Properties

Label 546.2.bu.b.71.14
Level $546$
Weight $2$
Character 546.71
Analytic conductor $4.360$
Analytic rank $0$
Dimension $56$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bu (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 71.14
Character \(\chi\) \(=\) 546.71
Dual form 546.2.bu.b.323.14

$q$-expansion

\(f(q)\) \(=\) \(q+(0.965926 - 0.258819i) q^{2} +(1.61014 + 0.638319i) q^{3} +(0.866025 - 0.500000i) q^{4} +(-0.489109 - 0.489109i) q^{5} +(1.72048 + 0.199834i) q^{6} +(0.258819 - 0.965926i) q^{7} +(0.707107 - 0.707107i) q^{8} +(2.18510 + 2.05556i) q^{9} +O(q^{10})\) \(q+(0.965926 - 0.258819i) q^{2} +(1.61014 + 0.638319i) q^{3} +(0.866025 - 0.500000i) q^{4} +(-0.489109 - 0.489109i) q^{5} +(1.72048 + 0.199834i) q^{6} +(0.258819 - 0.965926i) q^{7} +(0.707107 - 0.707107i) q^{8} +(2.18510 + 2.05556i) q^{9} +(-0.599034 - 0.345852i) q^{10} +(0.247333 + 0.923060i) q^{11} +(1.71358 - 0.252269i) q^{12} +(2.67710 + 2.41519i) q^{13} -1.00000i q^{14} +(-0.475326 - 1.09974i) q^{15} +(0.500000 - 0.866025i) q^{16} +(-1.15524 - 2.00093i) q^{17} +(2.64266 + 1.41998i) q^{18} +(-0.656279 - 0.175849i) q^{19} +(-0.668135 - 0.179026i) q^{20} +(1.03330 - 1.39007i) q^{21} +(0.477811 + 0.827593i) q^{22} +(-0.227212 + 0.393543i) q^{23} +(1.58990 - 0.687181i) q^{24} -4.52155i q^{25} +(3.21098 + 1.64001i) q^{26} +(2.20621 + 4.70454i) q^{27} +(-0.258819 - 0.965926i) q^{28} +(-4.11308 - 2.37469i) q^{29} +(-0.743764 - 0.939245i) q^{30} +(1.27428 - 1.27428i) q^{31} +(0.258819 - 0.965926i) q^{32} +(-0.190966 + 1.64413i) q^{33} +(-1.63375 - 1.63375i) q^{34} +(-0.599034 + 0.345852i) q^{35} +(2.92013 + 0.687622i) q^{36} +(1.67070 - 0.447663i) q^{37} -0.679430 q^{38} +(2.76885 + 5.59763i) q^{39} -0.691704 q^{40} +(-9.15496 + 2.45307i) q^{41} +(0.638319 - 1.61014i) q^{42} +(0.759424 - 0.438454i) q^{43} +(0.675726 + 0.675726i) q^{44} +(-0.0633558 - 2.07415i) q^{45} +(-0.117614 + 0.438941i) q^{46} +(-7.33090 + 7.33090i) q^{47} +(1.35787 - 1.07526i) q^{48} +(-0.866025 - 0.500000i) q^{49} +(-1.17026 - 4.36748i) q^{50} +(-0.582861 - 3.95918i) q^{51} +(3.52603 + 0.753063i) q^{52} +10.0392i q^{53} +(3.34866 + 3.97322i) q^{54} +(0.330504 - 0.572449i) q^{55} +(-0.500000 - 0.866025i) q^{56} +(-0.944452 - 0.702057i) q^{57} +(-4.58754 - 1.22923i) q^{58} +(-11.3752 - 3.04796i) q^{59} +(-0.961515 - 0.714740i) q^{60} +(6.88600 + 11.9269i) q^{61} +(0.901054 - 1.56067i) q^{62} +(2.55107 - 1.57862i) q^{63} -1.00000i q^{64} +(-0.128104 - 2.49068i) q^{65} +(0.241074 + 1.63754i) q^{66} +(-2.53037 - 9.44348i) q^{67} +(-2.00093 - 1.15524i) q^{68} +(-0.617050 + 0.488626i) q^{69} +(-0.489109 + 0.489109i) q^{70} +(0.951706 - 3.55182i) q^{71} +(2.99860 - 0.0915937i) q^{72} +(-4.44812 - 4.44812i) q^{73} +(1.49791 - 0.864819i) q^{74} +(2.88619 - 7.28032i) q^{75} +(-0.656279 + 0.175849i) q^{76} +0.955622 q^{77} +(4.12327 + 4.69027i) q^{78} -3.18127 q^{79} +(-0.668135 + 0.179026i) q^{80} +(0.549306 + 8.98322i) q^{81} +(-8.20812 + 4.73896i) q^{82} +(-0.476958 - 0.476958i) q^{83} +(0.199834 - 1.72048i) q^{84} +(-0.413635 + 1.54371i) q^{85} +(0.620067 - 0.620067i) q^{86} +(-5.10682 - 6.44903i) q^{87} +(0.827593 + 0.477811i) q^{88} +(-0.780848 - 2.91416i) q^{89} +(-0.598025 - 1.98707i) q^{90} +(3.02578 - 1.96078i) q^{91} +0.454425i q^{92} +(2.86517 - 1.23837i) q^{93} +(-5.18373 + 8.97848i) q^{94} +(0.234982 + 0.407001i) q^{95} +(1.03330 - 1.39007i) q^{96} +(-11.6671 - 3.12620i) q^{97} +(-0.965926 - 0.258819i) q^{98} +(-1.35696 + 2.52538i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56q + 8q^{6} - 24q^{9} + O(q^{10}) \) \( 56q + 8q^{6} - 24q^{9} + 24q^{10} + 8q^{11} + 24q^{13} + 4q^{15} + 28q^{16} - 4q^{17} - 8q^{18} + 8q^{19} + 4q^{21} - 8q^{23} - 8q^{24} - 4q^{26} - 24q^{27} - 8q^{30} - 8q^{31} + 8q^{33} - 24q^{34} + 24q^{35} - 12q^{36} - 8q^{37} - 20q^{39} - 28q^{41} + 8q^{44} + 72q^{45} - 20q^{46} + 64q^{50} + 16q^{54} + 8q^{55} - 28q^{56} + 4q^{58} - 8q^{59} + 20q^{60} + 8q^{61} - 32q^{62} - 16q^{63} - 24q^{65} + 32q^{66} - 16q^{69} - 112q^{71} + 8q^{73} + 48q^{74} + 40q^{75} + 8q^{76} + 16q^{79} + 12q^{81} - 4q^{83} - 4q^{84} + 32q^{85} - 16q^{86} - 144q^{87} + 88q^{89} - 8q^{90} - 8q^{91} + 52q^{93} - 8q^{94} - 48q^{95} + 4q^{96} - 64q^{97} + 56q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.965926 0.258819i 0.683013 0.183013i
\(3\) 1.61014 + 0.638319i 0.929614 + 0.368534i
\(4\) 0.866025 0.500000i 0.433013 0.250000i
\(5\) −0.489109 0.489109i −0.218736 0.218736i 0.589230 0.807966i \(-0.299431\pi\)
−0.807966 + 0.589230i \(0.799431\pi\)
\(6\) 1.72048 + 0.199834i 0.702385 + 0.0815819i
\(7\) 0.258819 0.965926i 0.0978244 0.365086i
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 2.18510 + 2.05556i 0.728366 + 0.685188i
\(10\) −0.599034 0.345852i −0.189431 0.109368i
\(11\) 0.247333 + 0.923060i 0.0745737 + 0.278313i 0.993136 0.116963i \(-0.0373158\pi\)
−0.918563 + 0.395276i \(0.870649\pi\)
\(12\) 1.71358 0.252269i 0.494668 0.0728239i
\(13\) 2.67710 + 2.41519i 0.742494 + 0.669852i
\(14\) 1.00000i 0.267261i
\(15\) −0.475326 1.09974i −0.122729 0.283952i
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) −1.15524 2.00093i −0.280186 0.485296i 0.691244 0.722621i \(-0.257063\pi\)
−0.971430 + 0.237325i \(0.923729\pi\)
\(18\) 2.64266 + 1.41998i 0.622881 + 0.334692i
\(19\) −0.656279 0.175849i −0.150561 0.0403426i 0.182751 0.983159i \(-0.441500\pi\)
−0.333312 + 0.942817i \(0.608166\pi\)
\(20\) −0.668135 0.179026i −0.149400 0.0400315i
\(21\) 1.03330 1.39007i 0.225485 0.303337i
\(22\) 0.477811 + 0.827593i 0.101870 + 0.176443i
\(23\) −0.227212 + 0.393543i −0.0473771 + 0.0820595i −0.888741 0.458409i \(-0.848420\pi\)
0.841364 + 0.540468i \(0.181753\pi\)
\(24\) 1.58990 0.687181i 0.324537 0.140270i
\(25\) 4.52155i 0.904309i
\(26\) 3.21098 + 1.64001i 0.629724 + 0.321632i
\(27\) 2.20621 + 4.70454i 0.424585 + 0.905388i
\(28\) −0.258819 0.965926i −0.0489122 0.182543i
\(29\) −4.11308 2.37469i −0.763779 0.440968i 0.0668719 0.997762i \(-0.478698\pi\)
−0.830651 + 0.556794i \(0.812031\pi\)
\(30\) −0.743764 0.939245i −0.135792 0.171482i
\(31\) 1.27428 1.27428i 0.228868 0.228868i −0.583352 0.812220i \(-0.698259\pi\)
0.812220 + 0.583352i \(0.198259\pi\)
\(32\) 0.258819 0.965926i 0.0457532 0.170753i
