# Properties

 Label 546.2.bw Level $546$ Weight $2$ Character orbit 546.bw Rep. character $\chi_{546}(11,\cdot)$ Character field $\Q(\zeta_{12})$ Dimension $152$ Newform subspaces $1$ Sturm bound $224$ Trace bound $0$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$546 = 2 \cdot 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 546.bw (of order $$12$$ and degree $$4$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$273$$ Character field: $$\Q(\zeta_{12})$$ Newform subspaces: $$1$$ Sturm bound: $$224$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(546, [\chi])$$.

Total New Old
Modular forms 480 152 328
Cusp forms 416 152 264
Eisenstein series 64 0 64

## Trace form

 $$152 q + 12 q^{7} + O(q^{10})$$ $$152 q + 12 q^{7} + 76 q^{16} - 8 q^{18} + 12 q^{19} + 8 q^{21} + 24 q^{27} + 16 q^{28} - 12 q^{31} - 48 q^{33} + 24 q^{36} - 36 q^{37} - 8 q^{39} + 84 q^{43} - 40 q^{45} - 16 q^{46} - 28 q^{49} + 4 q^{52} + 24 q^{54} + 16 q^{55} - 8 q^{57} - 16 q^{58} + 64 q^{61} - 100 q^{63} + 16 q^{66} - 112 q^{67} + 84 q^{69} + 16 q^{72} - 120 q^{73} - 48 q^{76} - 8 q^{78} + 32 q^{79} + 48 q^{81} - 8 q^{84} - 152 q^{85} + 48 q^{87} + 16 q^{91} - 12 q^{93} - 64 q^{94} - 100 q^{97} + 16 q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(546, [\chi])$$ into newform subspaces

Label Dim $A$ Field CM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
546.2.bw.a $152$ $4.360$ None $$0$$ $$0$$ $$0$$ $$12$$

## Decomposition of $$S_{2}^{\mathrm{old}}(546, [\chi])$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(546, [\chi]) \cong$$ $$S_{2}^{\mathrm{new}}(273, [\chi])$$$$^{\oplus 2}$$