Properties

Label 546.2.bn.e.173.1
Level $546$
Weight $2$
Character 546.173
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bn (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 173.1
Character \(\chi\) \(=\) 546.173
Dual form 546.2.bn.e.101.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-1.73183 + 0.0276700i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-2.84717 - 1.64381i) q^{5} +(0.889878 + 1.48597i) q^{6} +(-0.683149 - 2.55603i) q^{7} +1.00000 q^{8} +(2.99847 - 0.0958395i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-1.73183 + 0.0276700i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-2.84717 - 1.64381i) q^{5} +(0.889878 + 1.48597i) q^{6} +(-0.683149 - 2.55603i) q^{7} +1.00000 q^{8} +(2.99847 - 0.0958395i) q^{9} +3.28763i q^{10} -2.07020 q^{11} +(0.841952 - 1.51364i) q^{12} +(-3.53365 - 0.716460i) q^{13} +(-1.87202 + 1.86964i) q^{14} +(4.97629 + 2.76802i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.561810 + 0.973084i) q^{17} +(-1.58223 - 2.54883i) q^{18} -1.01086 q^{19} +(2.84717 - 1.64381i) q^{20} +(1.25382 + 4.40771i) q^{21} +(1.03510 + 1.79285i) q^{22} +(3.03183 - 1.75043i) q^{23} +(-1.73183 + 0.0276700i) q^{24} +(2.90424 + 5.03029i) q^{25} +(1.14635 + 3.41846i) q^{26} +(-5.19019 + 0.248945i) q^{27} +(2.55516 + 0.686393i) q^{28} +(7.97573 + 4.60479i) q^{29} +(-0.0909687 - 5.69361i) q^{30} +(1.86666 + 3.23315i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(3.58524 - 0.0572825i) q^{33} +1.12362 q^{34} +(-2.25660 + 8.40042i) q^{35} +(-1.41623 + 2.64467i) q^{36} +(-6.03816 + 3.48613i) q^{37} +(0.505430 + 0.875431i) q^{38} +(6.13951 + 1.14301i) q^{39} +(-2.84717 - 1.64381i) q^{40} +(8.52566 + 4.92229i) q^{41} +(3.19028 - 3.28970i) q^{42} +(3.35600 + 5.81276i) q^{43} +(1.03510 - 1.79285i) q^{44} +(-8.69468 - 4.65605i) q^{45} +(-3.03183 - 1.75043i) q^{46} +(-1.05515 - 0.609193i) q^{47} +(0.889878 + 1.48597i) q^{48} +(-6.06662 + 3.49230i) q^{49} +(2.90424 - 5.03029i) q^{50} +(0.946035 - 1.70076i) q^{51} +(2.38730 - 2.70200i) q^{52} +(-5.05843 + 2.92049i) q^{53} +(2.81069 + 4.37036i) q^{54} +(5.89421 + 3.40302i) q^{55} +(-0.683149 - 2.55603i) q^{56} +(1.75064 - 0.0279705i) q^{57} -9.20958i q^{58} +(-8.49492 - 4.90455i) q^{59} +(-4.88532 + 2.92558i) q^{60} -0.241991i q^{61} +(1.86666 - 3.23315i) q^{62} +(-2.29337 - 7.59871i) q^{63} +1.00000 q^{64} +(8.88317 + 7.84854i) q^{65} +(-1.84223 - 3.07626i) q^{66} -11.8144i q^{67} +(-0.561810 - 0.973084i) q^{68} +(-5.20218 + 3.11533i) q^{69} +(8.40328 - 2.24594i) q^{70} +(-3.94585 - 6.83441i) q^{71} +(2.99847 - 0.0958395i) q^{72} +(-0.878160 - 1.52102i) q^{73} +(6.03816 + 3.48613i) q^{74} +(-5.16884 - 8.63125i) q^{75} +(0.505430 - 0.875431i) q^{76} +(1.41426 + 5.29150i) q^{77} +(-2.07988 - 5.88847i) q^{78} +(-2.48977 + 4.31240i) q^{79} +3.28763i q^{80} +(8.98163 - 0.574744i) q^{81} -9.84458i q^{82} +0.999900i q^{83} +(-4.44410 - 1.11801i) q^{84} +(3.19914 - 1.84702i) q^{85} +(3.35600 - 5.81276i) q^{86} +(-13.9400 - 7.75403i) q^{87} -2.07020 q^{88} +(-6.59807 + 3.80940i) q^{89} +(0.315084 + 9.85784i) q^{90} +(0.582714 + 9.52158i) q^{91} +3.50085i q^{92} +(-3.32220 - 5.54762i) q^{93} +1.21839i q^{94} +(2.87809 + 1.66167i) q^{95} +(0.841952 - 1.51364i) q^{96} +(3.21628 + 5.57077i) q^{97} +(6.05773 + 3.50769i) q^{98} +(-6.20743 + 0.198407i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 17q^{2} + 3q^{3} - 17q^{4} + 9q^{5} - 6q^{6} + 5q^{7} + 34q^{8} + 7q^{9} + O(q^{10}) \) \( 34q - 17q^{2} + 3q^{3} - 17q^{4} + 9q^{5} - 6q^{6} + 5q^{7} + 34q^{8} + 7q^{9} - 18q^{11} + 3q^{12} - 8q^{13} - 4q^{14} - 17q^{15} - 17q^{16} + 6q^{17} - 11q^{18} - 10q^{19} - 9q^{20} - 4q^{21} + 9q^{22} + 6q^{23} + 3q^{24} + 16q^{25} + 13q^{26} + 18q^{27} - q^{28} + 27q^{29} + 13q^{30} + q^{31} - 17q^{32} + 21q^{33} - 12q^{34} - 3q^{35} + 4q^{36} + 6q^{37} + 5q^{38} + 20q^{39} + 9q^{40} + 3q^{41} + 20q^{42} - 3q^{43} + 9q^{44} - 6q^{46} - 27q^{47} - 6q^{48} - 5q^{49} + 16q^{50} + 24q^{51} - 5q^{52} + 21q^{53} - 18q^{54} + 57q^{55} + 5q^{56} - 17q^{57} - 6q^{59} + 4q^{60} + q^{62} - 21q^{63} + 34q^{64} + 33q^{65} - 21q^{66} + 6q^{68} - 30q^{69} + 3q^{70} - 15q^{71} + 7q^{72} + 19q^{73} - 6q^{74} - 63q^{75} + 5q^{76} - 9q^{77} - 10q^{78} - 9q^{79} - 5q^{81} - 16q^{84} - 42q^{85} - 3q^{86} - 75q^{87} - 18q^{88} - 18q^{89} - 9q^{90} - 27q^{91} + 25q^{93} - 3q^{95} + 3q^{96} - 19q^{97} + 7q^{98} - 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −1.73183 + 0.0276700i −0.999872 + 0.0159753i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −2.84717 1.64381i −1.27329 0.735135i −0.297686 0.954664i \(-0.596215\pi\)
−0.975606 + 0.219529i \(0.929548\pi\)
\(6\) 0.889878 + 1.48597i 0.363291 + 0.606646i
\(7\) −0.683149 2.55603i −0.258206 0.966090i
\(8\) 1.00000 0.353553
\(9\) 2.99847 0.0958395i 0.999490 0.0319465i
\(10\) 3.28763i 1.03964i
\(11\) −2.07020 −0.624189 −0.312095 0.950051i \(-0.601031\pi\)
−0.312095 + 0.950051i \(0.601031\pi\)
\(12\) 0.841952 1.51364i 0.243051 0.436951i
\(13\) −3.53365 0.716460i −0.980058 0.198710i
\(14\) −1.87202 + 1.86964i −0.500317 + 0.499683i
\(15\) 4.97629 + 2.76802i 1.28487 + 0.714700i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.561810 + 0.973084i −0.136259 + 0.236008i −0.926078 0.377333i \(-0.876841\pi\)
0.789819 + 0.613340i \(0.210175\pi\)
\(18\) −1.58223 2.54883i −0.372936 0.600765i
\(19\) −1.01086 −0.231907 −0.115954 0.993255i \(-0.536992\pi\)
−0.115954 + 0.993255i \(0.536992\pi\)
\(20\) 2.84717 1.64381i 0.636646 0.367568i
\(21\) 1.25382 + 4.40771i 0.273607 + 0.961842i
\(22\) 1.03510 + 1.79285i 0.220684 + 0.382236i
\(23\) 3.03183 1.75043i 0.632180 0.364989i −0.149416 0.988774i \(-0.547739\pi\)
0.781596 + 0.623785i \(0.214406\pi\)
\(24\) −1.73183 + 0.0276700i −0.353508 + 0.00564812i
\(25\) 2.90424 + 5.03029i 0.580848 + 1.00606i
\(26\) 1.14635 + 3.41846i 0.224818 + 0.670415i
\(27\) −5.19019 + 0.248945i −0.998852 + 0.0479096i
\(28\) 2.55516 + 0.686393i 0.482881 + 0.129716i
\(29\) 7.97573 + 4.60479i 1.48106 + 0.855088i 0.999769 0.0214746i \(-0.00683611\pi\)
0.481287 + 0.876563i \(0.340169\pi\)
