi\)
−0.948251 + 0.317523i \(0.897149\pi\)
\(338\) −6.58103 + 11.2112i −0.357961 + 0.609806i
\(339\) 15.7505 + 9.09354i 0.855448 + 0.493893i
\(340\) 0.932318 + 0.932318i 0.0505620 + 0.0505620i
\(341\) 1.26848 + 0.732359i 0.0686922 + 0.0396595i
\(342\) 1.62574 2.81586i 0.0879098 0.152264i
\(343\) 18.3800 + 2.27528i 0.992425 + 0.122854i
\(344\) −10.5796 + 2.83480i −0.570415 + 0.152842i
\(345\) 0.0774734 0.0774734i 0.00417102 0.00417102i
\(346\) 9.89737 2.65199i 0.532086 0.142572i
\(347\) 0.632772 + 1.09599i 0.0339690 + 0.0588360i 0.882510 0.470293i \(-0.155852\pi\)
−0.848541 + 0.529129i \(0.822519\pi\)
\(348\) 0.139785 0.242115i 0.00749326 0.0129787i
\(349\) −1.87703 + 7.00518i −0.100475 + 0.374979i −0.997793 0.0664071i \(-0.978846\pi\)
0.897317 + 0.441386i \(0.145513\pi\)
\(350\) 8.00937 + 2.50266i 0.428119 + 0.133773i
\(351\) −1.36776 3.33605i −0.0730058 0.178065i
\(352\) 0.284657 + 0.493040i 0.0151723 + 0.0262791i
\(353\) 15.5796 15.5796i 0.829220 0.829220i −0.158189 0.987409i \(-0.550566\pi\)
0.987409 + 0.158189i \(0.0505656\pi\)
\(354\) 7.14530 0.379768
\(355\) 0.652510 0.0346316
\(356\) −7.48471 + 7.48471i −0.396689 + 0.396689i
\(357\) −2.28526 + 1.19713i −0.120949 + 0.0633590i
\(358\) 1.33571 + 4.98494i 0.0705945 + 0.263462i
\(359\) 7.87503 + 2.11011i 0.415628 + 0.111367i 0.460572 0.887622i \(-0.347644\pi\)
−0.0449440 + 0.998990i \(0.514311\pi\)
\(360\) 1.17103 0.676092i 0.0617185 0.0356332i
\(361\) 8.42792i 0.443575i
\(362\) 4.35451 1.16679i 0.228868 0.0613250i
\(363\) −10.6759 −0.560338
\(364\) 6.13931 7.30129i 0.321787 0.382692i
\(365\) −3.93485 −0.205960
\(366\) −5.52681 + 1.48091i −0.288891 + 0.0774082i
\(367\) 29.9706i 1.56445i −0.622996 0.782225i \(-0.714085\pi\)
0.622996 0.782225i \(-0.285915\pi\)
\(368\) −0.0701717 + 0.0405137i −0.00365795 + 0.00211192i
\(369\) 2.23576 + 0.599071i 0.116389 + 0.0311864i
\(370\) −0.567131 2.11656i −0.0294837 0.110035i
\(371\) −12.8571 + 20.2970i −0.667509 + 1.05377i
\(372\) −1.81923 + 1.81923i −0.0943226 + 0.0943226i
\(373\) −9.22385 −0.477593 −0.238796 0.971070i \(-0.576753\pi\)
−0.238796 + 0.971070i \(0.576753\pi\)
\(374\) −0.555131 −0.0287051
\(375\) 7.81318 7.81318i 0.403471 0.403471i
\(376\) −2.87403 4.97797i −0.148217 0.256719i
\(377\) −0.797485 0.616514i −0.0410726 0.0317521i
\(378\) 0.579303 + 2.58155i 0.0297961 + 0.132781i
\(379\) 0.121145 0.452118i 0.00622278 0.0232237i −0.962745 0.270412i \(-0.912840\pi\)
0.968967 + 0.247188i \(0.0795067\pi\)
\(380\) 2.19829 3.80756i 0.112770 0.195324i
\(381\) 4.34600 + 7.52749i 0.222652 + 0.385645i
\(382\) −14.0572 + 3.76661i −0.719228 + 0.192717i
\(383\) 2.50918 2.50918i 0.128213 0.128213i −0.640088 0.768301i \(-0.721102\pi\)
0.768301 + 0.640088i \(0.221102\pi\)
\(384\) −0.965926 + 0.258819i −0.0492922 + 0.0132078i
\(385\) 1.80418 0.945119i 0.0919498 0.0481677i
\(386\) 10.7467 18.6138i 0.546991 0.947416i
\(387\) −9.48543 5.47642i −0.482172 0.278382i
\(388\) −11.8665 11.8665i −0.602430 0.602430i
\(389\) −23.1285 13.3533i −1.17266 0.677037i −0.218357 0.975869i \(-0.570070\pi\)
−0.954306 + 0.298832i \(0.903403\pi\)
\(390\) −1.84947 4.51095i −0.0936514 0.228421i
\(391\) 0.0790087i 0.00399564i