\(33\) −0.190966 + 1.64413i −0.0332429 + 0.286207i
\(34\) −1.63375 1.63375i −0.280186 0.280186i
\(35\) −0.599034 + 0.345852i −0.101255 + 0.0584597i
\(36\) 2.92013 + 0.687622i 0.486689 + 0.114604i
\(37\) 1.67070 0.447663i 0.274662 0.0735954i −0.118859 0.992911i \(-0.537924\pi\)
0.393521 + 0.919316i \(0.371257\pi\)
\(38\) −0.679430 −0.110218
\(39\) 2.76885 + 5.59763i 0.443370 + 0.896339i
\(40\) −0.691704 −0.109368
\(41\) −9.15496 + 2.45307i −1.42977 + 0.383104i −0.888937 0.458029i \(-0.848556\pi\)
−0.540828 + 0.841133i \(0.681889\pi\)
\(42\) 0.638319 1.61014i 0.0984947 0.248450i
\(43\) 0.759424 0.438454i 0.115811 0.0668635i −0.440976 0.897519i \(-0.645367\pi\)
0.556787 + 0.830656i \(0.312034\pi\)
\(44\) 0.675726 + 0.675726i 0.101870 + 0.101870i
\(45\) −0.0633558 2.07415i −0.00944452 0.309195i
\(46\) −0.117614 + 0.438941i −0.0173412 + 0.0647183i
\(47\) −7.33090 + 7.33090i −1.06932 + 1.06932i −0.0719102 + 0.997411i \(0.522909\pi\)
−0.997411 + 0.0719102i \(0.977091\pi\)
\(48\) 1.35787 1.07526i 0.195992 0.155201i
\(49\) −0.866025 0.500000i −0.123718 0.0714286i
\(50\) −1.17026 4.36748i −0.165500 0.617655i
\(51\) −0.582861 3.95918i −0.0816169 0.554396i
\(52\) 3.52603 + 0.753063i 0.488973 + 0.104431i
\(53\) 10.0392i 1.37899i 0.724291 + 0.689495i \(0.242167\pi\)
−0.724291 + 0.689495i \(0.757833\pi\)
\(54\) 3.34866 + 3.97322i 0.455694 + 0.540687i
\(55\) 0.330504 0.572449i 0.0445651 0.0771891i
\(56\) −0.500000 0.866025i −0.0668153 0.115728i
\(57\) −0.944452 0.702057i −0.125096 0.0929897i
\(58\) −4.58754 1.22923i −0.602373 0.161405i
\(59\) −11.3752 3.04796i −1.48092 0.396811i −0.574259 0.818674i \(-0.694710\pi\)
−0.906660 + 0.421863i \(0.861376\pi\)
\(60\) −0.961515 0.714740i −0.124131 0.0922726i
\(61\) 6.88600 + 11.9269i 0.881662 + 1.52708i 0.849493 + 0.527601i \(0.176908\pi\)
0.0321692 + 0.999482i \(0.489758\pi\)
\(62\) 0.901054 1.56067i 0.114434 0.198205i
\(63\) 2.55107 1.57862i 0.321404 0.198888i
\(64\) 1.00000i 0.125000i
\(65\) −0.128104 2.49068i −0.0158894 0.308931i
\(66\) 0.241074 + 1.63754i 0.0296742 + 0.201567i
\(67\) −2.53037 9.44348i −0.309134 1.15370i −0.929328 0.369256i \(-0.879613\pi\)
0.620194 0.784449i \(-0.287054\pi\)
\(68\) −2.00093 1.15524i −0.242648 0.140093i
\(69\) −0.617050 + 0.488626i −0.0742841 + 0.0588236i
\(70\) −0.489109 + 0.489109i −0.0584597 + 0.0584597i
\(71\) 0.951706 3.55182i 0.112947 0.421523i −0.886178 0.463344i \(-0.846649\pi\)
0.999125 + 0.0418212i \(0.0133160\pi\)
\(72\) 2.99860 0.0915937i 0.353389 0.0107944i
\(73\) −4.44812 4.44812i −0.520613 0.520613i 0.397144 0.917756i \(-0.370001\pi\)
−0.917756 + 0.397144i \(0.870001\pi\)
\(74\) 1.49791 0.864819i 0.174129 0.100533i
\(75\) 2.88619 7.28032i 0.333268 0.840659i
\(76\) −0.656279 + 0.175849i −0.0752803 + 0.0201713i
\(77\) 0.955622 0.108903
\(78\) 4.12327 + 4.69027i 0.466869 + 0.531068i
\(79\) −3.18127 −0.357921 −0.178960 0.983856i \(-0.557273\pi\)
−0.178960 + 0.983856i \(0.557273\pi\)
\(80\) −0.668135 + 0.179026i −0.0746998 + 0.0200157i
\(81\) 0.549306 + 8.98322i 0.0610340 + 0.998136i
\(82\) −8.20812 + 4.73896i −0.906435 + 0.523330i
\(83\) −0.476958 0.476958i −0.0523529 0.0523529i 0.680446 0.732799i \(-0.261786\pi\)
−0.732799 + 0.680446i \(0.761786\pi\)
\(84\) 0.199834 1.72048i 0.0218037 0.187720i
\(85\) −0.413635 + 1.54371i −0.0448650 + 0.167439i
\(86\) 0.620067 0.620067i 0.0668635 0.0668635i
\(87\) −5.10682 6.44903i −0.547508 0.691408i
\(88\) 0.827593 + 0.477811i 0.0882217 + 0.0509348i
\(89\) −0.780848 2.91416i −0.0827697 0.308901i 0.912113 0.409939i \(-0.134450\pi\)
−0.994883 + 0.101039i \(0.967783\pi\)
\(90\) −0.598025 1.98707i −0.0630374 0.209456i
\(91\) 3.02578 1.96078i 0.317188 0.205546i
\(92\) 0.454425i 0.0473771i
\(93\) 2.86517 1.23837i 0.297104 0.128413i
\(94\) −5.18373 + 8.97848i −0.534661 + 0.926059i
\(95\) 0.234982 + 0.407001i 0.0241087 + 0.0417574i
\(96\) 1.03330 1.39007i 0.105461 0.141873i
\(97\) −11.6671 3.12620i −1.18462 0.317417i −0.387860 0.921718i \(-0.626786\pi\)
−0.796756 + 0.604301i \(0.793452\pi\)
\(98\) −0.965926 0.258819i −0.0975732 0.0261447i
\(99\) −1.35696 + 2.52538i −0.136380 + 0.253811i
\(100\) −2.26077 3.91577i −0.226077 0.391577i
\(101\) 6.62431 11.4736i 0.659143 1.14167i −0.321695 0.946843i \(-0.604252\pi\)
0.980838 0.194826i \(-0.0624142\pi\)
\(102\) −1.58771 3.67342i −0.157207 0.363723i
\(103\) 14.5464i 1.43330i 0.697435 + 0.716649i \(0.254325\pi\)
−0.697435 + 0.716649i \(0.745675\pi\)
\(104\) 3.60079 0.185201i 0.353087 0.0181604i
\(105\) −1.18529 + 0.174496i −0.115673 + 0.0170290i
\(106\) 2.59834 + 9.69712i 0.252373 + 0.941867i
\(107\) −1.64456 0.949487i −0.158986 0.0917903i 0.418396 0.908265i \(-0.362592\pi\)
−0.577382 + 0.816474i \(0.695926\pi\)
\(108\) 4.26290 + 2.97114i 0.410198 + 0.285898i
\(109\) 5.65529 5.65529i 0.541679 0.541679i −0.382342 0.924021i \(-0.624882\pi\)
0.924021 + 0.382342i \(0.124882\pi\)
\(110\) 0.171081 0.638484i 0.0163120 0.0608771i
\(111\) 2.97581 + 0.345640i 0.282452 + 0.0328067i
\(112\) −0.707107 0.707107i −0.0668153 0.0668153i
\(113\) 11.7563 6.78749i 1.10594 0.638514i 0.168164 0.985759i \(-0.446216\pi\)
0.937774 + 0.347245i \(0.112883\pi\)
\(114\) −1.09398 0.433693i −0.102460 0.0406190i
\(115\) 0.303617 0.0813540i 0.0283124 0.00758630i
\(116\) −4.74937 −0.440968
\(117\) 0.885153 + 10.7804i 0.0818325 + 0.996646i
\(118\) −11.7764 −1.08411
\(119\) −2.23175 + 0.597994i −0.204584 + 0.0548181i
\(120\) −1.11374 0.441528i −0.101670 0.0403058i
\(121\) 8.73541 5.04339i 0.794129 0.458490i
\(122\) 9.73827 + 9.73827i 0.881662 + 0.881662i
\(123\) −16.3066 1.89401i −1.47032 0.170777i
\(124\) 0.466420 1.74070i 0.0418857 0.156320i
\(125\) −4.65707 + 4.65707i −0.416541 + 0.416541i
\(126\) 2.05556 2.18510i 0.183124 0.194664i
\(127\) −7.37225 4.25637i −0.654181 0.377692i 0.135875 0.990726i \(-0.456615\pi\)
−0.790056 + 0.613034i \(0.789949\pi\)
\(128\) −0.258819 0.965926i −0.0228766 0.0853766i
\(129\) 1.50265 0.221217i 0.132301 0.0194770i
\(130\) −0.768375 2.37266i −0.0673910 0.208096i
\(131\) 3.60145i 0.314660i 0.987546 + 0.157330i \(0.0502886\pi\)
−0.987546 + 0.157330i \(0.949711\pi\)
\(132\) 0.656685 + 1.51934i 0.0571571 + 0.132242i
\(133\) −0.339715 + 0.588403i −0.0294570 + 0.0510210i
\(134\) −4.88830 8.46679i −0.422285 0.731419i
\(135\) 1.22195 3.38010i 0.105169 0.290913i
