Properties

Label 546.2.bn.e.173.10
Level $546$
Weight $2$
Character 546.173
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bn (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 173.10
Character \(\chi\) \(=\) 546.173
Dual form 546.2.bn.e.101.10

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.458130 - 1.67036i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.57344 + 0.908426i) q^{5} +(-1.67564 + 0.438430i) q^{6} +(-0.414054 + 2.61315i) q^{7} +1.00000 q^{8} +(-2.58023 - 1.53049i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.458130 - 1.67036i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.57344 + 0.908426i) q^{5} +(-1.67564 + 0.438430i) q^{6} +(-0.414054 + 2.61315i) q^{7} +1.00000 q^{8} +(-2.58023 - 1.53049i) q^{9} -1.81685i q^{10} +2.05127 q^{11} +(1.21751 + 1.23193i) q^{12} +(3.57560 + 0.463745i) q^{13} +(2.47008 - 0.947995i) q^{14} +(2.23824 - 2.21204i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(2.84359 - 4.92524i) q^{17} +(-0.0353243 + 2.99979i) q^{18} -1.59352 q^{19} +(-1.57344 + 0.908426i) q^{20} +(4.17522 + 1.88878i) q^{21} +(-1.02563 - 1.77645i) q^{22} +(7.56871 - 4.36980i) q^{23} +(0.458130 - 1.67036i) q^{24} +(-0.849523 - 1.47142i) q^{25} +(-1.38619 - 3.32844i) q^{26} +(-3.73855 + 3.60877i) q^{27} +(-2.05603 - 1.66516i) q^{28} +(0.724381 + 0.418222i) q^{29} +(-3.03481 - 0.832355i) q^{30} +(3.97501 + 6.88493i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(0.939747 - 3.42636i) q^{33} -5.68717 q^{34} +(-3.02534 + 3.73550i) q^{35} +(2.61556 - 1.46930i) q^{36} +(-3.65306 + 2.10909i) q^{37} +(0.796762 + 1.38003i) q^{38} +(2.41271 - 5.76010i) q^{39} +(1.57344 + 0.908426i) q^{40} +(-0.397180 - 0.229312i) q^{41} +(-0.451878 - 4.56024i) q^{42} +(0.836012 + 1.44802i) q^{43} +(-1.02563 + 1.77645i) q^{44} +(-2.66951 - 4.75208i) q^{45} +(-7.56871 - 4.36980i) q^{46} +(-1.94760 - 1.12445i) q^{47} +(-1.67564 + 0.438430i) q^{48} +(-6.65712 - 2.16397i) q^{49} +(-0.849523 + 1.47142i) q^{50} +(-6.92421 - 7.00622i) q^{51} +(-2.18942 + 2.86469i) q^{52} +(-0.497067 + 0.286982i) q^{53} +(4.99456 + 1.43330i) q^{54} +(3.22755 + 1.86343i) q^{55} +(-0.414054 + 2.61315i) q^{56} +(-0.730041 + 2.66176i) q^{57} -0.836443i q^{58} +(-1.89789 - 1.09575i) q^{59} +(0.796563 + 3.04440i) q^{60} -6.89812i q^{61} +(3.97501 - 6.88493i) q^{62} +(5.06775 - 6.10884i) q^{63} +1.00000 q^{64} +(5.20472 + 3.97785i) q^{65} +(-3.43719 + 0.899337i) q^{66} -5.15514i q^{67} +(2.84359 + 4.92524i) q^{68} +(-3.83170 - 14.6444i) q^{69} +(4.74771 + 0.752275i) q^{70} +(4.24250 + 7.34823i) q^{71} +(-2.58023 - 1.53049i) q^{72} +(-5.11752 - 8.86381i) q^{73} +(3.65306 + 2.10909i) q^{74} +(-2.84699 + 0.744913i) q^{75} +(0.796762 - 1.38003i) q^{76} +(-0.849335 + 5.36027i) q^{77} +(-6.19475 + 0.790580i) q^{78} +(-3.68537 + 6.38325i) q^{79} -1.81685i q^{80} +(4.31521 + 7.89803i) q^{81} +0.458624i q^{82} +15.0678i q^{83} +(-3.72335 + 2.67146i) q^{84} +(8.94843 - 5.16638i) q^{85} +(0.836012 - 1.44802i) q^{86} +(1.03044 - 1.01838i) q^{87} +2.05127 q^{88} +(-3.34558 + 1.93157i) q^{89} +(-2.78067 + 4.68791i) q^{90} +(-2.69233 + 9.15158i) q^{91} +8.73960i q^{92} +(13.3214 - 3.48553i) q^{93} +2.24889i q^{94} +(-2.50731 - 1.44760i) q^{95} +(1.21751 + 1.23193i) q^{96} +(1.72410 + 2.98622i) q^{97} +(1.45451 + 6.84722i) q^{98} +(-5.29275 - 3.13944i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 17q^{2} + 3q^{3} - 17q^{4} + 9q^{5} - 6q^{6} + 5q^{7} + 34q^{8} + 7q^{9} + O(q^{10}) \) \( 34q - 17q^{2} + 3q^{3} - 17q^{4} + 9q^{5} - 6q^{6} + 5q^{7} + 34q^{8} + 7q^{9} - 18q^{11} + 3q^{12} - 8q^{13} - 4q^{14} - 17q^{15} - 17q^{16} + 6q^{17} - 11q^{18} - 10q^{19} - 9q^{20} - 4q^{21} + 9q^{22} + 6q^{23} + 3q^{24} + 16q^{25} + 13q^{26} + 18q^{27} - q^{28} + 27q^{29} + 13q^{30} + q^{31} - 17q^{32} + 21q^{33} - 12q^{34} - 3q^{35} + 4q^{36} + 6q^{37} + 5q^{38} + 20q^{39} + 9q^{40} + 3q^{41} + 20q^{42} - 3q^{43} + 9q^{44} - 6q^{46} - 27q^{47} - 6q^{48} - 5q^{49} + 16q^{50} + 24q^{51} - 5q^{52} + 21q^{53} - 18q^{54} + 57q^{55} + 5q^{56} - 17q^{57} - 6q^{59} + 4q^{60} + q^{62} - 21q^{63} + 34q^{64} + 33q^{65} - 21q^{66} + 6q^{68} - 30q^{69} + 3q^{70} - 15q^{71} + 7q^{72} + 19q^{73} - 6q^{74} - 63q^{75} + 5q^{76} - 9q^{77} - 10q^{78} - 9q^{79} - 5q^{81} - 16q^{84} - 42q^{85} - 3q^{86} - 75q^{87} - 18q^{88} - 18q^{89} - 9q^{90} - 27q^{91} + 25q^{93} - 3q^{95} + 3q^{96} - 19q^{97} + 7q^{98} - 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0.458130 1.67036i 0.264501 0.964385i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.57344 + 0.908426i 0.703664 + 0.406261i 0.808711 0.588207i \(-0.200166\pi\)
−0.105047 + 0.994467i \(0.533499\pi\)
\(6\) −1.67564 + 0.438430i −0.684078 + 0.178988i
\(7\) −0.414054 + 2.61315i −0.156498 + 0.987678i
\(8\) 1.00000 0.353553
\(9\) −2.58023 1.53049i −0.860078 0.510163i
\(10\) 1.81685i 0.574539i
\(11\) 2.05127 0.618480 0.309240 0.950984i \(-0.399925\pi\)
0.309240 + 0.950984i \(0.399925\pi\)
\(12\) 1.21751 + 1.23193i 0.351466 + 0.355629i
\(13\) 3.57560 + 0.463745i 0.991694 + 0.128620i
\(14\) 2.47008 0.947995i 0.660157 0.253362i
\(15\) 2.23824 2.21204i 0.577912 0.571147i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.84359 4.92524i 0.689671 1.19455i −0.282273 0.959334i \(-0.591088\pi\)
0.971944 0.235211i \(-0.0755782\pi\)
\(18\) −0.0353243 + 2.99979i −0.00832601 + 0.707058i
\(19\) −1.59352 −0.365579 −0.182790 0.983152i \(-0.558513\pi\)
−0.182790 + 0.983152i \(0.558513\pi\)
\(20\) −1.57344 + 0.908426i −0.351832 + 0.203130i
\(21\) 4.17522 + 1.88878i 0.911109 + 0.412166i
\(22\) −1.02563 1.77645i −0.218666 0.378740i
\(23\) 7.56871 4.36980i 1.57819 0.911166i 0.583073 0.812420i \(-0.301850\pi\)
0.995113 0.0987464i \(-0.0314833\pi\)
\(24\) 0.458130 1.67036i 0.0935154 0.340962i
\(25\) −0.849523 1.47142i −0.169905 0.294283i
\(26\) −1.38619 3.32844i −0.271854 0.652760i
\(27\) −3.73855 + 3.60877i −0.719485 + 0.694508i
\(28\) −2.05603 1.66516i −0.388553 0.314685i
\(29\) 0.724381 + 0.418222i 0.134514 + 0.0776618i 0.565747 0.824579i \(-0.308588\pi\)
−0.431233 + 0.902241i \(0.641921\pi\)