\(392\) −5.33904 + 4.52710i −0.269662 + 0.228653i
\(393\) −3.02061 5.23185i −0.152370 0.263912i
\(394\) 14.0403i 0.707339i
\(395\) 1.01798 + 3.79917i 0.0512203 + 0.191157i
\(396\) −0.147349 + 0.549915i −0.00740458 + 0.0276343i
\(397\) −2.38711 2.38711i −0.119806 0.119806i 0.644662 0.764468i \(-0.276998\pi\)
−0.764468 + 0.644662i \(0.776998\pi\)
\(398\) −3.61827 3.61827i −0.181367 0.181367i
\(399\) 5.82816 + 6.32749i 0.291773 + 0.316771i
\(400\) −2.74668 + 1.58580i −0.137334 + 0.0792900i
\(401\) 3.48631 + 13.0111i 0.174098 + 0.649743i 0.996704 + 0.0811303i \(0.0258530\pi\)
−0.822605 + 0.568613i \(0.807480\pi\)
\(402\) −1.08502 + 1.87931i −0.0541160 + 0.0937316i
\(403\) 5.62047 + 7.37969i 0.279975 + 0.367608i
\(404\) −1.35555 + 0.782628i −0.0674412 + 0.0389372i
\(405\) 1.30611 + 0.349971i 0.0649011 + 0.0173902i
\(406\) 0.501120 + 0.544054i 0.0248702 + 0.0270009i
\(407\) 0.798977 + 0.461289i 0.0396038 + 0.0228653i
\(408\) 0.252371 0.941862i 0.0124942 0.0466291i
\(409\) −34.1501 9.15050i −1.68861 0.452463i −0.718583 0.695441i \(-0.755209\pi\)
−0.970032 + 0.242978i \(0.921876\pi\)
\(410\) 3.02316 + 0.810054i 0.149303 + 0.0400057i
\(411\) 1.14125 4.25919i 0.0562936 0.210091i
\(412\) −5.33742 3.08156i −0.262956 0.151818i
\(413\) −5.63824 + 18.0443i −0.277440 + 0.887902i
\(414\) −0.0782664 0.0209714i −0.00384658 0.00103069i
\(415\) 3.68725 2.12883i 0.181000 0.104500i
\(416\) 0.457724 + 3.57638i 0.0224418 + 0.175346i
\(417\) 2.27067 3.93291i 0.111195 0.192596i
\(418\) 0.479102 + 1.78803i 0.0234337 + 0.0874556i
\(419\) −20.6288 + 11.9100i −1.00778 + 0.581843i −0.910542 0.413418i \(-0.864335\pi\)
−0.0972406 + 0.995261i \(0.531002\pi\)
\(420\) 0.783325 + 3.49073i 0.0382223 + 0.170330i
\(421\) 18.6380 + 18.6380i 0.908362 + 0.908362i 0.996140 0.0877779i \(-0.0279766\pi\)
−0.0877779 + 0.996140i \(0.527977\pi\)
\(422\) −8.40803 8.40803i −0.409296 0.409296i
\(423\) 1.48771 5.55221i 0.0723349 0.269958i
\(424\) −2.35038 8.77173i −0.114144 0.425993i
\(425\) 3.09258i 0.150012i
\(426\) −0.241280 0.417909i −0.0116901 0.0202478i
\(427\) 0.621332 15.1256i 0.0300684 0.731981i
\(428\) 14.0690i 0.680050i
\(429\) 1.89359 + 0.792365i 0.0914236 + 0.0382557i
\(430\) −12.8260 7.40512i −0.618527 0.357107i
\(431\) 3.20968 + 3.20968i 0.154605 + 0.154605i 0.780171 0.625566i \(-0.215132\pi\)
−0.625566 + 0.780171i \(0.715132\pi\)
\(432\) −0.866025 0.500000i −0.0416667 0.0240563i
\(433\) −14.8827 + 25.7776i −0.715218 + 1.23879i 0.247657 + 0.968848i \(0.420339\pi\)
−0.962875 + 0.269947i \(0.912994\pi\)
\(434\) −3.15865 6.02970i −0.151620 0.289435i
\(435\) 0.365149 0.0978414i 0.0175076 0.00469113i
\(436\) −13.4488 + 13.4488i −0.644079 + 0.644079i
\(437\) −0.254481 + 0.0681880i −0.0121735 + 0.00326187i
\(438\) 1.45500 + 2.52013i 0.0695225 + 0.120417i
\(439\) 3.93301 6.81217i 0.187712 0.325127i −0.756775 0.653676i \(-0.773226\pi\)
0.944487 + 0.328548i \(0.106559\pi\)
\(440\) −0.199243 + 0.743587i −0.00949856 + 0.0354491i
\(441\) −6.97642 0.574124i −0.332210 0.0273392i
\(442\) −3.24323 1.35712i −0.154265 0.0645514i
\(443\) 19.0667 + 33.0246i 0.905888 + 1.56904i 0.819720 + 0.572764i \(0.194129\pi\)
