Properties

Label 546.2.bn.e.173.4
Level $546$
Weight $2$
Character 546.173
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bn (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 173.4
Character \(\chi\) \(=\) 546.173
Dual form 546.2.bn.e.101.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-1.23327 + 1.21616i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.567570 + 0.327687i) q^{5} +(1.66986 + 0.459961i) q^{6} +(-2.19987 + 1.46989i) q^{7} +1.00000 q^{8} +(0.0419009 - 2.99971i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-1.23327 + 1.21616i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.567570 + 0.327687i) q^{5} +(1.66986 + 0.459961i) q^{6} +(-2.19987 + 1.46989i) q^{7} +1.00000 q^{8} +(0.0419009 - 2.99971i) q^{9} -0.655374i q^{10} -3.09310 q^{11} +(-0.436593 - 1.67612i) q^{12} +(-3.50535 + 0.844105i) q^{13} +(2.37289 + 1.17020i) q^{14} +(-1.09849 + 0.286132i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(3.51142 - 6.08195i) q^{17} +(-2.61877 + 1.46357i) q^{18} +6.51944 q^{19} +(-0.567570 + 0.327687i) q^{20} +(0.925413 - 4.48816i) q^{21} +(1.54655 + 2.67870i) q^{22} +(1.24301 - 0.717651i) q^{23} +(-1.23327 + 1.21616i) q^{24} +(-2.28524 - 3.95816i) q^{25} +(2.48369 + 2.61367i) q^{26} +(3.59645 + 3.75040i) q^{27} +(-0.173023 - 2.64009i) q^{28} +(-3.89073 - 2.24631i) q^{29} +(0.797041 + 0.808252i) q^{30} +(-2.26475 - 3.92266i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(3.81462 - 3.76171i) q^{33} -7.02284 q^{34} +(-1.73024 + 0.113395i) q^{35} +(2.57687 + 1.53614i) q^{36} +(2.56676 - 1.48192i) q^{37} +(-3.25972 - 5.64600i) q^{38} +(3.29647 - 5.30408i) q^{39} +(0.567570 + 0.327687i) q^{40} +(-7.52039 - 4.34190i) q^{41} +(-4.34957 + 1.44265i) q^{42} +(-0.0380219 - 0.0658559i) q^{43} +(1.54655 - 2.67870i) q^{44} +(1.00675 - 1.68881i) q^{45} +(-1.24301 - 0.717651i) q^{46} +(-8.04448 - 4.64448i) q^{47} +(1.66986 + 0.459961i) q^{48} +(2.67887 - 6.46712i) q^{49} +(-2.28524 + 3.95816i) q^{50} +(3.06612 + 11.7711i) q^{51} +(1.02166 - 3.45778i) q^{52} +(-9.68544 + 5.59189i) q^{53} +(1.44972 - 4.98982i) q^{54} +(-1.75555 - 1.01357i) q^{55} +(-2.19987 + 1.46989i) q^{56} +(-8.04022 + 7.92869i) q^{57} +4.49263i q^{58} +(6.13025 + 3.53930i) q^{59} +(0.301446 - 1.09438i) q^{60} -15.3529i q^{61} +(-2.26475 + 3.92266i) q^{62} +(4.31705 + 6.66056i) q^{63} +1.00000 q^{64} +(-2.26614 - 0.669569i) q^{65} +(-5.16504 - 1.42270i) q^{66} +3.99636i q^{67} +(3.51142 + 6.08195i) q^{68} +(-0.660182 + 2.39676i) q^{69} +(0.963325 + 1.44174i) q^{70} +(0.469521 + 0.813235i) q^{71} +(0.0419009 - 2.99971i) q^{72} +(5.44642 + 9.43348i) q^{73} +(-2.56676 - 1.48192i) q^{74} +(7.63208 + 2.10224i) q^{75} +(-3.25972 + 5.64600i) q^{76} +(6.80442 - 4.54650i) q^{77} +(-6.24170 - 0.202785i) q^{78} +(-1.40194 + 2.42822i) q^{79} -0.655374i q^{80} +(-8.99649 - 0.251381i) q^{81} +8.68380i q^{82} -7.24087i q^{83} +(3.42416 + 3.04551i) q^{84} +(3.98595 - 2.30129i) q^{85} +(-0.0380219 + 0.0658559i) q^{86} +(7.53020 - 1.96145i) q^{87} -3.09310 q^{88} +(9.46532 - 5.46481i) q^{89} +(-1.96593 - 0.0274608i) q^{90} +(6.47058 - 7.00939i) q^{91} +1.43530i q^{92} +(7.56364 + 2.08339i) q^{93} +9.28897i q^{94} +(3.70024 + 2.13634i) q^{95} +(-0.436593 - 1.67612i) q^{96} +(8.57395 + 14.8505i) q^{97} +(-6.94013 + 0.913591i) q^{98} +(-0.129604 + 9.27839i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 17q^{2} + 3q^{3} - 17q^{4} + 9q^{5} - 6q^{6} + 5q^{7} + 34q^{8} + 7q^{9} + O(q^{10}) \) \( 34q - 17q^{2} + 3q^{3} - 17q^{4} + 9q^{5} - 6q^{6} + 5q^{7} + 34q^{8} + 7q^{9} - 18q^{11} + 3q^{12} - 8q^{13} - 4q^{14} - 17q^{15} - 17q^{16} + 6q^{17} - 11q^{18} - 10q^{19} - 9q^{20} - 4q^{21} + 9q^{22} + 6q^{23} + 3q^{24} + 16q^{25} + 13q^{26} + 18q^{27} - q^{28} + 27q^{29} + 13q^{30} + q^{31} - 17q^{32} + 21q^{33} - 12q^{34} - 3q^{35} + 4q^{36} + 6q^{37} + 5q^{38} + 20q^{39} + 9q^{40} + 3q^{41} + 20q^{42} - 3q^{43} + 9q^{44} - 6q^{46} - 27q^{47} - 6q^{48} - 5q^{49} + 16q^{50} + 24q^{51} - 5q^{52} + 21q^{53} - 18q^{54} + 57q^{55} + 5q^{56} - 17q^{57} - 6q^{59} + 4q^{60} + q^{62} - 21q^{63} + 34q^{64} + 33q^{65} - 21q^{66} + 6q^{68} - 30q^{69} + 3q^{70} - 15q^{71} + 7q^{72} + 19q^{73} - 6q^{74} - 63q^{75} + 5q^{76} - 9q^{77} - 10q^{78} - 9q^{79} - 5q^{81} - 16q^{84} - 42q^{85} - 3q^{86} - 75q^{87} - 18q^{88} - 18q^{89} - 9q^{90} - 27q^{91} + 25q^{93} - 3q^{95} + 3q^{96} - 19q^{97} + 7q^{98} - 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −1.23327 + 1.21616i −0.712028 + 0.702151i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.567570 + 0.327687i 0.253825 + 0.146546i 0.621515 0.783403i \(-0.286518\pi\)
−0.367689 + 0.929949i \(0.619851\pi\)
\(6\) 1.66986 + 0.459961i 0.681718 + 0.187778i
\(7\) −2.19987 + 1.46989i −0.831473 + 0.555565i
\(8\) 1.00000 0.353553
\(9\) 0.0419009 2.99971i 0.0139670 0.999902i
\(10\) 0.655374i 0.207247i
\(11\) −3.09310 −0.932604 −0.466302 0.884626i \(-0.654414\pi\)
−0.466302 + 0.884626i \(0.654414\pi\)
\(12\) −0.436593 1.67612i −0.126034 0.483855i
\(13\) −3.50535 + 0.844105i −0.972209 + 0.234113i
\(14\) 2.37289 + 1.17020i 0.634183 + 0.312750i
\(15\) −1.09849 + 0.286132i −0.283628 + 0.0738789i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.51142 6.08195i 0.851644 1.47509i −0.0280801 0.999606i \(-0.508939\pi\)
0.879724 0.475485i \(-0.157727\pi\)
\(18\) −2.61877 + 1.46357i −0.617251 + 0.344966i
\(19\) 6.51944 1.49566 0.747831 0.663889i \(-0.231095\pi\)
0.747831 + 0.663889i \(0.231095\pi\)
\(20\) −0.567570 + 0.327687i −0.126913 + 0.0732730i
\(21\) 0.925413 4.48816i 0.201942 0.979398i
\(22\) 1.54655 + 2.67870i 0.329725 + 0.571101i
\(23\) 1.24301 0.717651i 0.259185 0.149641i −0.364778 0.931095i \(-0.618855\pi\)
0.623963 + 0.781454i \(0.285522\pi\)
\(24\) −1.23327 + 1.21616i −0.251740 + 0.248248i
\(25\) −2.28524 3.95816i −0.457049 0.791631i
\(26\) 2.48369 + 2.61367i 0.487092 + 0.512583i
\(27\) 3.59645 + 3.75040i 0.692138 + 0.721765i
\(28\) −0.173023 2.64009i −0.0326982 0.498930i
\(29\) −3.89073 2.24631i −0.722491 0.417130i 0.0931780 0.995649i \(-0.470297\pi\)
−0.815669 + 0.578519i \(0.803631\pi\)
