Defining parameters
| Level: | \( N \) | \(=\) | \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 546.bx (of order \(12\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 91 \) |
| Character field: | \(\Q(\zeta_{12})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(224\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(546, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 480 | 80 | 400 |
| Cusp forms | 416 | 80 | 336 |
| Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(546, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 546.2.bx.a | $40$ | $4.360$ | None | \(0\) | \(0\) | \(0\) | \(-8\) | ||
| 546.2.bx.b | $40$ | $4.360$ | None | \(0\) | \(0\) | \(0\) | \(8\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(546, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(546, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(182, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 2}\)