\(30\) −3.03481 0.832355i −0.554077 0.151966i
\(31\) 3.97501 + 6.88493i 0.713934 + 1.23657i 0.963369 + 0.268178i \(0.0864215\pi\)
−0.249436 + 0.968391i \(0.580245\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0.939747 3.42636i 0.163589 0.596453i
\(34\) −5.68717 −0.975342
\(35\) −3.02534 + 3.73550i −0.511377 + 0.631415i
\(36\) 2.61556 1.46930i 0.435926 0.244884i
\(37\) −3.65306 + 2.10909i −0.600559 + 0.346733i −0.769262 0.638934i \(-0.779376\pi\)
0.168702 + 0.985667i \(0.446042\pi\)
\(38\) 0.796762 + 1.38003i 0.129252 + 0.223871i
\(39\) 2.41271 5.76010i 0.386344 0.922355i
\(40\) 1.57344 + 0.908426i 0.248783 + 0.143635i
\(41\) −0.397180 0.229312i −0.0620290 0.0358125i 0.468665 0.883376i \(-0.344735\pi\)
−0.530694 + 0.847564i \(0.678069\pi\)
\(42\) −0.451878 4.56024i −0.0697263 0.703661i
\(43\) 0.836012 + 1.44802i 0.127491 + 0.220820i 0.922704 0.385510i \(-0.125974\pi\)
−0.795213 + 0.606330i \(0.792641\pi\)
\(44\) −1.02563 + 1.77645i −0.154620 + 0.267810i
\(45\) −2.66951 4.75208i −0.397947 0.708399i
\(46\) −7.56871 4.36980i −1.11595 0.644292i
\(47\) −1.94760 1.12445i −0.284086 0.164017i 0.351186 0.936306i \(-0.385779\pi\)
−0.635272 + 0.772289i \(0.719112\pi\)
\(48\) −1.67564 + 0.438430i −0.241858 + 0.0632819i
\(49\) −6.65712 2.16397i −0.951017 0.309139i
\(50\) −0.849523 + 1.47142i −0.120141 + 0.208090i
\(51\) −6.92421 7.00622i −0.969583 0.981068i
\(52\) −2.18942 + 2.86469i −0.303618 + 0.397261i
\(53\) −0.497067 + 0.286982i −0.0682774 + 0.0394200i −0.533750 0.845642i \(-0.679218\pi\)
0.465473 + 0.885062i \(0.345884\pi\)
\(54\) 4.99456 + 1.43330i 0.679674 + 0.195047i
\(55\) 3.22755 + 1.86343i 0.435202 + 0.251264i
\(56\) −0.414054 + 2.61315i −0.0553303 + 0.349197i
\(57\) −0.730041 + 2.66176i −0.0966962 + 0.352559i
\(58\) 0.836443i 0.109830i
\(59\) −1.89789 1.09575i −0.247084 0.142654i 0.371344 0.928495i \(-0.378897\pi\)
−0.618428 + 0.785841i \(0.712230\pi\)
\(60\) 0.796563 + 3.04440i 0.102836 + 0.393030i
\(61\) 6.89812i 0.883213i −0.897209 0.441607i \(-0.854409\pi\)
0.897209 0.441607i \(-0.145591\pi\)
\(62\) 3.97501 6.88493i 0.504827 0.874386i
\(63\) 5.06775 6.10884i 0.638477 0.769641i
\(64\) 1.00000 0.125000
\(65\) 5.20472 + 3.97785i 0.645566 + 0.493391i
\(66\) −3.43719 + 0.899337i −0.423089 + 0.110701i
\(67\) 5.15514i 0.629800i −0.949125 0.314900i \(-0.898029\pi\)
0.949125 0.314900i \(-0.101971\pi\)
\(68\) 2.84359 + 4.92524i 0.344836 + 0.597273i
\(69\) −3.83170 14.6444i −0.461283 1.76298i
\(70\) 4.74771 + 0.752275i 0.567460 + 0.0899140i
\(71\) 4.24250 + 7.34823i 0.503493 + 0.872075i 0.999992 + 0.00403764i \(0.00128522\pi\)
−0.496499 + 0.868037i \(0.665381\pi\)
\(72\) −2.58023 1.53049i −0.304083 0.180370i
\(73\) −5.11752 8.86381i −0.598961 1.03743i −0.992975 0.118326i \(-0.962247\pi\)
0.394014 0.919104i \(-0.371086\pi\)
\(74\) 3.65306 + 2.10909i 0.424659 + 0.245177i
\(75\) −2.84699 + 0.744913i −0.328742 + 0.0860151i
\(76\) 0.796762 1.38003i 0.0913948 0.158300i
\(77\) −0.849335 + 5.36027i −0.0967907 + 0.610860i
\(78\) −6.19475 + 0.790580i −0.701418 + 0.0895156i
\(79\) −3.68537 + 6.38325i −0.414637 + 0.718172i −0.995390 0.0959076i \(-0.969425\pi\)
0.580754 + 0.814079i \(0.302758\pi\)
\(80\) 1.81685i 0.203130i
\(81\) 4.31521 + 7.89803i 0.479468 + 0.877559i
\(82\) 0.458624i 0.0506465i
\(83\) 15.0678i 1.65391i 0.562269 + 0.826954i \(0.309929\pi\)
−0.562269 + 0.826954i \(0.690071\pi\)
\(84\) −3.72335 + 2.67146i −0.406250 + 0.291480i
\(85\) 8.94843 5.16638i 0.970594 0.560373i
\(86\) 0.836012 1.44802i 0.0901495 0.156143i
\(87\) 1.03044 1.01838i 0.110475 0.109182i
\(88\) 2.05127 0.218666
\(89\) −3.34558 + 1.93157i −0.354630 + 0.204746i −0.666723 0.745306i \(-0.732303\pi\)
0.312092 + 0.950052i \(0.398970\pi\)
\(90\) −2.78067 + 4.68791i −0.293108 + 0.494149i
\(91\) −2.69233 + 9.15158i −0.282233 + 0.959346i
\(92\) 8.73960i 0.911166i
\(93\) 13.3214 3.48553i 1.38137 0.361433i
\(94\) 2.24889i 0.231955i
\(95\) −2.50731 1.44760i −0.257245 0.148520i
\(96\) 1.21751 + 1.23193i 0.124262 + 0.125734i
\(97\) 1.72410 + 2.98622i 0.175056 + 0.303205i 0.940180 0.340677i \(-0.110656\pi\)
−0.765125 + 0.643882i \(0.777323\pi\)
\(98\) 1.45451 + 6.84722i 0.146927 + 0.691674i
\(99\) −5.29275 3.13944i −0.531941 0.315526i
\(100\) 1.69905 0.169905
\(101\) −9.69622 −0.964810 −0.482405 0.875948i \(-0.660237\pi\)
−0.482405 + 0.875948i \(0.660237\pi\)
\(102\) −2.60546 + 9.49965i −0.257979 + 0.940606i
\(103\) 8.08628 + 4.66861i 0.796765 + 0.460012i 0.842339 0.538949i \(-0.181178\pi\)
−0.0455739 + 0.998961i \(0.514512\pi\)
\(104\) 3.57560 + 0.463745i 0.350617 + 0.0454740i
\(105\) 4.85365 + 6.76477i 0.473667 + 0.660174i
\(106\) 0.497067 + 0.286982i 0.0482794 + 0.0278742i
\(107\) 9.27165 5.35299i 0.896324 0.517493i 0.0203184 0.999794i \(-0.493532\pi\)
0.876006 + 0.482301i \(0.160199\pi\)
\(108\) −1.25601 5.04207i −0.120859 0.485173i
\(109\) 4.30381 2.48481i 0.412230 0.238001i −0.279517 0.960141i \(-0.590174\pi\)
0.691748 + 0.722139i \(0.256841\pi\)
\(110\) 3.72685i 0.355341i
\(111\) 1.84938 + 7.06818i 0.175535 + 0.670882i
\(112\) 2.47008 0.947995i 0.233401 0.0895771i
\(113\) −14.4435 + 8.33897i −1.35873 + 0.784464i −0.989453 0.144855i \(-0.953729\pi\)
−0.369279 + 0.929319i \(0.620395\pi\)
\(114\) 2.67018 0.698648i 0.250085 0.0654344i
\(115\) 15.8786 1.48068
\(116\) −0.724381 + 0.418222i −0.0672571 + 0.0388309i
\(117\) −8.51614 6.66899i −0.787317 0.616548i
\(118\) 2.19150i 0.201743i
\(119\) 11.6930 + 9.47004i 1.07189 + 0.868117i
\(120\) 2.23824 2.21204i 0.204323 0.201931i
\(121\) −6.79230 −0.617482
\(122\) −5.97394 + 3.44906i −0.540855 + 0.312263i
\(123\) −0.564994 + 0.558380i −0.0509438 + 0.0503474i
\(124\) −7.95003 −0.713934
\(125\) 12.1712i 1.08862i
\(126\) −7.82428 1.33438i −0.697043 0.118876i
\(127\) −10.6930 + 18.5208i −0.948852 + 1.64346i −0.201003 + 0.979591i \(0.564420\pi\)
−0.747849 + 0.663869i \(0.768913\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 2.80171 0.733065i 0.246677 0.0645428i
\(130\) 0.842557 6.49635i 0.0738972 0.569767i
\(131\) 7.44741 12.8993i 0.650683 1.12702i −0.332274 0.943183i \(-0.607816\pi\)