\(30\) 0.797041 + 0.808252i 0.145519 + 0.147566i
\(31\) −2.26475 3.92266i −0.406761 0.704531i 0.587763 0.809033i \(-0.300009\pi\)
−0.994525 + 0.104502i \(0.966675\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 3.81462 3.76171i 0.664040 0.654829i
\(34\) −7.02284 −1.20441
\(35\) −1.73024 + 0.113395i −0.292465 + 0.0191672i
\(36\) 2.57687 + 1.53614i 0.429479 + 0.256023i
\(37\) 2.56676 1.48192i 0.421972 0.243626i −0.273949 0.961744i \(-0.588330\pi\)
0.695921 + 0.718119i \(0.254996\pi\)
\(38\) −3.25972 5.64600i −0.528796 0.915902i
\(39\) 3.29647 5.30408i 0.527858 0.849333i
\(40\) 0.567570 + 0.327687i 0.0897408 + 0.0518119i
\(41\) −7.52039 4.34190i −1.17449 0.678091i −0.219755 0.975555i \(-0.570526\pi\)
−0.954733 + 0.297465i \(0.903859\pi\)
\(42\) −4.34957 + 1.44265i −0.671153 + 0.222606i
\(43\) −0.0380219 0.0658559i −0.00579829 0.0100429i 0.863112 0.505013i \(-0.168512\pi\)
−0.868910 + 0.494970i \(0.835179\pi\)
\(44\) 1.54655 2.67870i 0.233151 0.403829i
\(45\) 1.00675 1.68881i 0.150077 0.251754i
\(46\) −1.24301 0.717651i −0.183272 0.105812i
\(47\) −8.04448 4.64448i −1.17341 0.677468i −0.218928 0.975741i \(-0.570256\pi\)
−0.954480 + 0.298273i \(0.903589\pi\)
\(48\) 1.66986 + 0.459961i 0.241024 + 0.0663896i
\(49\) 2.67887 6.46712i 0.382696 0.923874i
\(50\) −2.28524 + 3.95816i −0.323182 + 0.559768i
\(51\) 3.06612 + 11.7711i 0.429343 + 1.64829i
\(52\) 1.02166 3.45778i 0.141679 0.479507i
\(53\) −9.68544 + 5.59189i −1.33040 + 0.768105i −0.985360 0.170484i \(-0.945467\pi\)
−0.345037 + 0.938589i \(0.612133\pi\)
\(54\) 1.44972 4.98982i 0.197281 0.679029i
\(55\) −1.75555 1.01357i −0.236718 0.136669i
\(56\) −2.19987 + 1.46989i −0.293970 + 0.196422i
\(57\) −8.04022 + 7.92869i −1.06495 + 1.05018i
\(58\) 4.49263i 0.589911i
\(59\) 6.13025 + 3.53930i 0.798091 + 0.460778i 0.842803 0.538222i \(-0.180904\pi\)
−0.0447121 + 0.999000i \(0.514237\pi\)
\(60\) 0.301446 1.09438i 0.0389165 0.141284i
\(61\) 15.3529i 1.96574i −0.184299 0.982870i \(-0.559001\pi\)
0.184299 0.982870i \(-0.440999\pi\)
\(62\) −2.26475 + 3.92266i −0.287624 + 0.498179i
\(63\) 4.31705 + 6.66056i 0.543897 + 0.839152i
\(64\) 1.00000 0.125000
\(65\) −2.26614 0.669569i −0.281080 0.0830498i
\(66\) −5.16504 1.42270i −0.635773 0.175123i
\(67\) 3.99636i 0.488233i 0.969746 + 0.244116i \(0.0784979\pi\)
−0.969746 + 0.244116i \(0.921502\pi\)
\(68\) 3.51142 + 6.08195i 0.425822 + 0.737545i
\(69\) −0.660182 + 2.39676i −0.0794766 + 0.288535i
\(70\) 0.963325 + 1.44174i 0.115139 + 0.172321i
\(71\) 0.469521 + 0.813235i 0.0557219 + 0.0965132i 0.892541 0.450967i \(-0.148921\pi\)
−0.836819 + 0.547480i \(0.815587\pi\)
\(72\) 0.0419009 2.99971i 0.00493807 0.353519i
\(73\) 5.44642 + 9.43348i 0.637456 + 1.10411i 0.985989 + 0.166809i \(0.0533464\pi\)
−0.348534 + 0.937296i \(0.613320\pi\)
\(74\) −2.56676 1.48192i −0.298379 0.172269i
\(75\) 7.63208 + 2.10224i 0.881276 + 0.242746i
\(76\) −3.25972 + 5.64600i −0.373915 + 0.647641i
\(77\) 6.80442 4.54650i 0.775435 0.518122i
\(78\) −6.24170 0.202785i −0.706734 0.0229609i
\(79\) −1.40194 + 2.42822i −0.157730 + 0.273197i −0.934050 0.357143i \(-0.883751\pi\)
0.776320 + 0.630339i \(0.217084\pi\)
\(80\) 0.655374i 0.0732730i
\(81\) −8.99649 0.251381i −0.999610 0.0279312i
\(82\) 8.68380i 0.958965i
\(83\) 7.24087i 0.794789i −0.917648 0.397394i \(-0.869915\pi\)
0.917648 0.397394i \(-0.130085\pi\)
\(84\) 3.42416 + 3.04551i 0.373606 + 0.332293i
\(85\) 3.98595 2.30129i 0.432337 0.249610i
\(86\) −0.0380219 + 0.0658559i −0.00410001 + 0.00710143i
\(87\) 7.53020 1.96145i 0.807322 0.210290i
\(88\) −3.09310 −0.329725
\(89\) 9.46532 5.46481i 1.00332 0.579268i 0.0940927 0.995563i \(-0.470005\pi\)
0.909230 + 0.416295i \(0.136672\pi\)
\(90\) −1.96593 0.0274608i −0.207227 0.00289462i
\(91\) 6.47058 7.00939i 0.678302 0.734784i
\(92\) 1.43530i 0.149641i
\(93\) 7.56364 + 2.08339i 0.784313 + 0.216038i
\(94\) 9.28897i 0.958084i
\(95\) 3.70024 + 2.13634i 0.379637 + 0.219183i
\(96\) −0.436593 1.67612i −0.0445596 0.171069i
\(97\) 8.57395 + 14.8505i 0.870553 + 1.50784i 0.861426 + 0.507883i \(0.169572\pi\)
0.00912654 + 0.999958i \(0.497095\pi\)
\(98\) −6.94013 + 0.913591i −0.701059 + 0.0922866i
\(99\) −0.129604 + 9.27839i −0.0130256 + 0.932513i
\(100\) 4.57049 0.457049
\(101\) −7.44863 −0.741166 −0.370583 0.928799i \(-0.620842\pi\)
−0.370583 + 0.928799i \(0.620842\pi\)
\(102\) 8.66104 8.54090i 0.857571 0.845675i
\(103\) −15.3456 8.85976i −1.51204 0.872978i −0.999901 0.0140769i \(-0.995519\pi\)
−0.512141 0.858901i \(-0.671148\pi\)
\(104\) −3.50535 + 0.844105i −0.343728 + 0.0827713i
\(105\) 1.99595 2.24410i 0.194785 0.219002i
\(106\) 9.68544 + 5.59189i 0.940733 + 0.543132i
\(107\) −15.2360 + 8.79649i −1.47292 + 0.850389i −0.999536 0.0304688i \(-0.990300\pi\)
−0.473381 + 0.880858i \(0.656967\pi\)
\(108\) −5.04617 + 1.23942i −0.485568 + 0.119263i
\(109\) 8.31249 4.79922i 0.796192 0.459682i −0.0459460 0.998944i \(-0.514630\pi\)
0.842138 + 0.539262i \(0.181297\pi\)
\(110\) 2.02714i 0.193280i
\(111\) −1.36325 + 4.94919i −0.129394 + 0.469757i
\(112\) 2.37289 + 1.17020i 0.224217 + 0.110574i
\(113\) −2.25506 + 1.30196i −0.212138 + 0.122478i −0.602305 0.798266i \(-0.705751\pi\)
0.390166 + 0.920744i \(0.372417\pi\)
\(114\) 10.8866 + 2.99869i 1.01962 + 0.280853i
\(115\) 0.940659 0.0877169
\(116\) 3.89073 2.24631i 0.361245 0.208565i
\(117\) 2.38519 + 10.5504i 0.220511 + 0.975384i
\(118\) 7.07861i 0.651639i
\(119\) 1.21511 + 18.5409i 0.111389 + 1.69964i
\(120\) −1.09849 + 0.286132i −0.100278 + 0.0261201i
\(121\) −1.43275 −0.130250
\(122\) −13.2960 + 7.67646i −1.20377 + 0.694994i
\(123\) 14.5551 3.79128i 1.31239 0.341849i
\(124\) 4.52950 0.406761
\(125\) 6.27225i 0.561007i
\(126\) 3.60969 7.06896i 0.321577 0.629753i
\(127\) −3.11947 + 5.40309i −0.276808 + 0.479446i −0.970590 0.240739i \(-0.922610\pi\)
0.693781 + 0.720186i \(0.255943\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0.126983 + 0.0349772i 0.0111802 + 0.00307957i
\(130\) 0.553204 + 2.29732i 0.0485192 + 0.201488i
\(131\) 1.86046 3.22241i 0.162549 0.281543i −0.773233 0.634122i \(-0.781362\pi\)