\(136\) −2.23175 0.597994i −0.191371 0.0512776i
\(137\) 4.13009 + 1.10665i 0.352857 + 0.0945478i 0.430894 0.902403i \(-0.358198\pi\)
−0.0780364 + 0.996951i \(0.524865\pi\)
\(138\) −0.469559 + 0.631680i −0.0399715 + 0.0537722i
\(139\) 8.79259 + 15.2292i 0.745778 + 1.29173i 0.949830 + 0.312766i \(0.101255\pi\)
−0.204052 + 0.978960i \(0.565411\pi\)
\(140\) −0.345852 + 0.599034i −0.0292298 + 0.0506276i
\(141\) −16.4832 + 7.12432i −1.38814 + 0.599976i
\(142\) 3.67711i 0.308576i
\(143\) −1.56723 + 3.06848i −0.131058 + 0.256599i
\(144\) 2.87272 0.864568i 0.239393 0.0720473i
\(145\) 0.850262 + 3.17322i 0.0706104 + 0.263522i
\(146\) −5.44781 3.14529i −0.450864 0.260306i
\(147\) −1.07526 1.35787i −0.0886861 0.111995i
\(148\) 1.22304 1.22304i 0.100533 0.100533i
\(149\) 3.20516 11.9618i 0.262577 0.979949i −0.701140 0.713023i \(-0.747325\pi\)
0.963717 0.266926i \(-0.0860080\pi\)
\(150\) 0.903558 7.77925i 0.0737752 0.635173i
\(151\) −6.54217 6.54217i −0.532394 0.532394i 0.388890 0.921284i \(-0.372859\pi\)
−0.921284 + 0.388890i \(0.872859\pi\)
\(152\) −0.588403 + 0.339715i −0.0477258 + 0.0275545i
\(153\) 1.58873 6.74689i 0.128441 0.545454i
\(154\) 0.923060 0.247333i 0.0743823 0.0199307i
\(155\) −1.24653 −0.100123
\(156\) 5.19671 + 3.46327i 0.416070 + 0.277283i
\(157\) −0.344590 −0.0275013 −0.0137506 0.999905i \(-0.504377\pi\)
−0.0137506 + 0.999905i \(0.504377\pi\)
\(158\) −3.07287 + 0.823373i −0.244465 + 0.0655041i
\(159\) −6.40821 + 16.1645i −0.508204 + 1.28193i
\(160\) −0.599034 + 0.345852i −0.0473578 + 0.0273420i
\(161\) 0.321327 + 0.321327i 0.0253241 + 0.0253241i
\(162\) 2.85562 + 8.53495i 0.224359 + 0.670569i
\(163\) 2.09998 7.83722i 0.164483 0.613858i −0.833623 0.552334i \(-0.813737\pi\)
0.998106 0.0615241i \(-0.0195961\pi\)
\(164\) −6.70190 + 6.70190i −0.523330 + 0.523330i
\(165\) 0.897562 0.710756i 0.0698751 0.0553323i
\(166\) −0.584151 0.337260i −0.0453389 0.0261765i
\(167\) 4.79071 + 17.8792i 0.370716 + 1.38353i 0.859504 + 0.511129i \(0.170773\pi\)
−0.488788 + 0.872403i \(0.662561\pi\)
\(168\) −0.252269 1.71358i −0.0194630 0.132206i
\(169\) 1.33374 + 12.9314i 0.102595 + 0.994723i
\(170\) 1.59816i 0.122574i
\(171\) −1.07256 1.73327i −0.0820210 0.132547i
\(172\) 0.438454 0.759424i 0.0334318 0.0579055i
\(173\) −5.44635 9.43336i −0.414079 0.717205i 0.581253 0.813723i \(-0.302563\pi\)
−0.995331 + 0.0965181i \(0.969229\pi\)
\(174\) −6.60194 4.90754i −0.500492 0.372040i
\(175\) −4.36748 1.17026i −0.330150 0.0884635i
\(176\) 0.923060 + 0.247333i 0.0695782 + 0.0186434i
\(177\) −16.3700 12.1686i −1.23045 0.914649i
\(178\) −1.50848 2.61277i −0.113066 0.195835i
\(179\) −1.11063 + 1.92368i −0.0830127 + 0.143782i −0.904543 0.426383i \(-0.859788\pi\)
0.821530 + 0.570165i \(0.193121\pi\)
\(180\) −1.09194 1.76458i −0.0813884 0.131524i
\(181\) 6.51249i 0.484069i 0.970268 + 0.242035i \(0.0778148\pi\)
−0.970268 + 0.242035i \(0.922185\pi\)
\(182\) 2.41519 2.67710i 0.179026 0.198440i
\(183\) 3.47425 + 23.5994i 0.256824 + 1.74452i
\(184\) 0.117614 + 0.438941i 0.00867060 + 0.0323591i
\(185\) −1.03611 0.598199i −0.0761764 0.0439805i
\(186\) 2.44703 1.93774i 0.179425 0.142082i
\(187\) 1.56125 1.56125i 0.114170 0.114170i
\(188\) −2.68329 + 10.0142i −0.195699 + 0.730360i
\(189\) 5.11524 0.913408i 0.372079 0.0664407i
\(190\) 0.332315 + 0.332315i 0.0241087 + 0.0241087i
\(191\) −0.590207 + 0.340756i −0.0427059 + 0.0246563i −0.521201 0.853434i \(-0.674516\pi\)
0.478495 + 0.878090i \(0.341182\pi\)
\(192\) 0.638319 1.61014i 0.0460667 0.116202i
\(193\) 12.6264 3.38324i 0.908869 0.243531i 0.226048 0.974116i \(-0.427419\pi\)
0.682821 + 0.730585i \(0.260753\pi\)
\(194\) −12.0787 −0.867199
\(195\) 1.38358 4.09212i 0.0990805 0.293043i
\(196\) −1.00000 −0.0714286
\(197\) 3.46619 0.928764i 0.246956 0.0661717i −0.133218 0.991087i \(-0.542531\pi\)
0.380174 + 0.924915i \(0.375864\pi\)
\(198\) −0.657107 + 2.79054i −0.0466985 + 0.198315i
\(199\) 8.29160 4.78716i 0.587776 0.339353i −0.176442 0.984311i \(-0.556459\pi\)
0.764218 + 0.644958i \(0.223125\pi\)
\(200\) −3.19722 3.19722i −0.226077 0.226077i
\(201\) 1.95370 16.8205i 0.137803 1.18643i
\(202\) 3.42899 12.7972i 0.241263 0.900406i
\(203\) −3.35831 + 3.35831i −0.235707 + 0.235707i
\(204\) −2.48436 3.13732i −0.173940 0.219656i
\(205\) 5.67759 + 3.27796i 0.396540 + 0.228942i
\(206\) 3.76488 + 14.0507i 0.262312 + 0.978960i
\(207\) −1.30544 + 0.392881i −0.0907340 + 0.0273071i
\(208\) 3.43016 1.11084i 0.237839 0.0770232i
\(209\) 0.649278i 0.0449115i
\(210\) −1.09974 + 0.475326i −0.0758893 + 0.0328006i
\(211\) −10.7025 + 18.5373i −0.736792 + 1.27616i 0.217140 + 0.976140i \(0.430327\pi\)
−0.953932 + 0.300022i \(0.903006\pi\)
\(212\) 5.01960 + 8.69420i 0.344747 + 0.597120i
\(213\) 3.79957 5.11143i 0.260342 0.350229i
\(214\) −1.83427 0.491490i −0.125388 0.0335976i
\(215\) −0.585892 0.156989i −0.0399575 0.0107066i
\(216\) 4.88663 + 1.76659i 0.332493 + 0.120201i
\(217\) −0.901054 1.56067i −0.0611675 0.105945i
\(218\) 3.99889 6.92629i 0.270839 0.469107i
\(219\) −4.32277 10.0014i −0.292106 0.675832i
\(220\) 0.661008i 0.0445651i
\(221\) 1.73993 8.14680i 0.117040 0.548013i
\(222\) 2.96387 0.436335i 0.198922 0.0292849i
\(223\) 5.63645 + 21.0355i 0.377445 + 1.40864i 0.849740 + 0.527202i \(0.176759\pi\)
−0.472295 + 0.881440i \(0.656574\pi\)
\(224\) −0.866025 0.500000i −0.0578638 0.0334077i
\(225\) 9.29433 9.88002i 0.619622 0.658668i
\(226\) 9.59897 9.59897i 0.638514 0.638514i
\(227\) 5.82374 21.7345i 0.386535 1.44257i −0.449198 0.893432i \(-0.648290\pi\)
0.835733 0.549136i \(-0.185043\pi\)
\(228\) −1.16895 0.135773i −0.0774155 0.00899179i
\(229\) 9.41590 + 9.41590i 0.622220 + 0.622220i 0.946099 0.323879i \(-0.104987\pi\)
−0.323879 + 0.946099i \(0.604987\pi\)
\(230\) 0.272216 0.157164i 0.0179494 0.0103631i
\(231\) 1.53868 + 0.609991i 0.101238 + 0.0401345i
\(232\) −4.58754 + 1.22923i −0.301187 + 0.0807027i
\(233\) 6.19134 0.405608 0.202804 0.979219i \(-0.434995\pi\)
0.202804 + 0.979219i \(0.434995\pi\)
\(234\) 3.64516 + 10.1839i 0.238292 + 0.665746i
\(235\) 7.17121 0.467798
\(236\) −11.3752 + 3.04796i −0.740459 + 0.198405i
\(237\) −5.12229 2.03067i −0.332728 0.131906i
\(238\) −2.00093 + 1.15524i −0.129701 + 0.0748829i
