Properties

Label 546.2.by.b.115.3
Level $546$
Weight $2$
Character 546.115
Analytic conductor $4.360$
Analytic rank $0$
Dimension $40$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.by (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 115.3
Character \(\chi\) \(=\) 546.115
Dual form 546.2.by.b.19.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.965926 + 0.258819i) q^{2} +1.00000i q^{3} +(0.866025 - 0.500000i) q^{4} +(0.195603 + 0.0524115i) q^{5} +(-0.258819 - 0.965926i) q^{6} +(-2.35070 - 1.21417i) q^{7} +(-0.707107 + 0.707107i) q^{8} -1.00000 q^{9} +O(q^{10})\) \(q+(-0.965926 + 0.258819i) q^{2} +1.00000i q^{3} +(0.866025 - 0.500000i) q^{4} +(0.195603 + 0.0524115i) q^{5} +(-0.258819 - 0.965926i) q^{6} +(-2.35070 - 1.21417i) q^{7} +(-0.707107 + 0.707107i) q^{8} -1.00000 q^{9} -0.202503 q^{10} +(1.97664 - 1.97664i) q^{11} +(0.500000 + 0.866025i) q^{12} +(-1.90556 - 3.06086i) q^{13} +(2.58485 + 0.564393i) q^{14} +(-0.0524115 + 0.195603i) q^{15} +(0.500000 - 0.866025i) q^{16} +(-1.34500 - 2.32961i) q^{17} +(0.965926 - 0.258819i) q^{18} +(2.84265 - 2.84265i) q^{19} +(0.195603 - 0.0524115i) q^{20} +(1.21417 - 2.35070i) q^{21} +(-1.39770 + 2.42088i) q^{22} +(1.97359 + 1.13945i) q^{23} +(-0.707107 - 0.707107i) q^{24} +(-4.29461 - 2.47950i) q^{25} +(2.63283 + 2.46337i) q^{26} -1.00000i q^{27} +(-2.64285 + 0.123847i) q^{28} +(1.82561 + 3.16205i) q^{29} -0.202503i q^{30} +(-1.51982 - 5.67204i) q^{31} +(-0.258819 + 0.965926i) q^{32} +(1.97664 + 1.97664i) q^{33} +(1.90212 + 1.90212i) q^{34} +(-0.396166 - 0.360699i) q^{35} +(-0.866025 + 0.500000i) q^{36} +(-0.427713 - 1.59625i) q^{37} +(-2.01005 + 3.48152i) q^{38} +(3.06086 - 1.90556i) q^{39} +(-0.175372 + 0.101251i) q^{40} +(10.6586 + 2.85597i) q^{41} +(-0.564393 + 2.58485i) q^{42} +(-5.73742 - 3.31250i) q^{43} +(0.723502 - 2.70015i) q^{44} +(-0.195603 - 0.0524115i) q^{45} +(-2.20125 - 0.589824i) q^{46} +(1.56321 - 5.83398i) q^{47} +(0.866025 + 0.500000i) q^{48} +(4.05158 + 5.70830i) q^{49} +(4.79002 + 1.28348i) q^{50} +(2.32961 - 1.34500i) q^{51} +(-3.18069 - 1.69800i) q^{52} +(0.577609 - 1.00045i) q^{53} +(0.258819 + 0.965926i) q^{54} +(0.490235 - 0.283038i) q^{55} +(2.52074 - 0.803647i) q^{56} +(2.84265 + 2.84265i) q^{57} +(-2.58180 - 2.58180i) q^{58} +(1.27738 - 4.76725i) q^{59} +(0.0524115 + 0.195603i) q^{60} -2.01287i q^{61} +(2.93607 + 5.08541i) q^{62} +(2.35070 + 1.21417i) q^{63} -1.00000i q^{64} +(-0.212307 - 0.698585i) q^{65} +(-2.42088 - 1.39770i) q^{66} +(-7.22594 - 7.22594i) q^{67} +(-2.32961 - 1.34500i) q^{68} +(-1.13945 + 1.97359i) q^{69} +(0.476023 + 0.245873i) q^{70} +(1.05839 - 0.283594i) q^{71} +(0.707107 - 0.707107i) q^{72} +(11.4851 - 3.07743i) q^{73} +(0.826278 + 1.43115i) q^{74} +(2.47950 - 4.29461i) q^{75} +(1.04048 - 3.88313i) q^{76} +(-7.04648 + 2.24651i) q^{77} +(-2.46337 + 2.63283i) q^{78} +(-0.0814611 - 0.141095i) q^{79} +(0.143191 - 0.143191i) q^{80} +1.00000 q^{81} -11.0346 q^{82} +(5.03290 - 5.03290i) q^{83} +(-0.123847 - 2.64285i) q^{84} +(-0.140987 - 0.526171i) q^{85} +(6.39926 + 1.71468i) q^{86} +(-3.16205 + 1.82561i) q^{87} +2.79540i q^{88} +(-14.6198 + 3.91737i) q^{89} +0.202503 q^{90} +(0.762985 + 9.50883i) q^{91} +2.27891 q^{92} +(5.67204 - 1.51982i) q^{93} +6.03978i q^{94} +(0.705016 - 0.407041i) q^{95} +(-0.965926 - 0.258819i) q^{96} +(2.70252 + 10.0859i) q^{97} +(-5.39094 - 4.46517i) q^{98} +(-1.97664 + 1.97664i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q - 4q^{7} - 40q^{9} + O(q^{10}) \) \( 40q - 4q^{7} - 40q^{9} - 4q^{11} + 20q^{12} + 4q^{14} + 20q^{16} + 8q^{17} + 8q^{19} - 8q^{21} - 4q^{22} + 24q^{23} + 24q^{25} - 8q^{26} + 4q^{28} - 12q^{29} + 24q^{31} - 4q^{33} + 8q^{34} + 28q^{35} - 8q^{37} - 8q^{38} - 16q^{39} - 20q^{41} - 12q^{42} - 24q^{43} + 8q^{44} - 4q^{46} - 16q^{47} + 4q^{49} - 16q^{50} - 24q^{51} - 4q^{52} - 4q^{53} - 24q^{55} + 12q^{56} + 8q^{57} + 24q^{58} - 12q^{59} - 32q^{62} + 4q^{63} - 4q^{65} - 24q^{67} + 24q^{68} + 8q^{69} + 52q^{70} - 28q^{71} + 108q^{73} + 20q^{74} - 36q^{75} - 4q^{76} + 12q^{77} + 4q^{78} + 40q^{81} - 48q^{82} - 60q^{83} - 8q^{84} - 4q^{85} - 20q^{86} - 36q^{87} - 60q^{89} - 40q^{91} - 16q^{92} - 48q^{95} + 48q^{97} - 8q^{98} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.965926 + 0.258819i −0.683013 + 0.183013i
\(3\) 1.00000i 0.577350i
\(4\) 0.866025 0.500000i 0.433013 0.250000i
\(5\) 0.195603 + 0.0524115i 0.0874761 + 0.0234392i 0.302292 0.953215i \(-0.402248\pi\)
−0.214816 + 0.976655i \(0.568915\pi\)
\(6\) −0.258819 0.965926i −0.105662 0.394338i
\(7\) −2.35070 1.21417i −0.888481 0.458913i
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) −1.00000 −0.333333
\(10\) −0.202503 −0.0640370
\(11\) 1.97664 1.97664i 0.595981 0.595981i −0.343260 0.939240i \(-0.611531\pi\)
0.939240 + 0.343260i \(0.111531\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) −1.90556 3.06086i −0.528506 0.848929i
\(14\) 2.58485 + 0.564393i 0.690831 + 0.150840i
\(15\) −0.0524115 + 0.195603i −0.0135326 + 0.0505044i
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) −1.34500 2.32961i −0.326211 0.565013i 0.655546 0.755155i \(-0.272439\pi\)
−0.981757 + 0.190142i \(0.939105\pi\)
\(18\) 0.965926 0.258819i 0.227671 0.0610042i
\(19\) 2.84265 2.84265i 0.652148 0.652148i −0.301362 0.953510i \(-0.597441\pi\)
0.953510 + 0.301362i \(0.0974413\pi\)
\(20\) 0.195603 0.0524115i 0.0437381 0.0117196i
\(21\) 1.21417 2.35070i 0.264954 0.512965i
\(22\) −1.39770 + 2.42088i −0.297990 + 0.516134i
\(23\) 1.97359 + 1.13945i 0.411522 + 0.237592i 0.691444 0.722430i \(-0.256975\pi\)
−0.279921 + 0.960023i \(0.590308\pi\)
\(24\) −0.707107 0.707107i −0.144338 0.144338i
\(25\) −4.29461 2.47950i −0.858923 0.495899i
\(26\) 2.63283 + 2.46337i 0.516341 + 0.483106i
\(27\) 1.00000i 0.192450i
\(28\) −2.64285 + 0.123847i −0.499452 + 0.0234049i
\(29\) 1.82561 + 3.16205i 0.339008 + 0.587178i 0.984246 0.176803i \(-0.0565754\pi\)
−0.645239 + 0.763981i \(0.723242\pi\)
\(30\) 0.202503i 0.0369718i
\(31\) −1.51982 5.67204i −0.272968 1.01873i −0.957191 0.289457i \(-0.906525\pi\)
0.684224 0.729272i \(-0.260141\pi\)
\(32\) −0.258819 + 0.965926i −0.0457532 + 0.170753i
\(33\) 1.97664 + 1.97664i 0.344090 + 0.344090i
\(34\) 1.90212 + 1.90212i 0.326211 + 0.326211i