0.935782 + 0.352579i \(0.114695\pi\)
\(132\) 1.35042 + 5.18441i 0.117539 + 0.451245i
\(133\) −14.3419 + 9.58283i −1.24360 + 0.830937i
\(134\) 3.46095 1.99818i 0.298980 0.172616i
\(135\) 0.812284 + 3.30713i 0.0699102 + 0.284632i
\(136\) 3.51142 6.08195i 0.301102 0.521523i
\(137\) −3.46312 + 5.99830i −0.295874 + 0.512469i −0.975188 0.221379i \(-0.928944\pi\)
0.679314 + 0.733848i \(0.262278\pi\)
\(138\) 2.40574 0.626643i 0.204790 0.0533434i
\(139\) 2.27775 1.31506i 0.193196 0.111542i −0.400282 0.916392i \(-0.631088\pi\)
0.593478 + 0.804850i \(0.297754\pi\)
\(140\) 0.766920 1.55513i 0.0648165 0.131433i
\(141\) 15.5694 4.05550i 1.31118 0.341535i
\(142\) 0.469521 0.813235i 0.0394014 0.0682451i
\(143\) 10.8424 2.61090i 0.906686 0.218334i
\(144\) −2.61877 + 1.46357i −0.218231 + 0.121964i
\(145\) −1.47218 2.54988i −0.122258 0.211756i
\(146\) 5.44642 9.43348i 0.450749 0.780720i
\(147\) 4.56130 + 11.2336i 0.376210 + 0.926535i
\(148\) 2.96384i 0.243626i
\(149\) −6.06396 −0.496779 −0.248390 0.968660i \(-0.579901\pi\)
−0.248390 + 0.968660i \(0.579901\pi\)
\(150\) −1.99544 7.66069i −0.162927 0.625493i
\(151\) 0.715824 0.413281i 0.0582530 0.0336324i −0.470591 0.882352i \(-0.655959\pi\)
0.528844 + 0.848719i \(0.322626\pi\)
\(152\) 6.51944 0.528796
\(153\) −18.0969 10.7881i −1.46305 0.872163i
\(154\) −7.33959 3.61955i −0.591441 0.291671i
\(155\) 2.96852i 0.238437i
\(156\) 2.94524 + 5.50687i 0.235808 + 0.440902i
\(157\) 5.69728 3.28932i 0.454692 0.262517i −0.255118 0.966910i \(-0.582114\pi\)
0.709810 + 0.704393i \(0.248781\pi\)
\(158\) 2.80387 0.223064
\(159\) 5.14410 18.6754i 0.407954 1.48105i
\(160\) −0.567570 + 0.327687i −0.0448704 + 0.0259059i
\(161\) −1.67959 + 3.40582i −0.132370 + 0.268416i
\(162\) 4.28054 + 7.91688i 0.336311 + 0.622009i
\(163\) 4.46249i 0.349529i −0.984610 0.174765i \(-0.944084\pi\)
0.984610 0.174765i \(-0.0559165\pi\)
\(164\) 7.52039 4.34190i 0.587244 0.339045i
\(165\) 3.39773 0.885033i 0.264513 0.0688997i
\(166\) −6.27078 + 3.62043i −0.486707 + 0.281000i
\(167\) 1.12359 + 0.648707i 0.0869463 + 0.0501985i 0.542843 0.839834i \(-0.317348\pi\)
−0.455896 + 0.890033i \(0.650681\pi\)
\(168\) 0.925413 4.48816i 0.0713971 0.346269i
\(169\) 11.5750 5.91777i 0.890383 0.455213i
\(170\) −3.98595 2.30129i −0.305709 0.176501i
\(171\) 0.273170 19.5564i 0.0208899 1.49552i
\(172\) 0.0760439 0.00579829
\(173\) 12.6653 0.962927 0.481464 0.876466i \(-0.340105\pi\)
0.481464 + 0.876466i \(0.340105\pi\)
\(174\) −5.46376 5.54062i −0.414207 0.420033i
\(175\) 10.8453 + 5.34839i 0.819826 + 0.404300i
\(176\) 1.54655 + 2.67870i 0.116575 + 0.201915i
\(177\) −11.8646 + 3.09047i −0.891799 + 0.232294i
\(178\) −9.46532 5.46481i −0.709456 0.409605i
\(179\) 14.5215i 1.08539i 0.839929 + 0.542696i \(0.182596\pi\)
−0.839929 + 0.542696i \(0.817404\pi\)
\(180\) 0.959183 + 1.71628i 0.0714933 + 0.127924i
\(181\) 3.57257i 0.265547i 0.991146 + 0.132773i \(0.0423883\pi\)
−0.991146 + 0.132773i \(0.957612\pi\)
\(182\) −9.30560 2.09900i −0.689777 0.155588i
\(183\) 18.6716 + 18.9343i 1.38025 + 1.39966i
\(184\) 1.24301 0.717651i 0.0916358 0.0529059i
\(185\) 1.94242 0.142810
\(186\) −1.97755 7.59200i −0.145001 0.556672i
\(187\) −10.8612 + 18.8121i −0.794246 + 1.37568i
\(188\) 8.04448 4.64448i 0.586704 0.338734i
\(189\) −13.4244 2.96402i −0.976482 0.215601i
\(190\) 4.27267i 0.309972i
\(191\) 6.03573i 0.436730i −0.975867 0.218365i \(-0.929928\pi\)
0.975867 0.218365i \(-0.0700723\pi\)
\(192\) −1.23327 + 1.21616i −0.0890035 + 0.0877689i
\(193\) 23.3891i 1.68358i −0.539804 0.841791i \(-0.681501\pi\)
0.539804 0.841791i \(-0.318499\pi\)
\(194\) 8.57395 14.8505i 0.615574 1.06620i
\(195\) 3.60906 1.93023i 0.258450 0.138227i
\(196\) 4.26126 + 5.55353i 0.304375 + 0.396681i
\(197\) −7.90007 + 13.6833i −0.562857 + 0.974896i 0.434389 + 0.900725i \(0.356964\pi\)
−0.997246 + 0.0741708i \(0.976369\pi\)
\(198\) 8.10012 4.52695i 0.575650 0.321717i
\(199\) −21.2181 12.2503i −1.50411 0.868401i −0.999989 0.00477013i \(-0.998482\pi\)
−0.504125 0.863630i \(-0.668185\pi\)
\(200\) −2.28524 3.95816i −0.161591 0.279884i
\(201\) −4.86022 4.92858i −0.342813 0.347635i
\(202\) 3.72432 + 6.45070i 0.262042 + 0.453870i
\(203\) 11.8609 0.777327i 0.832475 0.0545577i
\(204\) −11.7272 3.23023i −0.821065 0.226161i
\(205\) −2.84557 4.92867i −0.198743 0.344233i
\(206\) 17.7195i 1.23458i
\(207\) −2.10066 3.75873i −0.146006 0.261250i
\(208\) 2.48369 + 2.61367i 0.172213 + 0.181225i
\(209\) −20.1653 −1.39486
\(210\) −2.94143 0.606491i −0.202978 0.0418519i
\(211\) −5.93332 + 10.2768i −0.408467 + 0.707485i −0.994718 0.102644i \(-0.967270\pi\)
0.586251 + 0.810129i \(0.300603\pi\)
\(212\) 11.1838i 0.768105i
\(213\) −1.56807 0.431923i −0.107442 0.0295949i
\(214\) 15.2360 + 8.79649i 1.04151 + 0.601316i
\(215\) 0.0498372i 0.00339887i
\(216\) 3.59645 + 3.75040i 0.244708 + 0.255183i
\(217\) 10.7480 + 5.30043i 0.729624 + 0.359817i
\(218\) −8.31249 4.79922i −0.562993 0.325044i
\(219\) −18.1895 5.01028i −1.22914 0.338563i
\(220\) 1.75555 1.01357i 0.118359 0.0683347i
\(221\) −7.17494 + 24.2834i −0.482639 + 1.63348i
\(222\) 4.96775 1.29399i 0.333414 0.0868469i
\(223\) −11.4114 + 19.7652i −0.764166 + 1.32358i 0.176520 + 0.984297i \(0.443516\pi\)
−0.940686 + 0.339278i \(0.889817\pi\)
\(224\) −0.173023 2.64009i −0.0115606 0.176398i
\(225\) −11.9691 + 6.68921i −0.797938 + 0.445947i
\(226\) 2.25506 + 1.30196i 0.150005 + 0.0866052i
\(227\) 9.25285 + 5.34214i 0.614134 + 0.354570i 0.774581 0.632474i \(-0.217961\pi\)
−0.160448 + 0.987044i \(0.551294\pi\)
\(228\) −2.84634 10.9274i −0.188504 0.723683i
\(229\) −1.86852 + 3.23637i −0.123475 + 0.213865i −0.921136 0.389241i \(-0.872737\pi\)
0.797661 + 0.603106i \(0.206071\pi\)
\(230\) −0.470330 0.814635i −0.0310126 0.0537154i
\(231\) −2.86239 + 13.8823i −0.188332 + 0.913390i
\(232\) −3.89073 2.24631i −0.255439 0.147478i
\(233\) 7.73067 + 4.46331i 0.506453 + 0.292401i 0.731375 0.681976i \(-0.238879\pi\)
−0.224921 + 0.974377i \(0.572212\pi\)
\(234\) 7.94432 7.34083i 0.519336 0.479885i
\(235\) −3.04387 5.27214i −0.198560 0.343917i
\(236\) −6.13025 + 3.53930i −0.399046 + 0.230389i