\(239\) 10.4405 + 10.4405i 0.675342 + 0.675342i 0.958942 0.283601i \(-0.0915290\pi\)
−0.283601 + 0.958942i \(0.591529\pi\)
\(240\) −1.19007 0.138226i −0.0768185 0.00892245i
\(241\) 3.14908 11.7525i 0.202850 0.757046i −0.787244 0.616641i \(-0.788493\pi\)
0.990094 0.140405i \(-0.0448403\pi\)
\(242\) 7.13244 7.13244i 0.458490 0.458490i
\(243\) −4.84970 + 14.8149i −0.311108 + 0.950374i
\(244\) 11.9269 + 6.88600i 0.763542 + 0.440831i
\(245\) 0.179026 + 0.668135i 0.0114376 + 0.0426856i
\(246\) −16.2412 + 2.39099i −1.03550 + 0.152444i
\(247\) −1.33222 2.05580i −0.0847668 0.130808i
\(248\) 1.80211i 0.114434i
\(249\) −0.463517 1.07242i −0.0293742 0.0679618i
\(250\) −3.29305 + 5.70372i −0.208271 + 0.360735i
\(251\) 3.51417 + 6.08672i 0.221812 + 0.384190i 0.955358 0.295450i \(-0.0954694\pi\)
−0.733546 + 0.679640i \(0.762136\pi\)
\(252\) 1.41998 2.64266i 0.0894502 0.166472i
\(253\) −0.419461 0.112394i −0.0263713 0.00706617i
\(254\) −8.22267 2.20326i −0.515936 0.138245i
\(255\) −1.65139 + 2.22155i −0.103414 + 0.139119i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −1.65180 + 2.86099i −0.103036 + 0.178464i −0.912934 0.408107i \(-0.866189\pi\)
0.809898 + 0.586571i \(0.199522\pi\)
\(258\) 1.39419 0.602594i 0.0867988 0.0375158i
\(259\) 1.72964i 0.107474i
\(260\) −1.35628 2.09294i −0.0841131 0.129799i
\(261\) −4.10615 13.6436i −0.254165 0.844519i
\(262\) 0.932123 + 3.47873i 0.0575868 + 0.214917i
\(263\) −8.77075 5.06379i −0.540828 0.312247i 0.204587 0.978848i \(-0.434415\pi\)
−0.745414 + 0.666601i \(0.767748\pi\)
\(264\) 1.02754 + 1.29761i 0.0632409 + 0.0798624i
\(265\) 4.91026 4.91026i 0.301635 0.301635i
\(266\) −0.175849 + 0.656279i −0.0107820 + 0.0402390i
\(267\) 0.602892 5.19064i 0.0368964 0.317662i
\(268\) −6.91311 6.91311i −0.422285 0.422285i
\(269\) 2.87311 1.65879i 0.175177 0.101138i −0.409848 0.912154i \(-0.634418\pi\)
0.585025 + 0.811016i \(0.301085\pi\)
\(270\) 0.305482 3.58120i 0.0185911 0.217945i
\(271\) 10.8523 2.90785i 0.659228 0.176640i 0.0863303 0.996267i \(-0.472486\pi\)
0.572897 + 0.819627i \(0.305819\pi\)
\(272\) −2.31047 −0.140093
\(273\) 6.12353 1.22573i 0.370613 0.0741843i
\(274\) 4.27578 0.258310
\(275\) 4.17366 1.11833i 0.251681 0.0674377i
\(276\) −0.290068 + 0.731687i −0.0174600 + 0.0440424i
\(277\) 24.9930 14.4297i 1.50168 0.866997i 0.501685 0.865050i \(-0.332714\pi\)
0.999998 0.00194697i \(-0.000619740\pi\)
\(278\) 12.4346 + 12.4346i 0.745778 + 0.745778i
\(279\) 5.40380 0.165062i 0.323517 0.00988199i
\(280\) −0.179026 + 0.668135i −0.0106989 + 0.0399287i
\(281\) 14.0821 14.0821i 0.840066 0.840066i −0.148802 0.988867i \(-0.547542\pi\)
0.988867 + 0.148802i \(0.0475415\pi\)
\(282\) −14.0777 + 11.1477i −0.838312 + 0.663838i
\(283\) −0.407336 0.235175i −0.0242136 0.0139797i 0.487844 0.872931i \(-0.337783\pi\)
−0.512058 + 0.858951i \(0.671117\pi\)
\(284\) −0.951706 3.55182i −0.0564734 0.210762i
\(285\) 0.118558 + 0.805322i 0.00702275 + 0.0477032i
\(286\) −0.719643 + 3.36955i −0.0425534 + 0.199246i
\(287\) 9.47792i 0.559464i
\(288\) 2.55107 1.57862i 0.150323 0.0930213i
\(289\) 5.83086 10.0993i 0.342992 0.594079i
\(290\) 1.64258 + 2.84503i 0.0964556 + 0.167066i
\(291\) −16.7902 12.4810i −0.984258 0.731646i
\(292\) −6.07624 1.62812i −0.355585 0.0952787i
\(293\) 20.9122 + 5.60342i 1.22171 + 0.327355i 0.811345 0.584568i \(-0.198736\pi\)
0.410361 + 0.911923i \(0.365403\pi\)
\(294\) −1.39007 1.03330i −0.0810703 0.0602635i
\(295\) 4.07290 + 7.05447i 0.237133 + 0.410727i
\(296\) 0.864819 1.49791i 0.0502666 0.0870643i
\(297\) −3.79690 + 3.20005i −0.220318 + 0.185686i
\(298\) 12.3838i 0.717373i
\(299\) −1.55875 + 0.504795i −0.0901449 + 0.0291930i
\(300\) −1.14065 7.74803i −0.0658553 0.447333i
\(301\) −0.226960 0.847027i −0.0130818 0.0488218i
\(302\) −8.01249 4.62601i −0.461067 0.266197i
\(303\) 17.9899 14.2457i 1.03349 0.818396i
\(304\) −0.480429 + 0.480429i −0.0275545 + 0.0275545i
\(305\) 2.46555 9.20155i 0.141177 0.526879i
\(306\) −0.211625 6.92819i −0.0120978 0.396058i
\(307\) −12.1224 12.1224i −0.691861 0.691861i 0.270780 0.962641i \(-0.412718\pi\)
−0.962641 + 0.270780i \(0.912718\pi\)
\(308\) 0.827593 0.477811i 0.0471565 0.0272258i
\(309\) −9.28523 + 23.4217i −0.528218 + 1.33241i
\(310\) −1.20405 + 0.322625i −0.0683855 + 0.0183238i
\(311\) 16.1442 0.915452 0.457726 0.889093i \(-0.348664\pi\)
0.457726 + 0.889093i \(0.348664\pi\)
\(312\) 5.91599 + 2.00025i 0.334927 + 0.113242i
\(313\) 4.95586 0.280122 0.140061 0.990143i \(-0.455270\pi\)
0.140061 + 0.990143i \(0.455270\pi\)
\(314\) −0.332848 + 0.0891865i −0.0187837 + 0.00503308i
\(315\) −2.01987 0.475631i −0.113807 0.0267988i
\(316\) −2.75506 + 1.59064i −0.154984 + 0.0894802i
\(317\) 2.01058 + 2.01058i 0.112925 + 0.112925i 0.761312 0.648386i \(-0.224556\pi\)
−0.648386 + 0.761312i \(0.724556\pi\)
\(318\) −2.00617 + 17.2723i −0.112501 + 0.968581i
\(319\) 1.17468 4.38395i 0.0657693 0.245454i
\(320\) −0.489109 + 0.489109i −0.0273420 + 0.0273420i
\(321\) −2.04189 2.57856i −0.113967 0.143921i
\(322\) 0.393543 + 0.227212i 0.0219313 + 0.0126620i
\(323\) 0.406295 + 1.51631i 0.0226069 + 0.0843700i
\(324\) 4.96732 + 7.50504i 0.275962 + 0.416947i
\(325\) 10.9204 12.1046i 0.605754 0.671444i
\(326\) 8.11369i 0.449375i
\(327\) 12.7157 5.49593i 0.703179 0.303925i
\(328\) −4.73896 + 8.20812i −0.261665 + 0.453217i
\(329\) 5.18373 + 8.97848i 0.285788 + 0.495000i
\(330\) 0.683021 0.918844i 0.0375991 0.0505807i
\(331\) −16.0182 4.29205i −0.880438 0.235913i −0.209842 0.977735i \(-0.567295\pi\)
−0.670596 + 0.741823i \(0.733962\pi\)
\(332\) −0.651536 0.174579i −0.0357577 0.00958125i
\(333\) 4.57085 + 2.45605i 0.250481 + 0.134591i
\(334\) 9.25494 + 16.0300i 0.506408 + 0.877124i
\(335\) −3.38126 + 5.85652i −0.184738 + 0.319976i
\(336\) −0.687181 1.58990i −0.0374888 0.0867362i
\(337\) 16.5753i 0.902916i −0.892292 0.451458i \(-0.850904\pi\)
0.892292 0.451458i \(-0.149096\pi\)
\(338\) 4.63519 + 12.1456i 0.252121 + 0.660632i
\(339\) 23.2618 3.42455i 1.26341 0.185996i
\(340\) 0.413635 + 1.54371i 0.0224325 + 0.0837193i
\(341\) 1.49141 + 0.861067i 0.0807644 + 0.0466294i
\(342\) −1.48462 1.39661i −0.0802791 0.0755201i
\(343\) −0.707107 + 0.707107i −0.0381802 + 0.0381802i
\(344\) 0.226960 0.847027i 0.0122369 0.0456686i
\(345\) 0.540796 + 0.0628133i 0.0291155 + 0.00338176i