\(30\) −0.0909687 5.69361i −0.0166085 1.03951i
\(31\) 1.86666 + 3.23315i 0.335262 + 0.580691i 0.983535 0.180717i \(-0.0578418\pi\)
−0.648273 + 0.761408i \(0.724508\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 3.58524 0.0572825i 0.624109 0.00997160i
\(34\) 1.12362 0.192699
\(35\) −2.25660 + 8.40042i −0.381435 + 1.41993i
\(36\) −1.41623 + 2.64467i −0.236039 + 0.440778i
\(37\) −6.03816 + 3.48613i −0.992667 + 0.573116i −0.906070 0.423127i \(-0.860932\pi\)
−0.0865963 + 0.996243i \(0.527599\pi\)
\(38\) 0.505430 + 0.875431i 0.0819916 + 0.142014i
\(39\) 6.13951 + 1.14301i 0.983108 + 0.183028i
\(40\) −2.84717 1.64381i −0.450177 0.259910i
\(41\) 8.52566 + 4.92229i 1.33148 + 0.768733i 0.985527 0.169517i \(-0.0542209\pi\)
0.345957 + 0.938250i \(0.387554\pi\)
\(42\) 3.19028 3.28970i 0.492271 0.507612i
\(43\) 3.35600 + 5.81276i 0.511785 + 0.886438i 0.999907 + 0.0136621i \(0.00434890\pi\)
−0.488122 + 0.872776i \(0.662318\pi\)
\(44\) 1.03510 1.79285i 0.156047 0.270282i
\(45\) −8.69468 4.65605i −1.29613 0.694083i
\(46\) −3.03183 1.75043i −0.447019 0.258086i
\(47\) −1.05515 0.609193i −0.153910 0.0888599i 0.421067 0.907029i \(-0.361656\pi\)
−0.574977 + 0.818170i \(0.694989\pi\)
\(48\) 0.889878 + 1.48597i 0.128443 + 0.214482i
\(49\) −6.06662 + 3.49230i −0.866659 + 0.498900i
\(50\) 2.90424 5.03029i 0.410722 0.711391i
\(51\) 0.946035 1.70076i 0.132471 0.238154i
\(52\) 2.38730 2.70200i 0.331059 0.374700i
\(53\) −5.05843 + 2.92049i −0.694829 + 0.401160i −0.805419 0.592706i \(-0.798059\pi\)
0.110589 + 0.993866i \(0.464726\pi\)
\(54\) 2.81069 + 4.37036i 0.382486 + 0.594731i
\(55\) 5.89421 + 3.40302i 0.794775 + 0.458863i
\(56\) −0.683149 2.55603i −0.0912896 0.341564i
\(57\) 1.75064 0.0279705i 0.231878 0.00370479i
\(58\) 9.20958i 1.20928i
\(59\) −8.49492 4.90455i −1.10594 0.638517i −0.168169 0.985758i \(-0.553785\pi\)
−0.937776 + 0.347241i \(0.887119\pi\)
\(60\) −4.88532 + 2.92558i −0.630693 + 0.377691i
\(61\) 0.241991i 0.0309838i −0.999880 0.0154919i \(-0.995069\pi\)
0.999880 0.0154919i \(-0.00493142\pi\)
\(62\) 1.86666 3.23315i 0.237066 0.410611i
\(63\) −2.29337 7.59871i −0.288937 0.957348i
\(64\) 1.00000 0.125000
\(65\) 8.88317 + 7.84854i 1.10182 + 0.973492i
\(66\) −1.84223 3.07626i −0.226762 0.378662i
\(67\) 11.8144i 1.44336i −0.692226 0.721680i \(-0.743370\pi\)
0.692226 0.721680i \(-0.256630\pi\)
\(68\) −0.561810 0.973084i −0.0681295 0.118004i
\(69\) −5.20218 + 3.11533i −0.626268 + 0.375042i
\(70\) 8.40328 2.24594i 1.00438 0.268441i
\(71\) −3.94585 6.83441i −0.468286 0.811096i 0.531057 0.847336i \(-0.321795\pi\)
−0.999343 + 0.0362405i \(0.988462\pi\)
\(72\) 2.99847 0.0958395i 0.353373 0.0112948i
\(73\) −0.878160 1.52102i −0.102781 0.178022i 0.810049 0.586363i \(-0.199441\pi\)
−0.912829 + 0.408341i \(0.866107\pi\)
\(74\) 6.03816 + 3.48613i 0.701921 + 0.405254i
\(75\) −5.16884 8.63125i −0.596846 0.996651i
\(76\) 0.505430 0.875431i 0.0579768 0.100419i
\(77\) 1.41426 + 5.29150i 0.161169 + 0.603023i
\(78\) −2.07988 5.88847i −0.235500 0.666738i
\(79\) −2.48977 + 4.31240i −0.280121 + 0.485183i −0.971414 0.237391i \(-0.923708\pi\)
0.691294 + 0.722574i \(0.257041\pi\)
\(80\) 3.28763i 0.367568i
\(81\) 8.98163 0.574744i 0.997959 0.0638604i
\(82\) 9.84458i 1.08715i
\(83\) 0.999900i 0.109753i 0.998493 + 0.0548767i \(0.0174766\pi\)
−0.998493 + 0.0548767i \(0.982523\pi\)
\(84\) −4.44410 1.11801i −0.484891 0.121985i
\(85\) 3.19914 1.84702i 0.346995 0.200338i
\(86\) 3.35600 5.81276i 0.361887 0.626806i
\(87\) −13.9400 7.75403i −1.49453 0.831319i
\(88\) −2.07020 −0.220684
\(89\) −6.59807 + 3.80940i −0.699394 + 0.403795i −0.807122 0.590385i \(-0.798976\pi\)
0.107728 + 0.994180i \(0.465642\pi\)
\(90\) 0.315084 + 9.85784i 0.0332128 + 1.03911i
\(91\) 0.582714 + 9.52158i 0.0610850 + 0.998133i
\(92\) 3.50085i 0.364989i
\(93\) −3.32220 5.54762i −0.344496 0.575261i
\(94\) 1.21839i 0.125667i
\(95\) 2.87809 + 1.66167i 0.295286 + 0.170483i
\(96\) 0.841952 1.51364i 0.0859314 0.154486i
\(97\) 3.21628 + 5.57077i 0.326564 + 0.565626i 0.981828 0.189775i \(-0.0607757\pi\)
−0.655264 + 0.755400i \(0.727442\pi\)
\(98\) 6.05773 + 3.50769i 0.611923 + 0.354330i
\(99\) −6.20743 + 0.198407i −0.623870 + 0.0199407i
\(100\) −5.80848 −0.580848
\(101\) 19.3241 1.92282 0.961409 0.275123i \(-0.0887185\pi\)
0.961409 + 0.275123i \(0.0887185\pi\)
\(102\) −1.94592 + 0.0310906i −0.192675 + 0.00307843i
\(103\) −7.86720 4.54213i −0.775178 0.447549i 0.0595405 0.998226i \(-0.481036\pi\)
−0.834719 + 0.550677i \(0.814370\pi\)
\(104\) −3.53365 0.716460i −0.346503 0.0702547i
\(105\) 3.67561 14.6105i 0.358703 1.42584i
\(106\) 5.05843 + 2.92049i 0.491318 + 0.283663i
\(107\) −3.25929 + 1.88175i −0.315088 + 0.181916i −0.649201 0.760617i \(-0.724897\pi\)
0.334113 + 0.942533i \(0.391563\pi\)
\(108\) 2.37950 4.61931i 0.228967 0.444493i
\(109\) 2.43945 1.40841i 0.233657 0.134902i −0.378601 0.925560i \(-0.623595\pi\)
0.612258 + 0.790658i \(0.290261\pi\)
\(110\) 6.80604i 0.648931i
\(111\) 10.3606 6.20446i 0.983384 0.588901i
\(112\) −1.87202 + 1.86964i −0.176889 + 0.176664i
\(113\) −4.57774 + 2.64296i −0.430637 + 0.248629i −0.699618 0.714517i \(-0.746646\pi\)
0.268981 + 0.963146i \(0.413313\pi\)
\(114\) −0.899542 1.50211i −0.0842499 0.140686i
\(115\) −11.5095 −1.07327
\(116\) −7.97573 + 4.60479i −0.740528 + 0.427544i
\(117\) −10.6642 1.80962i −0.985906 0.167299i
\(118\) 9.80909i 0.903000i
\(119\) 2.87104 + 0.771245i 0.263187 + 0.0706999i
\(120\) 4.97629 + 2.76802i 0.454271 + 0.252685i
\(121\) −6.71427 −0.610388
\(122\) −0.209571 + 0.120996i −0.0189736 + 0.0109544i
\(123\) −14.9012 8.28867i −1.34360 0.747364i
\(124\) −3.73332 −0.335262
\(125\) 2.65798i 0.237737i
\(126\) −5.43399 + 5.78547i −0.484099 + 0.515411i
\(127\) 9.40084 16.2827i 0.834190 1.44486i −0.0604988 0.998168i \(-0.519269\pi\)
0.894688 0.446691i \(-0.147398\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −5.97286 9.97385i −0.525881 0.878149i
\(130\) 2.35545 11.6173i 0.206587 1.01891i
\(131\) −1.45204 + 2.51500i −0.126865 + 0.219737i −0.922460 0.386092i \(-0.873825\pi\)