0.982957 0.183834i \(-0.0588508\pi\)
\(132\) 2.49744 + 2.52703i 0.217375 + 0.219949i
\(133\) 0.659804 4.16412i 0.0572123 0.361075i
\(134\) −4.46448 + 2.57757i −0.385672 + 0.222668i
\(135\) −9.16069 + 2.28198i −0.788427 + 0.196402i
\(136\) 2.84359 4.92524i 0.243836 0.422336i
\(137\) 5.80216 10.0496i 0.495712 0.858598i −0.504276 0.863543i \(-0.668241\pi\)
0.999988 + 0.00494447i \(0.00157388\pi\)
\(138\) −10.7666 + 10.6406i −0.916515 + 0.905786i
\(139\) −13.6556 + 7.88408i −1.15825 + 0.668719i −0.950885 0.309544i \(-0.899824\pi\)
−0.207370 + 0.978263i \(0.566490\pi\)
\(140\) −1.72237 4.48778i −0.145567 0.379286i
\(141\) −2.77049 + 2.73805i −0.233317 + 0.230586i
\(142\) 4.24250 7.34823i 0.356023 0.616650i
\(143\) 7.33452 + 0.951266i 0.613343 + 0.0795489i
\(144\) −0.0353243 + 2.99979i −0.00294369 + 0.249983i
\(145\) 0.759847 + 1.31609i 0.0631019 + 0.109296i
\(146\) −5.11752 + 8.86381i −0.423529 + 0.733574i
\(147\) −6.66444 + 10.1284i −0.549674 + 0.835379i
\(148\) 4.21819i 0.346733i
\(149\) −4.81481 −0.394444 −0.197222 0.980359i \(-0.563192\pi\)
−0.197222 + 0.980359i \(0.563192\pi\)
\(150\) 2.06861 + 2.09311i 0.168901 + 0.170902i
\(151\) 1.23569 0.713427i 0.100559 0.0580579i −0.448877 0.893594i \(-0.648176\pi\)
0.549436 + 0.835536i \(0.314843\pi\)
\(152\) −1.59352 −0.129252
\(153\) −14.8751 + 8.35619i −1.20258 + 0.675558i
\(154\) 5.06680 1.94459i 0.408294 0.156700i
\(155\) 14.4440i 1.16017i
\(156\) 3.78204 + 4.96952i 0.302806 + 0.397880i
\(157\) 7.14347 4.12428i 0.570111 0.329154i −0.187083 0.982344i \(-0.559903\pi\)
0.757194 + 0.653191i \(0.226570\pi\)
\(158\) 7.37074 0.586385
\(159\) 0.251643 + 0.961759i 0.0199566 + 0.0762724i
\(160\) −1.57344 + 0.908426i −0.124391 + 0.0718174i
\(161\) 8.28509 + 21.5875i 0.652957 + 1.70134i
\(162\) 4.68229 7.68610i 0.367875 0.603877i
\(163\) 23.9508i 1.87597i 0.346676 + 0.937985i \(0.387310\pi\)
−0.346676 + 0.937985i \(0.612690\pi\)
\(164\) 0.397180 0.229312i 0.0310145 0.0179062i
\(165\) 4.59124 4.53749i 0.357427 0.353243i
\(166\) 13.0491 7.53391i 1.01281 0.584745i
\(167\) −20.2949 11.7173i −1.57047 0.906711i −0.996111 0.0881060i \(-0.971919\pi\)
−0.574358 0.818604i \(-0.694748\pi\)
\(168\) 4.17522 + 1.88878i 0.322126 + 0.145723i
\(169\) 12.5699 + 3.31634i 0.966914 + 0.255103i
\(170\) −8.94843 5.16638i −0.686313 0.396243i
\(171\) 4.11166 + 2.43887i 0.314427 + 0.186505i
\(172\) −1.67202 −0.127491
\(173\) 7.60591 0.578267 0.289133 0.957289i \(-0.406633\pi\)
0.289133 + 0.957289i \(0.406633\pi\)
\(174\) −1.39717 0.383200i −0.105919 0.0290503i
\(175\) 4.19678 1.61069i 0.317247 0.121756i
\(176\) −1.02563 1.77645i −0.0773101 0.133905i
\(177\) −2.69978 + 2.66817i −0.202928 + 0.200552i
\(178\) 3.34558 + 1.93157i 0.250762 + 0.144777i
\(179\) 18.4008i 1.37534i −0.726022 0.687671i \(-0.758633\pi\)
0.726022 0.687671i \(-0.241367\pi\)
\(180\) 5.45018 + 0.0641790i 0.406232 + 0.00478362i
\(181\) 0.190838i 0.0141849i −0.999975 0.00709245i \(-0.997742\pi\)
0.999975 0.00709245i \(-0.00225762\pi\)
\(182\) 9.27166 2.24416i 0.687261 0.166348i
\(183\) −11.5224 3.16023i −0.851758 0.233611i
\(184\) 7.56871 4.36980i 0.557973 0.322146i
\(185\) −7.66383 −0.563456
\(186\) −9.67926 9.79391i −0.709718 0.718124i
\(187\) 5.83296 10.1030i 0.426548 0.738803i
\(188\) 1.94760 1.12445i 0.142043 0.0820086i
\(189\) −7.88230 11.2636i −0.573353 0.819309i
\(190\) 2.89520i 0.210040i
\(191\) 5.19641i 0.375999i 0.982169 + 0.187999i \(0.0602003\pi\)
−0.982169 + 0.187999i \(0.939800\pi\)
\(192\) 0.458130 1.67036i 0.0330627 0.120548i
\(193\) 11.0120i 0.792663i 0.918108 + 0.396331i \(0.129717\pi\)
−0.918108 + 0.396331i \(0.870283\pi\)
\(194\) 1.72410 2.98622i 0.123783 0.214398i
\(195\) 9.02890 6.87141i 0.646573 0.492072i
\(196\) 5.20261 4.68325i 0.371615 0.334518i
\(197\) −11.1333 + 19.2835i −0.793218 + 1.37389i 0.130746 + 0.991416i \(0.458263\pi\)
−0.923964 + 0.382478i \(0.875071\pi\)
\(198\) −0.0724595 + 6.15338i −0.00514947 + 0.437301i
\(199\) −16.5364 9.54728i −1.17223 0.676789i −0.218027 0.975943i \(-0.569962\pi\)
−0.954205 + 0.299154i \(0.903296\pi\)
\(200\) −0.849523 1.47142i −0.0600703 0.104045i
\(201\) −8.61096 2.36172i −0.607370 0.166583i
\(202\) 4.84811 + 8.39717i 0.341112 + 0.590823i
\(203\) −1.39281 + 1.71975i −0.0977560 + 0.120703i
\(204\) 9.52967 2.49343i 0.667211 0.174575i
\(205\) −0.416626 0.721617i −0.0290984 0.0503999i
\(206\) 9.33723i 0.650556i
\(207\) −26.2170 0.308720i −1.82221 0.0214575i
\(208\) −1.38619 3.32844i −0.0961147 0.230786i
\(209\) −3.26874 −0.226104
\(210\) 3.43164 7.58577i 0.236806 0.523468i
\(211\) −7.80557 + 13.5196i −0.537358 + 0.930731i 0.461688 + 0.887043i \(0.347244\pi\)
−0.999045 + 0.0436882i \(0.986089\pi\)
\(212\) 0.573964i 0.0394200i
\(213\) 14.2178 3.72008i 0.974191 0.254896i
\(214\) −9.27165 5.35299i −0.633797 0.365923i
\(215\) 3.03782i 0.207178i
\(216\) −3.73855 + 3.60877i −0.254376 + 0.245546i
\(217\) −19.6372 + 7.53658i −1.33306 + 0.511617i
\(218\) −4.30381 2.48481i −0.291491 0.168292i
\(219\) −17.1503 + 4.48735i −1.15891 + 0.303227i
\(220\) −3.22755 + 1.86343i −0.217601 + 0.125632i
\(221\) 12.4516 16.2920i 0.837585 1.09592i
\(222\) 5.19653 5.13570i 0.348768 0.344686i
\(223\) 4.91509 8.51319i 0.329139 0.570085i −0.653202 0.757183i \(-0.726575\pi\)
0.982341 + 0.187098i \(0.0599082\pi\)
\(224\) −2.05603 1.66516i −0.137374 0.111258i
\(225\) −0.0600175 + 5.09678i −0.00400117 + 0.339786i
\(226\) 14.4435 + 8.33897i 0.960768 + 0.554700i
\(227\) −9.84889 5.68626i −0.653694 0.377410i 0.136176 0.990685i \(-0.456519\pi\)
−0.789870 + 0.613274i \(0.789852\pi\)
\(228\) −1.94014 1.96312i −0.128489 0.130011i
\(229\) 9.48968 16.4366i 0.627096 1.08616i −0.361036 0.932552i \(-0.617577\pi\)
0.988132 0.153610i \(-0.0490898\pi\)
\(230\) −7.93928 13.7512i −0.523501 0.906730i
\(231\) 8.56450 + 3.87440i 0.563503 + 0.254917i
\(232\) 0.724381 + 0.418222i 0.0475580 + 0.0274576i
\(233\) −18.2307 10.5255i −1.19433 0.689550i −0.235048 0.971984i \(-0.575525\pi\)
−0.959287 + 0.282434i \(0.908858\pi\)
\(234\) −1.51745 + 10.7097i −0.0991985 + 0.700114i
\(235\) −2.04295 3.53850i −0.133267 0.230826i