\(35\) −0.396166 0.360699i −0.0669643 0.0609692i
\(36\) −0.866025 + 0.500000i −0.144338 + 0.0833333i
\(37\) −0.427713 1.59625i −0.0703155 0.262421i 0.921815 0.387631i \(-0.126706\pi\)
−0.992130 + 0.125209i \(0.960040\pi\)
\(38\) −2.01005 + 3.48152i −0.326074 + 0.564777i
\(39\) 3.06086 1.90556i 0.490130 0.305133i
\(40\) −0.175372 + 0.101251i −0.0277288 + 0.0160092i
\(41\) 10.6586 + 2.85597i 1.66460 + 0.446027i 0.963646 0.267184i \(-0.0860931\pi\)
0.700950 + 0.713211i \(0.252760\pi\)
\(42\) −0.564393 + 2.58485i −0.0870878 + 0.398851i
\(43\) −5.73742 3.31250i −0.874948 0.505151i −0.00595841 0.999982i \(-0.501897\pi\)
−0.868989 + 0.494831i \(0.835230\pi\)
\(44\) 0.723502 2.70015i 0.109072 0.407062i
\(45\) −0.195603 0.0524115i −0.0291587 0.00781305i
\(46\) −2.20125 0.589824i −0.324557 0.0869649i
\(47\) 1.56321 5.83398i 0.228018 0.850973i −0.753156 0.657842i \(-0.771469\pi\)
0.981173 0.193130i \(-0.0618641\pi\)
\(48\) 0.866025 + 0.500000i 0.125000 + 0.0721688i
\(49\) 4.05158 + 5.70830i 0.578797 + 0.815472i
\(50\) 4.79002 + 1.28348i 0.677411 + 0.181512i
\(51\) 2.32961 1.34500i 0.326211 0.188338i
\(52\) −3.18069 1.69800i −0.441082 0.235471i
\(53\) 0.577609 1.00045i 0.0793407 0.137422i −0.823625 0.567135i \(-0.808052\pi\)
0.902966 + 0.429713i \(0.141385\pi\)
\(54\) 0.258819 + 0.965926i 0.0352208 + 0.131446i
\(55\) 0.490235 0.283038i 0.0661033 0.0381648i
\(56\) 2.52074 0.803647i 0.336849 0.107392i
\(57\) 2.84265 + 2.84265i 0.376518 + 0.376518i
\(58\) −2.58180 2.58180i −0.339008 0.339008i
\(59\) 1.27738 4.76725i 0.166301 0.620643i −0.831570 0.555420i \(-0.812557\pi\)
0.997871 0.0652230i \(-0.0207759\pi\)
\(60\) 0.0524115 + 0.195603i 0.00676630 + 0.0252522i
\(61\) 2.01287i 0.257722i −0.991663 0.128861i \(-0.958868\pi\)
0.991663 0.128861i \(-0.0411321\pi\)
\(62\) 2.93607 + 5.08541i 0.372881 + 0.645848i
\(63\) 2.35070 + 1.21417i 0.296160 + 0.152971i
\(64\) 1.00000i 0.125000i
\(65\) −0.212307 0.698585i −0.0263335 0.0866488i
\(66\) −2.42088 1.39770i −0.297990 0.172045i
\(67\) −7.22594 7.22594i −0.882789 0.882789i 0.111028 0.993817i \(-0.464586\pi\)
−0.993817 + 0.111028i \(0.964586\pi\)
\(68\) −2.32961 1.34500i −0.282507 0.163105i
\(69\) −1.13945 + 1.97359i −0.137174 + 0.237592i
\(70\) 0.476023 + 0.245873i 0.0568956 + 0.0293874i
\(71\) 1.05839 0.283594i 0.125607 0.0336564i −0.195468 0.980710i \(-0.562622\pi\)
0.321075 + 0.947054i \(0.395956\pi\)
\(72\) 0.707107 0.707107i 0.0833333 0.0833333i
\(73\) 11.4851 3.07743i 1.34423 0.360186i 0.486230 0.873831i \(-0.338372\pi\)
0.858003 + 0.513644i \(0.171705\pi\)
\(74\) 0.826278 + 1.43115i 0.0960528 + 0.166368i
\(75\) 2.47950 4.29461i 0.286308 0.495899i
\(76\) 1.04048 3.88313i 0.119351 0.445425i
\(77\) −7.04648 + 2.24651i −0.803021 + 0.256014i
\(78\) −2.46337 + 2.63283i −0.278921 + 0.298110i
\(79\) −0.0814611 0.141095i −0.00916509 0.0158744i 0.861406 0.507916i \(-0.169584\pi\)
−0.870572 + 0.492042i \(0.836251\pi\)
\(80\) 0.143191 0.143191i 0.0160092 0.0160092i
\(81\) 1.00000 0.111111
\(82\) −11.0346 −1.21857
\(83\) 5.03290 5.03290i 0.552432 0.552432i −0.374710 0.927142i \(-0.622258\pi\)
0.927142 + 0.374710i \(0.122258\pi\)
\(84\) −0.123847 2.64285i −0.0135128 0.288359i
\(85\) −0.140987 0.526171i −0.0152922 0.0570713i
\(86\) 6.39926 + 1.71468i 0.690049 + 0.184898i
\(87\) −3.16205 + 1.82561i −0.339008 + 0.195726i
\(88\) 2.79540i 0.297990i
\(89\) −14.6198 + 3.91737i −1.54970 + 0.415241i −0.929385 0.369112i \(-0.879662\pi\)
−0.620315 + 0.784353i \(0.712995\pi\)
\(90\) 0.202503 0.0213457
\(91\) 0.762985 + 9.50883i 0.0799826 + 0.996796i
\(92\) 2.27891 0.237592
\(93\) 5.67204 1.51982i 0.588163 0.157598i
\(94\) 6.03978i 0.622955i
\(95\) 0.705016 0.407041i 0.0723331 0.0417616i
\(96\) −0.965926 0.258819i −0.0985844 0.0264156i
\(97\) 2.70252 + 10.0859i 0.274399 + 1.02407i 0.956243 + 0.292573i \(0.0945116\pi\)
−0.681844 + 0.731498i \(0.738822\pi\)
\(98\) −5.39094 4.46517i −0.544567 0.451050i
\(99\) −1.97664 + 1.97664i −0.198660 + 0.198660i
\(100\) −4.95899 −0.495899
\(101\) −13.7985 −1.37300 −0.686501 0.727128i \(-0.740854\pi\)
−0.686501 + 0.727128i \(0.740854\pi\)
\(102\) −1.90212 + 1.90212i −0.188338 + 0.188338i
\(103\) −2.45936 4.25973i −0.242327 0.419723i 0.719049 0.694959i \(-0.244577\pi\)
−0.961377 + 0.275236i \(0.911244\pi\)
\(104\) 3.51179 + 0.816922i 0.344359 + 0.0801058i
\(105\) 0.360699 0.396166i 0.0352006 0.0386619i
\(106\) −0.298992 + 1.11585i −0.0290407 + 0.108381i
\(107\) −3.68809 + 6.38796i −0.356541 + 0.617547i −0.987380 0.158366i \(-0.949377\pi\)
0.630839 + 0.775913i \(0.282711\pi\)
\(108\) −0.500000 0.866025i −0.0481125 0.0833333i
\(109\) −9.72438 + 2.60564i −0.931427 + 0.249575i −0.692463 0.721453i \(-0.743474\pi\)
−0.238964 + 0.971028i \(0.576808\pi\)
\(110\) −0.400276 + 0.400276i −0.0381648 + 0.0381648i
\(111\) 1.59625 0.427713i 0.151509 0.0405967i
\(112\) −2.22685 + 1.42868i −0.210418 + 0.134998i
\(113\) −8.01512 + 13.8826i −0.753999 + 1.30596i 0.191872 + 0.981420i \(0.438544\pi\)
−0.945871 + 0.324544i \(0.894789\pi\)
\(114\) −3.48152 2.01005i −0.326074 0.188259i
\(115\) 0.326319 + 0.326319i 0.0304294 + 0.0304294i
\(116\) 3.16205 + 1.82561i 0.293589 + 0.169504i
\(117\) 1.90556 + 3.06086i 0.176169 + 0.282976i
\(118\) 4.93542i 0.454342i
\(119\) 0.333148 + 7.10927i 0.0305397 + 0.651706i
\(120\) −0.101251 0.175372i −0.00924294 0.0160092i
\(121\) 3.18576i 0.289614i
\(122\) 0.520969 + 1.94428i 0.0471664 + 0.176027i
\(123\) −2.85597 + 10.6586i −0.257514 + 0.961054i
\(124\) −4.15222 4.15222i −0.372881 0.372881i
\(125\) −1.42604 1.42604i −0.127549 0.127549i
\(126\) −2.58485 0.564393i −0.230277 0.0502802i
\(127\) −7.41110 + 4.27880i −0.657629 + 0.379682i −0.791373 0.611334i \(-0.790633\pi\)
0.133744 + 0.991016i \(0.457300\pi\)
\(128\) 0.258819 + 0.965926i 0.0228766 + 0.0853766i
\(129\) 3.31250 5.73742i 0.291649 0.505151i
\(130\) 0.385880 + 0.619832i 0.0338439 + 0.0543629i
\(131\) 11.3107 6.53021i 0.988217 0.570547i 0.0834763 0.996510i \(-0.473398\pi\)
0.904741 + 0.425962i \(0.140064\pi\)
\(132\) 2.70015 + 0.723502i 0.235018 + 0.0629728i
\(133\) −10.1337 + 3.23075i −0.878700 + 0.280141i
\(134\) 8.84993 + 5.10951i 0.764518 + 0.441394i
\(135\) 0.0524115 0.195603i 0.00451087 0.0168348i