0.795595 + 0.605828i \(0.207158\pi\)
\(132\) −1.74301 + 3.13355i −0.151710 + 0.272740i
\(133\) 0.690568 + 2.58379i 0.0598799 + 0.224043i
\(134\) −10.2316 + 5.90721i −0.883874 + 0.510305i
\(135\) 15.1865 + 7.82290i 1.30705 + 0.673288i
\(136\) −0.561810 + 0.973084i −0.0481748 + 0.0834413i
\(137\) −10.5895 + 18.3416i −0.904724 + 1.56703i −0.0834363 + 0.996513i \(0.526590\pi\)
−0.821288 + 0.570515i \(0.806744\pi\)
\(138\) 5.29905 + 2.94755i 0.451085 + 0.250912i
\(139\) −17.6205 + 10.1732i −1.49455 + 0.862878i −0.999980 0.00626156i \(-0.998007\pi\)
−0.494568 + 0.869139i \(0.664674\pi\)
\(140\) −6.14668 6.15449i −0.519489 0.520149i
\(141\) 1.84420 + 1.02582i 0.155310 + 0.0863898i
\(142\) −3.94585 + 6.83441i −0.331128 + 0.573531i
\(143\) 7.31537 + 1.48322i 0.611742 + 0.124033i
\(144\) −1.58223 2.54883i −0.131853 0.212403i
\(145\) −15.1388 26.2212i −1.25721 2.17755i
\(146\) −0.878160 + 1.52102i −0.0726770 + 0.125880i
\(147\) 10.4097 6.21594i 0.858579 0.512682i
\(148\) 6.97226i 0.573116i
\(149\) −13.2500 −1.08549 −0.542743 0.839899i \(-0.682614\pi\)
−0.542743 + 0.839899i \(0.682614\pi\)
\(150\) −4.89046 + 8.79197i −0.399304 + 0.717861i
\(151\) 15.0137 8.66818i 1.22180 0.705407i 0.256499 0.966545i \(-0.417431\pi\)
0.965301 + 0.261138i \(0.0840978\pi\)
\(152\) −1.01086 −0.0819916
\(153\) −1.59131 + 2.97161i −0.128650 + 0.240240i
\(154\) 3.87545 3.87053i 0.312293 0.311896i
\(155\) 12.2738i 0.985852i
\(156\) −4.05963 + 4.74546i −0.325030 + 0.379941i
\(157\) 12.2223 7.05652i 0.975442 0.563172i 0.0745511 0.997217i \(-0.476248\pi\)
0.900891 + 0.434045i \(0.142914\pi\)
\(158\) 4.97953 0.396150
\(159\) 8.67953 5.19775i 0.688332 0.412209i
\(160\) 2.84717 1.64381i 0.225088 0.129955i
\(161\) −6.54534 6.55365i −0.515845 0.516500i
\(162\) −4.98856 7.49095i −0.391938 0.588544i
\(163\) 10.3152i 0.807947i 0.914771 + 0.403974i \(0.132371\pi\)
−0.914771 + 0.403974i \(0.867629\pi\)
\(164\) −8.52566 + 4.92229i −0.665742 + 0.384366i
\(165\) −10.3019 5.73036i −0.802004 0.446108i
\(166\) 0.865939 0.499950i 0.0672099 0.0388037i
\(167\) −12.1099 6.99167i −0.937094 0.541032i −0.0480461 0.998845i \(-0.515299\pi\)
−0.889048 + 0.457813i \(0.848633\pi\)
\(168\) 1.25382 + 4.40771i 0.0967345 + 0.340062i
\(169\) 11.9734 + 5.06344i 0.921028 + 0.389495i
\(170\) −3.19914 1.84702i −0.245363 0.141660i
\(171\) −3.03103 + 0.0968804i −0.231789 + 0.00740863i
\(172\) −6.71200 −0.511785
\(173\) 5.07795 0.386069 0.193035 0.981192i \(-0.438167\pi\)
0.193035 + 0.981192i \(0.438167\pi\)
\(174\) 0.254829 + 15.9494i 0.0193186 + 1.20912i
\(175\) 10.8736 10.8598i 0.821964 0.820922i
\(176\) 1.03510 + 1.79285i 0.0780236 + 0.135141i
\(177\) 14.8475 + 8.25878i 1.11600 + 0.620768i
\(178\) 6.59807 + 3.80940i 0.494546 + 0.285526i
\(179\) 11.7132i 0.875486i 0.899100 + 0.437743i \(0.144222\pi\)
−0.899100 + 0.437743i \(0.855778\pi\)
\(180\) 8.37960 5.20179i 0.624578 0.387719i
\(181\) 22.6731i 1.68528i 0.538480 + 0.842638i \(0.318999\pi\)
−0.538480 + 0.842638i \(0.681001\pi\)
\(182\) 7.95457 5.26543i 0.589632 0.390300i
\(183\) 0.00669590 + 0.419088i 0.000494975 + 0.0309798i
\(184\) 3.03183 1.75043i 0.223509 0.129043i
\(185\) 22.9222 1.68527
\(186\) −3.14328 + 5.65092i −0.230476 + 0.414345i
\(187\) 1.16306 2.01448i 0.0850514 0.147313i
\(188\) 1.05515 0.609193i 0.0769549 0.0444299i
\(189\) 4.18198 + 13.0962i 0.304194 + 0.952610i
\(190\) 3.32333i 0.241100i
\(191\) 25.8552i 1.87082i 0.353570 + 0.935408i \(0.384968\pi\)
−0.353570 + 0.935408i \(0.615032\pi\)
\(192\) −1.73183 + 0.0276700i −0.124984 + 0.00199691i
\(193\) 21.8098i 1.56990i 0.619558 + 0.784951i \(0.287312\pi\)
−0.619558 + 0.784951i \(0.712688\pi\)
\(194\) 3.21628 5.57077i 0.230916 0.399958i
\(195\) −15.6013 13.3465i −1.11723 0.955765i
\(196\) 0.00888497 6.99999i 0.000634641 0.500000i
\(197\) 3.51025 6.07993i 0.250095 0.433177i −0.713457 0.700699i \(-0.752872\pi\)
0.963552 + 0.267522i \(0.0862049\pi\)
\(198\) 3.27554 + 5.27659i 0.232783 + 0.374991i
\(199\) −13.0589 7.53954i −0.925719 0.534464i −0.0402638 0.999189i \(-0.512820\pi\)
−0.885455 + 0.464725i \(0.846153\pi\)
\(200\) 2.90424 + 5.03029i 0.205361 + 0.355695i
\(201\) 0.326905 + 20.4606i 0.0230581 + 1.44318i
\(202\) −9.66204 16.7351i −0.679819 1.17748i
\(203\) 6.32139 23.5320i 0.443675 1.65162i
\(204\) 0.999885 + 1.66967i 0.0700060 + 0.116900i
\(205\) −16.1827 28.0292i −1.13025 1.95764i
\(206\) 9.08426i 0.632930i
\(207\) 8.92308 5.53917i 0.620197 0.384999i
\(208\) 1.14635 + 3.41846i 0.0794853 + 0.237028i
\(209\) 2.09268 0.144754
\(210\) −14.4909 + 4.12210i −0.999968 + 0.284452i
\(211\) −10.2101 + 17.6845i −0.702895 + 1.21745i 0.264550 + 0.964372i \(0.414776\pi\)
−0.967446 + 0.253079i \(0.918557\pi\)
\(212\) 5.84097i 0.401160i
\(213\) 7.02265 + 11.7269i 0.481184 + 0.803511i
\(214\) 3.25929 + 1.88175i 0.222801 + 0.128634i
\(215\) 22.0665i 1.50493i
\(216\) −5.19019 + 0.248945i −0.353147 + 0.0169386i
\(217\) 6.98884 6.97997i 0.474433 0.473831i
\(218\) −2.43945 1.40841i −0.165220 0.0953899i
\(219\) 1.56291 + 2.60985i 0.105612 + 0.176357i
\(220\) −5.89421 + 3.40302i −0.397387 + 0.229432i
\(221\) 2.68242 3.03602i 0.180439 0.204225i
\(222\) −10.5535 5.87031i −0.708306 0.393989i
\(223\) −1.37326 + 2.37855i −0.0919602 + 0.159280i −0.908336 0.418241i \(-0.862647\pi\)
0.816376 + 0.577521i \(0.195980\pi\)
\(224\) 2.55516 + 0.686393i 0.170724 + 0.0458615i
\(225\) 9.19037 + 14.8048i 0.612692 + 0.986989i
\(226\) 4.57774 + 2.64296i 0.304507 + 0.175807i
\(227\) −7.77691 4.49000i −0.516172 0.298012i 0.219195 0.975681i \(-0.429657\pi\)
−0.735367 + 0.677669i \(0.762990\pi\)
\(228\) −0.851096 + 1.53008i −0.0563652 + 0.101332i
\(229\) −8.23500 + 14.2634i −0.544184 + 0.942554i 0.454474 + 0.890760i \(0.349827\pi\)
−0.998658 + 0.0517940i \(0.983506\pi\)
\(230\) 5.75475 + 9.96752i 0.379457 + 0.657239i
\(231\) −2.59567 9.12485i −0.170782 0.600371i
\(232\) 7.97573 + 4.60479i 0.523633 + 0.302319i
\(233\) 4.79194 + 2.76663i 0.313931 + 0.181248i 0.648684 0.761058i \(-0.275320\pi\)
−0.334753 + 0.942306i \(0.608653\pi\)
\(234\) 3.76493 + 10.1403i 0.246121 + 0.662891i