\(237\) −1.22415 4.69963i −0.0795171 0.305274i
\(238\) 15.4493 10.3228i 1.00143 0.669126i
\(239\) 2.27619 0.147234 0.0736172 0.997287i \(-0.476546\pi\)
0.0736172 + 0.997287i \(0.476546\pi\)
\(240\) 0.797041 + 0.808252i 0.0514488 + 0.0521724i
\(241\) −2.06620 + 3.57876i −0.133096 + 0.230528i −0.924868 0.380287i \(-0.875825\pi\)
0.791773 + 0.610816i \(0.209158\pi\)
\(242\) 0.716375 + 1.24080i 0.0460503 + 0.0797615i
\(243\) 11.4008 10.6312i 0.731362 0.681990i
\(244\) 13.2960 + 7.67646i 0.851191 + 0.491435i
\(245\) 3.63964 2.79272i 0.232528 0.178420i
\(246\) −10.5609 10.7095i −0.673339 0.682810i
\(247\) −22.8529 + 5.50309i −1.45410 + 0.350153i
\(248\) −2.26475 3.92266i −0.143812 0.249089i
\(249\) 8.80607 + 8.92993i 0.558062 + 0.565911i
\(250\) −5.43192 + 3.13612i −0.343545 + 0.198346i
\(251\) −3.75716 6.50759i −0.237150 0.410756i 0.722745 0.691114i \(-0.242880\pi\)
−0.959895 + 0.280359i \(0.909547\pi\)
\(252\) −7.92674 + 0.408396i −0.499338 + 0.0257265i
\(253\) −3.84474 + 2.21976i −0.241717 + 0.139555i
\(254\) 6.23895 0.391466
\(255\) −2.11701 + 7.68567i −0.132572 + 0.481296i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −12.6011 21.8257i −0.786034 1.36145i −0.928380 0.371633i \(-0.878798\pi\)
0.142346 0.989817i \(-0.454535\pi\)
\(258\) −0.0332002 0.127459i −0.00206696 0.00793524i
\(259\) −3.46829 + 7.03287i −0.215509 + 0.437001i
\(260\) 1.71293 1.62775i 0.106231 0.100949i
\(261\) −6.90131 + 11.5769i −0.427181 + 0.716594i
\(262\) −3.72092 −0.229879
\(263\) 19.9343i 1.22920i −0.788839 0.614600i \(-0.789318\pi\)
0.788839 0.614600i \(-0.210682\pi\)
\(264\) 3.81462 3.76171i 0.234774 0.231517i
\(265\) −7.32956 −0.450251
\(266\) 15.4699 + 7.62906i 0.948523 + 0.467768i
\(267\) −5.02719 + 18.2509i −0.307659 + 1.11694i
\(268\) −3.46095 1.99818i −0.211411 0.122058i
\(269\) 10.1070 17.5059i 0.616235 1.06735i −0.373931 0.927456i \(-0.621990\pi\)
0.990166 0.139894i \(-0.0446763\pi\)
\(270\) 2.45792 2.35702i 0.149584 0.143444i
\(271\) −13.2263 22.9087i −0.803442 1.39160i −0.917338 0.398109i \(-0.869667\pi\)
0.113896 0.993493i \(-0.463667\pi\)
\(272\) −7.02284 −0.425822
\(273\) 0.544586 + 16.5137i 0.0329598 + 0.999457i
\(274\) 6.92624 0.418429
\(275\) 7.06848 + 12.2430i 0.426245 + 0.738278i
\(276\) −1.74556 1.77011i −0.105070 0.106548i
\(277\) −1.68490 + 2.91833i −0.101236 + 0.175346i −0.912194 0.409758i \(-0.865613\pi\)
0.810958 + 0.585104i \(0.198946\pi\)
\(278\) −2.27775 1.31506i −0.136610 0.0788719i
\(279\) −11.8617 + 6.62923i −0.710144 + 0.396881i
\(280\) −1.73024 + 0.113395i −0.103402 + 0.00677662i
\(281\) −20.1579 −1.20252 −0.601259 0.799055i \(-0.705334\pi\)
−0.601259 + 0.799055i \(0.705334\pi\)
\(282\) −11.2969 11.4558i −0.672720 0.682182i
\(283\) 6.37936i 0.379214i −0.981860 0.189607i \(-0.939279\pi\)
0.981860 0.189607i \(-0.0607214\pi\)
\(284\) −0.939043 −0.0557219
\(285\) −7.16152 + 1.86542i −0.424212 + 0.110498i
\(286\) −7.68230 8.08434i −0.454264 0.478037i
\(287\) 22.9260 1.50249i 1.35328 0.0886895i
\(288\) 2.57687 + 1.53614i 0.151844 + 0.0905180i
\(289\) −16.1601 27.9901i −0.950594 1.64648i
\(290\) −1.47218 + 2.54988i −0.0864492 + 0.149734i
\(291\) −28.6346 7.88736i −1.67859 0.462365i
\(292\) −10.8928 −0.637456
\(293\) 5.30689 3.06394i 0.310032 0.178997i −0.336909 0.941537i \(-0.609381\pi\)
0.646941 + 0.762540i \(0.276048\pi\)
\(294\) 7.44796 9.56702i 0.434374 0.557960i
\(295\) 2.31957 + 4.01761i 0.135050 + 0.233914i
\(296\) 2.56676 1.48192i 0.149190 0.0861347i
\(297\) −11.1242 11.6004i −0.645491 0.673121i
\(298\) 3.03198 + 5.25155i 0.175638 + 0.304214i
\(299\) −3.75141 + 3.56485i −0.216949 + 0.206160i
\(300\) −5.63663 + 5.55845i −0.325431 + 0.320917i
\(301\) 0.180444 + 0.0889867i 0.0104006 + 0.00512911i
\(302\) −0.715824 0.413281i −0.0411911 0.0237817i
\(303\) 9.18616 9.05874i 0.527731 0.520411i
\(304\) −3.25972 5.64600i −0.186958 0.323820i
\(305\) 5.03095 8.71387i 0.288072 0.498955i
\(306\) −0.294263 + 21.0665i −0.0168219 + 1.20429i
\(307\) −5.38161 −0.307145 −0.153572 0.988137i \(-0.549078\pi\)
−0.153572 + 0.988137i \(0.549078\pi\)
\(308\) 0.535176 + 8.16605i 0.0304945 + 0.465304i
\(309\) 29.7001 7.73622i 1.68958 0.440098i
\(310\) −2.57081 + 1.48426i −0.146012 + 0.0843002i
\(311\) 3.15077 + 5.45729i 0.178664 + 0.309454i 0.941423 0.337228i \(-0.109489\pi\)
−0.762759 + 0.646682i \(0.776156\pi\)
\(312\) 3.29647 5.30408i 0.186626 0.300285i
\(313\) −9.08951 5.24783i −0.513770 0.296625i 0.220612 0.975362i \(-0.429194\pi\)
−0.734382 + 0.678737i \(0.762528\pi\)
\(314\) −5.69728 3.28932i −0.321516 0.185627i
\(315\) 0.267652 + 5.19498i 0.0150805 + 0.292704i
\(316\) −1.40194 2.42822i −0.0788651 0.136598i
\(317\) −0.443737 + 0.768575i −0.0249227 + 0.0431674i −0.878218 0.478261i \(-0.841267\pi\)
0.853295 + 0.521428i \(0.174601\pi\)
\(318\) −18.7454 + 4.88276i −1.05119 + 0.273812i
\(319\) 12.0344 + 6.94807i 0.673798 + 0.389017i
\(320\) 0.567570 + 0.327687i 0.0317282 + 0.0183183i
\(321\) 8.09208 29.3778i 0.451656 1.63971i
\(322\) 3.78932 0.248340i 0.211171 0.0138394i
\(323\) 22.8925 39.6509i 1.27377 2.20624i
\(324\) 4.71595 7.66550i 0.261997 0.425861i
\(325\) 11.3517 + 11.9457i 0.629678 + 0.662631i
\(326\) −3.86463 + 2.23125i −0.214042 + 0.123577i
\(327\) −4.41490 + 16.0281i −0.244145 + 0.886353i
\(328\) −7.52039 4.34190i −0.415244 0.239741i
\(329\) 24.5237 1.60720i 1.35203 0.0886080i
\(330\) −2.46532 2.50000i −0.135712 0.137621i
\(331\) 19.3126i 1.06152i −0.847523 0.530759i \(-0.821907\pi\)
0.847523 0.530759i \(-0.178093\pi\)
\(332\) 6.27078 + 3.62043i 0.344154 + 0.198697i
\(333\) −4.33777 7.76161i −0.237708 0.425334i
\(334\) 1.29741i 0.0709914i
\(335\) −1.30955 + 2.26821i −0.0715486 + 0.123926i
\(336\) −4.34957 + 1.44265i −0.237288 + 0.0787031i
\(337\) −1.76473 −0.0961307 −0.0480654 0.998844i \(-0.515306\pi\)
−0.0480654 + 0.998844i \(0.515306\pi\)
\(338\) −10.9124 7.06534i −0.593558 0.384304i
\(339\) 1.19770 4.34819i 0.0650502 0.236161i
\(340\) 4.60258i 0.249610i
\(341\) 7.00509 + 12.1332i 0.379347 + 0.657048i
\(342\) −17.0729 + 9.54163i −0.923198 + 0.515952i
\(343\) 3.61276 + 18.1645i 0.195071 + 0.980789i
