Properties

Label 546.2.bn.e.101.9
Level $546$
Weight $2$
Character 546.101
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bn (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.9
Character \(\chi\) \(=\) 546.101
Dual form 546.2.bn.e.173.9

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.428009 - 1.67834i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.58996 - 0.917964i) q^{5} +(1.23948 + 1.20983i) q^{6} +(2.08732 - 1.62576i) q^{7} +1.00000 q^{8} +(-2.63362 - 1.43668i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.428009 - 1.67834i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.58996 - 0.917964i) q^{5} +(1.23948 + 1.20983i) q^{6} +(2.08732 - 1.62576i) q^{7} +1.00000 q^{8} +(-2.63362 - 1.43668i) q^{9} +1.83593i q^{10} +3.39249 q^{11} +(-1.66749 + 0.468501i) q^{12} +(-3.07128 - 1.88872i) q^{13} +(0.364289 + 2.62055i) q^{14} +(-0.860135 - 3.06138i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(1.59253 + 2.75834i) q^{17} +(2.56101 - 1.56244i) q^{18} -2.03164 q^{19} +(-1.58996 - 0.917964i) q^{20} +(-1.83518 - 4.19906i) q^{21} +(-1.69625 + 2.93798i) q^{22} +(-2.14393 - 1.23780i) q^{23} +(0.428009 - 1.67834i) q^{24} +(-0.814684 + 1.41107i) q^{25} +(3.17131 - 1.71545i) q^{26} +(-3.53845 + 3.80518i) q^{27} +(-2.45161 - 0.994793i) q^{28} +(1.81857 - 1.04995i) q^{29} +(3.08130 + 0.785793i) q^{30} +(3.14345 - 5.44461i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(1.45202 - 5.69374i) q^{33} -3.18506 q^{34} +(1.82637 - 4.50098i) q^{35} +(0.0726040 + 2.99912i) q^{36} +(-0.436402 - 0.251957i) q^{37} +(1.01582 - 1.75945i) q^{38} +(-4.48443 + 4.34625i) q^{39} +(1.58996 - 0.917964i) q^{40} +(-4.35184 + 2.51254i) q^{41} +(4.55408 + 0.510221i) q^{42} +(0.528972 - 0.916206i) q^{43} +(-1.69625 - 2.93798i) q^{44} +(-5.50617 + 0.133296i) q^{45} +(2.14393 - 1.23780i) q^{46} +(10.0977 - 5.82991i) q^{47} +(1.23948 + 1.20983i) q^{48} +(1.71381 - 6.78696i) q^{49} +(-0.814684 - 1.41107i) q^{50} +(5.31104 - 1.49220i) q^{51} +(-0.100036 + 3.60416i) q^{52} +(5.81668 + 3.35826i) q^{53} +(-1.52616 - 4.96698i) q^{54} +(5.39393 - 3.11418i) q^{55} +(2.08732 - 1.62576i) q^{56} +(-0.869560 + 3.40977i) q^{57} +2.09991i q^{58} +(-5.37709 + 3.10446i) q^{59} +(-2.22117 + 2.27559i) q^{60} -11.6806i q^{61} +(3.14345 + 5.44461i) q^{62} +(-7.83291 + 1.28281i) q^{63} +1.00000 q^{64} +(-6.61699 - 0.183658i) q^{65} +(4.20491 + 4.10435i) q^{66} +9.92794i q^{67} +(1.59253 - 2.75834i) q^{68} +(-2.99507 + 3.06845i) q^{69} +(2.98478 + 3.83217i) q^{70} +(-7.77030 + 13.4586i) q^{71} +(-2.63362 - 1.43668i) q^{72} +(4.47574 - 7.75221i) q^{73} +(0.436402 - 0.251957i) q^{74} +(2.01956 + 1.97126i) q^{75} +(1.01582 + 1.75945i) q^{76} +(7.08122 - 5.51537i) q^{77} +(-1.52175 - 6.05676i) q^{78} +(3.92399 + 6.79656i) q^{79} +1.83593i q^{80} +(4.87188 + 7.56735i) q^{81} -5.02507i q^{82} +13.0790i q^{83} +(-2.71891 + 3.68884i) q^{84} +(5.06412 + 2.92377i) q^{85} +(0.528972 + 0.916206i) q^{86} +(-0.983809 - 3.50156i) q^{87} +3.39249 q^{88} +(4.61906 + 2.66681i) q^{89} +(2.63765 - 4.83513i) q^{90} +(-9.48134 + 1.05081i) q^{91} +2.47560i q^{92} +(-7.79246 - 7.60610i) q^{93} +11.6598i q^{94} +(-3.23023 + 1.86497i) q^{95} +(-1.66749 + 0.468501i) q^{96} +(4.79907 - 8.31223i) q^{97} +(5.02077 + 4.87769i) q^{98} +(-8.93452 - 4.87394i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 17q^{2} + 3q^{3} - 17q^{4} + 9q^{5} - 6q^{6} + 5q^{7} + 34q^{8} + 7q^{9} + O(q^{10}) \) \( 34q - 17q^{2} + 3q^{3} - 17q^{4} + 9q^{5} - 6q^{6} + 5q^{7} + 34q^{8} + 7q^{9} - 18q^{11} + 3q^{12} - 8q^{13} - 4q^{14} - 17q^{15} - 17q^{16} + 6q^{17} - 11q^{18} - 10q^{19} - 9q^{20} - 4q^{21} + 9q^{22} + 6q^{23} + 3q^{24} + 16q^{25} + 13q^{26} + 18q^{27} - q^{28} + 27q^{29} + 13q^{30} + q^{31} - 17q^{32} + 21q^{33} - 12q^{34} - 3q^{35} + 4q^{36} + 6q^{37} + 5q^{38} + 20q^{39} + 9q^{40} + 3q^{41} + 20q^{42} - 3q^{43} + 9q^{44} - 6q^{46} - 27q^{47} - 6q^{48} - 5q^{49} + 16q^{50} + 24q^{51} - 5q^{52} + 21q^{53} - 18q^{54} + 57q^{55} + 5q^{56} - 17q^{57} - 6q^{59} + 4q^{60} + q^{62} - 21q^{63} + 34q^{64} + 33q^{65} - 21q^{66} + 6q^{68} - 30q^{69} + 3q^{70} - 15q^{71} + 7q^{72} + 19q^{73} - 6q^{74} - 63q^{75} + 5q^{76} - 9q^{77} - 10q^{78} - 9q^{79} - 5q^{81} - 16q^{84} - 42q^{85} - 3q^{86} - 75q^{87} - 18q^{88} - 18q^{89} - 9q^{90} - 27q^{91} + 25q^{93} - 3q^{95} + 3q^{96} - 19q^{97} + 7q^{98} - 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0.428009 1.67834i 0.247111 0.968987i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.58996 0.917964i 0.711052 0.410526i −0.100398 0.994947i \(-0.532012\pi\)
0.811450 + 0.584421i \(0.198678\pi\)
\(6\) 1.23948 + 1.20983i 0.506014 + 0.493913i
\(7\) 2.08732 1.62576i 0.788933 0.614479i
\(8\) 1.00000 0.353553
\(9\) −2.63362 1.43668i −0.877872 0.478895i
\(10\) 1.83593i 0.580572i
\(11\) 3.39249 1.02287 0.511437 0.859321i \(-0.329113\pi\)
0.511437 + 0.859321i \(0.329113\pi\)
\(12\) −1.66749 + 0.468501i −0.481361 + 0.135245i
\(13\) −3.07128 1.88872i −0.851820 0.523835i
\(14\) 0.364289 + 2.62055i 0.0973602 + 0.700372i
\(15\) −0.860135 3.06138i −0.222086 0.790446i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.59253 + 2.75834i 0.386245 + 0.668996i 0.991941 0.126700i \(-0.0404385\pi\)