\(235\) 2.00280 + 3.46895i 0.130648 + 0.226289i
\(236\) 8.49492 4.90455i 0.552972 0.319259i
\(237\) 4.19253 7.53724i 0.272334 0.489596i
\(238\) −0.767600 2.87201i −0.0497561 0.186165i
\(239\) 4.33497 0.280406 0.140203 0.990123i \(-0.455224\pi\)
0.140203 + 0.990123i \(0.455224\pi\)
\(240\) −0.0909687 5.69361i −0.00587200 0.367521i
\(241\) 2.10349 3.64335i 0.135498 0.234689i −0.790290 0.612733i \(-0.790070\pi\)
0.925787 + 0.378044i \(0.123403\pi\)
\(242\) 3.35713 + 5.81473i 0.215805 + 0.373785i
\(243\) −15.5388 + 1.24388i −0.996811 + 0.0797949i
\(244\) 0.209571 + 0.120996i 0.0134164 + 0.00774595i
\(245\) 23.0134 + 0.0292105i 1.47027 + 0.00186619i
\(246\) 0.272400 + 17.0491i 0.0173676 + 1.08701i
\(247\) 3.57203 + 0.724241i 0.227283 + 0.0460824i
\(248\) 1.86666 + 3.23315i 0.118533 + 0.205305i
\(249\) −0.0276673 1.73166i −0.00175334 0.109739i
\(250\) −2.30188 + 1.32899i −0.145583 + 0.0840526i
\(251\) −9.79168 16.9597i −0.618045 1.07049i −0.989842 0.142172i \(-0.954591\pi\)
0.371797 0.928314i \(-0.378742\pi\)
\(252\) 7.72736 + 1.81324i 0.486778 + 0.114223i
\(253\) −6.27649 + 3.62374i −0.394600 + 0.227822i
\(254\) −18.8017 −1.17972
\(255\) −5.48925 + 3.28725i −0.343750 + 0.205855i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 8.97486 + 15.5449i 0.559837 + 0.969665i 0.997510 + 0.0705311i \(0.0224694\pi\)
−0.437673 + 0.899134i \(0.644197\pi\)
\(258\) −5.65118 + 10.1596i −0.351827 + 0.632507i
\(259\) 13.0356 + 13.0522i 0.809994 + 0.811023i
\(260\) −11.2386 + 3.76878i −0.696990 + 0.233730i
\(261\) 24.3563 + 13.0429i 1.50762 + 0.807337i
\(262\) 2.90408 0.179414
\(263\) 27.8469i 1.71711i −0.512717 0.858557i \(-0.671361\pi\)
0.512717 0.858557i \(-0.328639\pi\)
\(264\) 3.58524 0.0572825i 0.220656 0.00352549i
\(265\) 19.2029 1.17963
\(266\) 1.89235 1.88995i 0.116027 0.115880i
\(267\) 11.3213 6.77979i 0.692854 0.414917i
\(268\) 10.2316 + 5.90721i 0.624994 + 0.360840i
\(269\) 14.1534 24.5145i 0.862951 1.49467i −0.00611690 0.999981i \(-0.501947\pi\)
0.869068 0.494693i \(-0.164720\pi\)
\(270\) −0.818439 17.0634i −0.0498086 1.03844i
\(271\) 12.6519 + 21.9137i 0.768546 + 1.33116i 0.938352 + 0.345682i \(0.112353\pi\)
−0.169806 + 0.985478i \(0.554314\pi\)
\(272\) 1.12362 0.0681295
\(273\) −1.27262 16.4736i −0.0770226 0.997029i
\(274\) 21.1790 1.27947
\(275\) −6.01236 10.4137i −0.362559 0.627970i
\(276\) −0.0968687 6.06288i −0.00583081 0.364943i
\(277\) 6.54676 11.3393i 0.393356 0.681313i −0.599533 0.800350i \(-0.704647\pi\)
0.992890 + 0.119036i \(0.0379805\pi\)
\(278\) 17.6205 + 10.1732i 1.05680 + 0.610147i
\(279\) 5.90699 + 9.51560i 0.353642 + 0.569684i
\(280\) −2.25660 + 8.40042i −0.134858 + 0.502021i
\(281\) −16.5616 −0.987980 −0.493990 0.869468i \(-0.664462\pi\)
−0.493990 + 0.869468i \(0.664462\pi\)
\(282\) −0.0337127 2.11004i −0.00200756 0.125651i
\(283\) 18.3919i 1.09328i 0.837367 + 0.546642i \(0.184094\pi\)
−0.837367 + 0.546642i \(0.815906\pi\)
\(284\) 7.89170 0.468286
\(285\) −5.03034 2.79808i −0.297971 0.165744i
\(286\) −2.37318 7.07690i −0.140329 0.418466i
\(287\) 6.75725 25.1545i 0.398868 1.48483i
\(288\) −1.41623 + 2.64467i −0.0834524 + 0.155839i
\(289\) 7.86874 + 13.6291i 0.462867 + 0.801709i
\(290\) −15.1388 + 26.2212i −0.888983 + 1.53976i
\(291\) −5.72420 9.55863i −0.335559 0.560337i
\(292\) 1.75632 0.102781
\(293\) 7.37759 4.25945i 0.431003 0.248840i −0.268771 0.963204i \(-0.586617\pi\)
0.699774 + 0.714364i \(0.253284\pi\)
\(294\) −10.5880 5.90711i −0.617506 0.344510i
\(295\) 16.1243 + 27.9281i 0.938793 + 1.62604i
\(296\) −6.03816 + 3.48613i −0.350961 + 0.202627i
\(297\) 10.7447 0.515367i 0.623472 0.0299046i
\(298\) 6.62502 + 11.4749i 0.383777 + 0.664721i
\(299\) −11.9675 + 4.01321i −0.692100 + 0.232090i
\(300\) 10.0593 0.160721i 0.580774 0.00927922i
\(301\) 12.5650 12.5490i 0.724233 0.723314i
\(302\) −15.0137 8.66818i −0.863943 0.498798i
\(303\) −33.4660 + 0.534698i −1.92257 + 0.0307176i
\(304\) 0.505430 + 0.875431i 0.0289884 + 0.0502094i
\(305\) −0.397788 + 0.688989i −0.0227773 + 0.0394514i
\(306\) 3.36914 0.107687i 0.192601 0.00615607i
\(307\) 21.3161 1.21658 0.608288 0.793716i \(-0.291857\pi\)
0.608288 + 0.793716i \(0.291857\pi\)
\(308\) −5.28970 1.42097i −0.301409 0.0809673i
\(309\) 13.7503 + 7.64851i 0.782229 + 0.435109i
\(310\) −10.6294 + 6.13688i −0.603709 + 0.348551i
\(311\) −7.40693 12.8292i −0.420008 0.727476i 0.575931 0.817498i \(-0.304639\pi\)
−0.995940 + 0.0900223i \(0.971306\pi\)
\(312\) 6.13951 + 1.14301i 0.347581 + 0.0647102i
\(313\) −22.7031 13.1077i −1.28326 0.740889i −0.305814 0.952091i \(-0.598929\pi\)
−0.977442 + 0.211203i \(0.932262\pi\)
\(314\) −12.2223 7.05652i −0.689742 0.398223i
\(315\) −5.96126 + 25.4047i −0.335879 + 1.43139i
\(316\) −2.48977 4.31240i −0.140060 0.242592i
\(317\) −9.80532 + 16.9833i −0.550722 + 0.953878i 0.447501 + 0.894283i \(0.352314\pi\)
−0.998223 + 0.0595945i \(0.981019\pi\)
\(318\) −8.84115 4.91782i −0.495787 0.275778i
\(319\) −16.5114 9.53284i −0.924459 0.533737i
\(320\) −2.84717 1.64381i −0.159161 0.0918919i
\(321\) 5.59247 3.34906i 0.312141 0.186926i
\(322\) −2.40296 + 8.94526i −0.133912 + 0.498500i
\(323\) 0.567912 0.983652i 0.0315995 0.0547319i
\(324\) −3.99307 + 8.06569i −0.221837 + 0.448094i
\(325\) −6.65857 19.8561i −0.369351 1.10142i
\(326\) 8.93321 5.15759i 0.494765 0.285652i
\(327\) −4.18573 + 2.50663i −0.231472 + 0.138617i
\(328\) 8.52566 + 4.92229i 0.470751 + 0.271788i
\(329\) −0.836291 + 3.11317i −0.0461062 + 0.171635i
\(330\) 0.188323 + 11.7869i 0.0103669 + 0.648848i
\(331\) 26.0774i 1.43334i −0.697412 0.716671i \(-0.745665\pi\)
0.697412 0.716671i \(-0.254335\pi\)
\(332\) −0.865939 0.499950i −0.0475246 0.0274383i
\(333\) −17.7711 + 11.0317i −0.973851 + 0.604536i
\(334\) 13.9833i 0.765134i
\(335\) −19.4207 + 33.6376i −1.06107 + 1.83782i
\(336\) 3.19028 3.28970i 0.174044 0.179468i
\(337\) −13.5184 −0.736394 −0.368197 0.929748i \(-0.620025\pi\)
−0.368197 + 0.929748i \(0.620025\pi\)
\(338\) −1.60162 12.9010i −0.0871166 0.701720i
\(339\) 7.85473 4.70382i 0.426610 0.255476i
\(340\) 3.69404i 0.200338i
\(341\) −3.86436 6.69327i −0.209267 0.362461i