\(236\) 1.89789 1.09575i 0.123542 0.0713271i
\(237\) 8.97398 + 9.08027i 0.582922 + 0.589827i
\(238\) 2.35480 14.8614i 0.152639 0.963324i
\(239\) 16.6885 1.07949 0.539746 0.841828i \(-0.318520\pi\)
0.539746 + 0.841828i \(0.318520\pi\)
\(240\) −3.03481 0.832355i −0.195896 0.0537283i
\(241\) 7.63733 13.2282i 0.491963 0.852106i −0.507994 0.861361i \(-0.669613\pi\)
0.999957 + 0.00925504i \(0.00294601\pi\)
\(242\) 3.39615 + 5.88231i 0.218313 + 0.378129i
\(243\) 15.1695 3.58966i 0.973125 0.230277i
\(244\) 5.97394 + 3.44906i 0.382443 + 0.220803i
\(245\) −8.50877 9.45238i −0.543606 0.603891i
\(246\) 0.766068 + 0.210109i 0.0488427 + 0.0133961i
\(247\) −5.69781 0.738989i −0.362543 0.0470208i
\(248\) 3.97501 + 6.88493i 0.252414 + 0.437193i
\(249\) 25.1688 + 6.90302i 1.59501 + 0.437461i
\(250\) −10.5406 + 6.08559i −0.666643 + 0.384887i
\(251\) −4.91975 8.52125i −0.310532 0.537857i 0.667946 0.744210i \(-0.267174\pi\)
−0.978478 + 0.206353i \(0.933840\pi\)
\(252\) 2.75653 + 7.44322i 0.173645 + 0.468879i
\(253\) 15.5255 8.96363i 0.976077 0.563538i
\(254\) 21.3860 1.34188
\(255\) −4.53019 17.3140i −0.283692 1.08425i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 0.766166 + 1.32704i 0.0477921 + 0.0827784i 0.888932 0.458039i \(-0.151448\pi\)
−0.841140 + 0.540818i \(0.818115\pi\)
\(258\) −2.03571 2.05982i −0.126738 0.128239i
\(259\) −3.99882 10.4193i −0.248475 0.647422i
\(260\) −6.04728 + 2.51850i −0.375036 + 0.156191i
\(261\) −1.22899 2.18777i −0.0760726 0.135419i
\(262\) −14.8948 −0.920205
\(263\) 19.5745i 1.20701i 0.797358 + 0.603507i \(0.206230\pi\)
−0.797358 + 0.603507i \(0.793770\pi\)
\(264\) 0.939747 3.42636i 0.0578374 0.210878i
\(265\) −1.04281 −0.0640592
\(266\) −3.93613 + 1.51065i −0.241340 + 0.0926240i
\(267\) 1.69372 + 6.47324i 0.103654 + 0.396156i
\(268\) 4.46448 + 2.57757i 0.272712 + 0.157450i
\(269\) 6.77900 11.7416i 0.413323 0.715897i −0.581928 0.813241i \(-0.697701\pi\)
0.995251 + 0.0973438i \(0.0310346\pi\)
\(270\) 6.55660 + 6.79240i 0.399022 + 0.413373i
\(271\) −14.0278 24.2968i −0.852127 1.47593i −0.879285 0.476296i \(-0.841979\pi\)
0.0271578 0.999631i \(-0.491354\pi\)
\(272\) −5.68717 −0.344836
\(273\) 14.0530 + 8.68978i 0.850528 + 0.525929i
\(274\) −11.6043 −0.701042
\(275\) −1.74260 3.01827i −0.105083 0.182008i
\(276\) 14.5983 + 4.00387i 0.878715 + 0.241005i
\(277\) −11.6642 + 20.2030i −0.700836 + 1.21388i 0.267338 + 0.963603i \(0.413856\pi\)
−0.968173 + 0.250280i \(0.919477\pi\)
\(278\) 13.6556 + 7.88408i 0.819010 + 0.472856i
\(279\) 0.280829 23.8484i 0.0168128 1.42777i
\(280\) −3.02534 + 3.73550i −0.180799 + 0.223239i
\(281\) 26.6302 1.58862 0.794311 0.607512i \(-0.207832\pi\)
0.794311 + 0.607512i \(0.207832\pi\)
\(282\) 3.75647 + 1.03028i 0.223694 + 0.0613525i
\(283\) 26.9193i 1.60019i 0.599875 + 0.800093i \(0.295217\pi\)
−0.599875 + 0.800093i \(0.704783\pi\)
\(284\) −8.48501 −0.503493
\(285\) −3.56669 + 3.52494i −0.211273 + 0.208799i
\(286\) −2.84344 6.82751i −0.168136 0.403719i
\(287\) 0.763680 0.942943i 0.0450786 0.0556602i
\(288\) 2.61556 1.46930i 0.154123 0.0865796i
\(289\) −7.67197 13.2882i −0.451293 0.781662i
\(290\) 0.759847 1.31609i 0.0446198 0.0772837i
\(291\) 5.77794 1.51179i 0.338709 0.0886228i
\(292\) 10.2350 0.598961
\(293\) −6.97220 + 4.02540i −0.407320 + 0.235167i −0.689638 0.724154i \(-0.742230\pi\)
0.282317 + 0.959321i \(0.408897\pi\)
\(294\) 12.1037 + 0.707360i 0.705902 + 0.0412541i
\(295\) −1.99081 3.44819i −0.115910 0.200761i
\(296\) −3.65306 + 2.10909i −0.212330 + 0.122589i
\(297\) −7.66878 + 7.40255i −0.444987 + 0.429539i
\(298\) 2.40740 + 4.16974i 0.139457 + 0.241547i
\(299\) 29.0892 12.1147i 1.68227 0.700612i
\(300\) 0.778384 2.83803i 0.0449400 0.163853i
\(301\) −4.13004 + 1.58507i −0.238051 + 0.0913619i
\(302\) −1.23569 0.713427i −0.0711061 0.0410531i
\(303\) −4.44213 + 16.1962i −0.255194 + 0.930449i
\(304\) 0.796762 + 1.38003i 0.0456974 + 0.0791502i
\(305\) 6.26643 10.8538i 0.358815 0.621486i
\(306\) 14.6742 + 8.70415i 0.838870 + 0.497583i
\(307\) −13.6194 −0.777300 −0.388650 0.921385i \(-0.627058\pi\)
−0.388650 + 0.921385i \(0.627058\pi\)
\(308\) −4.21746 3.41568i −0.240312 0.194627i
\(309\) 11.5029 11.3682i 0.654374 0.646714i
\(310\) 12.5089 7.22202i 0.710458 0.410183i
\(311\) −12.6742 21.9523i −0.718685 1.24480i −0.961521 0.274732i \(-0.911411\pi\)
0.242835 0.970068i \(-0.421923\pi\)
\(312\) 2.41271 5.76010i 0.136593 0.326102i
\(313\) −7.41295 4.27987i −0.419005 0.241913i 0.275647 0.961259i \(-0.411108\pi\)
−0.694651 + 0.719347i \(0.744441\pi\)
\(314\) −7.14347 4.12428i −0.403129 0.232747i
\(315\) 13.5232 5.00821i 0.761948 0.282181i
\(316\) −3.68537 6.38325i −0.207318 0.359086i
\(317\) −11.7752 + 20.3952i −0.661360 + 1.14551i 0.318898 + 0.947789i \(0.396687\pi\)
−0.980258 + 0.197721i \(0.936646\pi\)
\(318\) 0.707086 0.698809i 0.0396514 0.0391872i
\(319\) 1.48590 + 0.857885i 0.0831944 + 0.0480323i
\(320\) 1.57344 + 0.908426i 0.0879580 + 0.0507826i
\(321\) −4.69382 17.9394i −0.261984 1.00128i
\(322\) 14.5528 17.9689i 0.810996 1.00137i
\(323\) −4.53132 + 7.84848i −0.252129 + 0.436701i
\(324\) −8.99750 0.211931i −0.499861 0.0117739i
\(325\) −2.35519 5.65516i −0.130643 0.313692i
\(326\) 20.7420 11.9754i 1.14879 0.663256i
\(327\) −2.17883 8.32730i −0.120489 0.460501i
\(328\) −0.397180 0.229312i −0.0219306 0.0126616i
\(329\) 3.74476 4.62378i 0.206455 0.254917i
\(330\) −6.22520 1.70738i −0.342686 0.0939883i
\(331\) 7.11121i 0.390868i −0.980717 0.195434i \(-0.937389\pi\)
0.980717 0.195434i \(-0.0626115\pi\)
\(332\) −13.0491 7.53391i −0.716163 0.413477i
\(333\) 12.6537 + 0.149004i 0.693418 + 0.00816539i
\(334\) 23.4346i 1.28228i
\(335\) 4.68306 8.11130i 0.255863 0.443168i
\(336\) −0.451878 4.56024i −0.0246520 0.248782i
\(337\) 19.1187 1.04146 0.520730 0.853722i \(-0.325660\pi\)
0.520730 + 0.853722i \(0.325660\pi\)
\(338\) −3.41291 12.5440i −0.185638 0.682304i
\(339\) 7.31211 + 27.9463i 0.397139 + 1.51783i
\(340\) 10.3328i 0.560373i
\(341\) 8.15382 + 14.1228i 0.441554 + 0.764794i
\(342\) 0.0562900 4.78024i 0.00304382 0.258486i