\(136\) 2.59834 + 0.696224i 0.222806 + 0.0597007i
\(137\) −3.47555 0.931270i −0.296936 0.0795637i 0.107275 0.994229i \(-0.465787\pi\)
−0.404211 + 0.914666i \(0.632454\pi\)
\(138\) 0.589824 2.20125i 0.0502092 0.187383i
\(139\) 13.7433 + 7.93471i 1.16569 + 0.673013i 0.952662 0.304033i \(-0.0983332\pi\)
0.213031 + 0.977045i \(0.431666\pi\)
\(140\) −0.523439 0.114291i −0.0442387 0.00965936i
\(141\) 5.83398 + 1.56321i 0.491309 + 0.131646i
\(142\) −0.948923 + 0.547861i −0.0796319 + 0.0459755i
\(143\) −9.81683 2.28362i −0.820925 0.190966i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 0.191366 + 0.714188i 0.0158921 + 0.0593101i
\(146\) −10.2973 + 5.94514i −0.852210 + 0.492024i
\(147\) −5.70830 + 4.05158i −0.470813 + 0.334168i
\(148\) −1.16853 1.16853i −0.0960528 0.0960528i
\(149\) 12.7676 + 12.7676i 1.04596 + 1.04596i 0.998891 + 0.0470721i \(0.0149891\pi\)
0.0470721 + 0.998891i \(0.485011\pi\)
\(150\) −1.28348 + 4.79002i −0.104796 + 0.391103i
\(151\) −4.43840 16.5643i −0.361192 1.34799i −0.872511 0.488595i \(-0.837510\pi\)
0.511319 0.859391i \(-0.329157\pi\)
\(152\) 4.02011i 0.326074i
\(153\) 1.34500 + 2.32961i 0.108737 + 0.188338i
\(154\) 6.22494 3.99373i 0.501620 0.321824i
\(155\) 1.18912i 0.0955126i
\(156\) 1.69800 3.18069i 0.135949 0.254659i
\(157\) −2.58381 1.49176i −0.206211 0.119056i 0.393338 0.919394i \(-0.371320\pi\)
−0.599549 + 0.800338i \(0.704653\pi\)
\(158\) 0.115203 + 0.115203i 0.00916509 + 0.00916509i
\(159\) 1.00045 + 0.577609i 0.0793407 + 0.0458073i
\(160\) −0.101251 + 0.175372i −0.00800462 + 0.0138644i
\(161\) −3.25583 5.07479i −0.256595 0.399949i
\(162\) −0.965926 + 0.258819i −0.0758903 + 0.0203347i
\(163\) 2.46737 2.46737i 0.193259 0.193259i −0.603844 0.797103i \(-0.706365\pi\)
0.797103 + 0.603844i \(0.206365\pi\)
\(164\) 10.6586 2.85597i 0.832298 0.223013i
\(165\) 0.283038 + 0.490235i 0.0220344 + 0.0381648i
\(166\) −3.55880 + 6.16401i −0.276216 + 0.478420i
\(167\) 1.13433 4.23339i 0.0877773 0.327589i −0.908048 0.418865i \(-0.862428\pi\)
0.995826 + 0.0912760i \(0.0290946\pi\)
\(168\) 0.803647 + 2.52074i 0.0620027 + 0.194480i
\(169\) −5.73771 + 11.6653i −0.441362 + 0.897329i
\(170\) 0.272366 + 0.471752i 0.0208895 + 0.0361817i
\(171\) −2.84265 + 2.84265i −0.217383 + 0.217383i
\(172\) −6.62500 −0.505151
\(173\) −22.1494 −1.68398 −0.841992 0.539490i \(-0.818617\pi\)
−0.841992 + 0.539490i \(0.818617\pi\)
\(174\) 2.58180 2.58180i 0.195726 0.195726i
\(175\) 7.08481 + 11.0429i 0.535562 + 0.834768i
\(176\) −0.723502 2.70015i −0.0545360 0.203531i
\(177\) 4.76725 + 1.27738i 0.358329 + 0.0960138i
\(178\) 13.1078 7.56779i 0.982470 0.567230i
\(179\) 4.97827i 0.372093i −0.982541 0.186047i \(-0.940432\pi\)
0.982541 0.186047i \(-0.0595675\pi\)
\(180\) −0.195603 + 0.0524115i −0.0145794 + 0.00390653i
\(181\) 16.9305 1.25843 0.629216 0.777230i \(-0.283376\pi\)
0.629216 + 0.777230i \(0.283376\pi\)
\(182\) −3.19805 8.98735i −0.237055 0.666187i
\(183\) 2.01287 0.148796
\(184\) −2.20125 + 0.589824i −0.162279 + 0.0434824i
\(185\) 0.334647i 0.0246037i
\(186\) −5.08541 + 2.93607i −0.372881 + 0.215283i
\(187\) −7.26340 1.94622i −0.531152 0.142322i
\(188\) −1.56321 5.83398i −0.114009 0.425486i
\(189\) −1.21417 + 2.35070i −0.0883179 + 0.170988i
\(190\) −0.575643 + 0.575643i −0.0417616 + 0.0417616i
\(191\) −19.8491 −1.43623 −0.718115 0.695924i \(-0.754995\pi\)
−0.718115 + 0.695924i \(0.754995\pi\)
\(192\) 1.00000 0.0721688
\(193\) 9.36842 9.36842i 0.674353 0.674353i −0.284363 0.958717i \(-0.591782\pi\)
0.958717 + 0.284363i \(0.0917822\pi\)
\(194\) −5.22086 9.04280i −0.374836 0.649235i
\(195\) 0.698585 0.212307i 0.0500267 0.0152036i
\(196\) 6.36292 + 2.91775i 0.454494 + 0.208410i
\(197\) −3.80520 + 14.2012i −0.271109 + 1.01179i 0.687295 + 0.726379i \(0.258798\pi\)
−0.958404 + 0.285415i \(0.907869\pi\)
\(198\) 1.39770 2.42088i 0.0993301 0.172045i
\(199\) −5.25165 9.09613i −0.372280 0.644807i 0.617636 0.786464i \(-0.288090\pi\)
−0.989916 + 0.141657i \(0.954757\pi\)
\(200\) 4.79002 1.28348i 0.338705 0.0907559i
\(201\) 7.22594 7.22594i 0.509678 0.509678i
\(202\) 13.3283 3.57132i 0.937778 0.251277i
\(203\) −0.452193 9.64964i −0.0317377 0.677272i
\(204\) 1.34500 2.32961i 0.0941689 0.163105i
\(205\) 1.93517 + 1.11727i 0.135158 + 0.0780334i
\(206\) 3.47805 + 3.47805i 0.242327 + 0.242327i
\(207\) −1.97359 1.13945i −0.137174 0.0791975i
\(208\) −3.60356 + 0.119831i −0.249862 + 0.00830879i
\(209\) 11.2378i 0.777335i
\(210\) −0.245873 + 0.476023i −0.0169668 + 0.0328487i
\(211\) 11.7054 + 20.2743i 0.805831 + 1.39574i 0.915729 + 0.401797i \(0.131614\pi\)
−0.109898 + 0.993943i \(0.535052\pi\)
\(212\) 1.15522i 0.0793407i
\(213\) 0.283594 + 1.05839i 0.0194315 + 0.0725195i
\(214\) 1.90909 7.12484i 0.130503 0.487044i
\(215\) −0.948640 0.948640i −0.0646967 0.0646967i
\(216\) 0.707107 + 0.707107i 0.0481125 + 0.0481125i
\(217\) −3.31419 + 15.1786i −0.224982 + 1.03039i
\(218\) 8.71864 5.03371i 0.590501 0.340926i
\(219\) 3.07743 + 11.4851i 0.207954 + 0.776094i
\(220\) 0.283038 0.490235i 0.0190824 0.0330517i
\(221\) −4.56763 + 8.55606i −0.307252 + 0.575543i
\(222\) −1.43115 + 0.826278i −0.0960528 + 0.0554561i
\(223\) −12.9381 3.46676i −0.866400 0.232151i −0.201870 0.979412i \(-0.564702\pi\)
−0.664531 + 0.747261i \(0.731368\pi\)
\(224\) 1.78120 1.95635i 0.119012 0.130714i
\(225\) 4.29461 + 2.47950i 0.286308 + 0.165300i
\(226\) 4.14893 15.4840i 0.275983 1.02998i
\(227\) 9.54548 + 2.55770i 0.633556 + 0.169761i 0.561283 0.827624i \(-0.310308\pi\)
0.0722732 + 0.997385i \(0.476975\pi\)
\(228\) 3.88313 + 1.04048i 0.257166 + 0.0689075i
\(229\) −3.24133 + 12.0968i −0.214193 + 0.799379i 0.772256 + 0.635311i \(0.219128\pi\)
−0.986449 + 0.164068i \(0.947539\pi\)
\(230\) −0.399657 0.230742i −0.0263526 0.0152147i
\(231\) −2.24651 7.04648i −0.147810 0.463624i
\(232\) −3.52681 0.945006i −0.231546 0.0620427i
\(233\) 22.4609 12.9678i 1.47146 0.849549i 0.471976 0.881611i \(-0.343541\pi\)
0.999486 + 0.0320619i \(0.0102074\pi\)
\(234\) −2.63283 2.46337i −0.172114 0.161035i
\(235\) 0.611535 1.05921i 0.0398922 0.0690953i
\(236\) −1.27738 4.76725i −0.0831504 0.310322i
\(237\) 0.141095 0.0814611i 0.00916509 0.00529147i
\(238\) −2.16181 6.78081i −0.140129 0.439534i