\(342\) 1.59942 + 2.57651i 0.0864866 + 0.139322i
\(343\) 13.0708 + 13.1207i 0.705759 + 0.708452i
\(344\) 3.35600 + 5.81276i 0.180943 + 0.313403i
\(345\) 19.9325 0.318468i 1.07313 0.0171457i
\(346\) −2.53897 4.39763i −0.136496 0.236418i
\(347\) −29.0781 16.7882i −1.56099 0.901239i −0.997157 0.0753519i \(-0.975992\pi\)
−0.563835 0.825887i \(-0.690675\pi\)
\(348\) 13.6852 8.19540i 0.733604 0.439320i
\(349\) −11.8845 + 20.5845i −0.636161 + 1.10186i 0.350107 + 0.936710i \(0.386145\pi\)
−0.986268 + 0.165153i \(0.947188\pi\)
\(350\) −14.8416 3.98690i −0.793318 0.213109i
\(351\) 18.5187 + 2.83887i 0.988453 + 0.151528i
\(352\) 1.03510 1.79285i 0.0551710 0.0955590i
\(353\) 10.7207i 0.570608i 0.958437 + 0.285304i \(0.0920945\pi\)
−0.958437 + 0.285304i \(0.907905\pi\)
\(354\) −0.271418 16.9877i −0.0144257 0.902885i
\(355\) 25.9450i 1.37702i
\(356\) 7.61879i 0.403795i
\(357\) −4.99349 1.25622i −0.264283 0.0664864i
\(358\) 10.1439 5.85660i 0.536123 0.309531i
\(359\) −7.26878 + 12.5899i −0.383632 + 0.664469i −0.991578 0.129508i \(-0.958660\pi\)
0.607947 + 0.793978i \(0.291993\pi\)
\(360\) −8.69468 4.65605i −0.458250 0.245395i
\(361\) −17.9782 −0.946219
\(362\) 19.6355 11.3365i 1.03202 0.595835i
\(363\) 11.6280 0.185784i 0.610310 0.00975113i
\(364\) −8.53729 4.25614i −0.447475 0.223083i
\(365\) 5.77412i 0.302231i
\(366\) 0.359592 0.215343i 0.0187962 0.0112561i
\(367\) 17.4965i 0.913308i 0.889644 + 0.456654i \(0.150952\pi\)
−0.889644 + 0.456654i \(0.849048\pi\)
\(368\) −3.03183 1.75043i −0.158045 0.0912473i
\(369\) 26.0357 + 13.9422i 1.35536 + 0.725804i
\(370\) −11.4611 19.8512i −0.595834 1.03201i
\(371\) 10.9205 + 10.9344i 0.566965 + 0.567686i
\(372\) 6.46548 0.103301i 0.335219 0.00535591i
\(373\) −11.8665 −0.614423 −0.307211 0.951641i \(-0.599396\pi\)
−0.307211 + 0.951641i \(0.599396\pi\)
\(374\) −2.32612 −0.120281
\(375\) 0.0735463 + 4.60316i 0.00379791 + 0.237706i
\(376\) −1.05515 0.609193i −0.0544153 0.0314167i
\(377\) −24.8843 21.9860i −1.28161 1.13234i
\(378\) 9.25067 10.1698i 0.475803 0.523079i
\(379\) 10.9141 + 6.30127i 0.560620 + 0.323674i 0.753394 0.657569i \(-0.228415\pi\)
−0.192774 + 0.981243i \(0.561748\pi\)
\(380\) −2.87809 + 1.66167i −0.147643 + 0.0852416i
\(381\) −15.8301 + 28.4590i −0.811001 + 1.45800i
\(382\) 22.3913 12.9276i 1.14564 0.661433i
\(383\) 1.06335i 0.0543345i 0.999631 + 0.0271672i \(0.00864866\pi\)
−0.999631 + 0.0271672i \(0.991351\pi\)
\(384\) 0.889878 + 1.48597i 0.0454114 + 0.0758308i
\(385\) 4.67162 17.3906i 0.238088 0.886305i
\(386\) 18.8878 10.9049i 0.961364 0.555044i
\(387\) 10.6199 + 17.1077i 0.539842 + 0.869635i
\(388\) −6.43257 −0.326564
\(389\) −2.28039 + 1.31658i −0.115620 + 0.0667534i −0.556695 0.830717i \(-0.687931\pi\)
0.441075 + 0.897470i \(0.354597\pi\)
\(390\) −3.75779 + 20.1844i −0.190283 + 1.02208i
\(391\) 3.93363i 0.198932i
\(392\) −6.06662 + 3.49230i −0.306410 + 0.176388i
\(393\) 2.44509 4.39574i 0.123339 0.221736i
\(394\) −7.02050 −0.353688
\(395\) 14.1776 8.18542i 0.713351 0.411853i
\(396\) 2.93189 5.47500i 0.147333 0.275129i
\(397\) −8.54714 −0.428969 −0.214484 0.976727i \(-0.568807\pi\)
−0.214484 + 0.976727i \(0.568807\pi\)
\(398\) 15.0791i 0.755846i
\(399\) −1.26744 4.45558i −0.0634514 0.223058i
\(400\) 2.90424 5.03029i 0.145212 0.251515i
\(401\) −7.78768 13.4887i −0.388898 0.673592i 0.603403 0.797436i \(-0.293811\pi\)
−0.992302 + 0.123845i \(0.960478\pi\)
\(402\) 17.5559 10.5134i 0.875609 0.524360i
\(403\) −4.27970 12.7622i −0.213187 0.635731i
\(404\) −9.66204 + 16.7351i −0.480705 + 0.832605i
\(405\) −26.5170 13.1277i −1.31764 0.652322i
\(406\) −23.5400 + 6.29152i −1.16827 + 0.312243i
\(407\) 12.5002 7.21699i 0.619612 0.357733i
\(408\) 0.946035 1.70076i 0.0468357 0.0842002i
\(409\) 5.40484 9.36145i 0.267252 0.462894i −0.700899 0.713260i \(-0.747218\pi\)
0.968151 + 0.250366i \(0.0805511\pi\)
\(410\) −16.1827 + 28.0292i −0.799204 + 1.38426i
\(411\) 17.8317 32.0575i 0.879575 1.58128i
\(412\) 7.86720 4.54213i 0.387589 0.223775i
\(413\) −6.73289 + 25.0638i −0.331304 + 1.23331i
\(414\) −9.25860 4.95803i −0.455036 0.243674i
\(415\) 1.64365 2.84688i 0.0806836 0.139748i
\(416\) 2.38730 2.70200i 0.117047 0.132477i
\(417\) 30.2341 18.1058i 1.48057 0.886643i
\(418\) −1.04634 1.81232i −0.0511783 0.0886434i
\(419\) −7.13932 + 12.3657i −0.348779 + 0.604102i −0.986033 0.166551i \(-0.946737\pi\)
0.637254 + 0.770654i \(0.280070\pi\)
\(420\) 10.8153 + 10.4884i 0.527732 + 0.511784i
\(421\) 31.1553i 1.51842i −0.650848 0.759208i \(-0.725586\pi\)
0.650848 0.759208i \(-0.274414\pi\)
\(422\) 20.4203 0.994044
\(423\) −3.22223 1.72552i −0.156670 0.0838976i
\(424\) −5.05843 + 2.92049i −0.245659 + 0.141831i
\(425\) −6.52653 −0.316583
\(426\) 6.64443 11.9452i 0.321924 0.578748i
\(427\) −0.618538 + 0.165316i −0.0299331 + 0.00800020i
\(428\) 3.76351i 0.181916i
\(429\) −12.7100 2.36626i −0.613645 0.114244i
\(430\) −19.1102 + 11.0333i −0.921575 + 0.532071i
\(431\) 21.5902 1.03996 0.519981 0.854178i \(-0.325939\pi\)
0.519981 + 0.854178i \(0.325939\pi\)
\(432\) 2.81069 + 4.37036i 0.135229 + 0.210269i
\(433\) −16.2009 + 9.35358i −0.778565 + 0.449505i −0.835921 0.548849i \(-0.815066\pi\)
0.0573567 + 0.998354i \(0.481733\pi\)
\(434\) −9.53925 2.56252i −0.457899 0.123005i
\(435\) 26.9434 + 44.9918i 1.29184 + 2.15719i
\(436\) 2.81683i 0.134902i
\(437\) −3.06476 + 1.76944i −0.146607 + 0.0846437i
\(438\) 1.47874 2.65844i 0.0706568 0.127025i
\(439\) −12.4456 + 7.18545i −0.593994 + 0.342943i −0.766675 0.642035i \(-0.778090\pi\)
0.172681 + 0.984978i \(0.444757\pi\)
\(440\) 5.89421 + 3.40302i 0.280995 + 0.162233i
\(441\) −17.8559 + 11.0530i −0.850279 + 0.526332i
\(442\) −3.97048 0.805029i −0.188857 0.0382913i
\(443\) 1.21594 + 0.702023i 0.0577711 + 0.0333541i 0.528607 0.848866i \(-0.322714\pi\)
−0.470836 + 0.882221i \(0.656048\pi\)
\(444\) 0.192923 + 12.0748i 0.00915570 + 0.573043i
\(445\) 25.0477 1.18738
\(446\) 2.74652 0.130051
\(447\) 22.9468 0.366629i 1.08535 0.0173409i
\(448\) −0.683149 2.55603i −0.0322757 0.120761i
\(449\) −11.0266 19.0987i −0.520379 0.901323i −0.999719 0.0236937i \(-0.992457\pi\)