\(343\) 8.41119 16.5001i 0.454161 0.890919i
\(344\) 0.836012 + 1.44802i 0.0450747 + 0.0780717i
\(345\) 7.27444 26.5230i 0.391643 1.42795i
\(346\) −3.80295 6.58691i −0.204448 0.354114i
\(347\) −19.9793 11.5350i −1.07254 0.619233i −0.143668 0.989626i \(-0.545890\pi\)
−0.928875 + 0.370393i \(0.879223\pi\)
\(348\) 0.366722 + 1.40158i 0.0196584 + 0.0751326i
\(349\) −2.11359 + 3.66085i −0.113138 + 0.195961i −0.917034 0.398809i \(-0.869424\pi\)
0.803896 + 0.594770i \(0.202757\pi\)
\(350\) −3.49329 2.82918i −0.186724 0.151226i
\(351\) −15.0411 + 11.1698i −0.802837 + 0.596199i
\(352\) −1.02563 + 1.77645i −0.0546665 + 0.0946851i
\(353\) 31.9394i 1.69996i −0.526813 0.849981i \(-0.676613\pi\)
0.526813 0.849981i \(-0.323387\pi\)
\(354\) 3.66060 + 1.00399i 0.194558 + 0.0533614i
\(355\) 15.4160i 0.818197i
\(356\) 3.86314i 0.204746i
\(357\) 21.1753 15.1931i 1.12072 0.804101i
\(358\) −15.9356 + 9.20041i −0.842222 + 0.486257i
\(359\) −12.2496 + 21.2169i −0.646509 + 1.11979i 0.337442 + 0.941346i \(0.390438\pi\)
−0.983951 + 0.178440i \(0.942895\pi\)
\(360\) −2.66951 4.75208i −0.140696 0.250457i
\(361\) −16.4607 −0.866352
\(362\) −0.165271 + 0.0954192i −0.00868645 + 0.00501512i
\(363\) −3.11176 + 11.3456i −0.163325 + 0.595491i
\(364\) −6.57933 6.90741i −0.344851 0.362047i
\(365\) 18.5956i 0.973337i
\(366\) 3.02434 + 11.5588i 0.158085 + 0.604187i
\(367\) 33.2113i 1.73361i 0.498643 + 0.866807i \(0.333832\pi\)
−0.498643 + 0.866807i \(0.666168\pi\)
\(368\) −7.56871 4.36980i −0.394546 0.227792i
\(369\) 0.673858 + 1.19956i 0.0350796 + 0.0624464i
\(370\) 3.83191 + 6.63707i 0.199212 + 0.345045i
\(371\) −0.544115 1.41774i −0.0282490 0.0736053i
\(372\) −3.64215 + 13.2794i −0.188836 + 0.688507i
\(373\) −4.12006 −0.213328 −0.106664 0.994295i \(-0.534017\pi\)
−0.106664 + 0.994295i \(0.534017\pi\)
\(374\) −11.6659 −0.603230
\(375\) −20.3303 5.57598i −1.04985 0.287942i
\(376\) −1.94760 1.12445i −0.100440 0.0579888i
\(377\) 2.39615 + 1.83132i 0.123408 + 0.0943179i
\(378\) −5.81344 + 12.4581i −0.299011 + 0.640775i
\(379\) −2.80001 1.61659i −0.143827 0.0830385i 0.426360 0.904554i \(-0.359796\pi\)
−0.570187 + 0.821515i \(0.693129\pi\)
\(380\) 2.50731 1.44760i 0.128623 0.0742602i
\(381\) 26.0378 + 26.3462i 1.33396 + 1.34976i
\(382\) 4.50022 2.59820i 0.230251 0.132936i
\(383\) 4.17622i 0.213395i −0.994292 0.106698i \(-0.965972\pi\)
0.994292 0.106698i \(-0.0340276\pi\)
\(384\) −1.67564 + 0.438430i −0.0855098 + 0.0223735i
\(385\) −6.20579 + 7.66251i −0.316276 + 0.390518i
\(386\) 9.53669 5.50601i 0.485405 0.280249i
\(387\) 0.0590630 5.01572i 0.00300234 0.254964i
\(388\) −3.44819 −0.175056
\(389\) 3.57665 2.06498i 0.181343 0.104699i −0.406580 0.913615i \(-0.633279\pi\)
0.587924 + 0.808916i \(0.299946\pi\)
\(390\) −10.4653 4.38355i −0.529929 0.221970i
\(391\) 49.7036i 2.51362i
\(392\) −6.65712 2.16397i −0.336235 0.109297i
\(393\) −18.1346 18.3494i −0.914772 0.925607i
\(394\) 22.2667 1.12178
\(395\) −11.5974 + 6.69578i −0.583530 + 0.336901i
\(396\) 5.36521 3.01394i 0.269612 0.151456i
\(397\) 4.76265 0.239031 0.119515 0.992832i \(-0.461866\pi\)
0.119515 + 0.992832i \(0.461866\pi\)
\(398\) 19.0946i 0.957124i
\(399\) −6.65332 3.00982i −0.333082 0.150679i
\(400\) −0.849523 + 1.47142i −0.0424761 + 0.0735708i
\(401\) −7.74045 13.4069i −0.386540 0.669507i 0.605442 0.795890i \(-0.292996\pi\)
−0.991982 + 0.126383i \(0.959663\pi\)
\(402\) 2.26017 + 8.63817i 0.112727 + 0.430833i
\(403\) 11.0202 + 26.4612i 0.548956 + 1.31812i
\(404\) 4.84811 8.39717i 0.241202 0.417775i
\(405\) −0.385047 + 16.3471i −0.0191331 + 0.812296i
\(406\) 2.18575 + 0.346332i 0.108477 + 0.0171882i
\(407\) −7.49340 + 4.32632i −0.371434 + 0.214448i
\(408\) −6.92421 7.00622i −0.342799 0.346860i
\(409\) −19.8942 + 34.4578i −0.983706 + 1.70383i −0.336155 + 0.941807i \(0.609127\pi\)
−0.647551 + 0.762022i \(0.724207\pi\)
\(410\) −0.416626 + 0.721617i −0.0205757 + 0.0356381i
\(411\) −14.1284 14.2958i −0.696903 0.705158i
\(412\) −8.08628 + 4.66861i −0.398382 + 0.230006i
\(413\) 3.64918 4.50578i 0.179565 0.221715i
\(414\) 12.8411 + 22.8589i 0.631107 + 1.12345i
\(415\) −13.6880 + 23.7083i −0.671918 + 1.16380i
\(416\) −2.18942 + 2.86469i −0.107345 + 0.140453i
\(417\) 6.91323 + 26.4218i 0.338542 + 1.29388i
\(418\) 1.63437 + 2.83081i 0.0799397 + 0.138460i
\(419\) −13.1146 + 22.7152i −0.640690 + 1.10971i 0.344589 + 0.938754i \(0.388018\pi\)
−0.985279 + 0.170954i \(0.945315\pi\)
\(420\) −8.28529 + 0.820996i −0.404281 + 0.0400605i
\(421\) 14.0343i 0.683989i −0.939702 0.341994i \(-0.888898\pi\)
0.939702 0.341994i \(-0.111102\pi\)
\(422\) 15.6111 0.759939
\(423\) 3.30430 + 5.88210i 0.160661 + 0.285998i
\(424\) −0.497067 + 0.286982i −0.0241397 + 0.0139371i
\(425\) −9.66277 −0.468713
\(426\) −10.3306 10.4530i −0.500520 0.506448i
\(427\) 18.0258 + 2.85619i 0.872331 + 0.138221i
\(428\) 10.7060i 0.517493i
\(429\) 4.94912 11.8155i 0.238946 0.570458i
\(430\) 2.63083 1.51891i 0.126870 0.0732484i
\(431\) −16.1254 −0.776735 −0.388368 0.921504i \(-0.626961\pi\)
−0.388368 + 0.921504i \(0.626961\pi\)
\(432\) 4.99456 + 1.43330i 0.240301 + 0.0689596i
\(433\) 13.9038 8.02734i 0.668172 0.385769i −0.127211 0.991876i \(-0.540603\pi\)
0.795384 + 0.606106i \(0.207269\pi\)
\(434\) 16.3455 + 13.2380i 0.784608 + 0.635446i
\(435\) 2.54647 0.666280i 0.122094 0.0319457i
\(436\) 4.96961i 0.238001i
\(437\) −12.0609 + 6.96338i −0.576952 + 0.333103i
\(438\) 12.4613 + 12.6089i 0.595424 + 0.602477i
\(439\) 14.0100 8.08869i 0.668662 0.386052i −0.126907 0.991915i \(-0.540505\pi\)
0.795570 + 0.605862i \(0.207172\pi\)
\(440\) 3.22755 + 1.86343i 0.153867 + 0.0888353i
\(441\) 13.8650 + 15.7722i 0.660238 + 0.751057i
\(442\) −20.3351 2.63740i −0.967241 0.125448i
\(443\) 10.8594 + 6.26970i 0.515948 + 0.297883i 0.735275 0.677769i \(-0.237053\pi\)
−0.219327 + 0.975651i \(0.570386\pi\)
\(444\) −7.04591 1.93248i −0.334384 0.0917114i
\(445\) −7.01875 −0.332721
\(446\) −9.83018 −0.465473
\(447\) −2.20581 + 8.04248i −0.104331 + 0.380396i
\(448\) −0.414054 + 2.61315i −0.0195622 + 0.123460i
\(449\) −8.48307 14.6931i −0.400341 0.693411i 0.593426 0.804888i \(-0.297775\pi\)