\(346\) −7.70231 7.70231i −0.414079 0.414079i
\(347\) 12.7078 7.33688i 0.682193 0.393864i −0.118488 0.992956i \(-0.537805\pi\)
0.800681 + 0.599091i \(0.204471\pi\)
\(348\) −7.64715 3.03161i −0.409930 0.162512i
\(349\) −13.4718 + 3.60976i −0.721129 + 0.193226i −0.600676 0.799493i \(-0.705102\pi\)
−0.120454 + 0.992719i \(0.538435\pi\)
\(350\) −4.52155 −0.241687
\(351\) −5.45610 + 17.9229i −0.291225 + 0.956655i
\(352\) 0.955622 0.0509348
\(353\) 9.52698 2.55275i 0.507070 0.135869i 0.00379078 0.999993i \(-0.498793\pi\)
0.503279 + 0.864124i \(0.332127\pi\)
\(354\) −18.9617 7.51711i −1.00780 0.399530i
\(355\) −2.20271 + 1.27174i −0.116908 + 0.0674968i
\(356\) −2.13332 2.13332i −0.113066 0.113066i
\(357\) −3.97513 0.461711i −0.210386 0.0244363i
\(358\) −0.574907 + 2.14558i −0.0303848 + 0.113397i
\(359\) −25.7702 + 25.7702i −1.36010 + 1.36010i −0.486318 + 0.873782i \(0.661660\pi\)
−0.873782 + 0.486318i \(0.838340\pi\)
\(360\) −1.51144 1.42184i −0.0796600 0.0749377i
\(361\) −16.0547 9.26919i −0.844984 0.487852i
\(362\) 1.68556 + 6.29058i 0.0885909 + 0.330626i
\(363\) 17.2845 2.54459i 0.907202 0.133556i
\(364\) 1.64001 3.21098i 0.0859597 0.168301i
\(365\) 4.35123i 0.227754i
\(366\) 9.46385 + 21.8961i 0.494684 + 1.14453i
\(367\) −12.2275 + 21.1787i −0.638271 + 1.10552i 0.347541 + 0.937665i \(0.387017\pi\)
−0.985812 + 0.167853i \(0.946317\pi\)
\(368\) 0.227212 + 0.393543i 0.0118443 + 0.0205149i
\(369\) −25.0469 13.4584i −1.30389 0.700618i
\(370\) −1.15563 0.309651i −0.0600784 0.0160980i
\(371\) 9.69712 + 2.59834i 0.503449 + 0.134899i
\(372\) 1.86212 2.50505i 0.0965466 0.129881i
\(373\) 17.1444 + 29.6949i 0.887703 + 1.53755i 0.842584 + 0.538565i \(0.181033\pi\)
0.0451184 + 0.998982i \(0.485633\pi\)
\(374\) 1.10397 1.91213i 0.0570849 0.0988739i
\(375\) −10.4712 + 4.52584i −0.540732 + 0.233713i
\(376\) 10.3675i 0.534661i
\(377\) −5.27581 16.2911i −0.271718 0.839035i
\(378\) 4.70454 2.20621i 0.241975 0.113475i
\(379\) 3.05664 + 11.4075i 0.157009 + 0.585966i 0.998925 + 0.0463569i \(0.0147611\pi\)
−0.841916 + 0.539609i \(0.818572\pi\)
\(380\) 0.407001 + 0.234982i 0.0208787 + 0.0120543i
\(381\) −9.15343 11.5592i −0.468944 0.592195i
\(382\) −0.481902 + 0.481902i −0.0246563 + 0.0246563i
\(383\) −5.32445 + 19.8711i −0.272067 + 1.01537i 0.685715 + 0.727870i \(0.259490\pi\)
−0.957782 + 0.287496i \(0.907177\pi\)
\(384\) 0.199834 1.72048i 0.0101977 0.0877981i
\(385\) −0.467403 0.467403i −0.0238211 0.0238211i
\(386\) 11.3205 6.53591i 0.576200 0.332669i
\(387\) 2.56068 + 0.602981i 0.130167 + 0.0306512i
\(388\) −11.6671 + 3.12620i −0.592308 + 0.158709i
\(389\) 1.98079 0.100430 0.0502151 0.998738i \(-0.484009\pi\)
0.0502151 + 0.998738i \(0.484009\pi\)
\(390\) 0.277322 4.31078i 0.0140427 0.218285i
\(391\) 1.04994 0.0530975
\(392\) −0.965926 + 0.258819i −0.0487866 + 0.0130723i
\(393\) −2.29887 + 5.79883i −0.115963 + 0.292512i
\(394\) 3.10771 1.79423i 0.156564 0.0903922i
\(395\) 1.55599 + 1.55599i 0.0782902 + 0.0782902i
\(396\) 0.0875289 + 2.86553i 0.00439849 + 0.143998i
\(397\) 8.96772 33.4680i 0.450077 1.67971i −0.252094 0.967703i \(-0.581119\pi\)
0.702171 0.712008i \(-0.252214\pi\)
\(398\) 6.77006 6.77006i 0.339353 0.339353i
\(399\) −0.922577 + 0.730565i −0.0461866 + 0.0365740i
\(400\) −3.91577 2.26077i −0.195789 0.113039i
\(401\) 6.92912 + 25.8598i 0.346024 + 1.29138i 0.891412 + 0.453194i \(0.149716\pi\)
−0.545388 + 0.838183i \(0.683618\pi\)
\(402\) −2.46634 16.7530i −0.123010 0.835564i
\(403\) 6.48901 0.333752i 0.323241 0.0166254i
\(404\) 13.2486i 0.659143i
\(405\) 4.12510 4.66244i 0.204978 0.231679i
\(406\) −2.37469 + 4.11308i −0.117854 + 0.204129i
\(407\) 0.826440 + 1.43144i 0.0409651 + 0.0709536i
\(408\) −3.21171 2.38742i −0.159003 0.118195i
\(409\) −15.2615 4.08931i −0.754633 0.202203i −0.139061 0.990284i \(-0.544408\pi\)
−0.615572 + 0.788081i \(0.711075\pi\)
\(410\) 6.33253 + 1.69680i 0.312741 + 0.0837988i
\(411\) 5.94362 + 4.41818i 0.293177 + 0.217933i
\(412\) 7.27319 + 12.5975i 0.358324 + 0.620636i
\(413\) −5.88821 + 10.1987i −0.289740 + 0.501844i
\(414\) −1.15927 + 0.717365i −0.0569749 + 0.0352566i
\(415\) 0.466568i 0.0229029i
\(416\) 3.02578 1.96078i 0.148351 0.0961354i
\(417\) 4.43620 + 30.1336i 0.217242 + 1.47565i
\(418\) −0.168045 0.627154i −0.00821937 0.0306751i
\(419\) 1.43075 + 0.826043i 0.0698966 + 0.0403548i 0.534541 0.845143i \(-0.320485\pi\)
−0.464644 + 0.885497i \(0.653818\pi\)
\(420\) −0.939245 + 0.743764i −0.0458304 + 0.0362919i
\(421\) 5.05280 5.05280i 0.246259 0.246259i −0.573175 0.819433i \(-0.694288\pi\)
0.819433 + 0.573175i \(0.194288\pi\)
\(422\) −5.54004 + 20.6757i −0.269685 + 1.00648i
\(423\) −31.0879 + 0.949594i −1.51154 + 0.0461708i
\(424\) 7.09878 + 7.09878i 0.344747 + 0.344747i
\(425\) −9.04729 + 5.22345i −0.438858 + 0.253375i
\(426\) 2.34717 5.92066i 0.113721 0.286857i
\(427\) 13.3027 3.56446i 0.643764 0.172496i
\(428\) −1.89897 −0.0917903
\(429\) −4.48212 + 3.94029i −0.216399 + 0.190239i
\(430\) −0.606560 −0.0292509
\(431\) 8.60327 2.30524i 0.414405 0.111039i −0.0455917 0.998960i \(-0.514517\pi\)
0.459997 + 0.887921i \(0.347851\pi\)
\(432\) 5.17735 + 0.441637i 0.249095 + 0.0212483i
\(433\) −11.2117 + 6.47306i −0.538798 + 0.311075i −0.744592 0.667520i \(-0.767356\pi\)
0.205794 + 0.978595i \(0.434022\pi\)
\(434\) −1.27428 1.27428i −0.0611675 0.0611675i
\(435\) −0.656487 + 5.65207i −0.0314761 + 0.270996i
\(436\) 2.06998 7.72527i 0.0991340 0.369973i
\(437\) 0.218319 0.218319i 0.0104436 0.0104436i
\(438\) −6.76403 8.54180i −0.323198 0.408143i
\(439\) −35.4886 20.4894i −1.69378 0.977904i −0.951417 0.307906i \(-0.900372\pi\)
−0.742363 0.669998i \(-0.766295\pi\)
\(440\) −0.171081 0.638484i −0.00815598 0.0304385i
\(441\) −0.864568 2.87272i −0.0411699 0.136796i
\(442\) −0.427902 8.31953i −0.0203532 0.395720i
\(443\) 37.6638i 1.78946i −0.446607 0.894730i \(-0.647368\pi\)
0.446607 0.894730i \(-0.352632\pi\)
\(444\) 2.74995 1.18857i 0.130507 0.0564072i
\(445\) −1.04342 + 1.80726i −0.0494630 + 0.0856725i
\(446\) 10.8888 + 18.8599i 0.515599 + 0.893043i
\(447\) 12.7962 17.2143i 0.605239 0.814207i
\(448\) −0.965926 0.258819i −0.0456357 0.0122281i
\(449\) 24.8854 + 6.66802i 1.17441 + 0.314683i 0.792709 0.609601i \(-0.208670\pi\)
0.381705 + 0.924284i \(0.375337\pi\)