0.479340 0.877629i \(-0.340876\pi\)
\(450\) 8.22617 15.3615i 0.387785 0.724149i
\(451\) −17.6498 10.1901i −0.831098 0.479835i
\(452\) 5.28591i 0.248629i
\(453\) −25.7614 + 15.4272i −1.21038 + 0.724835i
\(454\) 8.98000i 0.421453i
\(455\) 13.9926 28.0674i 0.655984 1.31582i
\(456\) 1.75064 0.0279705i 0.0819812 0.00130984i
\(457\) 36.6548 21.1627i 1.71464 0.989948i 0.786604 0.617457i \(-0.211837\pi\)
0.928036 0.372491i \(-0.121496\pi\)
\(458\) 16.4700 0.769592
\(459\) 2.67366 5.19035i 0.124796 0.242265i
\(460\) 5.75475 9.96752i 0.268317 0.464738i
\(461\) 10.2913 5.94166i 0.479312 0.276731i −0.240818 0.970570i \(-0.577416\pi\)
0.720130 + 0.693839i \(0.244082\pi\)
\(462\) −6.60452 + 6.81034i −0.307270 + 0.316846i
\(463\) 3.56440i 0.165652i −0.996564 0.0828258i \(-0.973605\pi\)
0.996564 0.0828258i \(-0.0263945\pi\)
\(464\) 9.20958i 0.427544i
\(465\) 0.339615 + 21.2561i 0.0157493 + 0.985727i
\(466\) 5.53326i 0.256323i
\(467\) −3.56143 + 6.16858i −0.164803 + 0.285448i −0.936585 0.350439i \(-0.886032\pi\)
0.771782 + 0.635887i \(0.219366\pi\)
\(468\) 6.89928 8.33066i 0.318919 0.385085i
\(469\) −30.1981 + 8.07101i −1.39442 + 0.372684i
\(470\) 2.00280 3.46895i 0.0923821 0.160011i
\(471\) −20.9716 + 12.5589i −0.966321 + 0.578683i
\(472\) −8.49492 4.90455i −0.391010 0.225750i
\(473\) −6.94759 12.0336i −0.319451 0.553305i
\(474\) −8.62370 + 0.137784i −0.396100 + 0.00632862i
\(475\) −2.93578 5.08492i −0.134703 0.233312i
\(476\) −2.10344 + 2.10077i −0.0964108 + 0.0962885i
\(477\) −14.8877 + 9.24179i −0.681659 + 0.423152i
\(478\) −2.16749 3.75420i −0.0991386 0.171713i
\(479\) 30.5472i 1.39574i 0.716225 + 0.697870i \(0.245868\pi\)
−0.716225 + 0.697870i \(0.754132\pi\)
\(480\) −4.88532 + 2.92558i −0.222984 + 0.133534i
\(481\) 23.8344 7.99267i 1.08676 0.364434i
\(482\) −4.20698 −0.191623
\(483\) 11.5168 + 11.1687i 0.524031 + 0.508194i
\(484\) 3.35713 5.81473i 0.152597 0.264306i
\(485\) 21.1479i 0.960275i
\(486\) 8.84661 + 12.8350i 0.401290 + 0.582208i
\(487\) −27.7303 16.0101i −1.25658 0.725488i −0.284173 0.958773i \(-0.591719\pi\)
−0.972408 + 0.233285i \(0.925052\pi\)
\(488\) 0.241991i 0.0109544i
\(489\) −0.285421 17.8641i −0.0129072 0.807844i
\(490\) −11.4814 19.9448i −0.518676 0.901012i
\(491\) −13.0865 7.55549i −0.590585 0.340975i 0.174744 0.984614i \(-0.444090\pi\)
−0.765329 + 0.643639i \(0.777424\pi\)
\(492\) 14.6288 8.76048i 0.659517 0.394953i
\(493\) −8.96170 + 5.17404i −0.403615 + 0.233027i
\(494\) −1.15880 3.45559i −0.0521370 0.155474i
\(495\) 17.9997 + 9.63896i 0.809028 + 0.433239i
\(496\) 1.86666 3.23315i 0.0838156 0.145173i
\(497\) −14.7734 + 14.7546i −0.662677 + 0.661836i
\(498\) −1.48583 + 0.889789i −0.0665814 + 0.0398724i
\(499\) 4.18606 + 2.41682i 0.187394 + 0.108192i 0.590762 0.806846i \(-0.298827\pi\)
−0.403368 + 0.915038i \(0.632161\pi\)
\(500\) 2.30188 + 1.32899i 0.102943 + 0.0594342i
\(501\) 21.1658 + 11.7733i 0.945618 + 0.525992i
\(502\) −9.79168 + 16.9597i −0.437024 + 0.756948i
\(503\) 13.7946 + 23.8930i 0.615073 + 1.06534i 0.990372 + 0.138433i \(0.0442066\pi\)
−0.375299 + 0.926904i \(0.622460\pi\)
\(504\) −2.29337 7.59871i −0.102155 0.338474i
\(505\) −55.0189 31.7652i −2.44831 1.41353i
\(506\) 6.27649 + 3.62374i 0.279024 + 0.161095i
\(507\) −20.8759 8.43771i −0.927133 0.374732i
\(508\) 9.40084 + 16.2827i 0.417095 + 0.722429i
\(509\) 27.1836 15.6945i 1.20489 0.695645i 0.243253 0.969963i \(-0.421786\pi\)
0.961639 + 0.274318i \(0.0884522\pi\)
\(510\) 5.59147 + 3.11021i 0.247594 + 0.137722i
\(511\) −3.28786 + 3.28369i −0.145446 + 0.145262i
\(512\) 1.00000 0.0441942
\(513\) 5.24655 0.251649i 0.231641 0.0111106i
\(514\) 8.97486 15.5449i 0.395864 0.685657i
\(515\) 14.9328 + 25.8644i 0.658019 + 1.13972i
\(516\) 11.6240 0.185721i 0.511720 0.00817592i
\(517\) 2.18438 + 1.26115i 0.0960688 + 0.0554654i
\(518\) 4.78571 17.8153i 0.210272 0.782758i
\(519\) −8.79414 + 0.140507i −0.386020 + 0.00616757i
\(520\) 8.88317 + 7.84854i 0.389553 + 0.344181i
\(521\) 0.178115 + 0.308505i 0.00780338 + 0.0135159i 0.869901 0.493227i \(-0.164183\pi\)
−0.862097 + 0.506743i \(0.830849\pi\)
\(522\) −0.882642 27.6146i −0.0386322 1.20866i
\(523\) 21.5730 12.4552i 0.943320 0.544626i 0.0523207 0.998630i \(-0.483338\pi\)
0.891000 + 0.454004i \(0.150005\pi\)
\(524\) −1.45204 2.51500i −0.0634326 0.109868i
\(525\) −18.5307 + 19.1081i −0.808745 + 0.833948i
\(526\) −24.1161 + 13.9235i −1.05151 + 0.607092i
\(527\) −4.19484 −0.182730
\(528\) −1.84223 3.07626i −0.0801726 0.133877i
\(529\) −5.37201 + 9.30459i −0.233566 + 0.404548i
\(530\) −9.60147 16.6302i −0.417061 0.722371i
\(531\) −25.9418 13.8920i −1.12578 0.602860i
\(532\) −2.58291 0.693847i −0.111984 0.0300821i
\(533\) −26.6001 23.5020i −1.15218 1.01798i
\(534\) −11.5321 6.41466i −0.499044 0.277589i
\(535\) 12.3730 0.534931
\(536\) 11.8144i 0.510305i
\(537\) −0.324105 20.2853i −0.0139861 0.875374i
\(538\) −28.3069 −1.22040
\(539\) 12.5591 7.22977i 0.540959 0.311408i
\(540\) −14.3681 + 9.24048i −0.618305 + 0.397647i
\(541\) −17.5713 10.1448i −0.755447 0.436158i 0.0722115 0.997389i \(-0.476994\pi\)
−0.827659 + 0.561232i \(0.810328\pi\)
\(542\) 12.6519 21.9137i 0.543444 0.941272i
\(543\) −0.627364 39.2659i −0.0269228 1.68506i
\(544\) −0.561810 0.973084i −0.0240874 0.0417206i
\(545\) −9.26068 −0.396684
\(546\) −13.6303 + 9.33894i −0.583322 + 0.399670i
\(547\) −18.3443 −0.784344 −0.392172 0.919892i \(-0.628276\pi\)
−0.392172 + 0.919892i \(0.628276\pi\)
\(548\) −10.5895 18.3416i −0.452362 0.783514i
\(549\) −0.0231923 0.725603i −0.000989824 0.0309680i
\(550\) −6.01236 + 10.4137i −0.256368 + 0.444042i
\(551\) −8.06235 4.65480i −0.343468 0.198301i
\(552\) −5.20218 + 3.11533i −0.221419 + 0.132597i
\(553\) 12.7235 + 3.41791i 0.541059 + 0.145345i
\(554\) −13.0935 −0.556290
\(555\) −39.6973 + 0.634257i −1.68506 + 0.0269227i
\(556\) 20.3464i 0.862878i
\(557\) −12.1781 −0.516004 −0.258002 0.966144i \(-0.583064\pi\)
−0.258002 + 0.966144i \(0.583064\pi\)
\(558\) 5.28726 9.87340i 0.223828 0.417975i
\(559\) −7.69432 22.9447i −0.325435 0.970457i