\(344\) −0.0380219 0.0658559i −0.00205001 0.00355071i
\(345\) −1.16009 + 1.14399i −0.0624569 + 0.0615906i
\(346\) −6.33267 10.9685i −0.340446 0.589670i
\(347\) 19.6675 + 11.3550i 1.05580 + 0.609569i 0.924269 0.381742i \(-0.124676\pi\)
0.131536 + 0.991311i \(0.458009\pi\)
\(348\) −2.06643 + 7.50207i −0.110772 + 0.402153i
\(349\) 0.756268 1.30990i 0.0404821 0.0701171i −0.845074 0.534649i \(-0.820444\pi\)
0.885557 + 0.464532i \(0.153777\pi\)
\(350\) −0.790798 12.0665i −0.0422699 0.644981i
\(351\) −15.7726 10.1107i −0.841877 0.539669i
\(352\) 1.54655 2.67870i 0.0824313 0.142775i
\(353\) 32.6049i 1.73538i 0.497102 + 0.867692i \(0.334397\pi\)
−0.497102 + 0.867692i \(0.665603\pi\)
\(354\) 8.60873 + 8.72982i 0.457549 + 0.463985i
\(355\) 0.615424i 0.0326633i
\(356\) 10.9296i 0.579268i
\(357\) −24.0473 21.3881i −1.27272 1.13198i
\(358\) 12.5760 7.26077i 0.664664 0.383744i
\(359\) 3.19150 5.52784i 0.168441 0.291748i −0.769431 0.638730i \(-0.779460\pi\)
0.937872 + 0.346982i \(0.112793\pi\)
\(360\) 1.00675 1.68881i 0.0530602 0.0890084i
\(361\) 23.5031 1.23700
\(362\) 3.09394 1.78628i 0.162614 0.0938850i
\(363\) 1.76696 1.74246i 0.0927416 0.0914552i
\(364\) 2.83502 + 9.10839i 0.148595 + 0.477409i
\(365\) 7.13889i 0.373666i
\(366\) 7.06174 25.6373i 0.369123 1.34008i
\(367\) 12.0233i 0.627609i 0.949488 + 0.313804i \(0.101604\pi\)
−0.949488 + 0.313804i \(0.898396\pi\)
\(368\) −1.24301 0.717651i −0.0647963 0.0374101i
\(369\) −13.3395 + 22.3770i −0.694429 + 1.16490i
\(370\) −0.971210 1.68219i −0.0504908 0.0874527i
\(371\) 13.0873 26.5379i 0.679458 1.37778i
\(372\) −5.58609 + 5.50861i −0.289625 + 0.285608i
\(373\) −21.7112 −1.12416 −0.562081 0.827082i \(-0.689999\pi\)
−0.562081 + 0.827082i \(0.689999\pi\)
\(374\) 21.7223 1.12323
\(375\) 7.62807 + 7.73536i 0.393912 + 0.399452i
\(376\) −8.04448 4.64448i −0.414863 0.239521i
\(377\) 15.5345 + 4.58994i 0.800068 + 0.236394i
\(378\) 4.14528 + 13.1079i 0.213210 + 0.674197i
\(379\) −2.54234 1.46782i −0.130591 0.0753970i 0.433281 0.901259i \(-0.357356\pi\)
−0.563873 + 0.825862i \(0.690689\pi\)
\(380\) −3.70024 + 2.13634i −0.189818 + 0.109592i
\(381\) −2.72388 10.4572i −0.139549 0.535740i
\(382\) −5.22709 + 3.01786i −0.267441 + 0.154407i
\(383\) 30.1694i 1.54159i 0.637085 + 0.770793i \(0.280140\pi\)
−0.637085 + 0.770793i \(0.719860\pi\)
\(384\) 1.66986 + 0.459961i 0.0852147 + 0.0234723i
\(385\) 5.35181 0.350741i 0.272754 0.0178754i
\(386\) −20.2555 + 11.6945i −1.03098 + 0.595236i
\(387\) −0.199142 + 0.111295i −0.0101229 + 0.00565746i
\(388\) −17.1479 −0.870553
\(389\) 19.1621 11.0633i 0.971559 0.560930i 0.0718481 0.997416i \(-0.477110\pi\)
0.899711 + 0.436485i \(0.143777\pi\)
\(390\) −3.47616 2.16042i −0.176022 0.109397i
\(391\) 10.0799i 0.509762i
\(392\) 2.67887 6.46712i 0.135303 0.326639i
\(393\) 1.62453 + 6.23671i 0.0819465 + 0.314601i
\(394\) 15.8001 0.795999
\(395\) −1.59139 + 0.918792i −0.0800718 + 0.0462295i
\(396\) −7.97052 4.75143i −0.400534 0.238769i
\(397\) 13.0811 0.656519 0.328260 0.944588i \(-0.393538\pi\)
0.328260 + 0.944588i \(0.393538\pi\)
\(398\) 24.5006i 1.22810i
\(399\) 6.03317 29.2603i 0.302036 1.46485i
\(400\) −2.28524 + 3.95816i −0.114262 + 0.197908i
\(401\) 3.46329 + 5.99859i 0.172948 + 0.299555i 0.939449 0.342688i \(-0.111337\pi\)
−0.766501 + 0.642243i \(0.778004\pi\)
\(402\) −1.83817 + 6.67336i −0.0916795 + 0.332837i
\(403\) 11.2499 + 11.8386i 0.560397 + 0.589724i
\(404\) 3.72432 6.45070i 0.185292 0.320934i
\(405\) −5.02377 3.09071i −0.249633 0.153579i
\(406\) −6.60365 9.88321i −0.327734 0.490495i
\(407\) −7.93923 + 4.58372i −0.393533 + 0.227206i
\(408\) 3.06612 + 11.7711i 0.151796 + 0.582758i
\(409\) 16.3397 28.3011i 0.807944 1.39940i −0.106342 0.994330i \(-0.533914\pi\)
0.914286 0.405070i \(-0.132753\pi\)
\(410\) −2.84557 + 4.92867i −0.140533 + 0.243410i
\(411\) −3.02395 11.6092i −0.149160 0.572641i
\(412\) 15.3456 8.85976i 0.756021 0.436489i
\(413\) −18.6881 + 1.22476i −0.919584 + 0.0602665i
\(414\) −2.20483 + 3.69859i −0.108361 + 0.181776i
\(415\) 2.37274 4.10970i 0.116473 0.201737i
\(416\) 1.02166 3.45778i 0.0500910 0.169531i
\(417\) −1.20975 + 4.39192i −0.0592417 + 0.215073i
\(418\) 10.0826 + 17.4636i 0.493158 + 0.854174i
\(419\) 3.98319 6.89908i 0.194591 0.337042i −0.752175 0.658963i \(-0.770995\pi\)
0.946766 + 0.321921i \(0.104329\pi\)
\(420\) 0.945476 + 2.85059i 0.0461345 + 0.139095i
\(421\) 14.1689i 0.690552i 0.938501 + 0.345276i \(0.112215\pi\)
−0.938501 + 0.345276i \(0.887785\pi\)
\(422\) 11.8666 0.577659
\(423\) −14.2692 + 23.9365i −0.693791 + 1.16383i
\(424\) −9.68544 + 5.59189i −0.470366 + 0.271566i
\(425\) −32.0978 −1.55697
\(426\) 0.409979 + 1.57395i 0.0198636 + 0.0762582i
\(427\) 22.5670 + 33.7745i 1.09210 + 1.63446i
\(428\) 17.5930i 0.850389i
\(429\) −10.1963 + 16.4060i −0.492282 + 0.792091i
\(430\) −0.0431603 + 0.0249186i −0.00208137 + 0.00120168i
\(431\) −25.9443 −1.24969 −0.624845 0.780749i \(-0.714838\pi\)
−0.624845 + 0.780749i \(0.714838\pi\)
\(432\) 1.44972 4.98982i 0.0697495 0.240073i
\(433\) 14.7383 8.50919i 0.708280 0.408925i −0.102144 0.994770i \(-0.532570\pi\)
0.810424 + 0.585844i \(0.199237\pi\)
\(434\) −0.783707 11.9583i −0.0376191 0.574016i
\(435\) 4.91666 + 1.35429i 0.235736 + 0.0649331i
\(436\) 9.59843i 0.459682i
\(437\) 8.10372 4.67868i 0.387653 0.223812i
\(438\) 4.75574 + 18.2577i 0.227238 + 0.872389i
\(439\) 25.6542 14.8115i 1.22441 0.706912i 0.258554 0.965997i \(-0.416754\pi\)
0.965855 + 0.259084i \(0.0834208\pi\)
\(440\) −1.75555 1.01357i −0.0836926 0.0483199i
\(441\) −19.2872 8.30681i −0.918439 0.395562i
\(442\) 24.6175 5.92801i 1.17094 0.281967i
\(443\) −15.3962 8.88898i −0.731494 0.422328i 0.0874748 0.996167i \(-0.472120\pi\)
−0.818968 + 0.573839i \(0.805454\pi\)
\(444\) −3.60450 3.65520i −0.171062 0.173468i
\(445\) 7.16298 0.339558
\(446\) 22.8229 1.08069
\(447\) 7.47850 7.37476i 0.353721 0.348814i
\(448\) −2.19987 + 1.46989i −0.103934 + 0.0694456i
\(449\) −11.2383 19.4653i −0.530369 0.918626i −0.999372 0.0354297i \(-0.988720\pi\)
0.469003 0.883197i \(-0.344613\pi\)