\(239\) 3.56842 + 3.56842i 0.230822 + 0.230822i 0.813036 0.582214i \(-0.197813\pi\)
−0.582214 + 0.813036i \(0.697813\pi\)
\(240\) 0.143191 + 0.143191i 0.00924294 + 0.00924294i
\(241\) 4.43559 16.5538i 0.285721 1.06633i −0.662589 0.748983i \(-0.730542\pi\)
0.948311 0.317344i \(-0.102791\pi\)
\(242\) −0.824535 3.07721i −0.0530031 0.197810i
\(243\) 1.00000i 0.0641500i
\(244\) −1.00644 1.74320i −0.0644304 0.111597i
\(245\) 0.493318 + 1.32891i 0.0315169 + 0.0849008i
\(246\) 11.0346i 0.703541i
\(247\) −14.1178 3.28412i −0.898292 0.208963i
\(248\) 5.08541 + 2.93607i 0.322924 + 0.186440i
\(249\) 5.03290 + 5.03290i 0.318947 + 0.318947i
\(250\) 1.74653 + 1.00836i 0.110460 + 0.0637744i
\(251\) 7.30883 12.6593i 0.461329 0.799045i −0.537698 0.843137i \(-0.680706\pi\)
0.999027 + 0.0440920i \(0.0140395\pi\)
\(252\) 2.64285 0.123847i 0.166484 0.00780162i
\(253\) 6.15338 1.64879i 0.386860 0.103659i
\(254\) 6.05114 6.05114i 0.379682 0.379682i
\(255\) 0.526171 0.140987i 0.0329501 0.00882895i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 2.58405 4.47570i 0.161188 0.279186i −0.774107 0.633055i \(-0.781801\pi\)
0.935295 + 0.353869i \(0.115134\pi\)
\(258\) −1.71468 + 6.39926i −0.106751 + 0.398400i
\(259\) −0.932691 + 4.27161i −0.0579546 + 0.265425i
\(260\) −0.533156 0.498838i −0.0330649 0.0309366i
\(261\) −1.82561 3.16205i −0.113003 0.195726i
\(262\) −9.23512 + 9.23512i −0.570547 + 0.570547i
\(263\) 11.9526 0.737031 0.368516 0.929622i \(-0.379866\pi\)
0.368516 + 0.929622i \(0.379866\pi\)
\(264\) −2.79540 −0.172045
\(265\) 0.165417 0.165417i 0.0101615 0.0101615i
\(266\) 8.95219 5.74345i 0.548894 0.352153i
\(267\) −3.91737 14.6198i −0.239739 0.894720i
\(268\) −9.87081 2.64488i −0.602956 0.161562i
\(269\) −18.1439 + 10.4754i −1.10625 + 0.638696i −0.937857 0.347023i \(-0.887193\pi\)
−0.168398 + 0.985719i \(0.553859\pi\)
\(270\) 0.202503i 0.0123239i
\(271\) 18.4852 4.95309i 1.12290 0.300879i 0.350841 0.936435i \(-0.385896\pi\)
0.772055 + 0.635556i \(0.219229\pi\)
\(272\) −2.69000 −0.163105
\(273\) −9.50883 + 0.762985i −0.575501 + 0.0461780i
\(274\) 3.59815 0.217372
\(275\) −13.3900 + 3.58784i −0.807448 + 0.216355i
\(276\) 2.27891i 0.137174i
\(277\) 18.4523 10.6534i 1.10869 0.640103i 0.170201 0.985409i \(-0.445558\pi\)
0.938490 + 0.345307i \(0.112225\pi\)
\(278\) −15.3287 4.10731i −0.919353 0.246340i
\(279\) 1.51982 + 5.67204i 0.0909892 + 0.339576i
\(280\) 0.535184 0.0250793i 0.0319834 0.00149878i
\(281\) 10.6777 10.6777i 0.636978 0.636978i −0.312831 0.949809i \(-0.601277\pi\)
0.949809 + 0.312831i \(0.101277\pi\)
\(282\) −6.03978 −0.359663
\(283\) 11.1258 0.661361 0.330680 0.943743i \(-0.392722\pi\)
0.330680 + 0.943743i \(0.392722\pi\)
\(284\) 0.774793 0.774793i 0.0459755 0.0459755i
\(285\) 0.407041 + 0.705016i 0.0241110 + 0.0417616i
\(286\) 10.0734 0.334975i 0.595651 0.0198075i
\(287\) −21.5876 19.6549i −1.27427 1.16019i
\(288\) 0.258819 0.965926i 0.0152511 0.0569177i
\(289\) 4.88195 8.45578i 0.287173 0.497399i
\(290\) −0.369691 0.640324i −0.0217090 0.0376011i
\(291\) −10.0859 + 2.70252i −0.591248 + 0.158424i
\(292\) 8.40770 8.40770i 0.492024 0.492024i
\(293\) 20.7576 5.56198i 1.21267 0.324934i 0.404862 0.914378i \(-0.367320\pi\)
0.807809 + 0.589444i \(0.200653\pi\)
\(294\) 4.46517 5.39094i 0.260414 0.314406i
\(295\) 0.499718 0.865537i 0.0290947 0.0503935i
\(296\) 1.43115 + 0.826278i 0.0831842 + 0.0480264i
\(297\) −1.97664 1.97664i −0.114697 0.114697i
\(298\) −15.6371 9.02807i −0.905831 0.522982i
\(299\) −0.273084 8.21218i −0.0157928 0.474922i
\(300\) 4.95899i 0.286308i
\(301\) 9.46500 + 14.7529i 0.545554 + 0.850343i
\(302\) 8.57432 + 14.8512i 0.493397 + 0.854589i
\(303\) 13.7985i 0.792704i
\(304\) −1.04048 3.88313i −0.0596757 0.222713i
\(305\) 0.105498 0.393723i 0.00604078 0.0225445i
\(306\) −1.90212 1.90212i −0.108737 0.108737i
\(307\) −15.0456 15.0456i −0.858698 0.858698i 0.132487 0.991185i \(-0.457704\pi\)
−0.991185 + 0.132487i \(0.957704\pi\)
\(308\) −4.97917 + 5.46878i −0.283715 + 0.311612i
\(309\) 4.25973 2.45936i 0.242327 0.139908i
\(310\) 0.307767 + 1.14860i 0.0174800 + 0.0652363i
\(311\) 0.952113 1.64911i 0.0539894 0.0935124i −0.837768 0.546027i \(-0.816140\pi\)
0.891757 + 0.452515i \(0.149473\pi\)
\(312\) −0.816922 + 3.51179i −0.0462491 + 0.198816i
\(313\) 10.7514 6.20732i 0.607705 0.350859i −0.164362 0.986400i \(-0.552556\pi\)
0.772067 + 0.635542i \(0.219223\pi\)
\(314\) 2.88187 + 0.772194i 0.162633 + 0.0435774i
\(315\) 0.396166 + 0.360699i 0.0223214 + 0.0203231i
\(316\) −0.141095 0.0814611i −0.00793720 0.00458255i
\(317\) −6.43782 + 24.0263i −0.361584 + 1.34945i 0.510410 + 0.859931i \(0.329494\pi\)
−0.871993 + 0.489518i \(0.837173\pi\)
\(318\) −1.11585 0.298992i −0.0625740 0.0167667i
\(319\) 9.85883 + 2.64167i 0.551989 + 0.147905i
\(320\) 0.0524115 0.195603i 0.00292989 0.0109345i
\(321\) −6.38796 3.68809i −0.356541 0.205849i
\(322\) 4.45834 + 4.05920i 0.248454 + 0.226210i
\(323\) −10.4456 2.79889i −0.581210 0.155735i
\(324\) 0.866025 0.500000i 0.0481125 0.0277778i
\(325\) 0.594241 + 17.8700i 0.0329626 + 0.991251i
\(326\) −1.74469 + 3.02189i −0.0966295 + 0.167367i
\(327\) −2.60564 9.72438i −0.144092 0.537760i
\(328\) −9.55625 + 5.51730i −0.527656 + 0.304642i
\(329\) −10.7581 + 11.8159i −0.593112 + 0.651433i
\(330\) −0.400276 0.400276i −0.0220344 0.0220344i
\(331\) 17.1243 + 17.1243i 0.941236 + 0.941236i 0.998367 0.0571304i \(-0.0181951\pi\)
−0.0571304 + 0.998367i \(0.518195\pi\)
\(332\) 1.84217 6.87507i 0.101102 0.377318i
\(333\) 0.427713 + 1.59625i 0.0234385 + 0.0874737i
\(334\) 4.38273i 0.239812i
\(335\) −1.03469 1.79213i −0.0565311 0.0979147i
\(336\) −1.42868 2.22685i −0.0779409 0.121485i
\(337\) 24.8568i 1.35403i 0.735967 + 0.677017i \(0.236728\pi\)
−0.735967 + 0.677017i \(0.763272\pi\)
\(338\) 2.52301 12.7528i 0.137233 0.693662i
\(339\) −13.8826 8.01512i −0.753999 0.435321i
\(340\) −0.385184 0.385184i −0.0208895 0.0208895i
\(341\) −14.2157 8.20747i −0.769826 0.444459i
\(342\) 2.01005 3.48152i 0.108691 0.188259i
\(343\) −2.59319 18.3378i −0.140019 0.990149i
\(344\) 6.39926 1.71468i 0.345025 0.0924491i
\(345\) −0.326319 + 0.326319i −0.0175684 + 0.0175684i
\(346\) 21.3946 5.73267i 1.15018 0.308190i