\(450\) 6.42050 11.9489i 0.302665 0.563277i
\(451\) −4.52865 7.84385i −0.213246 0.369353i
\(452\) 6.78749 11.7563i 0.319257 0.552969i
\(453\) −6.35782 14.7098i −0.298716 0.691127i
\(454\) 22.5012i 1.05603i
\(455\) −2.43897 0.520897i −0.114341 0.0244200i
\(456\) −1.16426 + 0.171399i −0.0545214 + 0.00802651i
\(457\) 3.53106 + 13.1781i 0.165176 + 0.616446i 0.998018 + 0.0629344i \(0.0200459\pi\)
−0.832841 + 0.553512i \(0.813287\pi\)
\(458\) 11.5321 + 6.65805i 0.538858 + 0.311110i
\(459\) 6.86475 9.84931i 0.320419 0.459726i
\(460\) 0.222263 0.222263i 0.0103631 0.0103631i
\(461\) 3.32582 12.4121i 0.154899 0.578090i −0.844215 0.536004i \(-0.819933\pi\)
0.999114 0.0420857i \(-0.0134002\pi\)
\(462\) 1.64413 + 0.190966i 0.0764919 + 0.00888453i
\(463\) 2.61340 + 2.61340i 0.121455 + 0.121455i 0.765222 0.643767i \(-0.222629\pi\)
−0.643767 + 0.765222i \(0.722629\pi\)
\(464\) −4.11308 + 2.37469i −0.190945 + 0.110242i
\(465\) −2.00708 0.795681i −0.0930761 0.0368988i
\(466\) 5.98038 1.60244i 0.277036 0.0742314i
\(467\) 26.4925 1.22593 0.612963 0.790111i \(-0.289977\pi\)
0.612963 + 0.790111i \(0.289977\pi\)
\(468\) 6.15675 + 8.89350i 0.284596 + 0.411102i
\(469\) −9.77661 −0.451442
\(470\) 6.92686 1.85605i 0.319512 0.0856130i
\(471\) −0.554838 0.219958i −0.0255656 0.0101351i
\(472\) −10.1987 + 5.88821i −0.469432 + 0.271027i
\(473\) 0.592549 + 0.592549i 0.0272454 + 0.0272454i
\(474\) −5.47333 0.635726i −0.251398 0.0291999i
\(475\) −0.795111 + 2.96739i −0.0364822 + 0.136153i
\(476\) −1.63375 + 1.63375i −0.0748829 + 0.0748829i
\(477\) −20.6362 + 21.9366i −0.944868 + 1.00441i
\(478\) 12.7870 + 7.38257i 0.584863 + 0.337671i
\(479\) −3.48343 13.0003i −0.159162 0.594001i −0.998713 0.0507198i \(-0.983848\pi\)
0.839551 0.543281i \(-0.182818\pi\)
\(480\) −1.18529 + 0.174496i −0.0541009 + 0.00796461i
\(481\) 5.55383 + 2.83662i 0.253233 + 0.129339i
\(482\) 12.1671i 0.554196i
\(483\) 0.312272 + 0.722490i 0.0142089 + 0.0328744i
\(484\) 5.04339 8.73541i 0.229245 0.397064i
\(485\) 4.17744 + 7.23554i 0.189688 + 0.328549i
\(486\) −0.850080 + 15.5653i −0.0385604 + 0.706055i
\(487\) −37.8914 10.1530i −1.71702 0.460075i −0.739894 0.672723i \(-0.765124\pi\)
−0.977129 + 0.212649i \(0.931791\pi\)
\(488\) 13.3027 + 3.56446i 0.602186 + 0.161355i
\(489\) 8.38390 11.2786i 0.379133 0.510034i
\(490\) 0.345852 + 0.599034i 0.0156240 + 0.0270616i
\(491\) −8.73726 + 15.1334i −0.394307 + 0.682960i −0.993012 0.118009i \(-0.962349\pi\)
0.598705 + 0.800969i \(0.295682\pi\)
\(492\) −15.0689 + 6.51304i −0.679360 + 0.293631i
\(493\) 10.9733i 0.494212i
\(494\) −1.81890 1.64095i −0.0818363 0.0738298i
\(495\) 1.89889 0.571486i 0.0853488 0.0256864i
\(496\) −0.466420 1.74070i −0.0209429 0.0781598i
\(497\) −3.18447 1.83856i −0.142843 0.0824705i
\(498\) −0.725286 0.915911i −0.0325008 0.0410429i
\(499\) −24.8719 + 24.8719i −1.11342 + 1.11342i −0.120736 + 0.992685i \(0.538525\pi\)
−0.992685 + 0.120736i \(0.961475\pi\)
\(500\) −1.70461 + 6.36168i −0.0762323 + 0.284503i
\(501\) −3.69890 + 31.8460i −0.165255 + 1.42277i
\(502\) 4.96979 + 4.96979i 0.221812 + 0.221812i
\(503\) −2.94409 + 1.69977i −0.131271 + 0.0757891i −0.564197 0.825640i \(-0.690814\pi\)
0.432927 + 0.901429i \(0.357481\pi\)
\(504\) 0.687622 2.92013i 0.0306291 0.130073i
\(505\) −8.85186 + 2.37185i −0.393903 + 0.105546i
\(506\) −0.434258 −0.0193051
\(507\) −6.10685 + 21.6727i −0.271215 + 0.962519i
\(508\) −8.51274 −0.377692
\(509\) −13.5551 + 3.63207i −0.600817 + 0.160989i −0.546392 0.837529i \(-0.683999\pi\)
−0.0544250 + 0.998518i \(0.517333\pi\)
\(510\) −1.02014 + 2.57327i −0.0451725 + 0.113946i
\(511\) −5.44781 + 3.14529i −0.240997 + 0.139140i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) −0.620597 3.47545i −0.0274000 0.153445i
\(514\) −0.855032 + 3.19102i −0.0377138 + 0.140750i
\(515\) 7.11476 7.11476i 0.313514 0.313514i
\(516\) 1.19073 0.942905i 0.0524188 0.0415091i
\(517\) −8.58003 4.95368i −0.377349 0.217863i
\(518\) −0.447663 1.67070i −0.0196692 0.0734064i
\(519\) −2.74790 18.6655i −0.120619 0.819326i
\(520\) −1.85176 1.67060i −0.0812052 0.0732605i
\(521\) 36.5045i 1.59929i −0.600473 0.799645i \(-0.705021\pi\)
0.600473 0.799645i \(-0.294979\pi\)
\(522\) −7.49747 12.1160i −0.328155 0.530302i
\(523\) −6.98395 + 12.0965i −0.305387 + 0.528945i −0.977347 0.211642i \(-0.932119\pi\)
0.671961 + 0.740587i \(0.265452\pi\)
\(524\) 1.80072 + 3.11895i 0.0786650 + 0.136252i
\(525\) −6.28525 4.67213i −0.274311 0.203908i
\(526\) −9.78250 2.62121i −0.426537 0.114290i
\(527\) −4.02185 1.07765i −0.175194 0.0469432i
\(528\) 1.32838 + 0.987447i 0.0578102 + 0.0429731i
\(529\) 11.3967 + 19.7397i 0.495511 + 0.858250i
\(530\) 3.47208 6.01382i 0.150817 0.261223i
\(531\) −18.5905 30.0425i −0.806761 1.30373i
\(532\) 0.679430i 0.0294570i
\(533\) −30.4334 15.5438i −1.31822 0.673279i
\(534\) −0.761088 5.16981i −0.0329355 0.223720i
\(535\) 0.339966 + 1.26877i 0.0146980 + 0.0548537i
\(536\) −8.46679 4.88830i −0.365710 0.211143i
\(537\) −3.01620 + 2.38845i −0.130158 + 0.103069i
\(538\) 2.34589 2.34589i 0.101138 0.101138i
\(539\) 0.247333 0.923060i 0.0106534 0.0397590i
\(540\) −0.631809 3.53823i −0.0271887 0.152261i
\(541\) −31.4285 31.4285i −1.35122 1.35122i −0.884301 0.466917i \(-0.845365\pi\)
−0.466917 0.884301i \(-0.654635\pi\)
\(542\) 9.72987 5.61754i 0.417934 0.241294i
\(543\) −4.15704 + 10.4860i −0.178396 + 0.449998i
\(544\) −2.23175 + 0.597994i −0.0956853 + 0.0256388i
\(545\) −5.53210 −0.236969
\(546\) 5.59763 2.76885i 0.239557 0.118496i
\(547\) −19.0132 −0.812944 −0.406472 0.913663i \(-0.633241\pi\)
−0.406472 + 0.913663i \(0.633241\pi\)
\(548\) 4.13009 1.10665i 0.176429 0.0472739i
\(549\) −9.46993 + 40.2161i −0.404167 + 1.71638i
\(550\) 3.74200 2.16044i 0.159559 0.0921216i
\(551\) 2.28174 + 2.28174i 0.0972053 + 0.0972053i
\(552\) −0.0908095 + 0.781831i −0.00386511 + 0.0332769i
\(553\) −0.823373 + 3.07287i −0.0350134 + 0.130672i
\(554\) 20.4067 20.4067i 0.866997 0.866997i
\(555\) −1.28644 1.62455i −0.0546064 0.0689584i
\(556\) 15.2292 + 8.79259i 0.645863 + 0.372889i
\(557\) 9.57033 + 35.7170i 0.405508 + 1.51338i 0.803117 + 0.595822i \(0.203174\pi\)
−0.397609 + 0.917555i \(0.630160\pi\)
\(558\) 5.17695 1.55804i 0.219158 0.0659573i
\(559\) 3.09200 + 0.660366i 0.130778 + 0.0279305i