0.0861680 + 0.996281i \(0.472538\pi\)
\(444\) −1.14587 + 1.14587i −0.0543807 + 0.0543807i
\(445\) −14.3128 −0.678493
\(446\) −8.06586 −0.381929
\(447\) 8.07270 8.07270i 0.381826 0.381826i
\(448\) 0.108591 2.64352i 0.00513043 0.124895i
\(449\) −6.92757 25.8540i −0.326932 1.22013i −0.912355 0.409399i \(-0.865738\pi\)
0.585423 0.810728i \(-0.300928\pi\)
\(450\) −3.06353 0.820870i −0.144416 0.0386962i
\(451\) −1.14121 + 0.658877i −0.0537374 + 0.0310253i
\(452\) 18.1871i 0.855448i
\(453\) −2.29225 + 0.614206i −0.107699 + 0.0288579i
\(454\) 16.1967 0.760147
\(455\) 12.8511 1.11101i 0.602468 0.0520850i
\(456\) −3.25147 −0.152264
\(457\) −5.16300 + 1.38342i −0.241515 + 0.0647137i −0.377546 0.925991i \(-0.623232\pi\)
0.136031 + 0.990705i \(0.456565\pi\)
\(458\) 26.8290i 1.25364i
\(459\) 0.844450 0.487543i 0.0394156 0.0227566i
\(460\) −0.105831 0.0283572i −0.00493438 0.00132216i
\(461\) −9.44607 35.2532i −0.439947 1.64191i −0.728943 0.684575i \(-0.759988\pi\)
0.288995 0.957330i \(-0.406679\pi\)
\(462\) −1.27245 0.806037i −0.0591998 0.0375002i
\(463\) −8.27330 + 8.27330i −0.384493 + 0.384493i −0.872718 0.488225i \(-0.837645\pi\)
0.488225 + 0.872718i \(0.337645\pi\)
\(464\) −0.279570 −0.0129787
\(465\) −3.47887 −0.161329
\(466\) −18.6815 + 18.6815i −0.865406 + 0.865406i
\(467\) −19.1690 33.2016i −0.887035 1.53639i −0.843364 0.537343i \(-0.819428\pi\)
−0.0436707 0.999046i \(-0.513905\pi\)
\(468\) −2.20522 + 2.85254i −0.101936 + 0.131859i
\(469\) −3.88973 4.22299i −0.179611 0.194999i
\(470\) 2.01166 7.50760i 0.0927908 0.346300i
\(471\) 8.67548 15.0264i 0.399745 0.692379i
\(472\) −3.57265 6.18801i −0.164444 0.284826i
\(473\) 6.02313 1.61389i 0.276944 0.0742069i
\(474\) 2.05681 2.05681i 0.0944723 0.0944723i
\(475\) −9.96098 + 2.66904i −0.457041 + 0.122464i
\(476\) 2.17938 + 1.38053i 0.0998917 + 0.0632765i
\(477\) 4.54058 7.86452i 0.207899 0.360091i
\(478\) −9.61818 5.55306i −0.439925 0.253991i
\(479\) 15.5390 + 15.5390i 0.709995 + 0.709995i 0.966534 0.256539i \(-0.0825821\pi\)
−0.256539 + 0.966534i \(0.582582\pi\)
\(480\) −1.17103 0.676092i −0.0534498 0.0308592i
\(481\) 3.54015 + 4.64823i 0.161417 + 0.211941i
\(482\) 4.55318i 0.207392i
\(483\) 0.114719 0.181101i 0.00521988 0.00824039i
\(484\) 5.33794 + 9.24558i 0.242634 + 0.420254i
\(485\) 22.6920i 1.03039i
\(486\) −0.258819 0.965926i −0.0117403 0.0438153i
\(487\) 7.80281 29.1205i 0.353579 1.31957i −0.528684 0.848818i \(-0.677315\pi\)
0.882263 0.470756i \(-0.156019\pi\)
\(488\) 4.04591 + 4.04591i 0.183150 + 0.183150i
\(489\) −5.99975 5.99975i −0.271318 0.271318i
\(490\) −9.43340 0.776321i −0.426157 0.0350706i
\(491\) −23.9198 + 13.8101i −1.07949 + 0.623242i −0.930758 0.365636i \(-0.880852\pi\)
−0.148729 + 0.988878i \(0.547518\pi\)
\(492\) −0.599071 2.23576i −0.0270082 0.100796i
\(493\) 0.136303 0.236083i 0.00613876 0.0106326i
\(494\) −1.57211 + 11.6175i −0.0707326 + 0.522694i
\(495\) −0.666681 + 0.384909i −0.0299651 + 0.0173004i
\(496\) 2.48511 + 0.665884i 0.111585 + 0.0298991i
\(497\) 1.24575 0.279549i 0.0558797 0.0125395i
\(498\) −2.72689 1.57437i −0.122195 0.0705491i
\(499\) −6.58713 + 24.5835i −0.294881 + 1.10051i 0.646431 + 0.762972i \(0.276261\pi\)