\(347\) 2.40733 + 4.16962i 0.129232 + 0.223837i 0.923379 0.383889i \(-0.125415\pi\)
−0.794147 + 0.607726i \(0.792082\pi\)
\(348\) −1.82561 + 3.16205i −0.0978631 + 0.169504i
\(349\) 8.18170 30.5345i 0.437956 1.63448i −0.295935 0.955208i \(-0.595631\pi\)
0.733891 0.679267i \(-0.237702\pi\)
\(350\) −9.70153 8.83298i −0.518569 0.472143i
\(351\) −3.06086 + 1.90556i −0.163377 + 0.101711i
\(352\) 1.39770 + 2.42088i 0.0744976 + 0.129034i
\(353\) 3.54343 3.54343i 0.188598 0.188598i −0.606492 0.795090i \(-0.707424\pi\)
0.795090 + 0.606492i \(0.207424\pi\)
\(354\) −4.93542 −0.262315
\(355\) 0.221887 0.0117765
\(356\) −10.7025 + 10.7025i −0.567230 + 0.567230i
\(357\) −7.10927 + 0.333148i −0.376263 + 0.0176321i
\(358\) 1.28847 + 4.80864i 0.0680978 + 0.254144i
\(359\) 10.5607 + 2.82972i 0.557371 + 0.149347i 0.526498 0.850176i \(-0.323505\pi\)
0.0308727 + 0.999523i \(0.490171\pi\)
\(360\) 0.175372 0.101251i 0.00924294 0.00533641i
\(361\) 2.83873i 0.149407i
\(362\) −16.3536 + 4.38193i −0.859525 + 0.230309i
\(363\) −3.18576 −0.167209
\(364\) 5.41518 + 7.85340i 0.283833 + 0.411630i
\(365\) 2.40781 0.126031
\(366\) −1.94428 + 0.520969i −0.101629 + 0.0272315i
\(367\) 15.8760i 0.828721i 0.910113 + 0.414361i \(0.135995\pi\)
−0.910113 + 0.414361i \(0.864005\pi\)
\(368\) 1.97359 1.13945i 0.102881 0.0593981i
\(369\) −10.6586 2.85597i −0.554865 0.148676i
\(370\) 0.0866130 + 0.323244i 0.00450279 + 0.0168047i
\(371\) −2.57250 + 1.65044i −0.133557 + 0.0856864i
\(372\) 4.15222 4.15222i 0.215283 0.215283i
\(373\) −0.161078 −0.00834030 −0.00417015 0.999991i \(-0.501327\pi\)
−0.00417015 + 0.999991i \(0.501327\pi\)
\(374\) 7.51962 0.388830
\(375\) 1.42604 1.42604i 0.0736403 0.0736403i
\(376\) 3.01989 + 5.23060i 0.155739 + 0.269748i
\(377\) 6.19979 11.6134i 0.319305 0.598121i
\(378\) 0.564393 2.58485i 0.0290293 0.132950i
\(379\) −1.62284 + 6.05652i −0.0833597 + 0.311103i −0.994999 0.0998896i \(-0.968151\pi\)
0.911639 + 0.410992i \(0.134818\pi\)
\(380\) 0.407041 0.705016i 0.0208808 0.0361666i
\(381\) −4.27880 7.41110i −0.219210 0.379682i
\(382\) 19.1728 5.13732i 0.980963 0.262848i
\(383\) 14.5419 14.5419i 0.743058 0.743058i −0.230107 0.973165i \(-0.573908\pi\)
0.973165 + 0.230107i \(0.0739076\pi\)
\(384\) −0.965926 + 0.258819i −0.0492922 + 0.0132078i
\(385\) −1.49605 + 0.0701066i −0.0762459 + 0.00357297i
\(386\) −6.62447 + 11.4739i −0.337177 + 0.584007i
\(387\) 5.73742 + 3.31250i 0.291649 + 0.168384i
\(388\) 7.38341 + 7.38341i 0.374836 + 0.374836i
\(389\) 15.7262 + 9.07952i 0.797349 + 0.460350i 0.842543 0.538628i \(-0.181057\pi\)
−0.0451941 + 0.998978i \(0.514391\pi\)
\(390\) −0.619832 + 0.385880i −0.0313864 + 0.0195398i
\(391\) 6.13026i 0.310021i
\(392\) −6.90128 1.17148i −0.348567 0.0591688i
\(393\) 6.53021 + 11.3107i 0.329406 + 0.570547i
\(394\) 14.7022i 0.740684i
\(395\) −0.00853900 0.0318680i −0.000429644 0.00160345i
\(396\) −0.723502 + 2.70015i −0.0363573 + 0.135687i
\(397\) 9.53585 + 9.53585i 0.478590 + 0.478590i 0.904681 0.426090i \(-0.140109\pi\)
−0.426090 + 0.904681i \(0.640109\pi\)
\(398\) 7.42696 + 7.42696i 0.372280 + 0.372280i
\(399\) −3.23075 10.1337i −0.161740 0.507318i
\(400\) −4.29461 + 2.47950i −0.214731 + 0.123975i
\(401\) 5.49978 + 20.5254i 0.274646 + 1.02499i 0.956078 + 0.293111i \(0.0946905\pi\)
−0.681433 + 0.731881i \(0.738643\pi\)
\(402\) −5.10951 + 8.84993i −0.254839 + 0.441394i
\(403\) −14.4652 + 15.4603i −0.720564 + 0.770135i
\(404\) −11.9499 + 6.89925i −0.594528 + 0.343251i
\(405\) 0.195603 + 0.0524115i 0.00971957 + 0.00260435i
\(406\) 2.93430 + 9.20380i 0.145627 + 0.456777i
\(407\) −4.00064 2.30977i −0.198305 0.114491i
\(408\) −0.696224 + 2.59834i −0.0344682 + 0.128637i
\(409\) 27.4612 + 7.35820i 1.35787 + 0.363839i 0.863033 0.505148i \(-0.168562\pi\)
0.494834 + 0.868987i \(0.335229\pi\)
\(410\) −2.15840 0.578341i −0.106596 0.0285622i
\(411\) 0.931270 3.47555i 0.0459361 0.171436i
\(412\) −4.25973 2.45936i −0.209862 0.121164i
\(413\) −8.79100 + 9.65542i −0.432577 + 0.475112i
\(414\) 2.20125 + 0.589824i 0.108186 + 0.0289883i
\(415\) 1.24823 0.720665i 0.0612732 0.0353761i
\(416\) 3.44976 1.04842i 0.169138 0.0514029i
\(417\) −7.93471 + 13.7433i −0.388564 + 0.673013i
\(418\) 2.90856 + 10.8549i 0.142262 + 0.530929i
\(419\) −22.4063 + 12.9363i −1.09462 + 0.631978i −0.934802 0.355168i \(-0.884424\pi\)
−0.159816 + 0.987147i \(0.551090\pi\)
\(420\) 0.114291 0.523439i 0.00557684 0.0255412i
\(421\) −0.259512 0.259512i −0.0126478 0.0126478i 0.700755 0.713402i \(-0.252847\pi\)
−0.713402 + 0.700755i \(0.752847\pi\)
\(422\) −16.5539 16.5539i −0.805831 0.805831i
\(423\) −1.56321 + 5.83398i −0.0760058 + 0.283658i
\(424\) 0.298992 + 1.11585i 0.0145203 + 0.0541907i
\(425\) 13.3397i 0.647070i
\(426\) −0.547861 0.948923i −0.0265440 0.0459755i
\(427\) −2.44397 + 4.73166i −0.118272 + 0.228981i
\(428\) 7.37618i 0.356541i
\(429\) 2.28362 9.81683i 0.110254 0.473961i
\(430\) 1.16184 + 0.670790i 0.0560290 + 0.0323483i
\(431\) 0.542188 + 0.542188i 0.0261163 + 0.0261163i 0.720044 0.693928i \(-0.244121\pi\)
−0.693928 + 0.720044i \(0.744121\pi\)
\(432\) −0.866025 0.500000i −0.0416667 0.0240563i
\(433\) 1.45861 2.52639i 0.0700964 0.121411i −0.828847 0.559475i \(-0.811003\pi\)
0.898943 + 0.438065i \(0.144336\pi\)
\(434\) −0.727245 15.5192i −0.0349089 0.744944i
\(435\) −0.714188 + 0.191366i −0.0342427 + 0.00917531i
\(436\) −7.11874 + 7.11874i −0.340926 + 0.340926i
\(437\) 8.84928 2.37116i 0.423319 0.113428i
\(438\) −5.94514 10.2973i −0.284070 0.492024i
\(439\) 3.34704 5.79725i 0.159746 0.276688i −0.775031 0.631923i \(-0.782266\pi\)
0.934777 + 0.355235i \(0.115599\pi\)
\(440\) −0.146511 + 0.546787i −0.00698464 + 0.0260670i
\(441\) −4.05158 5.70830i −0.192932 0.271824i
\(442\) 2.19752 9.44671i 0.104525 0.449334i
\(443\) 14.1212 + 24.4587i 0.670920 + 1.16207i 0.977644 + 0.210269i \(0.0674339\pi\)
−0.306724 + 0.951799i \(0.599233\pi\)
\(444\) 1.16853 1.16853i 0.0554561 0.0554561i
\(445\) −3.06499 −0.145295
\(446\) 13.3945 0.634249
\(447\) −12.7676 + 12.7676i −0.603887 + 0.603887i
\(448\) −1.21417 + 2.35070i −0.0573642 + 0.111060i
\(449\) −10.2498 38.2527i −0.483716 1.80525i −0.585772 0.810476i \(-0.699209\pi\)
0.102056 0.994779i \(-0.467458\pi\)
\(450\) −4.79002 1.28348i −0.225804 0.0605039i