−0.605696 + 0.795696i \(0.707105\pi\)
\(18\) 2.56101 1.56244i 0.603637 0.368270i
\(19\) −2.03164 −0.466090 −0.233045 0.972466i \(-0.574869\pi\)
−0.233045 + 0.972466i \(0.574869\pi\)
\(20\) −1.58996 0.917964i −0.355526 0.205263i
\(21\) −1.83518 4.19906i −0.400469 0.916310i
\(22\) −1.69625 + 2.93798i −0.361641 + 0.626380i
\(23\) −2.14393 1.23780i −0.447041 0.258099i 0.259539 0.965733i \(-0.416430\pi\)
−0.706580 + 0.707633i \(0.749763\pi\)
\(24\) 0.428009 1.67834i 0.0873669 0.342589i
\(25\) −0.814684 + 1.41107i −0.162937 + 0.282215i
\(26\) 3.17131 1.71545i 0.621946 0.336427i
\(27\) −3.53845 + 3.80518i −0.680975 + 0.732307i
\(28\) −2.45161 0.994793i −0.463311 0.187998i
\(29\) 1.81857 1.04995i 0.337701 0.194971i −0.321554 0.946891i \(-0.604205\pi\)
0.659255 + 0.751920i \(0.270872\pi\)
\(30\) 3.08130 + 0.785793i 0.562566 + 0.143466i
\(31\) 3.14345 5.44461i 0.564580 0.977881i −0.432509 0.901630i \(-0.642371\pi\)
0.997089 0.0762515i \(-0.0242952\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 1.45202 5.69374i 0.252763 0.991152i
\(34\) −3.18506 −0.546233
\(35\) 1.82637 4.50098i 0.308713 0.760804i
\(36\) 0.0726040 + 2.99912i 0.0121007 + 0.499854i
\(37\) −0.436402 0.251957i −0.0717440 0.0414214i 0.463699 0.885993i \(-0.346522\pi\)
−0.535443 + 0.844571i \(0.679855\pi\)
\(38\) 1.01582 1.75945i 0.164788 0.285421i
\(39\) −4.48443 + 4.34625i −0.718084 + 0.695957i
\(40\) 1.58996 0.917964i 0.251395 0.145143i
\(41\) −4.35184 + 2.51254i −0.679643 + 0.392392i −0.799721 0.600372i \(-0.795019\pi\)
0.120077 + 0.992765i \(0.461686\pi\)
\(42\) 4.55408 + 0.510221i 0.702710 + 0.0787287i
\(43\) 0.528972 0.916206i 0.0806674 0.139720i −0.822869 0.568231i \(-0.807628\pi\)
0.903537 + 0.428511i \(0.140962\pi\)
\(44\) −1.69625 2.93798i −0.255719 0.442918i
\(45\) −5.50617 + 0.133296i −0.820812 + 0.0198705i
\(46\) 2.14393 1.23780i 0.316106 0.182504i
\(47\) 10.0977 5.82991i 1.47290 0.850380i 0.473367 0.880865i \(-0.343038\pi\)
0.999535 + 0.0304848i \(0.00970512\pi\)
\(48\) 1.23948 + 1.20983i 0.178903 + 0.174624i
\(49\) 1.71381 6.78696i 0.244830 0.969566i
\(50\) −0.814684 1.41107i −0.115214 0.199556i
\(51\) 5.31104 1.49220i 0.743694 0.208950i
\(52\) −0.100036 + 3.60416i −0.0138724 + 0.499808i
\(53\) 5.81668 + 3.35826i 0.798983 + 0.461293i 0.843115 0.537733i \(-0.180719\pi\)
−0.0441326 + 0.999026i \(0.514052\pi\)
\(54\) −1.52616 4.96698i −0.207684 0.675920i
\(55\) 5.39393 3.11418i 0.727317 0.419917i
\(56\) 2.08732 1.62576i 0.278930 0.217251i
\(57\) −0.869560 + 3.40977i −0.115176 + 0.451636i
\(58\) 2.09991i 0.275731i
\(59\) −5.37709 + 3.10446i −0.700037 + 0.404167i −0.807361 0.590057i \(-0.799105\pi\)
0.107324 + 0.994224i \(0.465772\pi\)
\(60\) −2.22117 + 2.27559i −0.286752 + 0.293777i
\(61\) 11.6806i 1.49554i −0.663957 0.747771i \(-0.731124\pi\)
0.663957 0.747771i \(-0.268876\pi\)
\(62\) 3.14345 + 5.44461i 0.399218 + 0.691467i
\(63\) −7.83291 + 1.28281i −0.986853 + 0.161619i
\(64\) 1.00000 0.125000
\(65\) −6.61699 0.183658i −0.820736 0.0227800i
\(66\) 4.20491 + 4.10435i 0.517589 + 0.505211i
\(67\) 9.92794i 1.21289i 0.795125 + 0.606445i \(0.207405\pi\)
−0.795125 + 0.606445i \(0.792595\pi\)
\(68\) 1.59253 2.75834i 0.193123 0.334498i
\(69\) −2.99507 + 3.06845i −0.360564 + 0.369398i
\(70\) 2.98478 + 3.83217i 0.356749 + 0.458032i
\(71\) −7.77030 + 13.4586i −0.922165 + 1.59724i −0.126108 + 0.992017i \(0.540248\pi\)
−0.796058 + 0.605221i \(0.793085\pi\)
\(72\) −2.63362 1.43668i −0.310375 0.169315i
\(73\) 4.47574 7.75221i 0.523846 0.907327i −0.475769 0.879570i \(-0.657830\pi\)
0.999615 0.0277570i \(-0.00883647\pi\)
\(74\) 0.436402 0.251957i 0.0507307 0.0292894i
\(75\) 2.01956 + 1.97126i 0.233199 + 0.227622i
\(76\) 1.01582 + 1.75945i 0.116523 + 0.201823i
\(77\) 7.08122 5.51537i 0.806979 0.628535i
\(78\) −1.52175 6.05676i −0.172304 0.685793i
\(79\) 3.92399 + 6.79656i 0.441484 + 0.764672i 0.997800 0.0662985i \(-0.0211189\pi\)
−0.556316 + 0.830971i \(0.687786\pi\)
\(80\) 1.83593i 0.205263i
\(81\) 4.87188 + 7.56735i 0.541320 + 0.840817i
\(82\) 5.02507i 0.554926i
\(83\) 13.0790i 1.43561i 0.696246 + 0.717803i \(0.254852\pi\)
−0.696246 + 0.717803i \(0.745148\pi\)
\(84\) −2.71891 + 3.68884i −0.296657 + 0.402486i
\(85\) 5.06412 + 2.92377i 0.549281 + 0.317127i
\(86\) 0.528972 + 0.916206i 0.0570405 + 0.0987970i
\(87\) −0.983809 3.50156i −0.105475 0.375407i
\(88\) 3.39249 0.361641
\(89\) 4.61906 + 2.66681i 0.489619 + 0.282682i 0.724416 0.689363i \(-0.242109\pi\)
−0.234797 + 0.972044i \(0.575443\pi\)
\(90\) 2.63765 4.83513i 0.278033 0.509668i
\(91\) −9.48134 + 1.05081i −0.993914 + 0.110155i
\(92\) 2.47560i 0.258099i
\(93\) −7.79246 7.60610i −0.808041 0.788716i
\(94\) 11.6598i 1.20262i
\(95\) −3.23023 + 1.86497i −0.331414 + 0.191342i
\(96\) −1.66749 + 0.468501i −0.170187 + 0.0478162i
\(97\) 4.79907 8.31223i 0.487272 0.843979i −0.512621 0.858615i \(-0.671326\pi\)
0.999893 + 0.0146357i \(0.00465887\pi\)
\(98\) 5.02077 + 4.87769i 0.507175 + 0.492721i
\(99\) −8.93452 4.87394i −0.897953 0.489849i
\(100\) 1.62937 0.162937
\(101\) 9.39069 0.934409 0.467204 0.884149i \(-0.345261\pi\)
0.467204 + 0.884149i \(0.345261\pi\)
\(102\) −1.36323 + 5.34560i −0.134980 + 0.529293i