−0.941312 + 0.337537i \(0.890406\pi\)
\(500\) −10.6730 2.85982i −0.477311 0.127895i
\(501\) 17.9928 + 4.82117i 0.803861 + 0.215394i
\(502\) −2.54292 + 9.49031i −0.113496 + 0.423573i
\(503\) 36.0023 + 20.7860i 1.60527 + 0.926800i 0.990410 + 0.138161i \(0.0441190\pi\)
0.614855 + 0.788640i \(0.289214\pi\)
\(504\) 1.94604 1.79247i 0.0866834 0.0798428i
\(505\) −2.04439 0.547794i −0.0909744 0.0243765i
\(506\) 0.0399498 0.0230650i 0.00177598 0.00102536i
\(507\) 9.12585 + 9.25845i 0.405293 + 0.411182i
\(508\) 4.34600 7.52749i 0.192822 0.333978i
\(509\) −9.41318 35.1305i −0.417232 1.55713i −0.780323 0.625376i \(-0.784945\pi\)
0.363091 0.931753i \(-0.381721\pi\)
\(510\) 1.14185 0.659248i 0.0505620 0.0291920i
\(511\) −7.51231 + 1.68577i −0.332325 + 0.0745741i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) −2.29914 2.29914i −0.101509 0.101509i
\(514\) 3.36334 12.5522i 0.148351 0.553652i
\(515\) −2.15691 8.04971i −0.0950449 0.354713i
\(516\) 10.9528i 0.482172i
\(517\) 1.63623 + 2.83403i 0.0719612 + 0.124640i
\(518\) −1.98953 3.79791i −0.0874149 0.166871i
\(519\) 10.2465i 0.449772i
\(520\) −2.98187 + 3.85716i −0.130763 + 0.169148i
\(521\) 6.43659 + 3.71616i 0.281992 + 0.162808i 0.634325 0.773067i \(-0.281278\pi\)
−0.352333 + 0.935875i \(0.614612\pi\)
\(522\) −0.197686 0.197686i −0.00865247 0.00865247i
\(523\) −25.7430 14.8628i −1.12566 0.649903i −0.182824 0.983146i \(-0.558524\pi\)
−0.942841 + 0.333243i \(0.891857\pi\)
\(524\) −3.02061 + 5.23185i −0.131956 + 0.228554i
\(525\) 4.49036 7.08872i 0.195975 0.309377i
\(526\) −18.8374 + 5.04747i −0.821350 + 0.220080i
\(527\) −1.77391 + 1.77391i −0.0772726 + 0.0772726i
\(528\) 0.549915 0.147349i 0.0239320 0.00641256i
\(529\) −11.4967 19.9129i −0.499857 0.865778i
\(530\) 6.13970 10.6343i 0.266692 0.461923i
\(531\) 1.84934 6.90183i 0.0802545 0.299514i
\(532\) 2.56569 8.21108i 0.111237 0.355995i
\(533\) −8.27801 + 1.05946i −0.358560 + 0.0458905i
\(534\) 5.29249 + 9.16686i 0.229028 + 0.396689i
\(535\) 13.4519 13.4519i 0.581576 0.581576i
\(536\) 2.17004 0.0937316
\(537\) 5.16079 0.222705
\(538\) −20.8632 + 20.8632i −0.899475 + 0.899475i
\(539\) 3.03959 2.57734i 0.130924 0.111014i
\(540\) −0.349971 1.30611i −0.0150604 0.0562060i
\(541\) 24.6032 + 6.59240i 1.05777 + 0.283429i 0.745460 0.666550i \(-0.232230\pi\)
0.312313 + 0.949979i \(0.398896\pi\)
\(542\) 6.52542 3.76746i 0.280291 0.161826i
\(543\) 4.50812i 0.193462i
\(544\) −0.941862 + 0.252371i −0.0403820 + 0.0108203i
\(545\) −25.7177 −1.10163
\(546\) −5.46353 7.81983i −0.233818 0.334658i
\(547\) 14.1002 0.602880 0.301440 0.953485i \(-0.402533\pi\)
0.301440 + 0.953485i \(0.402533\pi\)
\(548\) −4.25919 + 1.14125i −0.181944 + 0.0487517i
\(549\) 5.72178i 0.244200i
\(550\) 1.56373 0.902818i 0.0666775 0.0384963i
\(551\) −0.878040 0.235270i −0.0374058 0.0100228i
\(552\) 0.0209714 + 0.0782664i 0.000892603 + 0.00333124i
\(553\) 3.57115 + 6.81714i 0.151861 + 0.289894i
\(554\) −5.55901 + 5.55901i −0.236179 + 0.236179i
\(555\) −2.19123 −0.0930124
\(556\) −4.54134 −0.192596
\(557\) 10.5717 10.5717i 0.447938 0.447938i −0.446731 0.894668i \(-0.647412\pi\)
0.894668 + 0.446731i \(0.147412\pi\)