\(451\) 26.7135 15.4230i 1.25789 0.726243i
\(452\) 16.0302i 0.753999i
\(453\) 16.5643 4.43840i 0.778260 0.208534i
\(454\) −9.88221 −0.463795
\(455\) −0.349131 + 1.89994i −0.0163675 + 0.0890706i
\(456\) −4.02011 −0.188259
\(457\) −39.7751 + 10.6577i −1.86060 + 0.498547i −0.999943 0.0106359i \(-0.996614\pi\)
−0.860658 + 0.509183i \(0.829948\pi\)
\(458\) 12.5235i 0.585186i
\(459\) −2.32961 + 1.34500i −0.108737 + 0.0627793i
\(460\) 0.445760 + 0.119441i 0.0207837 + 0.00556897i
\(461\) 4.00295 + 14.9392i 0.186436 + 0.695788i 0.994319 + 0.106445i \(0.0339467\pi\)
−0.807883 + 0.589343i \(0.799387\pi\)
\(462\) 3.99373 + 6.22494i 0.185805 + 0.289610i
\(463\) −27.1074 + 27.1074i −1.25979 + 1.25979i −0.308594 + 0.951194i \(0.599858\pi\)
−0.951194 + 0.308594i \(0.900142\pi\)
\(464\) 3.65122 0.169504
\(465\) 1.18912 0.0551442
\(466\) −18.3392 + 18.3392i −0.849549 + 0.849549i
\(467\) 7.15792 + 12.3979i 0.331229 + 0.573706i 0.982753 0.184922i \(-0.0592034\pi\)
−0.651524 + 0.758628i \(0.725870\pi\)
\(468\) 3.18069 + 1.69800i 0.147027 + 0.0784902i
\(469\) 8.21249 + 25.7595i 0.379217 + 1.18946i
\(470\) −0.316554 + 1.18140i −0.0146015 + 0.0544937i
\(471\) 1.49176 2.58381i 0.0687369 0.119056i
\(472\) 2.46771 + 4.27420i 0.113586 + 0.196736i
\(473\) −17.8885 + 4.79320i −0.822512 + 0.220391i
\(474\) −0.115203 + 0.115203i −0.00529147 + 0.00529147i
\(475\) −19.2564 + 5.15974i −0.883544 + 0.236745i
\(476\) 3.84315 + 5.99024i 0.176151 + 0.274562i
\(477\) −0.577609 + 1.00045i −0.0264469 + 0.0458073i
\(478\) −4.37041 2.52326i −0.199898 0.115411i
\(479\) −3.07778 3.07778i −0.140628 0.140628i 0.633288 0.773916i \(-0.281705\pi\)
−0.773916 + 0.633288i \(0.781705\pi\)
\(480\) −0.175372 0.101251i −0.00800462 0.00462147i
\(481\) −4.07085 + 4.35090i −0.185615 + 0.198384i
\(482\) 17.1378i 0.780606i
\(483\) 5.07479 3.25583i 0.230911 0.148145i
\(484\) 1.59288 + 2.75895i 0.0724036 + 0.125407i
\(485\) 2.11448i 0.0960134i
\(486\) −0.258819 0.965926i −0.0117403 0.0438153i
\(487\) 2.98980 11.1581i 0.135481 0.505621i −0.864515 0.502607i \(-0.832374\pi\)
0.999995 0.00301340i \(-0.000959198\pi\)
\(488\) 1.42332 + 1.42332i 0.0644304 + 0.0644304i
\(489\) 2.46737 + 2.46737i 0.111578 + 0.111578i
\(490\) −0.820455 1.15595i −0.0370644 0.0522203i
\(491\) 30.9800 17.8863i 1.39811 0.807198i 0.403914 0.914797i \(-0.367650\pi\)
0.994194 + 0.107599i \(0.0343162\pi\)
\(492\) 2.85597 + 10.6586i 0.128757 + 0.480527i
\(493\) 4.91090 8.50592i 0.221176 0.383088i
\(494\) 14.4867 0.481734i 0.651787 0.0216742i
\(495\) −0.490235 + 0.283038i −0.0220344 + 0.0127216i
\(496\) −5.67204 1.51982i −0.254682 0.0682419i
\(497\) −2.83228 0.618418i −0.127045 0.0277399i
\(498\) −6.16401 3.55880i −0.276216 0.159473i
\(499\) 9.75294 36.3985i 0.436602 1.62942i −0.300603 0.953749i \(-0.597188\pi\)
0.737204 0.675670i \(-0.236145\pi\)
\(500\) −1.94800 0.521966i −0.0871174 0.0233430i
\(501\) 4.23339 + 1.13433i 0.189134 + 0.0506783i
\(502\) −3.78333 + 14.1196i −0.168858 + 0.630187i
\(503\) −1.14985 0.663864i −0.0512691 0.0296003i 0.474146 0.880446i \(-0.342757\pi\)
−0.525415 + 0.850846i \(0.676090\pi\)
\(504\) −2.52074 + 0.803647i −0.112283 + 0.0357973i
\(505\) −2.69902 0.723201i −0.120105 0.0321820i
\(506\) −5.51697 + 3.18522i −0.245259 + 0.141600i
\(507\) −11.6653 5.73771i −0.518073 0.254821i
\(508\) −4.27880 + 7.41110i −0.189841 + 0.328815i
\(509\) −2.90664 10.8477i −0.128835 0.480817i 0.871113 0.491083i \(-0.163399\pi\)
−0.999947 + 0.0102661i \(0.996732\pi\)
\(510\) −0.471752 + 0.272366i −0.0208895 + 0.0120606i
\(511\) −30.7346 6.71080i −1.35962 0.296868i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) −2.84265 2.84265i −0.125506 0.125506i
\(514\) −1.33760 + 4.99199i −0.0589990 + 0.220187i
\(515\) −0.257797 0.962112i −0.0113599 0.0423957i
\(516\) 6.62500i 0.291649i
\(517\) −8.44179 14.6216i −0.371269 0.643057i
\(518\) −0.204664 4.36746i −0.00899241 0.191895i
\(519\) 22.1494i 0.972249i
\(520\) 0.644098 + 0.343850i 0.0282456 + 0.0150788i
\(521\) −24.4358 14.1080i −1.07055 0.618083i −0.142219 0.989835i \(-0.545424\pi\)
−0.928332 + 0.371752i \(0.878757\pi\)
\(522\) 2.58180 + 2.58180i 0.113003 + 0.113003i
\(523\) 20.2352 + 11.6828i 0.884823 + 0.510853i 0.872246 0.489068i \(-0.162663\pi\)
0.0125777 + 0.999921i \(0.495996\pi\)
\(524\) 6.53021 11.3107i 0.285274 0.494109i
\(525\) −11.0429 + 7.08481i −0.481954 + 0.309207i
\(526\) −11.5454 + 3.09357i −0.503402 + 0.134886i
\(527\) −11.1695 + 11.1695i −0.486550 + 0.486550i
\(528\) 2.70015 0.723502i 0.117509 0.0314864i
\(529\) −8.90329 15.4210i −0.387100 0.670476i
\(530\) −0.116967 + 0.202593i −0.00508073 + 0.00880009i
\(531\) −1.27738 + 4.76725i −0.0554336 + 0.206881i
\(532\) −7.16064 + 7.86474i −0.310453 + 0.340980i
\(533\) −11.5689 38.0667i −0.501104 1.64885i
\(534\) 7.56779 + 13.1078i 0.327490 + 0.567230i
\(535\) −1.05620 + 1.05620i −0.0456636 + 0.0456636i
\(536\) 10.2190 0.441394
\(537\) 4.97827 0.214828
\(538\) 14.8144 14.8144i 0.638696 0.638696i
\(539\) 19.2918 + 3.27476i 0.830957 + 0.141054i
\(540\) −0.0524115 0.195603i −0.00225543 0.00841739i
\(541\) 7.88973 + 2.11405i 0.339206 + 0.0908899i 0.424401 0.905474i \(-0.360485\pi\)
−0.0851952 + 0.996364i \(0.527151\pi\)
\(542\) −16.5734 + 9.56864i −0.711887 + 0.411008i
\(543\) 16.9305i 0.726556i
\(544\) 2.59834 0.696224i 0.111403 0.0298503i
\(545\) −2.03868 −0.0873274
\(546\) 8.98735 3.19805i 0.384623 0.136864i
\(547\) −26.1644 −1.11871 −0.559354 0.828929i \(-0.688951\pi\)
−0.559354 + 0.828929i \(0.688951\pi\)
\(548\) −3.47555 + 0.931270i −0.148468 + 0.0397819i
\(549\) 2.01287i 0.0859073i
\(550\) 12.0051 6.93118i 0.511901 0.295546i
\(551\) 14.1782 + 3.79903i 0.604010 + 0.161844i
\(552\) −0.589824 2.20125i −0.0251046 0.0936916i
\(553\) 0.0201774 + 0.430579i 0.000858031 + 0.0183101i
\(554\) −15.0662 + 15.0662i −0.640103 + 0.640103i
\(555\) 0.334647 0.0142050
\(556\) 15.8694 0.673013
\(557\) −32.2306 + 32.2306i −1.36565 + 1.36565i −0.499125 + 0.866530i \(0.666345\pi\)
−0.866530 + 0.499125i \(0.833655\pi\)
\(558\) −2.93607 5.08541i −0.124294 0.215283i
\(559\) 0.793880 + 23.8736i 0.0335775 + 1.00974i
\(560\) −0.510457 + 0.162741i −0.0215708 + 0.00687705i
\(561\) 1.94622 7.26340i 0.0821695 0.306661i
\(562\) −7.55027 + 13.0774i −0.318489 + 0.551639i