−0.993767 + 0.111478i \(0.964442\pi\)
\(450\) 4.44395 2.49641i 0.209490 0.117682i
\(451\) −0.814722 0.470380i −0.0383637 0.0221493i
\(452\) 16.6779i 0.784464i
\(453\) −0.625576 2.39090i −0.0293921 0.112334i
\(454\) 11.3725i 0.533739i
\(455\) −12.5498 + 11.9537i −0.588342 + 0.560397i
\(456\) −0.730041 + 2.66176i −0.0341873 + 0.124649i
\(457\) −8.20508 + 4.73720i −0.383817 + 0.221597i −0.679478 0.733696i \(-0.737794\pi\)
0.295660 + 0.955293i \(0.404460\pi\)
\(458\) −18.9794 −0.886847
\(459\) 7.14314 + 28.6751i 0.333413 + 1.33844i
\(460\) −7.93928 + 13.7512i −0.370171 + 0.641155i
\(461\) 31.5250 18.2010i 1.46827 0.847703i 0.468898 0.883253i \(-0.344651\pi\)
0.999368 + 0.0355490i \(0.0113180\pi\)
\(462\) −0.926922 9.35428i −0.0431243 0.435200i
\(463\) 17.8517i 0.829638i 0.909904 + 0.414819i \(0.136155\pi\)
−0.909904 + 0.414819i \(0.863845\pi\)
\(464\) 0.836443i 0.0388309i
\(465\) 24.1268 + 6.61724i 1.11885 + 0.306867i
\(466\) 21.0510i 0.975170i
\(467\) −15.1928 + 26.3147i −0.703039 + 1.21770i 0.264355 + 0.964425i \(0.414841\pi\)
−0.967394 + 0.253274i \(0.918492\pi\)
\(468\) 10.0336 4.04070i 0.463803 0.186781i
\(469\) 13.4712 + 2.13450i 0.622040 + 0.0985622i
\(470\) −2.04295 + 3.53850i −0.0942343 + 0.163219i
\(471\) −3.61642 13.8217i −0.166636 0.636868i
\(472\) −1.89789 1.09575i −0.0873575 0.0504359i
\(473\) 1.71488 + 2.97027i 0.0788505 + 0.136573i
\(474\) 3.37676 12.3118i 0.155100 0.565501i
\(475\) 1.35373 + 2.34474i 0.0621136 + 0.107584i
\(476\) −14.0478 + 5.39141i −0.643879 + 0.247115i
\(477\) 1.72177 + 0.0202748i 0.0788345 + 0.000928322i
\(478\) −8.34427 14.4527i −0.381658 0.661051i
\(479\) 23.0354i 1.05251i 0.850326 + 0.526257i \(0.176405\pi\)
−0.850326 + 0.526257i \(0.823595\pi\)
\(480\) 0.796563 + 3.04440i 0.0363580 + 0.138957i
\(481\) −14.0400 + 5.84720i −0.640168 + 0.266609i
\(482\) −15.2747 −0.695741
\(483\) 39.8547 3.94923i 1.81345 0.179696i
\(484\) 3.39615 5.88231i 0.154370 0.267378i
\(485\) 6.26486i 0.284473i
\(486\) −10.6935 11.3424i −0.485067 0.514500i
\(487\) −12.3041 7.10375i −0.557550 0.321902i 0.194611 0.980880i \(-0.437655\pi\)
−0.752162 + 0.658979i \(0.770989\pi\)
\(488\) 6.89812i 0.312263i
\(489\) 40.0065 + 10.9726i 1.80916 + 0.496197i
\(490\) −3.93162 + 12.0950i −0.177612 + 0.546397i
\(491\) 2.47085 + 1.42654i 0.111508 + 0.0643790i 0.554717 0.832039i \(-0.312827\pi\)
−0.443209 + 0.896418i \(0.646160\pi\)
\(492\) −0.201074 0.768489i −0.00906513 0.0346462i
\(493\) 4.11968 2.37850i 0.185541 0.107122i
\(494\) 2.20892 + 5.30394i 0.0993840 + 0.238636i
\(495\) −5.47588 9.74780i −0.246122 0.438131i
\(496\) 3.97501 6.88493i 0.178483 0.309142i
\(497\) −20.9587 + 8.04374i −0.940125 + 0.360811i
\(498\) −6.60619 25.2483i −0.296030 1.13140i
\(499\) 15.9720 + 9.22146i 0.715007 + 0.412809i 0.812912 0.582386i \(-0.197881\pi\)
−0.0979055 + 0.995196i \(0.531214\pi\)
\(500\) 10.5406 + 6.08559i 0.471388 + 0.272156i
\(501\) −28.8698 + 28.5319i −1.28981 + 1.27471i
\(502\) −4.91975 + 8.52125i −0.219579 + 0.380322i
\(503\) −6.05432 10.4864i −0.269949 0.467565i 0.698900 0.715220i \(-0.253673\pi\)
−0.968848 + 0.247655i \(0.920340\pi\)
\(504\) 5.06775 6.10884i 0.225736 0.272109i
\(505\) −15.2564 8.80830i −0.678902 0.391964i
\(506\) −15.5255 8.96363i −0.690191 0.398482i
\(507\) 11.2981 19.4770i 0.501768 0.865002i
\(508\) −10.6930 18.5208i −0.474426 0.821730i
\(509\) −31.9977 + 18.4739i −1.41827 + 0.818839i −0.996147 0.0876987i \(-0.972049\pi\)
−0.422124 + 0.906538i \(0.638715\pi\)
\(510\) −12.7293 + 12.5803i −0.563662 + 0.557064i
\(511\) 25.2814 9.70277i 1.11838 0.429225i
\(512\) 1.00000 0.0441942
\(513\) 5.95747 5.75066i 0.263029 0.253898i
\(514\) 0.766166 1.32704i 0.0337941 0.0585332i
\(515\) 8.48219 + 14.6916i 0.373770 + 0.647388i
\(516\) −0.766004 + 2.79289i −0.0337215 + 0.122950i
\(517\) −3.99504 2.30654i −0.175702 0.101441i
\(518\) −7.02394 + 8.67272i −0.308614 + 0.381057i
\(519\) 3.48449 12.7046i 0.152952 0.557672i
\(520\) 5.20472 + 3.97785i 0.228242 + 0.174440i
\(521\) 9.03063 + 15.6415i 0.395639 + 0.685267i 0.993183 0.116569i \(-0.0371898\pi\)
−0.597543 + 0.801837i \(0.703856\pi\)
\(522\) −1.28017 + 2.15822i −0.0560314 + 0.0944627i
\(523\) 34.2864 19.7952i 1.49924 0.865585i 0.499238 0.866465i \(-0.333613\pi\)
1.00000 0.000879658i \(0.000280004\pi\)
\(524\) 7.44741 + 12.8993i 0.325342 + 0.563508i
\(525\) −0.767761 7.74806i −0.0335078 0.338153i
\(526\) 16.9520 9.78724i 0.739142 0.426744i
\(527\) 45.2132 1.96952
\(528\) −3.43719 + 0.899337i −0.149585 + 0.0391386i
\(529\) 26.6903 46.2289i 1.16045 2.00995i
\(530\) 0.521404 + 0.903098i 0.0226483 + 0.0392281i
\(531\) 3.21997 + 5.73198i 0.139735 + 0.248747i
\(532\) 3.27633 + 2.65347i 0.142047 + 0.115042i
\(533\) −1.31381 1.00412i −0.0569076 0.0434932i
\(534\) 4.75913 4.70342i 0.205948 0.203537i
\(535\) 19.4512 0.840948
\(536\) 5.15514i 0.222668i
\(537\) −30.7361 8.42997i −1.32636 0.363780i
\(538\) −13.5580 −0.584527
\(539\) −13.6555 4.43888i −0.588185 0.191196i
\(540\) 2.60409 9.07439i 0.112062 0.390499i
\(541\) 21.7849 + 12.5775i 0.936606 + 0.540750i 0.888895 0.458111i \(-0.151474\pi\)
0.0477116 + 0.998861i \(0.484807\pi\)
\(542\) −14.0278 + 24.2968i −0.602545 + 1.04364i
\(543\) −0.318770 0.0874288i −0.0136797 0.00375193i
\(544\) 2.84359 + 4.92524i 0.121918 + 0.211168i
\(545\) 9.02906 0.386762
\(546\) 0.499056 16.5152i 0.0213576 0.706784i
\(547\) 9.83208 0.420389 0.210195 0.977660i \(-0.432590\pi\)
0.210195 + 0.977660i \(0.432590\pi\)
\(548\) 5.80216 + 10.0496i 0.247856 + 0.429299i
\(549\) −10.5575 + 17.7988i −0.450582 + 0.759632i
\(550\) −1.74260 + 3.01827i −0.0743046 + 0.128699i
\(551\) −1.15432 0.666446i −0.0491756 0.0283916i
\(552\) −3.83170 14.6444i −0.163088 0.623309i
\(553\) −15.1545 12.2734i −0.644433 0.521920i
\(554\) 23.3285 0.991131
\(555\) −3.51103 + 12.8014i −0.149035 + 0.543389i
\(556\) 15.7682i 0.668719i
\(557\) −5.46504 −0.231561 −0.115781 0.993275i \(-0.536937\pi\)
−0.115781 + 0.993275i \(0.536937\pi\)
\(558\) −20.7938 + 11.6810i −0.880270 + 0.494497i
\(559\) 2.31774 + 5.56522i 0.0980298 + 0.235384i