\(450\) 11.7776 + 7.02091i 0.555199 + 0.330969i
\(451\) 23.2613 + 13.4299i 1.09533 + 0.632390i
\(452\) 2.60392i 0.122478i
\(453\) −0.380186 + 1.38025i −0.0178627 + 0.0648496i
\(454\) 10.6843i 0.501438i
\(455\) 5.96940 1.85800i 0.279850 0.0871042i
\(456\) −8.04022 + 7.92869i −0.376518 + 0.371295i
\(457\) 22.9216 13.2338i 1.07223 0.619051i 0.143439 0.989659i \(-0.454184\pi\)
0.928790 + 0.370608i \(0.120851\pi\)
\(458\) 3.73704 0.174620
\(459\) 35.4384 8.70424i 1.65412 0.406279i
\(460\) −0.470330 + 0.814635i −0.0219292 + 0.0379826i
\(461\) −6.02929 + 3.48101i −0.280812 + 0.162127i −0.633791 0.773504i \(-0.718502\pi\)
0.352979 + 0.935631i \(0.385169\pi\)
\(462\) 13.4536 4.46226i 0.625920 0.207603i
\(463\) 10.3837i 0.482572i −0.970454 0.241286i \(-0.922431\pi\)
0.970454 0.241286i \(-0.0775692\pi\)
\(464\) 4.49263i 0.208565i
\(465\) 3.61020 + 3.66098i 0.167419 + 0.169774i
\(466\) 8.92661i 0.413517i
\(467\) 11.7463 20.3453i 0.543556 0.941467i −0.455140 0.890420i \(-0.650411\pi\)
0.998696 0.0510470i \(-0.0162558\pi\)
\(468\) −10.3295 3.20956i −0.477482 0.148362i
\(469\) −5.87419 8.79147i −0.271245 0.405953i
\(470\) −3.04387 + 5.27214i −0.140403 + 0.243186i
\(471\) −3.02592 + 10.9854i −0.139427 + 0.506182i
\(472\) 6.13025 + 3.53930i 0.282168 + 0.162910i
\(473\) 0.117606 + 0.203699i 0.00540751 + 0.00936608i
\(474\) −3.45793 + 3.40996i −0.158828 + 0.156625i
\(475\) −14.8985 25.8050i −0.683590 1.18401i
\(476\) −16.6644 8.21813i −0.763814 0.376678i
\(477\) 16.3682 + 29.2878i 0.749449 + 1.34100i
\(478\) −1.13809 1.97124i −0.0520552 0.0901623i
\(479\) 8.56011i 0.391121i 0.980692 + 0.195561i \(0.0626527\pi\)
−0.980692 + 0.195561i \(0.937347\pi\)
\(480\) 0.301446 1.09438i 0.0137591 0.0499515i
\(481\) −7.74649 + 7.36126i −0.353210 + 0.335644i
\(482\) 4.13240 0.188226
\(483\) −2.07064 6.24295i −0.0942174 0.284064i
\(484\) 0.716375 1.24080i 0.0325625 0.0563999i
\(485\) 11.2383i 0.510304i
\(486\) −14.9073 4.55780i −0.676207 0.206746i
\(487\) −15.2194 8.78693i −0.689657 0.398174i 0.113826 0.993501i \(-0.463689\pi\)
−0.803484 + 0.595327i \(0.797023\pi\)
\(488\) 15.3529i 0.694994i
\(489\) 5.42711 + 5.50345i 0.245422 + 0.248875i
\(490\) −4.23838 1.75566i −0.191471 0.0793127i
\(491\) 7.73222 + 4.46420i 0.348950 + 0.201467i 0.664223 0.747535i \(-0.268763\pi\)
−0.315273 + 0.949001i \(0.602096\pi\)
\(492\) −3.99421 + 14.5007i −0.180073 + 0.653744i
\(493\) −27.3240 + 15.7755i −1.23061 + 0.710493i
\(494\) 16.1923 + 17.0397i 0.728525 + 0.766651i
\(495\) −3.11397 + 5.22367i −0.139962 + 0.234786i
\(496\) −2.26475 + 3.92266i −0.101690 + 0.176133i
\(497\) −2.22825 1.09887i −0.0999506 0.0492910i
\(498\) 3.33051 12.0912i 0.149244 0.541822i
\(499\) 8.26926 + 4.77426i 0.370183 + 0.213725i 0.673538 0.739152i \(-0.264774\pi\)
−0.303355 + 0.952877i \(0.598107\pi\)
\(500\) 5.43192 + 3.13612i 0.242923 + 0.140252i
\(501\) −2.17463 + 0.566442i −0.0971551 + 0.0253068i
\(502\) −3.75716 + 6.50759i −0.167690 + 0.290448i
\(503\) 12.4146 + 21.5027i 0.553539 + 0.958757i 0.998016 + 0.0629667i \(0.0200562\pi\)
−0.444477 + 0.895790i \(0.646610\pi\)
\(504\) 4.31705 + 6.66056i 0.192297 + 0.296685i
\(505\) −4.22762 2.44082i −0.188127 0.108615i
\(506\) 3.84474 + 2.21976i 0.170920 + 0.0986806i
\(507\) −7.07808 + 21.3752i −0.314349 + 0.949308i
\(508\) −3.11947 5.40309i −0.138404 0.239723i
\(509\) 12.5079 7.22142i 0.554402 0.320084i −0.196494 0.980505i \(-0.562956\pi\)
0.750895 + 0.660421i \(0.229622\pi\)
\(510\) 7.71449 2.00946i 0.341603 0.0889802i
\(511\) −25.8476 12.7468i −1.14343 0.563886i
\(512\) 1.00000 0.0441942
\(513\) 23.4469 + 24.4505i 1.03520 + 1.07952i
\(514\) −12.6011 + 21.8257i −0.555810 + 0.962691i
\(515\) −5.80646 10.0571i −0.255863 0.443168i
\(516\) −0.0937825 + 0.0924817i −0.00412854 + 0.00407128i
\(517\) 24.8824 + 14.3658i 1.09433 + 0.631809i
\(518\) 7.82479 0.512811i 0.343801 0.0225316i
\(519\) −15.6197 + 15.4031i −0.685631 + 0.676121i
\(520\) −2.26614 0.669569i −0.0993766 0.0293625i
\(521\) 15.0954 + 26.1460i 0.661341 + 1.14548i 0.980264 + 0.197695i \(0.0633456\pi\)
−0.318923 + 0.947781i \(0.603321\pi\)
\(522\) 13.4766 + 0.188245i 0.589854 + 0.00823927i
\(523\) 13.5050 7.79711i 0.590532 0.340944i −0.174776 0.984608i \(-0.555920\pi\)
0.765308 + 0.643665i \(0.222587\pi\)
\(524\) 1.86046 + 3.22241i 0.0812745 + 0.140772i
\(525\) −19.8796 + 6.59361i −0.867619 + 0.287769i
\(526\) −17.2636 + 9.96713i −0.752728 + 0.434588i
\(527\) −31.8099 −1.38566
\(528\) −5.16504 1.42270i −0.224780 0.0619152i
\(529\) −10.4700 + 18.1345i −0.455215 + 0.788456i
\(530\) 3.66478 + 6.34758i 0.159188 + 0.275721i
\(531\) 10.8737 18.2407i 0.471880 0.791578i
\(532\) −1.12801 17.2119i −0.0489055 0.746230i
\(533\) 30.0266 + 8.87188i 1.30060 + 0.384284i
\(534\) 18.3194 4.77179i 0.792757 0.206496i
\(535\) −11.5300 −0.498485
\(536\) 3.99636i 0.172616i
\(537\) −17.6605 17.9090i −0.762109 0.772829i
\(538\) −20.2140 −0.871488
\(539\) −8.28601 + 20.0034i −0.356904 + 0.861609i
\(540\) −3.27020 0.950106i −0.140727 0.0408861i
\(541\) 36.0971 + 20.8407i 1.55194 + 0.896011i 0.997984 + 0.0634632i \(0.0202145\pi\)
0.553953 + 0.832548i \(0.313119\pi\)
\(542\) −13.2263 + 22.9087i −0.568119 + 0.984011i
\(543\) −4.34482 4.40594i −0.186454 0.189077i
\(544\) 3.51142 + 6.08195i 0.150551 + 0.260762i
\(545\) 6.29056 0.269458
\(546\) 14.0290 8.72849i 0.600387 0.373545i
\(547\) −0.933149 −0.0398986 −0.0199493 0.999801i \(-0.506350\pi\)
−0.0199493 + 0.999801i \(0.506350\pi\)
\(548\) −3.46312 5.99830i −0.147937 0.256235i
\(549\) −46.0543 0.643301i −1.96555 0.0274554i
\(550\) 7.06848 12.2430i 0.301401 0.522042i
\(551\) −25.3654 14.6447i −1.08060 0.623886i
\(552\) −0.660182 + 2.39676i −0.0280992 + 0.102013i
\(553\) −0.485134 7.40247i −0.0206300 0.314785i
\(554\) 3.36980 0.143169
\(555\) −2.39553 + 2.36230i −0.101684 + 0.100274i
\(556\) 2.63011i 0.111542i
\(557\) −33.5205 −1.42031 −0.710155 0.704045i \(-0.751375\pi\)
−0.710155 + 0.704045i \(0.751375\pi\)
\(558\) 11.6719 + 6.95795i 0.494113 + 0.294554i
\(559\) 0.188870 + 0.198754i 0.00798833 + 0.00840638i
\(560\) 0.963325 + 1.44174i 0.0407079 + 0.0609246i