\(558\) 1.28639 + 2.22809i 0.0544572 + 0.0943226i
\(559\) 39.1343 + 5.29578i 1.65520 + 0.223987i
\(560\) 2.63140 2.42375i 0.111197 0.102422i
\(561\) −0.143678 + 0.536215i −0.00606611 + 0.0226390i
\(562\) 10.0237 17.3615i 0.422824 0.732352i
\(563\) 12.0849 + 20.9316i 0.509316 + 0.882161i 0.999942 + 0.0107905i \(0.00343480\pi\)
−0.490626 + 0.871370i \(0.663232\pi\)
\(564\) −5.55221 + 1.48771i −0.233790 + 0.0626439i
\(565\) 17.3894 17.3894i 0.731576 0.731576i
\(566\) 19.1402 5.12861i 0.804525 0.215572i
\(567\) 2.64352 + 0.108591i 0.111017 + 0.00456038i
\(568\) −0.241280 + 0.417909i −0.0101239 + 0.0175351i
\(569\) 25.5109 + 14.7287i 1.06947 + 0.617461i 0.928038 0.372487i \(-0.121495\pi\)
0.141436 + 0.989947i \(0.454828\pi\)
\(570\) −3.10886 3.10886i −0.130216 0.130216i
\(571\) −19.6643 11.3532i −0.822924 0.475116i 0.0284996 0.999594i \(-0.490927\pi\)
−0.851424 + 0.524478i \(0.824260\pi\)
\(572\) −0.260589 2.03608i −0.0108958 0.0851329i
\(573\) 14.5531i 0.607963i
\(574\) 6.11878 + 0.251348i 0.255393 + 0.0104910i
\(575\) 0.128493 + 0.222557i 0.00535853 + 0.00928125i
\(576\) 1.00000i 0.0416667i
\(577\) 1.27121 + 4.74423i 0.0529212 + 0.197505i 0.987325 0.158711i \(-0.0507337\pi\)
−0.934404 + 0.356215i \(0.884067\pi\)
\(578\) −4.15384 + 15.5023i −0.172777 + 0.644812i
\(579\) −15.1981 15.1981i −0.631611 0.631611i
\(580\) −0.267308 0.267308i −0.0110993 0.0110993i
\(581\) 6.12756 5.64400i 0.254214 0.234153i
\(582\) −14.5334 + 8.39088i −0.602430 + 0.347813i
\(583\) 1.33810 + 4.99387i 0.0554186 + 0.206825i
\(584\) 1.45500 2.52013i 0.0602083 0.104284i
\(585\) −4.83592 + 0.618927i −0.199941 + 0.0255895i
\(586\) 25.8796 14.9416i 1.06908 0.617231i
\(587\) −12.4252 3.32932i −0.512842 0.137416i −0.00688845 0.999976i \(-0.502193\pi\)
−0.505954 + 0.862561i \(0.668859\pi\)
\(588\) 2.99100 + 6.32882i 0.123347 + 0.260996i
\(589\) 7.24458 + 4.18266i 0.298508 + 0.172343i
\(590\) 2.50065 9.33254i 0.102950 0.384215i
\(591\) 13.5619 + 3.63389i 0.557861 + 0.149478i
\(592\) 1.56529 + 0.419419i 0.0643331 + 0.0172380i
\(593\) −3.12251 + 11.6534i −0.128226 + 0.478547i −0.999934 0.0114792i \(-0.996346\pi\)
0.871708 + 0.490026i \(0.163013\pi\)
\(594\) 0.493040 + 0.284657i 0.0202297 + 0.0116796i
\(595\) 0.763810 + 3.40377i 0.0313131 + 0.139541i
\(596\) −11.0275 2.95481i −0.451705 0.121034i
\(597\) −4.43145 + 2.55850i −0.181367 + 0.104712i
\(598\) 0.289784 0.0370882i 0.0118502 0.00151665i
\(599\) −10.2865 + 17.8168i −0.420296 + 0.727975i −0.995968 0.0897062i \(-0.971407\pi\)
0.575672 + 0.817681i \(0.304741\pi\)
\(600\) 0.820870 + 3.06353i 0.0335119 + 0.125068i
\(601\) −20.0939 + 11.6012i −0.819648 + 0.473224i −0.850295 0.526306i \(-0.823577\pi\)
0.0306468 + 0.999530i \(0.490243\pi\)
\(602\) −27.6596 8.64271i −1.12732 0.352251i
\(603\) 1.53445 + 1.53445i 0.0624877 + 0.0624877i
\(604\) 1.67804 + 1.67804i 0.0682786 + 0.0682786i
\(605\) −3.73625 + 13.9439i −0.151900 + 0.566899i
\(606\) 0.405118 + 1.51192i 0.0164568 + 0.0614176i
\(607\) 21.6565i 0.879011i −0.898240 0.439505i \(-0.855154\pi\)
0.898240 0.439505i \(-0.144846\pi\)
\(608\) 1.62574 + 2.81586i 0.0659323 + 0.114198i
\(609\) 0.655215 0.343233i 0.0265506 0.0139085i