\(103\) −11.5646 + 6.67680i −1.13949 + 0.657884i −0.946304 0.323278i \(-0.895215\pi\)
−0.193185 + 0.981162i \(0.561882\pi\)
\(104\) −3.07128 1.88872i −0.301164 0.185204i
\(105\) −6.77245 4.99172i −0.660923 0.487142i
\(106\) −5.81668 + 3.35826i −0.564966 + 0.326183i
\(107\) 11.5796 + 6.68547i 1.11944 + 0.646309i 0.941258 0.337689i \(-0.109645\pi\)
0.178182 + 0.983998i \(0.442978\pi\)
\(108\) 5.06461 + 1.16180i 0.487342 + 0.111794i
\(109\) −3.82963 2.21104i −0.366812 0.211779i 0.305253 0.952271i \(-0.401259\pi\)
−0.672065 + 0.740492i \(0.734592\pi\)
\(110\) 6.22837i 0.593852i
\(111\) −0.609651 + 0.624589i −0.0578655 + 0.0592833i
\(112\) 0.364289 + 2.62055i 0.0344220 + 0.247619i
\(113\) −13.8390 7.98994i −1.30186 0.751631i −0.321139 0.947032i \(-0.604066\pi\)
−0.980723 + 0.195402i \(0.937399\pi\)
\(114\) −2.51817 2.45795i −0.235848 0.230208i
\(115\) −4.54503 −0.423826
\(116\) −1.81857 1.04995i −0.168850 0.0974857i
\(117\) 5.37509 + 9.38661i 0.496927 + 0.867792i
\(118\) 6.20893i 0.571578i
\(119\) 7.80852 + 3.16847i 0.715806 + 0.290454i
\(120\) −0.860135 3.06138i −0.0785192 0.279465i
\(121\) 0.508993 0.0462721
\(122\) 10.1157 + 5.84028i 0.915829 + 0.528754i
\(123\) 2.35425 + 8.37923i 0.212276 + 0.755530i
\(124\) −6.28690 −0.564580
\(125\) 12.1710i 1.08861i
\(126\) 2.80551 7.42490i 0.249935 0.661463i
\(127\) −0.475986 0.824432i −0.0422370 0.0731566i 0.844134 0.536132i \(-0.180115\pi\)
−0.886371 + 0.462976i \(0.846782\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −1.31130 1.27994i −0.115453 0.112692i
\(130\) 3.46755 5.63865i 0.304124 0.494542i
\(131\) 4.95760 + 8.58681i 0.433147 + 0.750233i 0.997142 0.0755449i \(-0.0240696\pi\)
−0.563995 + 0.825778i \(0.690736\pi\)
\(132\) −5.65693 + 1.58939i −0.492372 + 0.138338i
\(133\) −4.24069 + 3.30296i −0.367714 + 0.286403i
\(134\) −8.59785 4.96397i −0.742741 0.428822i
\(135\) −2.13297 + 9.29825i −0.183577 + 0.800266i
\(136\) 1.59253 + 2.75834i 0.136558 + 0.236526i
\(137\) −1.59153 2.75662i −0.135974 0.235514i 0.789995 0.613113i \(-0.210083\pi\)
−0.925969 + 0.377599i \(0.876750\pi\)
\(138\) −1.15982 4.12803i −0.0987306 0.351401i
\(139\) −0.0981681 0.0566774i −0.00832651 0.00480731i 0.495831 0.868419i \(-0.334864\pi\)
−0.504157 + 0.863612i \(0.668197\pi\)
\(140\) −4.81115 + 0.668808i −0.406616 + 0.0565246i
\(141\) −5.46264 19.4426i −0.460038 1.63736i
\(142\) −7.77030 13.4586i −0.652069 1.12942i
\(143\) −10.4193 6.40745i −0.871304 0.535818i
\(144\) 2.56101 1.56244i 0.213418 0.130203i
\(145\) 1.92764 3.33877i 0.160082 0.277270i
\(146\) 4.47574 + 7.75221i 0.370415 + 0.641577i
\(147\) −10.6573 5.78123i −0.878997 0.476828i
\(148\) 0.503913i 0.0414214i
\(149\) −21.7126 −1.77876 −0.889382 0.457165i \(-0.848865\pi\)
−0.889382 + 0.457165i \(0.848865\pi\)
\(150\) −2.71695 + 0.763361i −0.221838 + 0.0623281i
\(151\) 4.69698 + 2.71180i 0.382235 + 0.220684i 0.678790 0.734332i \(-0.262505\pi\)
−0.296555 + 0.955016i \(0.595838\pi\)
\(152\) −2.03164 −0.164788
\(153\) −0.231248 9.55238i −0.0186953 0.772264i
\(154\) 1.23585 + 8.89020i 0.0995873 + 0.716393i
\(155\) 11.5423i 0.927099i
\(156\) 6.00618 + 1.71051i 0.480879 + 0.136950i
\(157\) 18.4221 + 10.6360i 1.47025 + 0.848848i 0.999442 0.0333895i \(-0.0106302\pi\)
0.470805 + 0.882237i \(0.343964\pi\)
\(158\) −7.84799 −0.624352
\(159\) 8.12588 8.32498i 0.644424 0.660214i
\(160\) −1.58996 0.917964i −0.125697 0.0725714i
\(161\) −6.48744 + 0.901834i −0.511282 + 0.0710744i
\(162\) −8.98946 + 0.435496i −0.706278 + 0.0342158i
\(163\) 10.0187i 0.784728i 0.919810 + 0.392364i \(0.128343\pi\)
−0.919810 + 0.392364i \(0.871657\pi\)
\(164\) 4.35184 + 2.51254i 0.339822 + 0.196196i
\(165\) −2.91800 10.3857i −0.227166 0.808527i
\(166\) −11.3267 6.53950i −0.879126 0.507564i
\(167\) −3.11618 + 1.79913i −0.241137 + 0.139221i −0.615699 0.787981i \(-0.711126\pi\)
0.374562 + 0.927202i \(0.377793\pi\)
\(168\) −1.83518 4.19906i −0.141587 0.323965i
\(169\) 5.86551 + 11.6015i 0.451193 + 0.892426i
\(170\) −5.06412 + 2.92377i −0.388400 + 0.224243i
\(171\) 5.35056 + 2.91883i 0.409168 + 0.223208i
\(172\) −1.05794 −0.0806674
\(173\) −0.953613 −0.0725019 −0.0362509 0.999343i \(-0.511542\pi\)
−0.0362509 + 0.999343i \(0.511542\pi\)
\(174\) 3.52435 + 0.898778i 0.267180 + 0.0681362i
\(175\) 0.593560 + 4.26984i 0.0448689 + 0.322770i
\(176\) −1.69625 + 2.93798i −0.127859 + 0.221459i
\(177\) 2.90889 + 10.3533i 0.218645 + 0.778201i
\(178\) −4.61906 + 2.66681i −0.346213 + 0.199886i
\(179\) 17.7581i 1.32730i −0.748043 0.663650i \(-0.769006\pi\)
0.748043 0.663650i \(-0.230994\pi\)
\(180\) 2.86852 + 4.70184i 0.213807 + 0.350454i
\(181\) 5.51564i 0.409975i 0.978765 + 0.204987i \(0.0657153\pi\)
−0.978765 + 0.204987i \(0.934285\pi\)
\(182\) 3.83064 8.73648i 0.283946 0.647591i
\(183\) −19.6039 4.99938i −1.44916 0.369565i
\(184\) −2.14393 1.23780i −0.158053 0.0912519i
\(185\) −0.925149 −0.0680183
\(186\) 10.4833 2.94542i 0.768673 0.215969i
\(187\) 5.40264 + 9.35765i 0.395080 + 0.684299i
\(188\) −10.0977 5.82991i −0.736451 0.425190i
\(189\) −1.19957 + 13.6953i −0.0872558 + 0.996186i
\(190\) 3.72995i 0.270599i
\(191\) 20.1785i 1.46007i 0.683411 + 0.730034i \(0.260496\pi\)
−0.683411 + 0.730034i \(0.739504\pi\)