\(563\) 16.2747 + 28.1887i 0.685898 + 1.18801i 0.973154 + 0.230157i \(0.0739239\pi\)
−0.287255 + 0.957854i \(0.592743\pi\)
\(564\) 5.83398 1.56321i 0.245655 0.0658230i
\(565\) −2.29538 + 2.29538i −0.0965675 + 0.0965675i
\(566\) −10.7467 + 2.87957i −0.451718 + 0.121037i
\(567\) −2.35070 1.21417i −0.0987201 0.0509904i
\(568\) −0.547861 + 0.948923i −0.0229877 + 0.0398159i
\(569\) 6.58799 + 3.80358i 0.276183 + 0.159454i 0.631694 0.775218i \(-0.282360\pi\)
−0.355511 + 0.934672i \(0.615693\pi\)
\(570\) −0.575643 0.575643i −0.0241110 0.0241110i
\(571\) 15.5269 + 8.96445i 0.649780 + 0.375150i 0.788372 0.615199i \(-0.210924\pi\)
−0.138592 + 0.990350i \(0.544258\pi\)
\(572\) −9.64344 + 2.93074i −0.403212 + 0.122541i
\(573\) 19.8491i 0.829208i
\(574\) 25.9390 + 13.3979i 1.08267 + 0.559217i
\(575\) −5.65054 9.78702i −0.235644 0.408147i
\(576\) 1.00000i 0.0416667i
\(577\) −11.5319 43.0378i −0.480081 1.79169i −0.601258 0.799055i \(-0.705333\pi\)
0.121177 0.992631i \(-0.461333\pi\)
\(578\) −2.52708 + 9.43120i −0.105113 + 0.392286i
\(579\) 9.36842 + 9.36842i 0.389338 + 0.389338i
\(580\) 0.522822 + 0.522822i 0.0217090 + 0.0217090i
\(581\) −17.9416 + 5.72003i −0.744344 + 0.237307i
\(582\) 9.04280 5.22086i 0.374836 0.216412i
\(583\) −0.835802 3.11925i −0.0346154 0.129186i
\(584\) −5.94514 + 10.2973i −0.246012 + 0.426105i
\(585\) 0.212307 + 0.698585i 0.00877783 + 0.0288829i
\(586\) −18.6107 + 10.7449i −0.768803 + 0.443868i
\(587\) 31.6736 + 8.48692i 1.30731 + 0.350293i 0.844210 0.536013i \(-0.180070\pi\)
0.463100 + 0.886306i \(0.346737\pi\)
\(588\) −2.91775 + 6.36292i −0.120326 + 0.262402i
\(589\) −20.4439 11.8033i −0.842377 0.486347i
\(590\) −0.258673 + 0.965381i −0.0106494 + 0.0397441i
\(591\) −14.2012 3.80520i −0.584159 0.156525i
\(592\) −1.59625 0.427713i −0.0656053 0.0175789i
\(593\) −0.0954348 + 0.356168i −0.00391904 + 0.0146261i −0.967858 0.251499i \(-0.919077\pi\)
0.963939 + 0.266125i \(0.0857433\pi\)
\(594\) 2.42088 + 1.39770i 0.0993301 + 0.0573483i
\(595\) −0.307443 + 1.40805i −0.0126039 + 0.0577245i
\(596\) 17.4409 + 4.67327i 0.714406 + 0.191425i
\(597\) 9.09613 5.25165i 0.372280 0.214936i
\(598\) 2.38925 + 7.86167i 0.0977035 + 0.321488i
\(599\) −2.12688 + 3.68386i −0.0869019 + 0.150518i −0.906200 0.422849i \(-0.861030\pi\)
0.819298 + 0.573368i \(0.194363\pi\)
\(600\) 1.28348 + 4.79002i 0.0523979 + 0.195552i
\(601\) −9.57883 + 5.53034i −0.390729 + 0.225587i −0.682476 0.730908i \(-0.739097\pi\)
0.291747 + 0.956496i \(0.405763\pi\)
\(602\) −12.9608 11.8005i −0.528244 0.480952i
\(603\) 7.22594 + 7.22594i 0.294263 + 0.294263i
\(604\) −12.1259 12.1259i −0.493397 0.493397i
\(605\) −0.166971 + 0.623142i −0.00678832 + 0.0253343i
\(606\) 3.57132 + 13.3283i 0.145075 + 0.541427i
\(607\) 9.57737i 0.388733i −0.980929 0.194367i \(-0.937735\pi\)
0.980929 0.194367i \(-0.0622652\pi\)
\(608\) 2.01005 + 3.48152i 0.0815185 + 0.141194i
\(609\) 9.64964 0.452193i 0.391023 0.0183238i
\(610\) 0.407612i 0.0165037i
\(611\) −20.8358 + 6.33221i −0.842925 + 0.256174i
\(612\) 2.32961 + 1.34500i 0.0941689 + 0.0543684i
\(613\) −2.38382 2.38382i −0.0962815 0.0962815i 0.657325 0.753607i \(-0.271688\pi\)
−0.753607 + 0.657325i \(0.771688\pi\)
\(614\) 18.4270 + 10.6388i 0.743654 + 0.429349i
\(615\) −1.11727 + 1.93517i −0.0450526 + 0.0780334i
\(616\) 3.39409 6.57114i 0.136752 0.264759i
\(617\) 30.4996 8.17235i 1.22787 0.329006i 0.414119 0.910223i \(-0.364090\pi\)
0.813749 + 0.581216i \(0.197423\pi\)
\(618\) −3.47805 + 3.47805i −0.139908 + 0.139908i
\(619\) 4.90539 1.31440i 0.197164 0.0528300i −0.158885 0.987297i \(-0.550790\pi\)
0.356050 + 0.934467i \(0.384123\pi\)
\(620\) −0.594561 1.02981i −0.0238781 0.0413582i
\(621\) 1.13945 1.97359i 0.0457247 0.0791975i
\(622\) −0.492850 + 1.83934i −0.0197615 + 0.0737509i
\(623\) 39.1232 + 8.54242i 1.56744 + 0.342245i
\(624\) −0.119831 3.60356i −0.00479708 0.144258i
\(625\) 12.1933 + 21.1194i 0.487731 + 0.844776i
\(626\) −8.77848 + 8.77848i −0.350859 + 0.350859i
\(627\) 11.2378 0.448794
\(628\) −2.98353 −0.119056
\(629\) −3.14336 + 3.14336i −0.125334 + 0.125334i
\(630\) −0.476023 0.245873i −0.0189652 0.00979581i
\(631\) −8.63674 32.2328i −0.343823 1.28317i −0.893981 0.448105i \(-0.852099\pi\)
0.550158 0.835061i \(-0.314568\pi\)
\(632\) 0.157371 + 0.0421674i 0.00625987 + 0.00167733i
\(633\) −20.2743 + 11.7054i −0.805831 + 0.465247i
\(634\) 24.8738i 0.987865i
\(635\) −1.67389 + 0.448517i −0.0664263 + 0.0177989i
\(636\) 1.15522 0.0458073
\(637\) 9.75180 23.2788i 0.386380 0.922340i
\(638\) −10.2066 −0.404084
\(639\) −1.05839 + 0.283594i −0.0418691 + 0.0112188i
\(640\) 0.202503i 0.00800462i
\(641\) 7.52017 4.34177i 0.297029 0.171490i −0.344078 0.938941i \(-0.611809\pi\)
0.641107 + 0.767451i \(0.278475\pi\)
\(642\) 7.12484 + 1.90909i 0.281195 + 0.0753460i
\(643\) 5.45002 + 20.3398i 0.214928 + 0.802122i 0.986192 + 0.165606i \(0.0529581\pi\)
−0.771264 + 0.636515i \(0.780375\pi\)
\(644\) −5.35703 2.76698i −0.211096 0.109034i
\(645\) 0.948640 0.948640i 0.0373527 0.0373527i
\(646\) 10.8141 0.425475
\(647\) −27.9234 −1.09778 −0.548890 0.835894i \(-0.684949\pi\)
−0.548890 + 0.835894i \(0.684949\pi\)
\(648\) −0.707107 + 0.707107i −0.0277778 + 0.0277778i
\(649\) −6.89823 11.9481i −0.270779 0.469003i
\(650\) −5.19910 17.1073i −0.203925 0.671004i
\(651\) −15.1786 3.31419i −0.594896 0.129893i
\(652\) 0.903119 3.37049i 0.0353689 0.131998i
\(653\) 11.1596 19.3289i 0.436708 0.756400i −0.560725 0.828002i \(-0.689478\pi\)
0.997433 + 0.0716016i \(0.0228110\pi\)
\(654\) 5.03371 + 8.71864i 0.196834 + 0.340926i
\(655\) 2.55465 0.684517i 0.0998185 0.0267463i
\(656\) 7.80264 7.80264i 0.304642 0.304642i
\(657\) −11.4851 + 3.07743i −0.448078 + 0.120062i
\(658\) 7.33332 14.1977i 0.285883 0.553484i
\(659\) 16.2186 28.0915i 0.631788 1.09429i −0.355398 0.934715i \(-0.615655\pi\)
0.987186 0.159574i \(-0.0510121\pi\)
\(660\) 0.490235 + 0.283038i 0.0190824 + 0.0110172i
\(661\) 9.56629 + 9.56629i 0.372086 + 0.372086i 0.868236 0.496151i \(-0.165254\pi\)
−0.496151 + 0.868236i \(0.665254\pi\)
\(662\) −20.9729 12.1087i −0.815135 0.470618i
\(663\) −8.55606 4.56763i −0.332290 0.177392i
\(664\) 7.11759i 0.276216i
\(665\) −2.15150 + 0.100822i −0.0834316 + 0.00390969i