\(560\) 0.691704i 0.0292298i
\(561\) 3.51040 1.51725i 0.148209 0.0640585i
\(562\) 9.95752 17.2469i 0.420033 0.727518i
\(563\) −17.6157 30.5113i −0.742414 1.28590i −0.951393 0.307979i \(-0.900347\pi\)
0.208979 0.977920i \(-0.432986\pi\)
\(564\) −10.7127 + 14.4114i −0.451087 + 0.606831i
\(565\) −9.06993 2.43028i −0.381575 0.102243i
\(566\) −0.454324 0.121736i −0.0190967 0.00511694i
\(567\) 8.81930 + 1.79444i 0.370376 + 0.0753594i
\(568\) −1.83856 3.18447i −0.0771441 0.133617i
\(569\) −10.5121 + 18.2075i −0.440690 + 0.763298i −0.997741 0.0671807i \(-0.978600\pi\)
0.557051 + 0.830479i \(0.311933\pi\)
\(570\) 0.322951 + 0.747196i 0.0135269 + 0.0312966i
\(571\) 26.4973i 1.10888i 0.832225 + 0.554439i \(0.187067\pi\)
−0.832225 + 0.554439i \(0.812933\pi\)
\(572\) 0.176982 + 3.44099i 0.00739999 + 0.143875i
\(573\) −1.16783 + 0.171925i −0.0487867 + 0.00718226i
\(574\) 2.45307 + 9.15496i 0.102389 + 0.382121i
\(575\) 1.77942 + 1.02735i 0.0742071 + 0.0428435i
\(576\) 2.05556 2.18510i 0.0856485 0.0910457i
\(577\) −2.94218 + 2.94218i −0.122484 + 0.122484i −0.765692 0.643208i \(-0.777603\pi\)
0.643208 + 0.765692i \(0.277603\pi\)
\(578\) 3.01827 11.2644i 0.125544 0.468535i
\(579\) 22.4899 + 2.61219i 0.934647 + 0.108559i
\(580\) 2.32296 + 2.32296i 0.0964556 + 0.0964556i
\(581\) −0.584151 + 0.337260i −0.0242347 + 0.0139919i
\(582\) −19.4484 7.71006i −0.806161 0.319592i
\(583\) −9.26678 + 2.48303i −0.383791 + 0.102836i
\(584\) −6.29059 −0.260306
\(585\) 4.83984 5.70571i 0.200103 0.235902i
\(586\) 21.6499 0.894351
\(587\) −36.5825 + 9.80224i −1.50992 + 0.404582i −0.916409 0.400244i \(-0.868925\pi\)
−0.593511 + 0.804826i \(0.702259\pi\)
\(588\) −1.61014 0.638319i −0.0664010 0.0263238i
\(589\) −1.06037 + 0.612203i −0.0436916 + 0.0252254i
\(590\) 5.75995 + 5.75995i 0.237133 + 0.237133i
\(591\) 6.17390 + 0.717098i 0.253961 + 0.0294975i
\(592\) 0.447663 1.67070i 0.0183988 0.0686654i
\(593\) −24.3689 + 24.3689i −1.00071 + 1.00071i −0.000709316 1.00000i \(0.500226\pi\)
−1.00000 0.000709316i \(0.999774\pi\)
\(594\) −2.83929 + 4.07372i −0.116497 + 0.167147i
\(595\) 1.38405 + 0.799082i 0.0567405 + 0.0327592i
\(596\) −3.20516 11.9618i −0.131288 0.489975i
\(597\) 16.4064 2.41531i 0.671468 0.0988519i
\(598\) −1.37499 + 0.891029i −0.0562274 + 0.0364369i
\(599\) 20.6846i 0.845148i 0.906328 + 0.422574i \(0.138873\pi\)
−0.906328 + 0.422574i \(0.861127\pi\)
\(600\) −3.10712 7.18881i −0.126848 0.293482i
\(601\) 14.7216 25.4985i 0.600506 1.04011i −0.392238 0.919864i \(-0.628299\pi\)
0.992744 0.120243i \(-0.0383675\pi\)
\(602\) −0.438454 0.759424i −0.0178700 0.0309518i
\(603\) 13.8826 25.8363i 0.565342 1.05213i
\(604\) −8.93677 2.39460i −0.363632 0.0974349i
\(605\) −6.73934 1.80580i −0.273993 0.0734162i
\(606\) 13.6898 18.4165i 0.556112 0.748117i
\(607\) −18.5803 32.1820i −0.754151 1.30623i −0.945795 0.324763i \(-0.894716\pi\)
0.191645 0.981464i \(-0.438618\pi\)
\(608\) −0.339715 + 0.588403i −0.0137773 + 0.0238629i
\(609\) −7.55103 + 3.26368i −0.305983 + 0.132251i
\(610\) 9.52615i 0.385703i
\(611\) −37.3310 + 1.92006i −1.51025 + 0.0776774i
\(612\) −1.99756 6.63734i −0.0807466 0.268299i
\(613\) 4.52043 + 16.8705i 0.182579 + 0.681393i 0.995136 + 0.0985114i \(0.0314081\pi\)
−0.812557 + 0.582881i \(0.801925\pi\)
\(614\) −14.8468 8.57182i −0.599169 0.345931i
\(615\) 7.04933 + 8.90208i 0.284256 + 0.358967i
\(616\) 0.675726 0.675726i 0.0272258 0.0272258i
\(617\) 2.26152 8.44012i 0.0910455 0.339786i −0.905345 0.424677i \(-0.860388\pi\)
0.996390 + 0.0848911i \(0.0270542\pi\)
\(618\) −2.90686 + 25.0268i −0.116931 + 1.00673i
\(619\) 27.9324 + 27.9324i 1.12270 + 1.12270i 0.991334 + 0.131363i \(0.0419352\pi\)
0.131363 + 0.991334i \(0.458065\pi\)
\(620\) −1.07952 + 0.623263i −0.0433547 + 0.0250308i
\(621\) −2.35272 0.200691i −0.0944112 0.00805344i
\(622\) 15.5941 4.17842i 0.625266 0.167539i
\(623\) −3.01696 −0.120872
\(624\) 6.23212 + 0.400925i 0.249484 + 0.0160499i
\(625\) −18.0521 −0.722084
\(626\) 4.78700 1.28267i 0.191327 0.0512659i
\(627\) 0.414446 1.04543i 0.0165514 0.0417504i
\(628\) −0.298424 + 0.172295i −0.0119084 + 0.00687532i
\(629\) −2.82580 2.82580i −0.112672 0.112672i
\(630\) −2.07415 + 0.0633558i −0.0826359 + 0.00252415i
\(631\) 0.387029 1.44441i 0.0154074 0.0575011i −0.957794 0.287455i \(-0.907191\pi\)
0.973202 + 0.229954i \(0.0738575\pi\)
\(632\) −2.24950 + 2.24950i −0.0894802 + 0.0894802i
\(633\) −29.0653 + 23.0160i −1.15524 + 0.914806i
\(634\) 2.46245 + 1.42170i 0.0977963 + 0.0564627i
\(635\) 1.52400 + 5.68766i 0.0604782 + 0.225708i
\(636\) 2.53258 + 17.2030i 0.100423 + 0.682142i
\(637\) −1.11084 3.43016i −0.0440132 0.135908i
\(638\) 4.53860i 0.179685i
\(639\) 9.38056 5.80477i 0.371089 0.229633i
\(640\) −0.345852 + 0.599034i −0.0136710 + 0.0236789i
\(641\) −3.68067 6.37511i −0.145378 0.251802i 0.784136 0.620589i \(-0.213106\pi\)
−0.929514 + 0.368787i \(0.879773\pi\)
\(642\) −2.63970 1.96222i −0.104181 0.0774425i
\(643\) −9.91929 2.65787i −0.391179 0.104816i 0.0578682 0.998324i \(-0.481570\pi\)
−0.449047 + 0.893508i \(0.648236\pi\)
\(644\) 0.438941 + 0.117614i 0.0172967 + 0.00463463i
\(645\) −0.843159 0.626761i −0.0331994 0.0246787i
\(646\) 0.784902 + 1.35949i 0.0308816 + 0.0534884i
\(647\) 3.54406 6.13848i 0.139331 0.241329i −0.787912 0.615787i \(-0.788838\pi\)
0.927244 + 0.374459i \(0.122171\pi\)
\(648\) 6.74051 + 5.96368i 0.264792 + 0.234275i
\(649\) 11.2538i 0.441750i
\(650\) 7.41537 14.5186i 0.290855 0.569466i
\(651\) −0.454616 3.08806i −0.0178178 0.121031i
\(652\) −2.09998 7.83722i −0.0822414 0.306929i
\(653\) 17.8645 + 10.3141i 0.699092 + 0.403621i 0.807009 0.590539i \(-0.201085\pi\)
−0.107917 + 0.994160i \(0.534418\pi\)
\(654\) 10.8600 8.59972i 0.424658 0.336276i
\(655\) 1.76150 1.76150i 0.0688275 0.0688275i
\(656\) −2.45307 + 9.15496i −0.0957761 + 0.357441i
\(657\) −0.576178 18.8630i −0.0224789 0.735914i
\(658\) 7.33090 + 7.33090i 0.285788 + 0.285788i
\(659\) 40.1163 23.1612i 1.56271 0.902231i 0.565729 0.824591i \(-0.308595\pi\)
0.996981 0.0776400i \(-0.0247385\pi\)
\(660\) 0.421934 1.06431i 0.0164237 0.0414284i
\(661\) 14.0298 3.75929i 0.545698 0.146219i 0.0245703 0.999698i \(-0.492178\pi\)
0.521128 + 0.853479i \(0.325512\pi\)
\(662\) −16.5832 −0.644525
\(663\) 8.00179 12.0069i 0.310764 0.466307i