\(561\) −9.48381 36.4093i −0.400407 1.53720i
\(562\) 10.0789 + 17.4572i 0.425154 + 0.736388i
\(563\) −1.93176 + 3.34590i −0.0814138 + 0.141013i −0.903857 0.427834i \(-0.859277\pi\)
0.822444 + 0.568847i \(0.192610\pi\)
\(564\) −4.27256 + 15.5113i −0.179907 + 0.653143i
\(565\) −1.70654 −0.0717948
\(566\) −5.52469 + 3.18968i −0.232220 + 0.134072i
\(567\) 20.1606 12.6708i 0.846667 0.532124i
\(568\) 0.469521 + 0.813235i 0.0197007 + 0.0341226i
\(569\) −23.3163 + 13.4617i −0.977469 + 0.564342i −0.901505 0.432769i \(-0.857537\pi\)
−0.0759636 + 0.997111i \(0.524203\pi\)
\(570\) 5.19626 + 5.26935i 0.217647 + 0.220709i
\(571\) 5.20460 + 9.01463i 0.217806 + 0.377250i 0.954137 0.299371i \(-0.0967768\pi\)
−0.736331 + 0.676621i \(0.763443\pi\)
\(572\) −3.16009 + 10.6952i −0.132130 + 0.447190i
\(573\) 7.34042 + 7.44367i 0.306651 + 0.310964i
\(574\) −12.7642 19.1032i −0.532767 0.797354i
\(575\) −5.68115 3.28001i −0.236920 0.136786i
\(576\) 0.0419009 2.99971i 0.00174587 0.124988i
\(577\) 10.2980 + 17.8366i 0.428711 + 0.742549i 0.996759 0.0804462i \(-0.0256345\pi\)
−0.568048 + 0.822995i \(0.692301\pi\)
\(578\) −16.1601 + 27.9901i −0.672172 + 1.16424i
\(579\) 28.4449 + 28.8450i 1.18213 + 1.19876i
\(580\) 2.94435 0.122258
\(581\) 10.6433 + 15.9290i 0.441556 + 0.660845i
\(582\) 7.48665 + 28.7420i 0.310332 + 1.19139i
\(583\) 29.9580 17.2963i 1.24073 0.716338i
\(584\) 5.44642 + 9.43348i 0.225375 + 0.390360i
\(585\) −2.10346 + 6.76969i −0.0869675 + 0.279892i
\(586\) −5.30689 3.06394i −0.219226 0.126570i
\(587\) −23.7246 13.6974i −0.979217 0.565351i −0.0771834 0.997017i \(-0.524593\pi\)
−0.902034 + 0.431666i \(0.857926\pi\)
\(588\) −12.0093 1.66662i −0.495254 0.0687301i
\(589\) −14.7649 25.5736i −0.608377 1.05374i
\(590\) 2.31957 4.01761i 0.0954951 0.165402i
\(591\) −6.89823 26.4830i −0.283755 1.08936i
\(592\) −2.56676 1.48192i −0.105493 0.0609065i
\(593\) 11.0590 + 6.38494i 0.454141 + 0.262198i 0.709577 0.704628i \(-0.248886\pi\)
−0.255437 + 0.966826i \(0.582219\pi\)
\(594\) −4.48411 + 15.4340i −0.183985 + 0.633265i
\(595\) −5.38595 + 10.9214i −0.220802 + 0.447736i
\(596\) 3.03198 5.25155i 0.124195 0.215112i
\(597\) 41.0660 10.6968i 1.68072 0.437790i
\(598\) 4.96295 + 1.46639i 0.202950 + 0.0599651i
\(599\) 29.5140 17.0399i 1.20591 0.696231i 0.244045 0.969764i \(-0.421525\pi\)
0.961863 + 0.273533i \(0.0881921\pi\)
\(600\) 7.63208 + 2.10224i 0.311578 + 0.0858237i
\(601\) 33.7422 + 19.4811i 1.37637 + 0.794649i 0.991721 0.128413i \(-0.0409882\pi\)
0.384652 + 0.923062i \(0.374322\pi\)
\(602\) −0.0131573 0.200763i −0.000536252 0.00818247i
\(603\) 11.9879 + 0.167451i 0.488185 + 0.00681913i
\(604\) 0.826563i 0.0336324i
\(605\) −0.813186 0.469493i −0.0330607 0.0190876i
\(606\) −12.4382 3.42608i −0.505266 0.139175i
\(607\) 0.976706i 0.0396433i −0.999804 0.0198216i \(-0.993690\pi\)
0.999804 0.0198216i \(-0.00630983\pi\)
\(608\) −3.25972 + 5.64600i −0.132199 + 0.228976i
\(609\) −13.6824 + 15.3835i −0.554437 + 0.623370i
\(610\) −10.0619 −0.407395
\(611\) 32.1192 + 9.49016i 1.29940 + 0.383931i
\(612\) 18.3912 10.2784i 0.743421 0.415479i
\(613\) 5.82682i 0.235343i 0.993053 + 0.117672i \(0.0375430\pi\)
−0.993053 + 0.117672i \(0.962457\pi\)
\(614\) 2.69080 + 4.66061i 0.108592 + 0.188087i
\(615\) 9.50340 + 2.61770i 0.383214 + 0.105556i
\(616\) 6.80442 4.54650i 0.274158 0.183184i
\(617\) −10.4203 18.0485i −0.419506 0.726606i 0.576384 0.817179i \(-0.304463\pi\)
−0.995890 + 0.0905731i \(0.971130\pi\)
\(618\) −21.5498 21.8529i −0.866860 0.879053i
\(619\) 3.21016 + 5.56015i 0.129027 + 0.223481i 0.923300 0.384080i \(-0.125481\pi\)
−0.794273 + 0.607561i \(0.792148\pi\)
\(620\) 2.57081 + 1.48426i 0.103246 + 0.0596093i
\(621\) 7.16190 + 2.08078i 0.287397 + 0.0834988i
\(622\) 3.15077 5.45729i 0.126334 0.218817i
\(623\) −12.7899 + 25.9348i −0.512415 + 1.03906i
\(624\) −6.24170 0.202785i −0.249868 0.00811791i
\(625\) −9.37088 + 16.2308i −0.374835 + 0.649234i
\(626\) 10.4957i 0.419491i
\(627\) 24.8692 24.5242i 0.993179 0.979403i
\(628\) 6.57865i 0.262517i
\(629\) 20.8145i 0.829930i
\(630\) 4.36516 2.82928i 0.173912 0.112721i
\(631\) −14.8774 + 8.58945i −0.592258 + 0.341941i −0.765990 0.642852i \(-0.777751\pi\)
0.173732 + 0.984793i \(0.444418\pi\)
\(632\) −1.40194 + 2.42822i −0.0557660 + 0.0965896i
\(633\) −5.18089 19.8900i −0.205922 0.790555i
\(634\) 0.887473 0.0352461
\(635\) −3.54104 + 2.04442i −0.140522 + 0.0811304i
\(636\) 13.6013 + 13.7926i 0.539326 + 0.546912i
\(637\) −3.93145 + 24.9308i −0.155770 + 0.987793i
\(638\) 13.8961i 0.550153i
\(639\) 2.45914 1.37435i 0.0972821 0.0543685i
\(640\) 0.655374i 0.0259059i
\(641\) −18.9400 10.9350i −0.748085 0.431907i 0.0769168 0.997038i \(-0.475492\pi\)
−0.825001 + 0.565131i \(0.808826\pi\)
\(642\) −29.4880 + 7.68097i −1.16380 + 0.303144i
\(643\) −4.78089 8.28074i −0.188540 0.326561i 0.756224 0.654313i \(-0.227042\pi\)
−0.944764 + 0.327753i \(0.893709\pi\)
\(644\) −2.10973 3.15748i −0.0831350 0.124422i
\(645\) 0.0606101 + 0.0614626i 0.00238652 + 0.00242009i
\(646\) −45.7849 −1.80138
\(647\) −32.6527 −1.28371 −0.641854 0.766827i \(-0.721835\pi\)
−0.641854 + 0.766827i \(0.721835\pi\)
\(648\) −8.99649 0.251381i −0.353415 0.00987517i
\(649\) −18.9615 10.9474i −0.744303 0.429724i
\(650\) 4.66948 15.8037i 0.183152 0.619873i
\(651\) −19.7014 + 6.53449i −0.772158 + 0.256107i
\(652\) 3.86463 + 2.23125i 0.151351 + 0.0873823i
\(653\) 33.1532 19.1410i 1.29738 0.749045i 0.317433 0.948281i \(-0.397179\pi\)
0.979952 + 0.199236i \(0.0638459\pi\)
\(654\) 16.0882 4.19061i 0.629096 0.163866i
\(655\) 2.11188 1.21930i 0.0825181 0.0476418i
\(656\) 8.68380i 0.339045i
\(657\) 28.5259 15.9424i 1.11290 0.621972i
\(658\) −13.6537 20.4345i −0.532278 0.796621i
\(659\) −4.16940 + 2.40720i −0.162417 + 0.0937713i −0.579005 0.815324i \(-0.696559\pi\)
0.416589 + 0.909095i \(0.363226\pi\)
\(660\) −0.932402 + 3.38503i −0.0362937 + 0.131762i
\(661\) 12.7902 0.497480 0.248740 0.968570i \(-0.419984\pi\)
0.248740 + 0.968570i \(0.419984\pi\)
\(662\) −16.7252 + 9.65631i −0.650044 + 0.375303i
\(663\) −20.6839 38.6738i −0.803296 1.50197i