\(560\) 4.74771 + 0.752275i 0.200627 + 0.0317894i
\(561\) −14.2034 14.3716i −0.599668 0.606771i
\(562\) −13.3151 23.0624i −0.561663 0.972828i
\(563\) 12.7679 22.1146i 0.538101 0.932018i −0.460906 0.887449i \(-0.652475\pi\)
0.999006 0.0445687i \(-0.0141914\pi\)
\(564\) −0.985981 3.76834i −0.0415173 0.158676i
\(565\) −30.3014 −1.27479
\(566\) 23.3128 13.4597i 0.979910 0.565752i
\(567\) −22.4255 + 8.00610i −0.941782 + 0.336225i
\(568\) 4.24250 + 7.34823i 0.178012 + 0.308325i
\(569\) 14.3032 8.25797i 0.599622 0.346192i −0.169271 0.985570i \(-0.554141\pi\)
0.768893 + 0.639378i \(0.220808\pi\)
\(570\) 4.83603 + 1.32638i 0.202559 + 0.0555558i
\(571\) −1.84946 3.20337i −0.0773977 0.134057i 0.824729 0.565529i \(-0.191328\pi\)
−0.902126 + 0.431472i \(0.857994\pi\)
\(572\) −4.49108 + 5.87625i −0.187781 + 0.245698i
\(573\) 8.67989 + 2.38063i 0.362608 + 0.0994522i
\(574\) −1.19845 0.189895i −0.0500225 0.00792606i
\(575\) −12.8596 7.42449i −0.536282 0.309623i
\(576\) −2.58023 1.53049i −0.107510 0.0637703i
\(577\) 4.25571 + 7.37111i 0.177168 + 0.306863i 0.940909 0.338659i \(-0.109973\pi\)
−0.763742 + 0.645522i \(0.776640\pi\)
\(578\) −7.67197 + 13.2882i −0.319112 + 0.552718i
\(579\) 18.3941 + 5.04494i 0.764432 + 0.209660i
\(580\) −1.51969 −0.0631019
\(581\) −39.3745 6.23889i −1.63353 0.258833i
\(582\) −4.19822 4.24795i −0.174022 0.176083i
\(583\) −1.01962 + 0.588677i −0.0422283 + 0.0243805i
\(584\) −5.11752 8.86381i −0.211765 0.366787i
\(585\) −7.34135 18.2295i −0.303528 0.753699i
\(586\) 6.97220 + 4.02540i 0.288019 + 0.166288i
\(587\) 5.89064 + 3.40096i 0.243133 + 0.140373i 0.616616 0.787264i \(-0.288503\pi\)
−0.373483 + 0.927637i \(0.621837\pi\)
\(588\) −5.43926 10.8358i −0.224311 0.446861i
\(589\) −6.33428 10.9713i −0.260999 0.452064i
\(590\) −1.99081 + 3.44819i −0.0819604 + 0.141960i
\(591\) 27.1100 + 27.4311i 1.11516 + 1.12837i
\(592\) 3.65306 + 2.10909i 0.150140 + 0.0866832i
\(593\) −6.06317 3.50057i −0.248984 0.143751i 0.370315 0.928906i \(-0.379250\pi\)
−0.619299 + 0.785155i \(0.712583\pi\)
\(594\) 10.2452 + 2.94008i 0.420365 + 0.120633i
\(595\) 9.79540 + 25.5228i 0.401572 + 1.04633i
\(596\) 2.40740 4.16974i 0.0986111 0.170799i
\(597\) −23.5232 + 23.2479i −0.962742 + 0.951472i
\(598\) −25.0362 19.1346i −1.02381 0.782473i
\(599\) 36.0831 20.8326i 1.47432 0.851197i 0.474735 0.880129i \(-0.342544\pi\)
0.999581 + 0.0289321i \(0.00921067\pi\)
\(600\) −2.84699 + 0.744913i −0.116228 + 0.0304109i
\(601\) −1.93484 1.11708i −0.0789239 0.0455668i 0.460019 0.887909i \(-0.347843\pi\)
−0.538943 + 0.842342i \(0.681176\pi\)
\(602\) 3.43773 + 2.78418i 0.140111 + 0.113475i
\(603\) −7.88987 + 13.3015i −0.321301 + 0.541677i
\(604\) 1.42685i 0.0580579i
\(605\) −10.6873 6.17031i −0.434500 0.250859i
\(606\) 16.2474 4.25111i 0.660006 0.172690i
\(607\) 0.676987i 0.0274781i −0.999906 0.0137390i \(-0.995627\pi\)
0.999906 0.0137390i \(-0.00437341\pi\)
\(608\) 0.796762 1.38003i 0.0323129 0.0559677i
\(609\) 2.23452 + 3.11437i 0.0905475 + 0.126201i
\(610\) −12.5329 −0.507441
\(611\) −6.44238 4.92376i −0.260631 0.199194i
\(612\) 0.200895 17.0603i 0.00812071 0.689623i
\(613\) 7.33142i 0.296113i 0.988979 + 0.148057i \(0.0473018\pi\)
−0.988979 + 0.148057i \(0.952698\pi\)
\(614\) 6.80970 + 11.7947i 0.274817 + 0.475997i
\(615\) −1.39623 + 0.365323i −0.0563015 + 0.0147312i
\(616\) −0.849335 + 5.36027i −0.0342207 + 0.215972i
\(617\) 22.6183 + 39.1761i 0.910579 + 1.57717i 0.813248 + 0.581917i \(0.197697\pi\)
0.0973311 + 0.995252i \(0.468969\pi\)
\(618\) −15.5966 4.27766i −0.627386 0.172073i
\(619\) −5.37271 9.30581i −0.215948 0.374032i 0.737618 0.675219i \(-0.235951\pi\)
−0.953565 + 0.301186i \(0.902617\pi\)
\(620\) −12.5089 7.22202i −0.502369 0.290043i
\(621\) −12.5265 + 43.6505i −0.502669 + 1.75163i
\(622\) −12.6742 + 21.9523i −0.508187 + 0.880206i
\(623\) −3.66223 9.54227i −0.146724 0.382303i
\(624\) −6.19475 + 0.790580i −0.247989 + 0.0316485i
\(625\) 6.80901 11.7935i 0.272360 0.471742i
\(626\) 8.55974i 0.342116i
\(627\) −1.49751 + 5.45999i −0.0598047 + 0.218051i
\(628\) 8.24857i 0.329154i
\(629\) 23.9896i 0.956527i
\(630\) −11.0989 9.20736i −0.442189 0.366830i
\(631\) 15.7277 9.08038i 0.626109 0.361484i −0.153135 0.988205i \(-0.548937\pi\)
0.779244 + 0.626721i \(0.215603\pi\)
\(632\) −3.68537 + 6.38325i −0.146596 + 0.253912i
\(633\) 19.0068 + 19.2319i 0.755451 + 0.764399i
\(634\) 23.5504 0.935305
\(635\) −33.6497 + 19.4276i −1.33535 + 0.770962i
\(636\) −0.958729 0.262950i −0.0380161 0.0104266i
\(637\) −22.7997 10.8247i −0.903356 0.428891i
\(638\) 1.71577i 0.0679279i
\(639\) 0.299727 25.4533i 0.0118570 1.00692i
\(640\) 1.81685i 0.0718174i
\(641\) 12.5354 + 7.23732i 0.495119 + 0.285857i 0.726696 0.686960i \(-0.241055\pi\)
−0.231577 + 0.972817i \(0.574388\pi\)
\(642\) −13.1891 + 13.0347i −0.520531 + 0.514437i
\(643\) −6.24408 10.8151i −0.246243 0.426505i 0.716238 0.697856i \(-0.245863\pi\)
−0.962480 + 0.271352i \(0.912529\pi\)
\(644\) −22.8379 3.61866i −0.899939 0.142595i
\(645\) 5.07427 + 1.39172i 0.199799 + 0.0547988i
\(646\) 9.06264 0.356565
\(647\) −32.2302 −1.26710 −0.633550 0.773702i \(-0.718403\pi\)
−0.633550 + 0.773702i \(0.718403\pi\)
\(648\) 4.31521 + 7.89803i 0.169518 + 0.310264i
\(649\) −3.89308 2.24767i −0.152817 0.0882288i
\(650\) −3.71992 + 4.86724i −0.145907 + 0.190909i
\(651\) 3.59244 + 36.2540i 0.140799 + 1.42091i
\(652\) −20.7420 11.9754i −0.812319 0.468992i
\(653\) 31.8138 18.3677i 1.24497 0.718783i 0.274868 0.961482i \(-0.411366\pi\)
0.970102 + 0.242699i \(0.0780327\pi\)
\(654\) −6.12224 + 6.05057i −0.239398 + 0.236596i
\(655\) 23.4361 13.5309i 0.915725 0.528694i
\(656\) 0.458624i 0.0179062i
\(657\) −0.361545 + 30.7030i −0.0141052 + 1.19784i
\(658\) −5.87669 0.931162i −0.229097 0.0363005i
\(659\) 39.7060 22.9243i 1.54673 0.893003i 0.548338 0.836257i \(-0.315261\pi\)
0.998389 0.0567462i \(-0.0180726\pi\)
\(660\) 1.63396 + 6.24487i 0.0636019 + 0.243081i
\(661\) −15.0273 −0.584496 −0.292248 0.956343i \(-0.594403\pi\)
−0.292248 + 0.956343i \(0.594403\pi\)
\(662\) −6.15849 + 3.55561i −0.239356 + 0.138193i