\(192\) 0.428009 1.67834i 0.0308889 0.121123i
\(193\) 4.54274i 0.326994i −0.986544 0.163497i \(-0.947723\pi\)
0.986544 0.163497i \(-0.0522774\pi\)
\(194\) 4.79907 + 8.31223i 0.344553 + 0.596783i
\(195\) −3.14037 + 11.0269i −0.224886 + 0.789654i
\(196\) −6.73459 + 1.90927i −0.481042 + 0.136377i
\(197\) 5.74363 + 9.94826i 0.409217 + 0.708784i 0.994802 0.101826i \(-0.0324687\pi\)
−0.585585 + 0.810611i \(0.699135\pi\)
\(198\) 8.68821 5.30055i 0.617444 0.376694i
\(199\) 5.94498 3.43234i 0.421429 0.243312i −0.274260 0.961656i \(-0.588433\pi\)
0.695688 + 0.718344i \(0.255099\pi\)
\(200\) −0.814684 + 1.41107i −0.0576068 + 0.0997780i
\(201\) 16.6624 + 4.24924i 1.17528 + 0.299718i
\(202\) −4.69535 + 8.13258i −0.330363 + 0.572206i
\(203\) 2.08897 5.14815i 0.146617 0.361329i
\(204\) −3.94781 3.85339i −0.276402 0.269791i
\(205\) −4.61284 + 7.98966i −0.322174 + 0.558022i
\(206\) 13.3536i 0.930389i
\(207\) 3.86797 + 6.34005i 0.268843 + 0.440664i
\(208\) 3.17131 1.71545i 0.219891 0.118945i
\(209\) −6.89232 −0.476752
\(210\) 7.70918 3.36925i 0.531984 0.232501i
\(211\) −2.63957 4.57187i −0.181715 0.314740i 0.760749 0.649046i \(-0.224832\pi\)
−0.942465 + 0.334305i \(0.891498\pi\)
\(212\) 6.71653i 0.461293i
\(213\) 19.2622 + 18.8016i 1.31983 + 1.28826i
\(214\) −11.5796 + 6.68547i −0.791563 + 0.457009i
\(215\) 1.94231i 0.132464i
\(216\) −3.53845 + 3.80518i −0.240761 + 0.258910i
\(217\) −2.29025 16.4751i −0.155472 1.11841i
\(218\) 3.82963 2.21104i 0.259375 0.149750i
\(219\) −11.0951 10.8298i −0.749741 0.731810i
\(220\) −5.39393 3.11418i −0.363658 0.209958i
\(221\) 0.318619 11.4795i 0.0214327 0.772193i
\(222\) −0.236084 0.840268i −0.0158449 0.0563951i
\(223\) 14.2982 + 24.7653i 0.957481 + 1.65841i 0.728585 + 0.684955i \(0.240178\pi\)
0.228896 + 0.973451i \(0.426488\pi\)
\(224\) −2.45161 0.994793i −0.163805 0.0664674i
\(225\) 4.17283 2.54578i 0.278189 0.169719i
\(226\) 13.8390 7.98994i 0.920556 0.531483i
\(227\) 5.20466 3.00491i 0.345446 0.199443i −0.317232 0.948348i \(-0.602753\pi\)
0.662677 + 0.748905i \(0.269420\pi\)
\(228\) 3.38773 0.951826i 0.224358 0.0630362i
\(229\) 7.02836 + 12.1735i 0.464447 + 0.804446i 0.999176 0.0405773i \(-0.0129197\pi\)
−0.534729 + 0.845023i \(0.679586\pi\)
\(230\) 2.27251 3.93611i 0.149845 0.259539i
\(231\) −6.22582 14.2453i −0.409629 0.937271i
\(232\) 1.81857 1.04995i 0.119395 0.0689328i
\(233\) 24.0450 13.8824i 1.57524 0.909465i 0.579729 0.814809i \(-0.303158\pi\)
0.995510 0.0946555i \(-0.0301750\pi\)
\(234\) −10.8166 0.0383424i −0.707102 0.00250652i
\(235\) 10.7033 18.5387i 0.698207 1.20933i
\(236\) 5.37709 + 3.10446i 0.350019 + 0.202083i
\(237\) 13.0864 3.67679i 0.850053 0.238833i
\(238\) −6.64824 + 5.17814i −0.430941 + 0.335649i
\(239\) 5.31347 0.343700 0.171850 0.985123i \(-0.445026\pi\)
0.171850 + 0.985123i \(0.445026\pi\)
\(240\) 3.08130 + 0.785793i 0.198897 + 0.0507227i
\(241\) −9.62885 16.6777i −0.620249 1.07430i −0.989439 0.144949i \(-0.953698\pi\)
0.369190 0.929354i \(-0.379635\pi\)
\(242\) −0.254496 + 0.440801i −0.0163596 + 0.0283357i
\(243\) 14.7858 4.93775i 0.948507 0.316757i
\(244\) −10.1157 + 5.84028i −0.647589 + 0.373885i
\(245\) −3.50529 12.3642i −0.223945 0.789921i
\(246\) −8.43375 2.15077i −0.537716 0.137128i
\(247\) 6.23974 + 3.83719i 0.397025 + 0.244155i
\(248\) 3.14345 5.44461i 0.199609 0.345733i
\(249\) 21.9509 + 5.59792i 1.39108 + 0.354754i
\(250\) −10.5404 6.08552i −0.666635 0.384882i
\(251\) 4.75595 8.23755i 0.300193 0.519950i −0.675986 0.736914i \(-0.736282\pi\)
0.976180 + 0.216964i \(0.0696156\pi\)
\(252\) 5.02740 + 6.14209i 0.316696 + 0.386915i
\(253\) −7.27328 4.19923i −0.457267 0.264003i
\(254\) 0.951973 0.0597321
\(255\) 7.07455 7.24789i 0.443026 0.453880i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −2.63187 + 4.55853i −0.164171 + 0.284353i −0.936361 0.351039i \(-0.885828\pi\)
0.772189 + 0.635392i \(0.219162\pi\)
\(258\) 1.76410 0.495648i 0.109828 0.0308577i
\(259\) −1.32053 + 0.183570i −0.0820538 + 0.0114065i
\(260\) 3.14944 + 5.82231i 0.195320 + 0.361084i
\(261\) −6.29788 + 0.152462i −0.389829 + 0.00943714i
\(262\) −9.91520 −0.612563
\(263\) 10.8500i 0.669042i −0.942388 0.334521i \(-0.891425\pi\)
0.942388 0.334521i \(-0.108575\pi\)
\(264\) 1.45202 5.69374i 0.0893654 0.350425i
\(265\) 12.3311 0.757491
\(266\) −0.740104 5.32402i −0.0453787 0.326437i
\(267\) 6.45280 6.61091i 0.394905 0.404581i
\(268\) 8.59785 4.96397i 0.525197 0.303223i
\(269\) −9.05587 15.6852i −0.552146 0.956346i −0.998119 0.0612993i \(-0.980476\pi\)
0.445973 0.895046i \(-0.352858\pi\)
\(270\) −6.98604 6.49634i −0.425157 0.395354i
\(271\) 4.33664 7.51129i 0.263432 0.456278i −0.703719 0.710478i \(-0.748479\pi\)
0.967152 + 0.254200i \(0.0818121\pi\)
\(272\) −3.18506 −0.193123
\(273\) −2.29449 + 16.3626i −0.138869 + 0.990311i
\(274\) 3.18307 0.192296
\(275\) −2.76381 + 4.78705i −0.166664 + 0.288670i
\(276\) 4.15489 + 1.05958i 0.250095 + 0.0637792i
\(277\) 9.14175 + 15.8340i 0.549275 + 0.951372i 0.998324 + 0.0578650i \(0.0184293\pi\)
−0.449050 + 0.893507i \(0.648237\pi\)
\(278\) 0.0981681 0.0566774i 0.00588773 0.00339928i
\(279\) −16.1008 + 9.82288i −0.963931 + 0.588081i
\(280\) 1.82637 4.50098i 0.109146 0.268985i