\(610\) 7.73690i 0.313258i
\(611\) 2.63103 + 20.5573i 0.106440 + 0.831658i
\(612\) −0.844450 0.487543i −0.0341349 0.0197078i
\(613\) 28.1755 + 28.1755i 1.13800 + 1.13800i 0.988809 + 0.149189i \(0.0476663\pi\)
0.149189 + 0.988809i \(0.452334\pi\)
\(614\) 1.61214 + 0.930769i 0.0650606 + 0.0375628i
\(615\) 1.56490 2.71049i 0.0631030 0.109298i
\(616\) −0.0618222 + 1.50499i −0.00249089 + 0.0606380i
\(617\) −18.2128 + 4.88010i −0.733218 + 0.196465i −0.606062 0.795417i \(-0.707252\pi\)
−0.127156 + 0.991883i \(0.540585\pi\)
\(618\) −4.35798 + 4.35798i −0.175304 + 0.175304i
\(619\) 42.5998 11.4146i 1.71223 0.458790i 0.736260 0.676699i \(-0.236590\pi\)
0.975969 + 0.217909i \(0.0699236\pi\)
\(620\) 1.73943 + 3.01279i 0.0698574 + 0.120996i
\(621\) −0.0405137 + 0.0701717i −0.00162576 + 0.00281589i
\(622\) 6.18594 23.0863i 0.248034 0.925674i
\(623\) −27.3257 + 6.13191i −1.09478 + 0.245670i
\(624\) 3.57298 + 0.483507i 0.143034 + 0.0193558i
\(625\) 0.458516 + 0.794172i 0.0183406 + 0.0317669i
\(626\) −3.12873 + 3.12873i −0.125049 + 0.125049i
\(627\) 1.85111 0.0739262
\(628\) −17.3510 −0.692379
\(629\) −1.11733 + 1.11733i −0.0445507 + 0.0445507i
\(630\) 3.57453 + 0.146835i 0.142413 + 0.00585003i
\(631\) −4.22390 15.7638i −0.168151 0.627547i −0.997617 0.0689908i \(-0.978022\pi\)
0.829467 0.558556i \(-0.188645\pi\)
\(632\) −2.80965 0.752844i −0.111762 0.0299465i
\(633\) −10.2977 + 5.94537i −0.409296 + 0.236307i
\(634\) 13.5495i 0.538120i
\(635\) 11.3527 3.04195i 0.450518 0.120716i
\(636\) −9.08116 −0.360091
\(637\) 24.0589 7.62678i 0.953250 0.302184i
\(638\) 0.159163 0.00630133
\(639\) −0.466117 + 0.124896i −0.0184393 + 0.00494080i
\(640\) 1.35218i 0.0534498i
\(641\) 26.5384 15.3219i 1.04820 0.605180i 0.126057 0.992023i \(-0.459768\pi\)
0.922146 + 0.386843i \(0.126434\pi\)
\(642\) −13.5896 3.64132i −0.536339 0.143711i
\(643\) 6.79028 + 25.3417i 0.267783 + 0.999379i 0.960525 + 0.278193i \(0.0897356\pi\)
−0.692742 + 0.721185i \(0.743598\pi\)
\(644\) −0.214198 0.00879882i −0.00844057 0.000346722i
\(645\) −10.4724 + 10.4724i −0.412351 + 0.412351i
\(646\) −3.17047 −0.124740
\(647\) −34.0582 −1.33897 −0.669484 0.742827i \(-0.733485\pi\)
−0.669484 + 0.742827i \(0.733485\pi\)
\(648\) −0.707107 + 0.707107i −0.0277778 + 0.0277778i
\(649\) 2.03396 + 3.52292i 0.0798399 + 0.138287i
\(650\) 11.3428 1.45172i 0.444903 0.0569410i
\(651\) −6.64176 + 1.49042i −0.260311 + 0.0584141i
\(652\) −2.19606 + 8.19581i −0.0860044 + 0.320973i
\(653\) −6.84461 + 11.8552i −0.267850 + 0.463930i −0.968306 0.249765i \(-0.919647\pi\)
0.700456 + 0.713695i \(0.252980\pi\)
\(654\) 9.50971 + 16.4713i 0.371859 + 0.644079i
\(655\) −7.89049 + 2.11425i −0.308307 + 0.0826106i
\(656\) −1.63669 + 1.63669i −0.0639021 + 0.0639021i
\(657\) 2.81084 0.753163i 0.109661 0.0293837i
\(658\) 0.624187 15.1951i 0.0243333 0.592368i
\(659\) −20.2242 + 35.0293i −0.787822 + 1.36455i 0.139477 + 0.990225i \(0.455458\pi\)
−0.927299 + 0.374322i \(0.877875\pi\)
\(660\) 0.666681 + 0.384909i 0.0259505 + 0.0149826i
\(661\) 3.49101 + 3.49101i 0.135785 + 0.135785i 0.771732 0.635948i \(-0.219391\pi\)
−0.635948 + 0.771732i \(0.719391\pi\)