\(664\) 7.24087i 0.281000i
\(665\) −11.2802 + 0.739269i −0.437428 + 0.0286676i
\(666\) −4.55287 + 7.63743i −0.176420 + 0.295944i
\(667\) −6.44828 −0.249678
\(668\) −1.12359 + 0.648707i −0.0434732 + 0.0250992i
\(669\) −9.96431 38.2539i −0.385242 1.47898i
\(670\) 2.61911 0.101185
\(671\) 47.4881i 1.83326i
\(672\) 3.42416 + 3.04551i 0.132090 + 0.117483i
\(673\) 20.4148 35.3595i 0.786934 1.36301i −0.140903 0.990023i \(-0.545000\pi\)
0.927837 0.372986i \(-0.121666\pi\)
\(674\) 0.882363 + 1.52830i 0.0339873 + 0.0588678i
\(675\) 6.62591 22.8059i 0.255031 0.877800i
\(676\) −0.662548 + 12.9831i −0.0254826 + 0.499350i
\(677\) −1.70470 + 2.95263i −0.0655169 + 0.113479i −0.896923 0.442186i \(-0.854203\pi\)
0.831406 + 0.555665i \(0.187536\pi\)
\(678\) −4.36449 + 1.13685i −0.167617 + 0.0436606i
\(679\) −40.6902 20.0665i −1.56154 0.770082i
\(680\) 3.98595 2.30129i 0.152854 0.0882505i
\(681\) −17.9082 + 4.66468i −0.686242 + 0.178751i
\(682\) 7.00509 12.1332i 0.268239 0.464603i
\(683\) −3.30894 + 5.73125i −0.126613 + 0.219300i −0.922362 0.386326i \(-0.873744\pi\)
0.795749 + 0.605626i \(0.207077\pi\)
\(684\) 16.7998 + 10.0148i 0.642355 + 0.382925i
\(685\) −3.93113 + 2.26964i −0.150201 + 0.0867184i
\(686\) 13.9245 12.2110i 0.531640 0.466217i
\(687\) −1.63156 6.26373i −0.0622480 0.238976i
\(688\) −0.0380219 + 0.0658559i −0.00144957 + 0.00251073i
\(689\) 29.2307 27.7771i 1.11360 1.05822i
\(690\) 1.57077 + 0.432666i 0.0597982 + 0.0164713i
\(691\) 24.0607 + 41.6744i 0.915313 + 1.58537i 0.806442 + 0.591314i \(0.201390\pi\)
0.108872 + 0.994056i \(0.465276\pi\)
\(692\) −6.33267 + 10.9685i −0.240732 + 0.416960i
\(693\) −13.3531 20.6018i −0.507241 0.782596i
\(694\) 22.7100i 0.862061i
\(695\) 1.72371 0.0653840
\(696\) 7.53020 1.96145i 0.285431 0.0743486i
\(697\) −52.8145 + 30.4924i −2.00049 + 1.15498i
\(698\) −1.51254 −0.0572504
\(699\) −14.9621 + 3.89730i −0.565919 + 0.147409i
\(700\) −10.0545 + 6.71809i −0.380024 + 0.253920i
\(701\) 37.9458i 1.43319i −0.697487 0.716597i \(-0.745699\pi\)
0.697487 0.716597i \(-0.254301\pi\)
\(702\) −0.869830 + 18.7148i −0.0328296 + 0.706344i
\(703\) 16.7338 9.66127i 0.631128 0.364382i
\(704\) −3.09310 −0.116575
\(705\) 10.1657 + 2.80012i 0.382862 + 0.105459i
\(706\) 28.2367 16.3025i 1.06270 0.613551i
\(707\) 16.3860 10.9486i 0.616260 0.411766i
\(708\) 3.25588 11.8203i 0.122364 0.444234i
\(709\) 12.8786i 0.483666i 0.970318 + 0.241833i \(0.0777485\pi\)
−0.970318 + 0.241833i \(0.922251\pi\)
\(710\) 0.532973 0.307712i 0.0200021 0.0115482i
\(711\) 7.22522 + 4.30714i 0.270967 + 0.161530i
\(712\) 9.46532 5.46481i 0.354728 0.204802i
\(713\) −5.63021 3.25060i −0.210853 0.121736i
\(714\) −6.49902 + 31.5196i −0.243220 + 1.17959i
\(715\) 7.00938 + 2.07104i 0.262136 + 0.0774525i
\(716\) −12.5760 7.26077i −0.469988 0.271348i
\(717\) −2.80715 + 2.76821i −0.104835 + 0.103381i
\(718\) −6.38300 −0.238211
\(719\) −33.3356 −1.24321 −0.621603 0.783332i \(-0.713518\pi\)
−0.621603 + 0.783332i \(0.713518\pi\)
\(720\) −1.96593 0.0274608i −0.0732659 0.00102340i
\(721\) 46.7811 3.06588i 1.74222 0.114179i
\(722\) −11.7515 20.3543i −0.437347 0.757508i
\(723\) −1.80418 6.92640i −0.0670980 0.257596i
\(724\) −3.09394 1.78628i −0.114985 0.0663867i
\(725\) 20.5335i 0.762595i
\(726\) −2.39249 0.659008i −0.0887937 0.0244581i
\(727\) 3.84364i 0.142553i 0.997457 + 0.0712764i \(0.0227072\pi\)
−0.997457 + 0.0712764i \(0.977293\pi\)
\(728\) 6.47058 7.00939i 0.239816 0.259785i
\(729\) −1.13103 + 26.9763i −0.0418900 + 0.999122i
\(730\) 6.18246 3.56944i 0.228823 0.132111i
\(731\) −0.534044 −0.0197523
\(732\) −25.7334 + 6.70298i −0.951133 + 0.247749i
\(733\) 21.0661 36.4875i 0.778093 1.34770i −0.154947 0.987923i \(-0.549521\pi\)
0.933040 0.359773i \(-0.117146\pi\)
\(734\) 10.4124 6.01163i 0.384330 0.221893i
\(735\) −1.09226 + 7.87056i −0.0402885 + 0.290310i
\(736\) 1.43530i 0.0529059i
\(737\) 12.3611i 0.455328i
\(738\) 26.0489 + 0.363859i 0.958871 + 0.0133938i
\(739\) 17.9699i 0.661033i −0.943800 0.330517i \(-0.892777\pi\)
0.943800 0.330517i \(-0.107223\pi\)
\(740\) −0.971210 + 1.68219i −0.0357024 + 0.0618384i
\(741\) 21.4911 34.5796i 0.789497 1.27031i
\(742\) −29.5262 + 1.93505i −1.08394 + 0.0710379i
\(743\) −3.17479 + 5.49889i −0.116472 + 0.201735i −0.918367 0.395730i \(-0.870492\pi\)
0.801895 + 0.597464i \(0.203825\pi\)
\(744\) 7.56364 + 2.08339i 0.277296 + 0.0763809i
\(745\) −3.44173 1.98708i −0.126095 0.0728011i
\(746\) 10.8556 + 18.8024i 0.397451 + 0.688406i
\(747\) −21.7205 0.303399i −0.794711 0.0111008i
\(748\) −10.8612 18.8121i −0.397123 0.687838i
\(749\) 20.5873 41.7463i 0.752245 1.52538i
\(750\) 2.88499 10.4738i 0.105345 0.382448i
\(751\) −15.7354 27.2544i −0.574191 0.994529i −0.996129 0.0879037i \(-0.971983\pi\)
0.421938 0.906625i \(-0.361350\pi\)
\(752\) 9.28897i 0.338734i
\(753\) 12.5479 + 3.45629i 0.457270 + 0.125954i
\(754\) −3.79225 15.7482i −0.138106 0.573517i
\(755\) 0.541708 0.0197148
\(756\) 9.27912 10.1439i 0.337478 0.368929i
\(757\) −2.57146 + 4.45391i −0.0934614 + 0.161880i −0.908965 0.416871i \(-0.863127\pi\)
0.815504 + 0.578751i \(0.196460\pi\)
\(758\) 2.93565i 0.106627i
\(759\) 2.04201 7.41340i 0.0741202 0.269089i
\(760\) 3.70024 + 2.13634i 0.134222 + 0.0774930i
\(761\) 7.50899i 0.272201i 0.990695 + 0.136100i \(0.0434570\pi\)
−0.990695 + 0.136100i \(0.956543\pi\)
\(762\) −7.69429 + 7.58757i −0.278735 + 0.274869i
\(763\) −11.2321 + 22.7761i −0.406629 + 0.824549i
\(764\) 5.22709 + 3.01786i 0.189110 + 0.109183i
\(765\) −6.73619 12.0531i −0.243547 0.435781i
\(766\) 26.1275 15.0847i 0.944025 0.545033i
\(767\) −24.4762 7.23192i −0.883786 0.261130i
\(768\) −0.436593 1.67612i −0.0157542 0.0604819i
\(769\) −12.5070 + 21.6627i −0.451013 + 0.781177i −0.998449 0.0556704i \(-0.982270\pi\)
0.547437 + 0.836847i \(0.315604\pi\)
\(770\) −2.97966 4.45944i −0.107379 0.160707i
\(771\) 42.0841 + 11.5920i 1.51562 + 0.417476i
\(772\) 20.2555 + 11.6945i 0.729012 + 0.420896i
\(773\) 11.4656 + 6.61968i 0.412390 + 0.238093i 0.691816 0.722074i \(-0.256811\pi\)
−0.279426 + 0.960167i \(0.590144\pi\)
\(774\) 0.195955 + 0.116814i 0.00704347