\(560\) 8.40328 2.24594i 0.355103 0.0949082i
\(561\) −1.95848 + 3.52092i −0.0826872 + 0.148653i
\(562\) 8.28078 + 14.3427i 0.349304 + 0.605012i
\(563\) −5.68587 + 9.84822i −0.239631 + 0.415053i −0.960608 0.277906i \(-0.910360\pi\)
0.720978 + 0.692958i \(0.243693\pi\)
\(564\) −1.81049 + 1.08421i −0.0762353 + 0.0456536i
\(565\) 17.3781 0.731102
\(566\) 15.9278 9.19594i 0.669497 0.386534i
\(567\) −7.60485 22.5647i −0.319374 0.947629i
\(568\) −3.94585 6.83441i −0.165564 0.286766i
\(569\) −20.8276 + 12.0248i −0.873140 + 0.504108i −0.868391 0.495881i \(-0.834845\pi\)
−0.00474984 + 0.999989i \(0.501512\pi\)
\(570\) 0.0919566 + 5.75544i 0.00385164 + 0.241069i
\(571\) 3.64194 + 6.30802i 0.152410 + 0.263983i 0.932113 0.362167i \(-0.117963\pi\)
−0.779703 + 0.626150i \(0.784630\pi\)
\(572\) −4.94219 + 5.59369i −0.206643 + 0.233884i
\(573\) −0.715414 44.7768i −0.0298868 1.87058i
\(574\) −25.1631 + 6.72532i −1.05029 + 0.280709i
\(575\) 17.6103 + 10.1673i 0.734401 + 0.424007i
\(576\) 2.99847 0.0958395i 0.124936 0.00399331i
\(577\) 2.11186 + 3.65785i 0.0879179 + 0.152278i 0.906631 0.421925i \(-0.138645\pi\)
−0.818713 + 0.574203i \(0.805312\pi\)
\(578\) 7.86874 13.6291i 0.327296 0.566894i
\(579\) −0.603477 37.7708i −0.0250796 1.56970i
\(580\) 30.2777 1.25721
\(581\) 2.55578 0.683081i 0.106032 0.0283390i
\(582\) −5.41591 + 9.73662i −0.224497 + 0.403596i
\(583\) 10.4720 6.04600i 0.433705 0.250400i
\(584\) −0.878160 1.52102i −0.0363385 0.0629402i
\(585\) 27.3881 + 22.6822i 1.13236 + 0.937795i
\(586\) −7.37759 4.25945i −0.304765 0.175956i
\(587\) 39.5103 + 22.8113i 1.63077 + 0.941523i 0.983857 + 0.178954i \(0.0572714\pi\)
0.646908 + 0.762568i \(0.276062\pi\)
\(588\) 0.178303 + 12.1230i 0.00735308 + 0.499946i
\(589\) −1.88693 3.26827i −0.0777498 0.134667i
\(590\) 16.1243 27.9281i 0.663827 1.14978i
\(591\) −5.91092 + 10.6265i −0.243143 + 0.437117i
\(592\) 6.03816 + 3.48613i 0.248167 + 0.143279i
\(593\) −21.1653 12.2198i −0.869154 0.501807i −0.00208732 0.999998i \(-0.500664\pi\)
−0.867067 + 0.498191i \(0.833998\pi\)
\(594\) −5.81868 9.04752i −0.238744 0.371224i
\(595\) −6.90654 6.91531i −0.283140 0.283500i
\(596\) 6.62502 11.4749i 0.271371 0.470029i
\(597\) 22.8244 + 12.6959i 0.934139 + 0.519607i
\(598\) 9.45931 + 8.35758i 0.386820 + 0.341767i
\(599\) −11.4214 + 6.59416i −0.466667 + 0.269430i −0.714843 0.699285i \(-0.753502\pi\)
0.248177 + 0.968715i \(0.420169\pi\)
\(600\) −5.16884 8.63125i −0.211017 0.352369i
\(601\) −34.6176 19.9865i −1.41208 0.815266i −0.416497 0.909137i \(-0.636742\pi\)
−0.995584 + 0.0938714i \(0.970076\pi\)
\(602\) −17.1503 4.60707i −0.698992 0.187770i
\(603\) −1.13229 35.4252i −0.0461103 1.44262i
\(604\) 17.3364i 0.705407i
\(605\) 19.1166 + 11.0370i 0.777202 + 0.448718i
\(606\) 17.1961 + 28.7151i 0.698543 + 1.16647i
\(607\) 20.1780i 0.819000i −0.912310 0.409500i \(-0.865703\pi\)
0.912310 0.409500i \(-0.134297\pi\)
\(608\) 0.505430 0.875431i 0.0204979 0.0355034i
\(609\) −10.2964 + 40.9283i −0.417233 + 1.65850i
\(610\) 0.795576 0.0322119
\(611\) 3.29208 + 2.90865i 0.133183 + 0.117671i
\(612\) −1.77783 2.86392i −0.0718646 0.115767i
\(613\) 24.9422i 1.00741i 0.863877 + 0.503703i \(0.168030\pi\)
−0.863877 + 0.503703i \(0.831970\pi\)
\(614\) −10.6581 18.4603i −0.430124 0.744997i
\(615\) 28.8012 + 48.0940i 1.16138 + 1.93934i
\(616\) 1.41426 + 5.29150i 0.0569820 + 0.213201i
\(617\) 1.22499 + 2.12175i 0.0493164 + 0.0854185i 0.889630 0.456682i \(-0.150962\pi\)
−0.840313 + 0.542101i \(0.817629\pi\)
\(618\) −0.251362 15.7324i −0.0101112 0.632850i
\(619\) 11.9145 + 20.6365i 0.478883 + 0.829449i 0.999707 0.0242147i \(-0.00770853\pi\)
−0.520824 + 0.853664i \(0.674375\pi\)
\(620\) 10.6294 + 6.13688i 0.426887 + 0.246463i
\(621\) −15.3000 + 9.83980i −0.613968 + 0.394858i
\(622\) −7.40693 + 12.8292i −0.296991 + 0.514403i
\(623\) 14.2444 + 14.2625i 0.570690 + 0.571415i
\(624\) −2.07988 5.88847i −0.0832617 0.235728i
\(625\) 10.1520 17.5837i 0.406079 0.703350i
\(626\) 26.2153i 1.04777i
\(627\) −3.62417 + 0.0579046i −0.144736 + 0.00231249i
\(628\) 14.1130i 0.563172i
\(629\) 7.83418i 0.312369i
\(630\) 24.9817 7.53974i 0.995296 0.300390i
\(631\) −17.5516 + 10.1334i −0.698718 + 0.403405i −0.806870 0.590729i \(-0.798840\pi\)
0.108152 + 0.994134i \(0.465507\pi\)
\(632\) −2.48977 + 4.31240i −0.0990376 + 0.171538i
\(633\) 17.1929 30.9090i 0.683357 1.22852i
\(634\) 19.6106 0.778838
\(635\) −53.5315 + 30.9064i −2.12433 + 1.22648i
\(636\) 0.161620 + 10.1156i 0.00640865 + 0.401109i
\(637\) 23.9394 7.99409i 0.948513 0.316737i
\(638\) 19.0657i 0.754818i
\(639\) −12.4865 20.1146i −0.493959 0.795722i
\(640\) 3.28763i 0.129955i
\(641\) 28.8080 + 16.6323i 1.13785 + 0.656938i 0.945897 0.324467i \(-0.105185\pi\)
0.191952 + 0.981404i \(0.438518\pi\)
\(642\) −5.69661 3.16869i −0.224827 0.125058i
\(643\) 3.65734 + 6.33469i 0.144231 + 0.249816i 0.929086 0.369864i \(-0.120596\pi\)
−0.784855 + 0.619680i \(0.787262\pi\)
\(644\) 8.94830 2.39160i 0.352612 0.0942424i
\(645\) 0.610581 + 38.2155i 0.0240416 + 1.50473i
\(646\) −1.13582 −0.0446884
\(647\) 32.0372 1.25951 0.629757 0.776792i \(-0.283154\pi\)
0.629757 + 0.776792i \(0.283154\pi\)
\(648\) 8.98163 0.574744i 0.352832 0.0225781i
\(649\) 17.5862 + 10.1534i 0.690319 + 0.398556i
\(650\) −13.8666 + 15.6945i −0.543892 + 0.615590i
\(651\) −11.9103 + 12.2815i −0.466803 + 0.481350i
\(652\) −8.93321 5.15759i −0.349851 0.201987i
\(653\) −29.1377 + 16.8227i −1.14025 + 0.658321i −0.946491 0.322729i \(-0.895400\pi\)
−0.193754 + 0.981050i \(0.562066\pi\)
\(654\) 4.26368 + 2.37163i 0.166723 + 0.0927383i
\(655\) 8.26839 4.77376i 0.323073 0.186526i
\(656\) 9.84458i 0.384366i
\(657\) −2.77891 4.47656i −0.108416 0.174647i
\(658\) 3.11423 0.832338i 0.121405 0.0324479i
\(659\) 21.1966 12.2379i 0.825704 0.476720i −0.0266755 0.999644i \(-0.508492\pi\)
0.852379 + 0.522924i \(0.175159\pi\)
\(660\) 10.1136 6.05655i 0.393671 0.235751i
\(661\) 5.55570 0.216092 0.108046 0.994146i \(-0.465541\pi\)
0.108046 + 0.994146i \(0.465541\pi\)
\(662\) −22.5837 + 13.0387i −0.877739 + 0.506763i