\(664\) −0.674520 −0.0261765
\(665\) 0.453951 0.121636i 0.0176035 0.00471683i
\(666\) 5.05077 + 1.18934i 0.195713 + 0.0460859i
\(667\) 1.86908 1.07912i 0.0723712 0.0417835i
\(668\) 13.0885 + 13.0885i 0.506408 + 0.506408i
\(669\) −4.35190 + 37.4680i −0.168254 + 1.44860i
\(670\) −1.75027 + 6.53210i −0.0676188 + 0.252357i
\(671\) −9.30610 + 9.30610i −0.359258 + 0.359258i
\(672\) −1.07526 1.35787i −0.0414791 0.0523810i
\(673\) 15.0031 + 8.66207i 0.578329 + 0.333898i 0.760469 0.649374i \(-0.224969\pi\)
−0.182140 + 0.983273i \(0.558302\pi\)
\(674\) −4.29001 16.0106i −0.165245 0.616703i
\(675\) 21.2718 9.97546i 0.818751 0.383956i
\(676\) 7.62075 + 10.5321i 0.293106 + 0.405079i
\(677\) 36.1386i 1.38892i −0.719532 0.694460i \(-0.755643\pi\)
0.719532 0.694460i \(-0.244357\pi\)
\(678\) 21.5829 9.32847i 0.828885 0.358258i
\(679\) −6.03935 + 10.4605i −0.231769 + 0.401435i
\(680\) 0.799082 + 1.38405i 0.0306434 + 0.0530759i
\(681\) 23.2506 31.2782i 0.890964 1.19858i
\(682\) 1.66345 + 0.445721i 0.0636969 + 0.0170675i
\(683\) −9.12410 2.44479i −0.349124 0.0935475i 0.0799956 0.996795i \(-0.474509\pi\)
−0.429119 + 0.903248i \(0.641176\pi\)
\(684\) −1.79550 0.964775i −0.0686528 0.0368891i
\(685\) −1.47879 2.56134i −0.0565016 0.0978637i
\(686\) −0.500000 + 0.866025i −0.0190901 + 0.0330650i
\(687\) 9.15056 + 21.1713i 0.349116 + 0.807734i
\(688\) 0.876907i 0.0334318i
\(689\) −24.2465 + 26.8759i −0.923720 + 1.02389i
\(690\) 0.538626 0.0792952i 0.0205051 0.00301872i
\(691\) −8.04837 30.0369i −0.306174 1.14266i −0.931930 0.362639i \(-0.881876\pi\)
0.625756 0.780019i \(-0.284791\pi\)
\(692\) −9.43336 5.44635i −0.358603 0.207039i
\(693\) 2.08813 + 1.96434i 0.0793214 + 0.0746192i
\(694\) 10.3759 10.3759i 0.393864 0.393864i
\(695\) 3.14821 11.7493i 0.119418 0.445676i
\(696\) −8.17122 0.949086i −0.309729 0.0359750i
\(697\) 15.4846 + 15.4846i 0.586519 + 0.586519i
\(698\) −12.0785 + 6.97352i −0.457178 + 0.263952i
\(699\) 9.96892 + 3.95205i 0.377059 + 0.149480i
\(700\) −4.36748 + 1.17026i −0.165075 + 0.0442317i
\(701\) −46.7837 −1.76700 −0.883498 0.468434i \(-0.844818\pi\)
−0.883498 + 0.468434i \(0.844818\pi\)
\(702\) −0.631393 + 18.7244i −0.0238304 + 0.706705i
\(703\) −1.17517 −0.0443223
\(704\) 0.923060 0.247333i 0.0347891 0.00932172i
\(705\) 11.5467 + 4.57752i 0.434872 + 0.172399i
\(706\) 8.54166 4.93153i 0.321470 0.185601i
\(707\) −9.36819 9.36819i −0.352327 0.352327i
\(708\) −20.2612 2.35333i −0.761461 0.0884435i
\(709\) −4.08957 + 15.2625i −0.153587 + 0.573194i 0.845635 + 0.533761i \(0.179222\pi\)
−0.999222 + 0.0394332i \(0.987445\pi\)
\(710\) −1.79851 + 1.79851i −0.0674968 + 0.0674968i
\(711\) −6.95139 6.53931i −0.260697 0.245243i
\(712\) −2.61277 1.50848i −0.0979176 0.0565328i
\(713\) 0.211953 + 0.791018i 0.00793769 + 0.0296239i
\(714\) −3.95918 + 0.582861i −0.148169 + 0.0218130i
\(715\) 2.26736 0.734276i 0.0847946 0.0274604i
\(716\) 2.22127i 0.0830127i
\(717\) 10.1463 + 23.4751i 0.378921 + 0.876694i
\(718\) −18.2223 + 31.5619i −0.680050 + 1.17788i
\(719\) 21.5484 + 37.3229i 0.803619 + 1.39191i 0.917219 + 0.398383i \(0.130429\pi\)
−0.113600 + 0.993527i \(0.536238\pi\)
\(720\) −1.82794 0.982205i −0.0681233 0.0366046i
\(721\) 14.0507 + 3.76488i 0.523276 + 0.140211i
\(722\) −17.9067 4.79808i −0.666418 0.178566i
\(723\) 12.5723 16.9131i 0.467569 0.629004i
\(724\) 3.25624 + 5.63998i 0.121017 + 0.209608i
\(725\) −10.7372 + 18.5975i −0.398771 + 0.690692i
\(726\) 16.0370 6.93145i 0.595188 0.257250i
\(727\) 12.7998i 0.474720i −0.971422 0.237360i \(-0.923718\pi\)
0.971422 0.237360i \(-0.0762821\pi\)
\(728\) 0.753063 3.52603i 0.0279104 0.130683i
\(729\) −17.2653 + 20.7584i −0.639456 + 0.768828i
\(730\) 1.12618 + 4.20296i 0.0416818 + 0.155559i
\(731\) −1.75463 1.01303i −0.0648973 0.0374685i
\(732\) 14.8085 + 18.7006i 0.547338 + 0.691193i
\(733\) 22.4620 22.4620i 0.829652 0.829652i −0.157817 0.987468i \(-0.550445\pi\)
0.987468 + 0.157817i \(0.0504455\pi\)
\(734\) −6.32943 + 23.6217i −0.233623 + 0.871894i
\(735\) −0.138226 + 1.19007i −0.00509854 + 0.0438963i
\(736\) 0.321327 + 0.321327i 0.0118443 + 0.0118443i
\(737\) 8.09105 4.67137i 0.298038 0.172072i
\(738\) −27.6768 6.51723i −1.01880 0.239902i
\(739\) 14.0152 3.75536i 0.515558 0.138143i 0.00834668 0.999965i \(-0.497343\pi\)
0.507211 + 0.861822i \(0.330676\pi\)
\(740\) −1.19640 −0.0439805
\(741\) −0.832795 4.16051i −0.0305935 0.152840i
\(742\) 10.0392 0.368551
\(743\) 21.7841 5.83703i 0.799180 0.214140i 0.163956 0.986468i \(-0.447574\pi\)
0.635224 + 0.772328i \(0.280908\pi\)
\(744\) 1.15032 2.90164i 0.0421728 0.106379i
\(745\) −7.41830 + 4.28296i −0.271785 + 0.156915i
\(746\) 24.2458 + 24.2458i 0.887703 + 0.887703i
\(747\) −0.0617818 2.02262i −0.00226048 0.0740037i
\(748\) 0.571456 2.13270i 0.0208945 0.0779794i
\(749\) −1.34278 + 1.34278i −0.0490640 + 0.0490640i
\(750\) −8.94306 + 7.08178i −0.326554 + 0.258590i
\(751\) 35.4118 + 20.4450i 1.29220 + 0.746049i 0.979043 0.203654i \(-0.0652817\pi\)
0.313152 + 0.949703i \(0.398615\pi\)
\(752\) 2.68329 + 10.0142i 0.0978497 + 0.365180i
\(753\) 1.77303 + 12.0436i 0.0646130 + 0.438894i
\(754\) −9.31249 14.3705i −0.339141 0.523344i
\(755\) 6.39967i 0.232908i
\(756\) 3.97322 3.34866i 0.144505 0.121789i
\(757\) 23.2232 40.2237i 0.844061 1.46196i −0.0423740 0.999102i \(-0.513492\pi\)
0.886435 0.462854i \(-0.153175\pi\)
\(758\) 5.90497 + 10.2277i 0.214478 + 0.371487i
\(759\) −0.603647 0.448720i −0.0219110 0.0162875i
\(760\) 0.453951 + 0.121636i 0.0164665 + 0.00441219i
\(761\) −18.6904 5.00807i −0.677526 0.181543i −0.0963833 0.995344i \(-0.530727\pi\)
−0.581143 + 0.813802i \(0.697394\pi\)
\(762\) −11.8333 8.79624i −0.428674 0.318654i
\(763\) −3.99889 6.92629i −0.144770 0.250748i
\(764\) −0.340756 + 0.590207i −0.0123281 + 0.0213529i
\(765\) −4.07703 + 2.52290i −0.147405 + 0.0912156i
\(766\) 20.5721i 0.743300i
\(767\) −23.0910 35.6328i −0.833769 1.28663i
\(768\) −0.252269 1.71358i −0.00910299 0.0618335i
\(769\) 11.2085 + 41.8307i 0.404189 + 1.50846i 0.805546 + 0.592533i \(0.201872\pi\)
−0.401357 + 0.915922i \(0.631461\pi\)
\(770\) −0.572449 0.330504i −0.0206296 0.0119105i
\(771\) −4.48585 + 3.55223i −0.161554 + 0.127930i
\(772\) 9.24318 9.24318i 0.332669 0.332669i
\(773\) 8.99619 33.5742i 0.323571 1.20758<