\(281\) −2.73779 −0.163323 −0.0816614 0.996660i \(-0.526023\pi\)
−0.0816614 + 0.996660i \(0.526023\pi\)
\(282\) 19.5691 + 4.99051i 1.16532 + 0.297180i
\(283\) 5.31213i 0.315773i 0.987457 + 0.157887i \(0.0504681\pi\)
−0.987457 + 0.157887i \(0.949532\pi\)
\(284\) 15.5406 0.922165
\(285\) 1.74748 + 6.21963i 0.103512 + 0.368419i
\(286\) 10.7587 5.81964i 0.636173 0.344123i
\(287\) −4.99890 + 12.3195i −0.295076 + 0.727198i
\(288\) 0.0726040 + 2.99912i 0.00427823 + 0.176725i
\(289\) 3.42770 5.93695i 0.201629 0.349232i
\(290\) 1.92764 + 3.33877i 0.113195 + 0.196059i
\(291\) −11.8967 11.6122i −0.697395 0.680716i
\(292\) −8.95148 −0.523846
\(293\) 2.86877 + 1.65628i 0.167595 + 0.0967612i 0.581451 0.813581i \(-0.302485\pi\)
−0.413856 + 0.910342i \(0.635818\pi\)
\(294\) 10.3353 6.33885i 0.602769 0.369689i
\(295\) −5.69957 + 9.87195i −0.331842 + 0.574767i
\(296\) −0.436402 0.251957i −0.0253653 0.0146447i
\(297\) −12.0042 + 12.9090i −0.696551 + 0.749058i
\(298\) 10.8563 18.8036i 0.628888 1.08927i
\(299\) 4.24677 + 7.85091i 0.245597 + 0.454030i
\(300\) 0.697383 2.73462i 0.0402634 0.157884i
\(301\) −0.385397 2.77240i −0.0222139 0.159798i
\(302\) −4.69698 + 2.71180i −0.270281 + 0.156047i
\(303\) 4.01930 15.7607i 0.230903 0.905430i
\(304\) 1.01582 1.75945i 0.0582613 0.100912i
\(305\) −10.7223 18.5716i −0.613959 1.06341i
\(306\) 8.38823 + 4.57592i 0.479523 + 0.261588i
\(307\) −23.8813 −1.36298 −0.681490 0.731827i \(-0.738668\pi\)
−0.681490 + 0.731827i \(0.738668\pi\)
\(308\) −8.31706 3.37483i −0.473909 0.192299i
\(309\) 6.25617 + 22.2669i 0.355901 + 1.26672i
\(310\) 9.99592 + 5.77115i 0.567730 + 0.327779i
\(311\) 15.8352 27.4274i 0.897934 1.55527i 0.0678034 0.997699i \(-0.478401\pi\)
0.830131 0.557569i \(-0.188266\pi\)
\(312\) −4.48443 + 4.34625i −0.253881 + 0.246058i
\(313\) 12.5081 7.22158i 0.707002 0.408188i −0.102948 0.994687i \(-0.532828\pi\)
0.809950 + 0.586499i \(0.199494\pi\)
\(314\) −18.4221 + 10.6360i −1.03962 + 0.600226i
\(315\) −11.2764 + 9.22994i −0.635355 + 0.520048i
\(316\) 3.92399 6.79656i 0.220742 0.382336i
\(317\) 12.7938 + 22.1596i 0.718573 + 1.24461i 0.961565 + 0.274577i \(0.0885379\pi\)
−0.242992 + 0.970028i \(0.578129\pi\)
\(318\) 3.14670 + 11.1997i 0.176458 + 0.628048i
\(319\) 6.16949 3.56196i 0.345425 0.199431i
\(320\) 1.58996 0.917964i 0.0888815 0.0513158i
\(321\) 16.1766 16.5730i 0.902891 0.925013i
\(322\) 2.46271 6.06921i 0.137242 0.338224i
\(323\) −3.23545 5.60396i −0.180025 0.311813i
\(324\) 4.11758 8.00285i 0.228754 0.444603i
\(325\) 5.16724 2.79510i 0.286627 0.155044i
\(326\) −8.67648 5.00937i −0.480546 0.277443i
\(327\) −5.34998 + 5.48106i −0.295854 + 0.303103i
\(328\) −4.35184 + 2.51254i −0.240290 + 0.138732i
\(329\) 11.5991 28.5853i 0.639480 1.57596i
\(330\) 10.4533 + 2.66580i 0.575435 + 0.146747i
\(331\) 8.37563i 0.460366i 0.973147 + 0.230183i \(0.0739325\pi\)
−0.973147 + 0.230183i \(0.926067\pi\)
\(332\) 11.3267 6.53950i 0.621636 0.358902i
\(333\) 0.787333 + 1.29053i 0.0431456 + 0.0707205i
\(334\) 3.59825i 0.196888i
\(335\) 9.11349 + 15.7850i 0.497923 + 0.862428i
\(336\) 4.55408 + 0.510221i 0.248446 + 0.0278348i
\(337\) −9.14343 −0.498074 −0.249037 0.968494i \(-0.580114\pi\)
−0.249037 + 0.968494i \(0.580114\pi\)
\(338\) −12.9800 0.721089i −0.706018 0.0392221i
\(339\) −19.3330 + 19.8067i −1.05002 + 1.07575i
\(340\) 5.84754i 0.317127i
\(341\) 10.6641 18.4708i 0.577494 1.00025i
\(342\) −5.20306 + 3.17431i −0.281349 + 0.171647i
\(343\) −7.45669 16.9528i −0.402623 0.915366i
\(344\) 0.528972 0.916206i 0.0285202 0.0493985i
\(345\) −1.94531 + 7.62808i −0.104732 + 0.410682i
\(346\) 0.476807 0.825853i 0.0256333 0.0443982i
\(347\) −26.9305 + 15.5484i −1.44571 + 0.834679i −0.998222 0.0596117i \(-0.981014\pi\)
−0.447486 + 0.894291i \(0.647680\pi\)
\(348\) −2.54054 + 2.60279i −0.136187 + 0.139524i
\(349\) −14.0331 24.3060i −0.751175 1.30107i −0.947254 0.320485i \(-0.896154\pi\)
0.196079 0.980588i \(-0.437179\pi\)
\(350\) −3.99457 1.62088i −0.213519 0.0866398i
\(351\) 18.0545 5.00365i 0.963676 0.267075i
\(352\) −1.69625 2.93798i −0.0904102 0.156595i
\(353\) 28.3322i 1.50797i 0.656893 + 0.753984i \(0.271870\pi\)
−0.656893 + 0.753984i \(0.728130\pi\)
\(354\) −10.4207 2.65747i −0.553852 0.141243i
\(355\) 28.5314i 1.51429i
\(356\) 5.33363i 0.282682i
\(357\) 8.65988 11.7492i 0.458329 0.621833i
\(358\) 15.3789 + 8.87903i 0.812802 + 0.469271i
\(359\) −10.8679 18.8238i −0.573588 0.993483i −0.996193 0.0871698i \(-0.972218\pi\)
0.422606 0.906314i \(-0.361116\pi\)
\(360\) −5.50617 + 0.133296i −0.290201 + 0.00702530i
\(361\) −14.8724 −0.782760
\(362\) −4.77669 2.75782i −0.251057 0.144948i
\(363\) 0.217853 0.854260i 0.0114343 0.0448370i
\(364\) 5.65070 + 7.68568i 0.296177 + 0.402839i
\(365\) 16.4343i 0.860209i
\(366\) 14.1315 14.4778i 0.738667 0.756765i
\(367\) 15.7687i 0.823121i 0.911382 + 0.411561i \(0.135016\pi\)
−0.911382 + 0.411561i \(0.864984\pi\)
\(368\) 2.14393 1.23780i 0.111760 0.0645248i
\(369\) 15.0708 0.364840i 0.784554 0.0189928i
\(370\) 0.462574 0.801202i 0.0240481 0.0416525i
\(371\) 17.6010 2.44675i 0.913799 0.127029i
\(372\) −2.69085 + 10.5515i −0.139514 + 0.547071i
\(373\) −7.24507 −0.375135 −0.187568 0.982252i \(-0.560060\pi\)
−0.187568 + 0.982252i \(0.560060\pi\)