\(663\) −4.56148 + 5.33210i −0.177153 + 0.207082i
\(664\) 0.999900i 0.0388037i
\(665\) 2.28111 8.49166i 0.0884576 0.329292i
\(666\) 18.4393 + 9.87436i 0.714510 + 0.382624i
\(667\) 32.2414 1.24839
\(668\) 12.1099 6.99167i 0.468547 0.270516i
\(669\) 2.31244 4.15725i 0.0894039 0.160729i
\(670\) 38.8414 1.50057
\(671\) 0.500970i 0.0193397i
\(672\) −4.44410 1.11801i −0.171435 0.0431283i
\(673\) 9.31475 16.1336i 0.359057 0.621905i −0.628746 0.777610i \(-0.716432\pi\)
0.987804 + 0.155705i \(0.0497649\pi\)
\(674\) 6.75920 + 11.7073i 0.260355 + 0.450947i
\(675\) −16.3258 25.3851i −0.628381 0.977075i
\(676\) −10.3718 + 7.83752i −0.398913 + 0.301443i
\(677\) −13.4512 + 23.2982i −0.516972 + 0.895422i 0.482833 + 0.875712i \(0.339608\pi\)
−0.999806 + 0.0197102i \(0.993726\pi\)
\(678\) −8.00099 4.45049i −0.307276 0.170920i
\(679\) 12.0419 12.0266i 0.462124 0.461538i
\(680\) 3.19914 1.84702i 0.122681 0.0708301i
\(681\) 13.5925 + 7.56073i 0.520867 + 0.289728i
\(682\) −3.86436 + 6.69327i −0.147974 + 0.256299i
\(683\) −20.3836 + 35.3055i −0.779958 + 1.35093i 0.152007 + 0.988379i \(0.451426\pi\)
−0.931965 + 0.362548i \(0.881907\pi\)
\(684\) 1.43162 2.67339i 0.0547392 0.102220i
\(685\) 60.3003 34.8144i 2.30395 1.33019i
\(686\) 4.82745 17.8800i 0.184313 0.682663i
\(687\) 13.8669 24.9297i 0.529057 0.951127i
\(688\) 3.35600 5.81276i 0.127946 0.221609i
\(689\) 19.9671 6.69582i 0.760688 0.255090i
\(690\) −10.2420 17.1028i −0.389908 0.651093i
\(691\) 6.89853 + 11.9486i 0.262432 + 0.454546i 0.966888 0.255202i \(-0.0821420\pi\)
−0.704455 + 0.709748i \(0.748809\pi\)
\(692\) −2.53897 + 4.39763i −0.0965173 + 0.167173i
\(693\) 4.74774 + 15.7309i 0.180352 + 0.597566i
\(694\) 33.5765i 1.27454i
\(695\) 66.8912 2.53733
\(696\) −13.9400 7.75403i −0.528395 0.293916i
\(697\) −9.57961 + 5.53079i −0.362854 + 0.209494i
\(698\) 23.7689 0.899667
\(699\) −8.37538 4.65874i −0.316786 0.176210i
\(700\) 3.96806 + 14.8467i 0.149978 + 0.561151i
\(701\) 9.30649i 0.351501i −0.984435 0.175751i \(-0.943765\pi\)
0.984435 0.175751i \(-0.0562352\pi\)
\(702\) −6.80079 17.4571i −0.256679 0.658875i
\(703\) 6.10373 3.52399i 0.230207 0.132910i
\(704\) −2.07020 −0.0780236
\(705\) −3.56449 5.95221i −0.134246 0.224173i
\(706\) 9.28444 5.36037i 0.349425 0.201740i
\(707\) −13.2012 49.3930i −0.496483 1.85762i
\(708\) −14.5760 + 8.72889i −0.547801 + 0.328052i
\(709\) 3.09917i 0.116392i 0.998305 + 0.0581958i \(0.0185348\pi\)
−0.998305 + 0.0581958i \(0.981465\pi\)
\(710\) 22.4690 12.9725i 0.843246 0.486848i
\(711\) −7.05219 + 13.1692i −0.264478 + 0.493884i
\(712\) −6.59807 + 3.80940i −0.247273 + 0.142763i
\(713\) 11.3188 + 6.53491i 0.423892 + 0.244734i
\(714\) 1.40882 + 4.95260i 0.0527238 + 0.185346i
\(715\) −18.3899 16.2481i −0.687745 0.607643i
\(716\) −10.1439 5.85660i −0.379097 0.218871i
\(717\) −7.50744 + 0.119949i −0.280370 + 0.00447957i
\(718\) 14.5376 0.542537
\(719\) 11.7740 0.439098 0.219549 0.975602i \(-0.429541\pi\)
0.219549 + 0.975602i \(0.429541\pi\)
\(720\) 0.315084 + 9.85784i 0.0117425 + 0.367380i
\(721\) −6.23537 + 23.2118i −0.232217 + 0.864452i
\(722\) 8.98908 + 15.5695i 0.334539 + 0.579438i
\(723\) −3.54207 + 6.36786i −0.131731 + 0.236823i
\(724\) −19.6355 11.3365i −0.729746 0.421319i
\(725\) 53.4937i 1.98671i
\(726\) −5.97488 9.97723i −0.221749 0.370290i
\(727\) 13.8729i 0.514518i −0.966342 0.257259i \(-0.917181\pi\)
0.966342 0.257259i \(-0.0828194\pi\)
\(728\) 0.582714 + 9.52158i 0.0215968 + 0.352893i
\(729\) 26.8761 2.58415i 0.995409 0.0957091i
\(730\) 5.00054 2.88706i 0.185078 0.106855i
\(731\) −7.54174 −0.278941
\(732\) −0.366288 0.203745i −0.0135384 0.00753063i
\(733\) −21.6003 + 37.4129i −0.797827 + 1.38188i 0.123202 + 0.992382i \(0.460684\pi\)
−0.921029 + 0.389495i \(0.872650\pi\)
\(734\) 15.1524 8.74823i 0.559284 0.322903i
\(735\) −39.8560 + 0.586193i −1.47011 + 0.0216220i
\(736\) 3.50085i 0.129043i
\(737\) 24.4582i 0.900930i
\(738\) −0.943500 29.5187i −0.0347307 1.08660i
\(739\) 34.1756i 1.25717i −0.777741 0.628585i \(-0.783635\pi\)
0.777741 0.628585i \(-0.216365\pi\)
\(740\) −11.4611 + 19.8512i −0.421318 + 0.729744i
\(741\) −6.20618 1.15542i −0.227990 0.0424456i
\(742\) 4.00920 14.9247i 0.147182 0.547901i
\(743\) −15.6321 + 27.0755i −0.573484 + 0.993304i 0.422720 + 0.906260i \(0.361075\pi\)
−0.996204 + 0.0870439i \(0.972258\pi\)
\(744\) −3.32220 5.54762i −0.121798 0.203386i
\(745\) 37.7251 + 21.7806i 1.38214 + 0.797978i
\(746\) 5.93324 + 10.2767i 0.217231 + 0.376256i
\(747\) 0.0958300 + 2.99817i 0.00350624 + 0.109697i
\(748\) 1.16306 + 2.01448i 0.0425257 + 0.0736567i
\(749\) 7.03641 + 7.04534i 0.257105 + 0.257431i
\(750\) 3.94968 2.36528i 0.144222 0.0863676i
\(751\) −1.05163 1.82147i −0.0383744 0.0664664i 0.846200 0.532865i \(-0.178885\pi\)
−0.884575 + 0.466398i \(0.845551\pi\)
\(752\) 1.21839i 0.0444299i
\(753\) 17.4268 + 29.1004i 0.635068 + 1.06048i
\(754\) −6.59830 + 32.5434i −0.240296 + 1.18516i
\(755\) −56.9955 −2.07428
\(756\) −13.4327 2.92641i −0.488541 0.106432i
\(757\) 16.8638 29.2089i 0.612924 1.06162i −0.377821 0.925879i \(-0.623326\pi\)
0.990745 0.135737i \(-0.0433402\pi\)
\(758\) 12.6025i 0.457745i
\(759\) 10.7696 6.44936i 0.390910 0.234097i
\(760\) 2.87809 + 1.66167i 0.104399 + 0.0602749i
\(761\) 19.2154i 0.696556i −0.937391 0.348278i \(-0.886767\pi\)
0.937391 0.348278i \(-0.113233\pi\)
\(762\) 32.5613 0.520243i 1.17957 0.0188464i
\(763\) −5.26646 5.27315i −0.190659 0.190901i
\(764\) −22.3913 12.9276i −0.810087 0.467704i
\(765\) 9.41549 5.84484i 0.340418 0.211321i
\(766\) 0.920885 0.531673i 0.0332729 0.0192101i
\(767\) 26.5042 + 23.4172i 0.957010 + 0.845547i
\(768\) 0.841952 1.51364i 0.0303813 0.0546189i
\(769\) −19.1381 + 33.1482i −0.690139 + 1.19536i 0.281653 + 0.959516i \(0.409117\pi\)
−0.971792 + 0.235840i \(0.924216\pi\)
\(770\) −17.3965 + 4.64954i −0.626926 + 0.167558i
\(771\) −15.9731 26.6728i −0.575256 0.960598i
\(772\) −18.8878 10.9049i −0.679787 0.392475i
\(773\) −2.18604 1.26211i −0.0786263 0.0453949i 0.460171 0.887830i \(-0.347788\pi\)
−0.538798 + 0.842435i \(0.681121\pi\)
\(774\) 9.50577 17.7510i 0.341678