\(662\) 15.0268 + 8.67574i 0.584034 + 0.337192i
\(663\) −2.15028 + 2.78148i −0.0835101 + 0.108024i
\(664\) 3.14874i 0.122195i
\(665\) 10.3041 5.39778i 0.399575 0.209317i
\(666\) 0.810255 + 1.40340i 0.0313967 + 0.0543807i
\(667\) 0.0226528i 0.000877120i
\(668\) −4.82117 17.9928i −0.186537 0.696164i
\(669\) −2.08760 + 7.79102i −0.0807112 + 0.301218i
\(670\) 2.07486 + 2.07486i 0.0801589 + 0.0801589i
\(671\) −2.30339 2.30339i −0.0889215 0.0889215i
\(672\) −2.52534 0.789084i −0.0974171 0.0304396i
\(673\) 13.7664 7.94802i 0.530655 0.306374i −0.210628 0.977566i \(-0.567551\pi\)
0.741283 + 0.671193i \(0.234218\pi\)
\(674\) −3.01729 11.2607i −0.116222 0.433745i
\(675\) −1.58580 + 2.74668i −0.0610374 + 0.105720i
\(676\) 3.45513 12.5324i 0.132890 0.482017i
\(677\) 16.1179 9.30568i 0.619462 0.357646i −0.157198 0.987567i \(-0.550246\pi\)
0.776659 + 0.629921i \(0.216913\pi\)
\(678\) −17.5674 4.70716i −0.674671 0.180777i
\(679\) −9.72172 43.3230i −0.373085 1.66258i
\(680\) −1.14185 0.659248i −0.0437880 0.0252810i
\(681\) 4.19201 15.6448i 0.160638 0.599509i
\(682\) −1.41481 0.379097i −0.0541759 0.0145164i
\(683\) 19.6827 + 5.27396i 0.753137 + 0.201802i 0.614909 0.788598i \(-0.289193\pi\)
0.138228 + 0.990400i \(0.455859\pi\)
\(684\) −0.841543 + 3.14068i −0.0321772 + 0.120087i
\(685\) −5.16357 2.98119i −0.197290 0.113905i
\(686\) −18.3426 + 2.55933i −0.700323 + 0.0977157i
\(687\) −25.9148 6.94386i −0.988713 0.264925i
\(688\) 9.48543 5.47642i 0.361629 0.208786i
\(689\) −4.39081 + 32.4469i −0.167277 + 1.23613i
\(690\) −0.0547819 + 0.0948851i −0.00208551 + 0.00361221i
\(691\) −3.68070 13.7365i −0.140020 0.522563i −0.999927 0.0121110i \(-0.996145\pi\)
0.859906 0.510452i \(-0.170522\pi\)
\(692\) −8.87374 + 5.12325i −0.337329 + 0.194757i
\(693\) −1.10791 + 1.02048i −0.0420859 + 0.0387647i
\(694\) −0.894875 0.894875i −0.0339690 0.0339690i
\(695\) −4.34215 4.34215i −0.164707 0.164707i
\(696\) −0.0723580 + 0.270044i −0.00274272 + 0.0102360i
\(697\) −0.584146 2.18006i −0.0221261 0.0825758i
\(698\) 7.25230i 0.274504i
\(699\) 13.2098 + 22.8801i 0.499642 + 0.865406i
\(700\) −8.38419 0.344406i −0.316893 0.0130173i
\(701\) 22.7395i 0.858858i −0.903101 0.429429i \(-0.858715\pi\)
0.903101 0.429429i \(-0.141285\pi\)
\(702\) 2.18459 + 2.86837i 0.0824521 + 0.108260i
\(703\) 4.56312 + 2.63452i 0.172102 + 0.0993629i
\(704\) −0.402566 0.402566i −0.0151723 0.0151723i
\(705\) −6.73113 3.88622i −0.253509 0.146364i
\(706\) −11.0165 + 19.0811i −0.414610 + 0.718125i
\(707\) −4.13779 0.169972i −0.155618 0.00639246i
\(708\) −6.90183 + 1.84934i −0.259387 + 0.0695024i
\(709\) −7.83733 + 7.83733i −0.294337 + 0.294337i −0.838791 0.544454i \(-0.816737\pi\)
0.544454 + 0.838791i \(0.316737\pi\)
\(710\) −0.630276 + 0.168882i −0.0236538 + 0.00633803i
\(711\) −1.45438 2.51907i −0.0545436 0.0944723i
\(712\) 5.29249 9.16686i 0.198344 0.343543i
\(713\) 0.0539548 0.201362i 0.00202062 0.00754107i
\(714\) 1.89756 1.74781i 0.0710142 0.0654102i
\(715\) 1.69762 2.19594i 0.0634873 0.0821234i
\(716\) −2.58040 4.46938i −0.0964339 0.167028i
\(717\) −7.85321 + 7.85321i −0.293283 + 0.293283i
\(718\) −8.15283 −0.304261
\(719\) −0.543752 −0.0202785 −0.0101393 0.999949i \(-0.503227\pi\)