\(374\) −10.8053 −0.558728
\(375\) 20.4271 + 5.20931i 1.05485 + 0.269008i
\(376\) 10.0977 5.82991i 0.520750 0.300655i
\(377\) −7.56841 0.210065i −0.389793 0.0108189i
\(378\) −11.2607 7.88650i −0.579187 0.405638i
\(379\) 4.24213 2.44920i 0.217904 0.125807i −0.387076 0.922048i \(-0.626515\pi\)
0.604979 + 0.796241i \(0.293181\pi\)
\(380\) 3.23023 + 1.86497i 0.165707 + 0.0956711i
\(381\) −1.58740 + 0.446000i −0.0813250 + 0.0228493i
\(382\) −17.4751 10.0893i −0.894106 0.516212i
\(383\) 7.91504i 0.404439i 0.979340 + 0.202220i \(0.0648155\pi\)
−0.979340 + 0.202220i \(0.935184\pi\)
\(384\) 1.23948 + 1.20983i 0.0632518 + 0.0617391i
\(385\) 6.19594 15.2695i 0.315774 0.778207i
\(386\) 3.93413 + 2.27137i 0.200242 + 0.115610i
\(387\) −2.70941 + 1.65297i −0.137727 + 0.0840252i
\(388\) −9.59814 −0.487272
\(389\) −2.27718 1.31473i −0.115458 0.0666595i 0.441159 0.897429i \(-0.354567\pi\)
−0.556617 + 0.830769i \(0.687901\pi\)
\(390\) −7.97940 8.23309i −0.404053 0.416899i
\(391\) 7.88494i 0.398758i
\(392\) 1.71381 6.78696i 0.0865606 0.342793i
\(393\) 16.5334 4.64528i 0.834002 0.234323i
\(394\) −11.4873 −0.578720
\(395\) 12.4780 + 7.20417i 0.627836 + 0.362481i
\(396\) 0.246308 + 10.1745i 0.0123775 + 0.511287i
\(397\) −33.1058 −1.66153 −0.830766 0.556622i \(-0.812097\pi\)
−0.830766 + 0.556622i \(0.812097\pi\)
\(398\) 6.86468i 0.344095i
\(399\) 3.72842 + 8.53099i 0.186655 + 0.427083i
\(400\) −0.814684 1.41107i −0.0407342 0.0705537i
\(401\) −3.49869 + 6.05991i −0.174716 + 0.302618i −0.940063 0.341001i \(-0.889234\pi\)
0.765347 + 0.643618i \(0.222567\pi\)
\(402\) −12.0112 + 12.3054i −0.599062 + 0.613740i
\(403\) −19.9377 + 10.7848i −0.993169 + 0.537231i
\(404\) −4.69535 8.13258i −0.233602 0.404611i
\(405\) 14.6927 + 7.55958i 0.730084 + 0.375638i
\(406\) 3.41394 + 4.38318i 0.169431 + 0.217534i
\(407\) −1.48049 0.854760i −0.0733851 0.0423689i
\(408\) 5.31104 1.49220i 0.262936 0.0738751i
\(409\) −15.9202 27.5747i −0.787206 1.36348i −0.927673 0.373395i \(-0.878194\pi\)
0.140467 0.990085i \(-0.455140\pi\)
\(410\) −4.61284 7.98966i −0.227812 0.394581i
\(411\) −5.30772 + 1.49127i −0.261811 + 0.0735590i
\(412\) 11.5646 + 6.67680i 0.569745 + 0.328942i
\(413\) −6.17659 + 15.2219i −0.303930 + 0.749019i
\(414\) −7.42463 + 0.179738i −0.364901 + 0.00883366i
\(415\) 12.0061 + 20.7951i 0.589354 + 1.02079i
\(416\) −0.100036 + 3.60416i −0.00490465 + 0.176709i
\(417\) −0.137140 + 0.140501i −0.00671580 + 0.00688034i
\(418\) 3.44616 5.96893i 0.168557 0.291950i
\(419\) −5.19733 9.00204i −0.253906 0.439778i 0.710692 0.703504i \(-0.248382\pi\)
−0.964598 + 0.263725i \(0.915049\pi\)
\(420\) −0.936728 + 8.36097i −0.0457077 + 0.407974i
\(421\) 0.111490i 0.00543368i 0.999996 + 0.00271684i \(0.000864798\pi\)
−0.999996 + 0.00271684i \(0.999135\pi\)
\(422\) 5.27914 0.256984
\(423\) −34.9692 + 0.846550i −1.70026 + 0.0411607i
\(424\) 5.81668 + 3.35826i 0.282483 + 0.163092i
\(425\) −5.18963 −0.251734
\(426\) −25.9137 + 7.28079i −1.25552 + 0.352756i
\(427\) −18.9898 24.3811i −0.918979 1.17988i
\(428\) 13.3709i 0.646309i
\(429\) −15.2134 + 14.7446i −0.734509 + 0.711876i
\(430\) 1.68209 + 0.971154i 0.0811175 + 0.0468332i
\(431\) −38.6276 −1.86063 −0.930313 0.366767i \(-0.880465\pi\)
−0.930313 + 0.366767i \(0.880465\pi\)
\(432\) −1.52616 4.96698i −0.0734273 0.238974i
\(433\) 5.30602 + 3.06343i 0.254991 + 0.147219i 0.622047 0.782980i \(-0.286301\pi\)
−0.367056 + 0.930199i \(0.619634\pi\)
\(434\) 15.4130 + 6.25416i 0.739848 + 0.300209i
\(435\) −4.77853 4.66425i −0.229113 0.223634i
\(436\) 4.42208i 0.211779i
\(437\) 4.35570 + 2.51477i 0.208362 + 0.120298i
\(438\) 14.9265 4.19378i 0.713214 0.200386i
\(439\) 30.2778 + 17.4809i 1.44508 + 0.834318i 0.998182 0.0602668i \(-0.0191951\pi\)
0.446899 + 0.894585i \(0.352528\pi\)
\(440\) 5.39393 3.11418i 0.257145 0.148463i
\(441\) −14.2642 + 15.4121i −0.679250 + 0.733907i
\(442\) 9.78221 + 6.01567i 0.465292 + 0.286136i
\(443\) −7.76750 + 4.48457i −0.369045 + 0.213068i −0.673041 0.739605i \(-0.735012\pi\)
0.303996 + 0.952673i \(0.401679\pi\)
\(444\) 0.845735 + 0.215679i 0.0401368 + 0.0102357i
\(445\) 9.79216 0.464193
\(446\) −28.5965 −1.35408
\(447\) −9.29317 + 36.4410i −0.439552 + 1.72360i
\(448\) 2.08732 1.62576i 0.0986166 0.0768099i
\(449\) −9.32220 + 16.1465i −0.439942 + 0.762002i −0.997684 0.0680121i \(-0.978334\pi\)
0.557742 + 0.830014i \(0.311668\pi\)
\(450\) 0.118299 + 4.88667i 0.00557665 + 0.230360i
\(451\) −14.7636 + 8.52375i −0.695190 + 0.401368i
\(452\) 15.9799i 0.751631i
\(453\) 6.56167 6.72244i 0.308294 0.315848i
\(454\) 6.00983i 0.282055i
\(455\) −14.1104 + 10.3743i −0.661504 + 0.486353i
\(456\) −0.869560 + 3.40977i −0.0407209 + 0.159677i
\(457\) −24.6765 14.2470i −1.15432 0.666445i −0.204382 0.978891i \(-0.565518\pi\)
−0.949935 + 0.312446i \(0.898852\pi\)
\(458\) −14.0567 −0.656828
\(459\) −16.1311 3.70039i −0.752934 0.172719i
\(460\) 2.27251 + 3.93611i 0.105956 + 0.183522i
\(461\) −10.2455 5.91523i −0.477180 0.275500i 0.242061 0.970261i \(-0.422177\pi\)
−0.719240 + 0.694761i \(0.755510\pi\)
\(462\) 15.4497 + 1.73092i 0.718784 + 0.0805296i
\(463\) 10.9649i 0.509582i −0.966996 0.254791i \(-0.917993\pi\)
0.966996 0.254791i \(-0.0820067\pi\)