\(663\) −21.5091 28.2626i −0.835345 1.09763i
\(664\) 15.0678i 0.584745i
\(665\) 4.82096 5.95261i 0.186949 0.230832i
\(666\) −6.19780 11.0329i −0.240160 0.427517i
\(667\) 7.31018 0.283051
\(668\) 20.2949 11.7173i 0.785234 0.453355i
\(669\) −11.9684 12.1101i −0.462724 0.468205i
\(670\) −9.36613 −0.361845
\(671\) 14.1499i 0.546250i
\(672\) −3.72335 + 2.67146i −0.143631 + 0.103054i
\(673\) −13.8713 + 24.0258i −0.534700 + 0.926127i 0.464478 + 0.885585i \(0.346242\pi\)
−0.999178 + 0.0405428i \(0.987091\pi\)
\(674\) −9.55933 16.5572i −0.368211 0.637761i
\(675\) 8.48599 + 2.43524i 0.326626 + 0.0937324i
\(676\) −9.15697 + 9.22767i −0.352191 + 0.354910i
\(677\) 0.275329 0.476883i 0.0105817 0.0183281i −0.860686 0.509136i \(-0.829965\pi\)
0.871268 + 0.490808i \(0.163298\pi\)
\(678\) 20.5461 20.3056i 0.789069 0.779832i
\(679\) −8.51732 + 3.26887i −0.326865 + 0.125448i
\(680\) 8.94843 5.16638i 0.343157 0.198122i
\(681\) −14.0102 + 13.8462i −0.536872 + 0.530587i
\(682\) 8.15382 14.1228i 0.312226 0.540791i
\(683\) 18.1878 31.5022i 0.695938 1.20540i −0.273926 0.961751i \(-0.588322\pi\)
0.969864 0.243648i \(-0.0783443\pi\)
\(684\) −4.16795 + 2.34137i −0.159366 + 0.0895245i
\(685\) 18.2587 10.5417i 0.697629 0.402776i
\(686\) −18.4951 + 0.965729i −0.706145 + 0.0368717i
\(687\) −23.1076 23.3813i −0.881610 0.892053i
\(688\) 0.836012 1.44802i 0.0318727 0.0552051i
\(689\) −1.91040 + 0.795621i −0.0727805 + 0.0303107i
\(690\) −26.6068 + 6.96164i −1.01290 + 0.265025i
\(691\) 16.1760 + 28.0176i 0.615363 + 1.06584i 0.990321 + 0.138797i \(0.0443237\pi\)
−0.374958 + 0.927042i \(0.622343\pi\)
\(692\) −3.80295 + 6.58691i −0.144567 + 0.250397i
\(693\) 10.3953 12.5309i 0.394885 0.476008i
\(694\) 23.0701i 0.875728i
\(695\) −28.6484 −1.08670
\(696\) 1.03044 1.01838i 0.0390588 0.0386016i
\(697\) −2.25883 + 1.30414i −0.0855593 + 0.0493977i
\(698\) 4.22719 0.160001
\(699\) −25.9335 + 25.6299i −0.980895 + 0.969412i
\(700\) −0.703496 + 4.43986i −0.0265897 + 0.167811i
\(701\) 13.2279i 0.499612i −0.968296 0.249806i \(-0.919633\pi\)
0.968296 0.249806i \(-0.0803669\pi\)
\(702\) 17.1939 + 7.44111i 0.648942 + 0.280847i
\(703\) 5.82123 3.36089i 0.219552 0.126758i
\(704\) 2.05127 0.0773101
\(705\) −6.84652 + 1.79138i −0.257855 + 0.0674674i
\(706\) −27.6603 + 15.9697i −1.04101 + 0.601028i
\(707\) 4.01476 25.3377i 0.150990 0.952922i
\(708\) −0.960817 3.67216i −0.0361097 0.138008i
\(709\) 27.2697i 1.02413i −0.858946 0.512067i \(-0.828880\pi\)
0.858946 0.512067i \(-0.171120\pi\)
\(710\) 13.3507 7.70801i 0.501041 0.289276i
\(711\) 19.2786 10.8299i 0.723004 0.406152i
\(712\) −3.34558 + 1.93157i −0.125381 + 0.0723886i
\(713\) 60.1715 + 34.7400i 2.25344 + 1.30102i
\(714\) −23.7452 10.7418i −0.888643 0.402003i
\(715\) 10.6763 + 8.15963i 0.399270 + 0.305153i
\(716\) 15.9356 + 9.20041i 0.595541 + 0.343836i
\(717\) 7.64552 27.8760i 0.285527 1.04105i
\(718\) 24.4992 0.914301
\(719\) −15.3808 −0.573608 −0.286804 0.957989i \(-0.592593\pi\)
−0.286804 + 0.957989i \(0.592593\pi\)
\(720\) −2.78067 + 4.68791i −0.103629 + 0.174708i
\(721\) −15.5480 + 19.1976i −0.579036 + 0.714956i
\(722\) 8.23034 + 14.2554i 0.306302 + 0.530530i
\(723\) −18.5971 18.8174i −0.691633 0.699826i
\(724\) 0.165271 + 0.0954192i 0.00614225 + 0.00354623i
\(725\) 1.42116i 0.0527804i
\(726\) 11.3815 2.97795i 0.422406 0.110522i
\(727\) 34.8309i 1.29181i −0.763420 0.645903i \(-0.776481\pi\)
0.763420 0.645903i \(-0.223519\pi\)
\(728\) −2.69233 + 9.15158i −0.0997843 + 0.339180i
\(729\) 0.953579 26.9832i 0.0353177 0.999376i
\(730\) −16.1042 + 9.29779i −0.596045 + 0.344127i
\(731\) 9.50909 0.351706
\(732\) 8.49803 8.39855i 0.314096 0.310419i
\(733\) −9.43951 + 16.3497i −0.348656 + 0.603890i −0.986011 0.166680i \(-0.946695\pi\)
0.637355 + 0.770570i \(0.280029\pi\)
\(734\) 28.7618 16.6056i 1.06162 0.612925i
\(735\) −19.6870 + 9.88234i −0.726168 + 0.364515i
\(736\) 8.73960i 0.322146i
\(737\) 10.5746i 0.389519i
\(738\) 0.701918 1.18336i 0.0258379 0.0435599i
\(739\) 7.95816i 0.292746i 0.989229 + 0.146373i \(0.0467599\pi\)
−0.989229 + 0.146373i \(0.953240\pi\)
\(740\) 3.83191 6.63707i 0.140864 0.243984i
\(741\) −3.84472 + 9.17886i −0.141239 + 0.337194i
\(742\) −0.955740 + 1.18009i −0.0350863 + 0.0433223i
\(743\) 9.17025 15.8833i 0.336424 0.582703i −0.647334 0.762207i \(-0.724116\pi\)
0.983757 + 0.179504i \(0.0574492\pi\)
\(744\) 13.3214 3.48553i 0.488386 0.127786i
\(745\) −7.57581 4.37390i −0.277556 0.160247i
\(746\) 2.06003 + 3.56807i 0.0754230 + 0.130636i
\(747\) 23.0611 38.8785i 0.843762 1.42249i
\(748\) 5.83296 + 10.1030i 0.213274 + 0.369401i
\(749\) 10.1492 + 26.4446i 0.370844 + 0.966266i
\(750\) 5.33621 + 20.3946i 0.194851 + 0.744704i
\(751\) 6.89641 + 11.9449i 0.251654 + 0.435877i 0.963981 0.265970i \(-0.0856923\pi\)
−0.712328 + 0.701847i \(0.752359\pi\)
\(752\) 2.24889i 0.0820086i
\(753\) −16.4875 + 4.31393i −0.600837 + 0.157208i
\(754\) 0.387897 2.99079i 0.0141264 0.108918i
\(755\) 2.59238 0.0943465
\(756\) 13.6957 1.19445i 0.498109 0.0434418i
\(757\) 21.2683 36.8378i 0.773010 1.33889i −0.162896 0.986643i \(-0.552084\pi\)
0.935906 0.352249i \(-0.114583\pi\)
\(758\) 3.23318i 0.117434i
\(759\) −7.85985 30.0397i −0.285294 1.09037i
\(760\) −2.50731 1.44760i −0.0909498 0.0525099i
\(761\) 32.3111i 1.17128i −0.810573 0.585638i \(-0.800844\pi\)
0.810573 0.585638i \(-0.199156\pi\)
\(762\) 9.79758 35.7225i 0.354929 1.29409i
\(763\) 4.71117 + 12.2754i 0.170556 + 0.444398i
\(764\) −4.50022 2.59820i −0.162812 0.0939997i
\(765\) −30.9961 0.364997i −1.12067 0.0131965i
\(766\) −3.61672 + 2.08811i −0.130677 + 0.0754465i
\(767\) −6.27796 4.79810i −0.226684 0.173249i
\(768\) 1.21751 + 1.23193i 0.0439332 + 0.0444536i
\(769\) −6.20736 + 10.7515i −0.223843 + 0.387707i −0.955972 0.293459i \(-0.905194\pi\)
0.732129 + 0.681166i \(0.238527\pi\)
\(770\) 9.73883 + 1.54312i 0.350963 + 0.0556101i
\(771\) 2.56764 0.671821i 0.0924714 0.0241950i
\(772\) −9.53669 5.50601i −0.343233 0.198166i
\(773\) 10.8428 + 6.26007i 0.389987 + 0.225159i 0.682154 0.731208i \(-0.261043\pi\)
−0.292168 + 0.956367i \(0.594377\pi\)
\(774\) −4.37328 + 2.45671i