−0.0101393 + 0.999949i \(0.503227\pi\)
\(720\) −0.956138 + 0.956138i −0.0356332 + 0.0356332i
\(721\) −7.56658 14.4442i −0.281794 0.537930i
\(722\) −2.18131 8.14075i −0.0811798 0.302967i
\(723\) −4.39803 1.17845i −0.163565 0.0438270i
\(724\) −3.90415 + 2.25406i −0.145096 + 0.0837715i
\(725\) 0.886684i 0.0329306i
\(726\) 10.3121 2.76312i 0.382718 0.102549i
\(727\) 34.4524 1.27777 0.638884 0.769303i \(-0.279396\pi\)
0.638884 + 0.769303i \(0.279396\pi\)
\(728\) −4.04041 + 8.64148i −0.149747 + 0.320274i
\(729\) −1.00000 −0.0370370
\(730\) 3.80077 1.01841i 0.140673 0.0376932i
\(731\) 10.6800i 0.395013i
\(732\) 4.95521 2.86089i 0.183150 0.105742i
\(733\) 25.1359 + 6.73516i 0.928417 + 0.248769i 0.691180 0.722683i \(-0.257091\pi\)
0.237238 + 0.971452i \(0.423758\pi\)
\(734\) 7.75695 + 28.9493i 0.286314 + 1.06854i
\(735\) −3.19141 + 8.91104i −0.117717 + 0.328689i
\(736\) 0.0572950 0.0572950i 0.00211192 0.00211192i
\(737\) −1.23544 −0.0455079
\(738\) −2.31463 −0.0852028
\(739\) −29.7898 + 29.7898i −1.09583 + 1.09583i −0.100942 + 0.994892i \(0.532186\pi\)
−0.994892 + 0.100942i \(0.967814\pi\)
\(740\) 1.09561 + 1.89766i 0.0402755 + 0.0697593i
\(741\) 10.8147 + 4.52536i 0.397289 + 0.166243i
\(742\) 7.16580 22.9330i 0.263065 0.841898i
\(743\) −9.68987 + 36.1631i −0.355487 + 1.32670i 0.524384 + 0.851482i \(0.324296\pi\)
−0.879871 + 0.475213i \(0.842371\pi\)
\(744\) 1.28639 2.22809i 0.0471613 0.0816858i
\(745\) −7.71862 13.3690i −0.282788 0.489804i
\(746\) 8.90955 2.38731i 0.326202 0.0874055i
\(747\) −2.22649 + 2.22649i −0.0814631 + 0.0814631i
\(748\) 0.536215 0.143678i 0.0196060 0.00525340i
\(749\) 19.9189 31.4450i 0.727821 1.14898i
\(750\) −5.52475 + 9.56915i −0.201735 + 0.349416i
\(751\) 1.85585 + 1.07147i 0.0677208 + 0.0390986i 0.533478 0.845814i \(-0.320885\pi\)
−0.465757 + 0.884913i \(0.654218\pi\)
\(752\) 4.06450 + 4.06450i 0.148217 + 0.148217i
\(753\) 8.50878 + 4.91255i 0.310077 + 0.179023i
\(754\) 0.929877 + 0.389102i 0.0338641 + 0.0141703i
\(755\) 3.20888i 0.116783i
\(756\) −1.22772 2.34365i −0.0446517 0.0852378i
\(757\) 13.5526 + 23.4737i 0.492577 + 0.853168i 0.999963 0.00855073i \(-0.00272181\pi\)
−0.507387 + 0.861718i \(0.669388\pi\)
\(758\) 0.468067i 0.0170010i
\(759\) −0.0119393 0.0445582i −0.000433370 0.00161736i
\(760\) −1.13792 + 4.24678i −0.0412767 + 0.154047i
\(761\) 36.0858 + 36.0858i 1.30811 + 1.30811i 0.922779 + 0.385331i \(0.125913\pi\)
0.385331 + 0.922779i \(0.374087\pi\)
\(762\) −6.14617 6.14617i −0.222652 0.222652i
\(763\) −49.0996 + 11.0180i −1.77752 + 0.398879i
\(764\) 12.6033 7.27654i 0.455973 0.263256i
\(765\) −0.341252 1.27357i −0.0123380 0.0460460i
\(766\) −1.77426 + 3.07310i −0.0641065 + 0.111036i
\(767\) 3.27058 + 25.5543i 0.118094 + 0.922712i
\(768\) 0.866025 0.500000i 0.0312500 0.0180422i
\(769\) 30.8477 + 8.26561i 1.11240 + 0.298066i 0.767803 0.640686i \(-0.221350\pi\)
0.344594 + 0.938752i \(0.388017\pi\)
\(770\) −1.49809 + 1.37987i −0.0539875 + 0.0497271i
\(771\) −11.2540 6.49748i −0.405302 0.234001i
\(772\) −5.56289 + 20.7610i −0.200213 + 0.747204i
\(773\) 24.9169 + 6.67648i 0.896200 + 0.240136i 0.677384 0.735630i \(-0.263114\pi\)