\(464\) 2.09991i 0.0974857i
\(465\) −19.3718 4.94020i −0.898347 0.229096i
\(466\) 27.7648i 1.28618i
\(467\) 10.0288 + 17.3705i 0.464080 + 0.803810i 0.999159 0.0409918i \(-0.0130517\pi\)
−0.535080 + 0.844802i \(0.679718\pi\)
\(468\) 5.44150 9.34827i 0.251533 0.432124i
\(469\) 16.1404 + 20.7228i 0.745296 + 0.956889i
\(470\) 10.7033 + 18.5387i 0.493707 + 0.855125i
\(471\) 25.7357 26.3662i 1.18584 1.21489i
\(472\) −5.37709 + 3.10446i −0.247501 + 0.142894i
\(473\) 1.79453 3.10822i 0.0825126 0.142916i
\(474\) −3.35901 + 13.1716i −0.154284 + 0.604989i
\(475\) 1.65514 2.86679i 0.0759432 0.131538i
\(476\) −1.16028 8.34661i −0.0531814 0.382566i
\(477\) −10.4942 17.2011i −0.480494 0.787585i
\(478\) −2.65674 + 4.60160i −0.121516 + 0.210472i
\(479\) 30.7699i 1.40591i −0.711232 0.702957i \(-0.751862\pi\)
0.711232 0.702957i \(-0.248138\pi\)
\(480\) −2.22117 + 2.27559i −0.101382 + 0.103866i
\(481\) 0.864437 + 1.59807i 0.0394149 + 0.0728656i
\(482\) 19.2577 0.877164
\(483\) −1.26310 + 11.2741i −0.0574732 + 0.512989i
\(484\) −0.254496 0.440801i −0.0115680 0.0200364i
\(485\) 17.6215i 0.800151i
\(486\) −3.11666 + 15.2737i −0.141374 + 0.692830i
\(487\) 31.0757 17.9415i 1.40817 0.813009i 0.412960 0.910749i \(-0.364495\pi\)
0.995212 + 0.0977403i \(0.0311614\pi\)
\(488\) 11.6806i 0.528754i
\(489\) 16.8148 + 4.28811i 0.760391 + 0.193915i
\(490\) 12.4604 + 3.14644i 0.562902 + 0.142142i
\(491\) −32.3384 + 18.6706i −1.45941 + 0.842592i −0.998982 0.0451043i \(-0.985638\pi\)
−0.460430 + 0.887696i \(0.652305\pi\)
\(492\) 6.07950 6.22846i 0.274085 0.280801i
\(493\) 5.79226 + 3.34416i 0.260870 + 0.150614i
\(494\) −6.44297 + 3.48517i −0.289883 + 0.156805i
\(495\) −18.6796 + 0.452204i −0.839587 + 0.0203251i
\(496\) 3.14345 + 5.44461i 0.141145 + 0.244470i
\(497\) 5.66127 + 40.7250i 0.253943 + 1.82676i
\(498\) −15.8234 + 16.2111i −0.709064 + 0.726437i
\(499\) −19.1199 + 11.0389i −0.855925 + 0.494169i −0.862646 0.505809i \(-0.831194\pi\)
0.00672032 + 0.999977i \(0.497861\pi\)
\(500\) 10.5404 6.08552i 0.471382 0.272153i
\(501\) 1.68579 + 6.00003i 0.0753153 + 0.268062i
\(502\) 4.75595 + 8.23755i 0.212269 + 0.367660i
\(503\) 18.0289 31.2270i 0.803870 1.39234i −0.113181 0.993574i \(-0.536104\pi\)
0.917051 0.398769i \(-0.130563\pi\)
\(504\) −7.83291 + 1.28281i −0.348905 + 0.0571408i
\(505\) 14.9308 8.62032i 0.664413 0.383599i
\(506\) 7.27328 4.19923i 0.323337 0.186678i
\(507\) 21.9818 4.87873i 0.976244 0.216672i
\(508\) −0.475986 + 0.824432i −0.0211185 + 0.0365783i
\(509\) −23.5652 13.6054i −1.04451 0.603047i −0.123402 0.992357i \(-0.539380\pi\)
−0.921107 + 0.389310i \(0.872714\pi\)
\(510\) 2.73958 + 9.75069i 0.121311 + 0.431768i
\(511\) −3.26092 23.4578i −0.144255 1.03771i
\(512\) 1.00000 0.0441942
\(513\) 7.18885 7.73076i 0.317396 0.341321i
\(514\) −2.63187 4.55853i −0.116087 0.201068i
\(515\) −12.2581 + 21.2317i −0.540157 + 0.935580i
\(516\) −0.452809 + 1.77558i −0.0199338 + 0.0781657i
\(517\) 34.2564 19.7779i 1.50659 0.869832i
\(518\) 0.501289 1.23540i 0.0220254 0.0542803i
\(519\) −0.408155 + 1.60048i −0.0179160 + 0.0702534i
\(520\) −6.61699 0.183658i −0.290174 0.00805394i
\(521\) 7.90186 13.6864i 0.346187 0.599613i −0.639382 0.768889i \(-0.720810\pi\)
0.985569 + 0.169276i \(0.0541430\pi\)
\(522\) 3.01690 5.53035i 0.132046 0.242057i
\(523\) −1.52777 0.882061i −0.0668049 0.0385698i 0.466225 0.884666i \(-0.345614\pi\)
−0.533030 + 0.846096i \(0.678947\pi\)
\(524\) 4.95760 8.58681i 0.216574 0.375117i
\(525\) 7.42027 + 0.831337i 0.323847 + 0.0362825i
\(526\) 9.39641 + 5.42502i 0.409703 + 0.236542i
\(527\) 20.0241 0.872265
\(528\) 4.20491 + 4.10435i 0.182995 + 0.178619i
\(529\) −8.43570 14.6111i −0.366769 0.635263i
\(530\) −6.16553 + 10.6790i −0.267813 + 0.463867i
\(531\) 18.6213 0.450793i 0.808097 0.0195627i
\(532\) 4.98079 + 2.02106i 0.215945 + 0.0876241i
\(533\) 18.1112 + 0.502686i 0.784482 + 0.0217737i
\(534\) 2.49881 + 8.89375i 0.108134 + 0.384870i
\(535\) 24.5481 1.06131
\(536\) 9.92794i 0.428822i
\(537\) −29.8040 7.60060i −1.28614 0.327990i
\(538\) 18.1117 0.780853
\(539\) 5.81410 23.0247i 0.250431 0.991744i
\(540\) 9.11901 2.80192i 0.392420 0.120575i
\(541\) −18.1904 + 10.5022i −0.782066 + 0.451526i −0.837162 0.546955i \(-0.815787\pi\)
0.0550960 + 0.998481i \(0.482454\pi\)
\(542\) 4.33664 + 7.51129i 0.186275 + 0.322638i
\(543\) 9.25710 + 2.36074i 0.397260 + 0.101309i
\(544\) 1.59253 2.75834i 0.0682791 0.118263i
\(545\) −8.11861 −0.347763
\(546\) −13.0232 10.1684i −0.557342 0.435167i
\(547\) −37.9155 −1.62115 −0.810575 0.585635i \(-0.800845\pi\)
−0.810575 + 0.585635i \(0.800845\pi\)
\(548\) −1.59153 + 2.75662i −0.0679870 + 0.117757i
\(549\) −16.7813 + 30.7621i −0.716207 + 1.31289i
\(550\) −2.76381 4.78705i −0.117849 0.204121i
\(551\) −3.69469 + 2.13313i −0.157399 + 0.0908743i
\(552\) −2.99507 + 3.06845i −0.127479 + 0.130602i
\(553\) 19.2402 + 7.80712i 0.818176 + 0.331993i
\(554\) −18.2835 −0.776792
\(555\) −0.395972 + 1.55271i −0.0168081 + 0.0659088i
\(556\) 0.113355i 0.00480731i
\(557\) 15.2846 0.647630 0.323815 0.946120i \(-0.395035\pi\)
0.323815 + 0.946120i \(0.395035\pi\)
\(558\) −0.456454 18.8552i −0.0193232 0.798203i
\(559\) −3.35507 + 1.81485i −0.141904 + 0.0767598i