\(666\) −0.826278 1.43115i −0.0320176 0.0554561i
\(667\) 8.32080i 0.322183i
\(668\) −1.13433 4.23339i −0.0438887 0.163795i
\(669\) 3.46676 12.9381i 0.134033 0.500216i
\(670\) 1.46327 + 1.46327i 0.0565311 + 0.0565311i
\(671\) −3.97873 3.97873i −0.153597 0.153597i
\(672\) 1.95635 + 1.78120i 0.0754679 + 0.0687115i
\(673\) 23.0933 13.3329i 0.890180 0.513946i 0.0161787 0.999869i \(-0.494850\pi\)
0.874001 + 0.485923i \(0.161517\pi\)
\(674\) −6.43341 24.0098i −0.247806 0.924823i
\(675\) −2.47950 + 4.29461i −0.0954359 + 0.165300i
\(676\) 0.863636 + 12.9713i 0.0332168 + 0.498895i
\(677\) 29.7732 17.1896i 1.14428 0.660648i 0.196790 0.980446i \(-0.436948\pi\)
0.947486 + 0.319797i \(0.103615\pi\)
\(678\) 15.4840 + 4.14893i 0.594660 + 0.159339i
\(679\) 5.89324 26.9903i 0.226162 1.03579i
\(680\) 0.471752 + 0.272366i 0.0180909 + 0.0104448i
\(681\) −2.55770 + 9.54548i −0.0980115 + 0.365784i
\(682\) 15.8556 + 4.24850i 0.607143 + 0.162683i
\(683\) 26.7897 + 7.17827i 1.02508 + 0.274669i 0.731917 0.681394i \(-0.238626\pi\)
0.293162 + 0.956063i \(0.405293\pi\)
\(684\) −1.04048 + 3.88313i −0.0397838 + 0.148475i
\(685\) −0.631016 0.364317i −0.0241099 0.0139199i
\(686\) 7.25100 + 17.0418i 0.276845 + 0.650659i
\(687\) −12.0968 3.24133i −0.461522 0.123664i
\(688\) −5.73742 + 3.31250i −0.218737 + 0.126288i
\(689\) −4.16289 + 0.138431i −0.158594 + 0.00527380i
\(690\) 0.230742 0.399657i 0.00878421 0.0152147i
\(691\) 0.375575 + 1.40166i 0.0142875 + 0.0533218i 0.972702 0.232060i \(-0.0745464\pi\)
−0.958414 + 0.285381i \(0.907880\pi\)
\(692\) −19.1819 + 11.0747i −0.729187 + 0.420996i
\(693\) 7.04648 2.24651i 0.267674 0.0853379i
\(694\) −3.40448 3.40448i −0.129232 0.129232i
\(695\) 2.27236 + 2.27236i 0.0861954 + 0.0861954i
\(696\) 0.945006 3.52681i 0.0358204 0.133683i
\(697\) −7.68255 28.6717i −0.290997 1.08602i
\(698\) 31.6117i 1.19652i
\(699\) 12.9678 + 22.4609i 0.490487 + 0.849549i
\(700\) 11.6571 + 6.02107i 0.440597 + 0.227575i
\(701\) 10.5142i 0.397116i −0.980089 0.198558i \(-0.936374\pi\)
0.980089 0.198558i \(-0.0636258\pi\)
\(702\) 2.46337 2.63283i 0.0929738 0.0993699i
\(703\) −5.75340 3.32173i −0.216994 0.125281i
\(704\) −1.97664 1.97664i −0.0744976 0.0744976i
\(705\) 1.05921 + 0.611535i 0.0398922 + 0.0230318i
\(706\) −2.50559 + 4.33980i −0.0942990 + 0.163331i
\(707\) 32.4361 + 16.7537i 1.21989 + 0.630090i
\(708\) 4.76725 1.27738i 0.179164 0.0480069i
\(709\) 14.6418 14.6418i 0.549885 0.549885i −0.376523 0.926407i \(-0.622880\pi\)
0.926407 + 0.376523i \(0.122880\pi\)
\(710\) −0.214326 + 0.0574285i −0.00804351 + 0.00215525i
\(711\) 0.0814611 + 0.141095i 0.00305503 + 0.00529147i
\(712\) 7.56779 13.1078i 0.283615 0.491235i
\(713\) 3.46353 12.9261i 0.129710 0.484085i
\(714\) 6.78081 2.16181i 0.253765 0.0809038i
\(715\) −1.80051 0.961197i −0.0673352 0.0359467i
\(716\) −2.48913 4.31131i −0.0930233 0.161121i
\(717\) −3.56842 + 3.56842i −0.133265 + 0.133265i
\(718\) −10.9332 −0.408024
\(719\) 15.4767 0.577185 0.288593 0.957452i \(-0.406813\pi\)
0.288593 + 0.957452i \(0.406813\pi\)
\(720\) −0.143191 + 0.143191i −0.00533641 + 0.00533641i
\(721\) 0.609167 + 12.9994i 0.0226866 + 0.484124i
\(722\) −0.734716 2.74200i −0.0273433 0.102047i
\(723\) 16.5538 + 4.43559i 0.615644 + 0.164961i
\(724\) 14.6622 8.46524i 0.544917 0.314608i
\(725\) 18.1064i 0.672454i
\(726\) 3.07721 0.824535i 0.114206 0.0306014i
\(727\) −34.5270 −1.28054 −0.640268 0.768152i \(-0.721177\pi\)
−0.640268 + 0.768152i \(0.721177\pi\)
\(728\) −7.26327 6.18425i −0.269195 0.229203i
\(729\) −1.00000 −0.0370370
\(730\) −2.32577 + 0.623188i −0.0860806 + 0.0230652i
\(731\) 17.8213i 0.659143i
\(732\) 1.74320 1.00644i 0.0644304 0.0371989i
\(733\) 23.1376 + 6.19969i 0.854605 + 0.228991i 0.659419 0.751775i \(-0.270802\pi\)
0.195186 + 0.980766i \(0.437469\pi\)
\(734\) −4.10901 15.3351i −0.151666 0.566027i
\(735\) −1.32891 + 0.493318i −0.0490175 + 0.0181963i
\(736\) −1.61143 + 1.61143i −0.0593981 + 0.0593981i
\(737\) −28.5662 −1.05225
\(738\) 11.0346 0.406189
\(739\) −11.5248 + 11.5248i −0.423946 + 0.423946i −0.886560 0.462614i \(-0.846912\pi\)
0.462614 + 0.886560i \(0.346912\pi\)
\(740\) −0.167323 0.289813i −0.00615093 0.0106537i
\(741\) 3.28412 14.1178i 0.120645 0.518629i
\(742\) 2.05768 2.26001i 0.0755398 0.0829676i
\(743\) 3.59453 13.4150i 0.131870 0.492147i −0.868121 0.496353i \(-0.834672\pi\)
0.999991 + 0.00420608i \(0.00133884\pi\)
\(744\) −2.93607 + 5.08541i −0.107641 + 0.186440i
\(745\) 1.82821 + 3.16655i 0.0669803 + 0.116013i
\(746\) 0.155589 0.0416900i 0.00569653 0.00152638i
\(747\) −5.03290 + 5.03290i −0.184144 + 0.184144i
\(748\) −7.26340 + 1.94622i −0.265576 + 0.0711609i
\(749\) 16.4257 10.5382i 0.600180 0.385057i
\(750\) −1.00836 + 1.74653i −0.0368201 + 0.0637744i
\(751\) −35.6855 20.6030i −1.30218 0.751815i −0.321405 0.946942i \(-0.604155\pi\)
−0.980778 + 0.195127i \(0.937488\pi\)
\(752\) −4.27077 4.27077i −0.155739 0.155739i
\(753\) 12.6593 + 7.30883i 0.461329 + 0.266348i
\(754\) −2.98276 + 12.8223i −0.108626 + 0.466961i
\(755\) 3.47265i 0.126383i
\(756\) 0.123847 + 2.64285i 0.00450427 + 0.0961196i
\(757\) 21.4812 + 37.2065i 0.780747 + 1.35229i 0.931507 + 0.363723i \(0.118495\pi\)
−0.150760 + 0.988570i \(0.548172\pi\)
\(758\) 6.27017i 0.227743i
\(759\) 1.64879 + 6.15338i 0.0598474 + 0.223354i
\(760\) −0.210700 + 0.786343i −0.00764289 + 0.0285237i
\(761\) −0.614251 0.614251i −0.0222666 0.0222666i 0.695886 0.718152i \(-0.255012\pi\)
−0.718152 + 0.695886i \(0.755012\pi\)
\(762\) 6.05114 + 6.05114i 0.219210 + 0.219210i
\(763\) 26.0228 + 5.68199i 0.942089 + 0.205702i
\(764\) −17.1898 + 9.92455i −0.621906 + 0.359058i
\(765\) 0.140987 + 0.526171i 0.00509740 + 0.0190238i
\(766\) −10.2827 + 17.8102i −0.371529 + 0.643507i
\(767\) −17.0260 + 5.17438i −0.614773 + 0.186836i
\(768\) 0.866025 0.500000i 0.0312500 0.0180422i
\(769\) −23.3053 6.24465i −0.840412 0.225188i −0.187161 0.982329i \(-0.559929\pi\)
−0.653251 + 0.757142i \(0.726595\pi\)
\(770\) 1.42693 0.454925i 0.0514230 0.0163943i
\(771\) 4.47570 + 2.58405i 0.161188 + 0.0930621i
\(772\) 3.42908 12.7975i 0.123415 0.460592i
\(773\) −1.15399 0.309211i −0.0415061 0.0111215i 0.238006 0.971264i \(-0.423506\pi\)
−0.279512 + 0.960142i \(0.590173\pi\)