\(560\) 2.98478 + 3.83217i 0.126130 + 0.161939i
\(561\) 18.0177 5.06229i 0.760706 0.213730i
\(562\) 1.36889 2.37099i 0.0577433 0.100014i
\(563\) −9.39707 16.2762i −0.396039 0.685960i 0.597194 0.802097i \(-0.296282\pi\)
−0.993233 + 0.116137i \(0.962949\pi\)
\(564\) −14.1065 + 14.4521i −0.593989 + 0.608543i
\(565\) −29.3379 −1.23426
\(566\) −4.60044 2.65607i −0.193371 0.111643i
\(567\) 22.4719 + 7.87498i 0.943730 + 0.330718i
\(568\) −7.77030 + 13.4586i −0.326035 + 0.564709i
\(569\) 18.6401 + 10.7619i 0.781433 + 0.451160i 0.836938 0.547298i \(-0.184344\pi\)
−0.0555050 + 0.998458i \(0.517677\pi\)
\(570\) −6.26010 1.59645i −0.262207 0.0668679i
\(571\) 19.8438 34.3705i 0.830438 1.43836i −0.0672531 0.997736i \(-0.521424\pi\)
0.897691 0.440625i \(-0.145243\pi\)
\(572\) −0.339370 + 12.2271i −0.0141898 + 0.511240i
\(573\) 33.8664 + 8.63659i 1.41479 + 0.360799i
\(574\) −8.16956 10.4889i −0.340991 0.437800i
\(575\) 3.49326 2.01683i 0.145679 0.0841077i
\(576\) −2.63362 1.43668i −0.109734 0.0598618i
\(577\) 20.4728 35.4599i 0.852293 1.47621i −0.0268412 0.999640i \(-0.508545\pi\)
0.879134 0.476575i \(-0.158122\pi\)
\(578\) 3.42770 + 5.93695i 0.142573 + 0.246944i
\(579\) −7.62425 1.94433i −0.316853 0.0808038i
\(580\) −3.85528 −0.160082
\(581\) 21.2633 + 27.3001i 0.882151 + 1.13260i
\(582\) 16.0047 4.49674i 0.663418 0.186396i
\(583\) 19.7330 + 11.3929i 0.817259 + 0.471845i
\(584\) 4.47574 7.75221i 0.185207 0.320789i
\(585\) 17.1627 + 9.99020i 0.709592 + 0.413044i
\(586\) −2.86877 + 1.65628i −0.118508 + 0.0684205i
\(587\) −32.8994 + 18.9945i −1.35790 + 0.783986i −0.989341 0.145616i \(-0.953483\pi\)
−0.368563 + 0.929603i \(0.620150\pi\)
\(588\) 0.321941 + 12.1201i 0.0132766 + 0.499824i
\(589\) −6.38636 + 11.0615i −0.263145 + 0.455781i
\(590\) −5.69957 9.87195i −0.234648 0.406422i
\(591\) 19.1548 5.38180i 0.787925 0.221378i
\(592\) 0.436402 0.251957i 0.0179360 0.0103554i
\(593\) −13.8054 + 7.97057i −0.566921 + 0.327312i −0.755919 0.654665i \(-0.772810\pi\)
0.188997 + 0.981978i \(0.439476\pi\)
\(594\) −5.17748 16.8504i −0.212434 0.691381i
\(595\) 15.3238 2.13019i 0.628214 0.0873294i
\(596\) 10.8563 + 18.8036i 0.444691 + 0.770227i
\(597\) −3.21611 11.4467i −0.131627 0.468484i
\(598\) −8.92247 0.247648i −0.364867 0.0101271i
\(599\) −3.66862 2.11808i −0.149896 0.0865423i 0.423176 0.906047i \(-0.360915\pi\)
−0.573072 + 0.819505i \(0.694248\pi\)
\(600\) 2.01956 + 1.97126i 0.0824483 + 0.0804765i
\(601\) 2.17316 1.25468i 0.0886451 0.0511793i −0.455022 0.890480i \(-0.650369\pi\)
0.543667 + 0.839301i \(0.317035\pi\)
\(602\) 2.59366 + 1.05243i 0.105710 + 0.0428940i
\(603\) 14.2633 26.1464i 0.580847 1.06476i
\(604\) 5.42361i 0.220684i
\(605\) 0.809278 0.467237i 0.0329018 0.0189959i
\(606\) 11.6395 + 11.3612i 0.472824 + 0.461516i
\(607\) 42.8486i 1.73917i 0.493781 + 0.869586i \(0.335614\pi\)
−0.493781 + 0.869586i \(0.664386\pi\)
\(608\) 1.01582 + 1.75945i 0.0411970 + 0.0713552i
\(609\) −7.74623 5.70945i −0.313893 0.231359i
\(610\) 21.4447 0.868269
\(611\) −42.0239 1.16640i −1.70011 0.0471874i
\(612\) −8.15698 + 4.97646i −0.329726 + 0.201161i
\(613\) 21.1506i 0.854266i 0.904189 + 0.427133i \(0.140476\pi\)
−0.904189 + 0.427133i \(0.859524\pi\)
\(614\) 11.9407 20.6819i 0.481886 0.834652i
\(615\) 11.4350 + 11.1615i 0.461104 + 0.450076i
\(616\) 7.08122 5.51537i 0.285310 0.222221i
\(617\) −17.5132 + 30.3337i −0.705053 + 1.22119i 0.261619 + 0.965171i \(0.415744\pi\)
−0.966672 + 0.256017i \(0.917590\pi\)
\(618\) −22.4118 5.71545i −0.901535 0.229909i
\(619\) −15.4257 + 26.7180i −0.620010 + 1.07389i 0.369473 + 0.929241i \(0.379538\pi\)
−0.989483 + 0.144648i \(0.953795\pi\)
\(620\) −9.99592 + 5.77115i −0.401446 + 0.231775i
\(621\) 12.2963 3.77816i 0.493432 0.151612i
\(622\) 15.8352 + 27.4274i 0.634935 + 1.09974i
\(623\) 13.9771 1.94298i 0.559979 0.0778439i
\(624\) −1.52175 6.05676i −0.0609186 0.242464i
\(625\) 7.09916 + 12.2961i 0.283967 + 0.491844i
\(626\) 14.4432i 0.577265i
\(627\) −2.94997 + 11.5676i −0.117811 + 0.461966i
\(628\) 21.2721i 0.848848i
\(629\) 1.60499i 0.0639953i
\(630\) −2.35514 14.3807i −0.0938312 0.572939i
\(631\) −13.3366 7.69988i −0.530921 0.306527i 0.210470 0.977600i \(-0.432500\pi\)
−0.741391 + 0.671073i \(0.765834\pi\)
\(632\) 3.92399 + 6.79656i 0.156088 + 0.270352i
\(633\) −8.80289 + 2.47328i −0.349883 + 0.0983042i
\(634\) −25.5877 −1.01622
\(635\) −1.51360 0.873877i −0.0600653 0.0346787i
\(636\) −11.2726 2.87473i −0.446987 0.113990i
\(637\) −18.0822 + 17.6077i −0.716444 + 0.697644i
\(638\) 7.12392i 0.282039i
\(639\) 39.7997 24.2812i 1.57445 0.960551i
\(640\) 1.83593i 0.0725714i
\(641\) −8.06018 + 4.65355i −0.318358 + 0.183804i −0.650660 0.759369i \(-0.725508\pi\)
0.332302 + 0.943173i \(0.392175\pi\)
\(642\) 6.26430 + 22.2958i 0.247232 + 0.879947i
\(643\) 3.03048 5.24895i 0.119511 0.206998i −0.800063 0.599916i \(-0.795201\pi\)
0.919574 + 0.392917i \(0.128534\pi\)
\(644\) 4.02473 + 5.16737i 0.158597 + 0.203623i
\(645\) −3.25984 0.831325i −0.128356 0.0327334i
\(646\) 6.47090 0.254594
\(647\) 11.3010 0.444290 0.222145 0.975014i \(-0.428694\pi\)
0.222145 + 0.975014i \(0.428694\pi\)
\(648\) 4.87188 + 7.56735i 0.191385 + 0.297274i
\(649\) −18.2417 + 10.5319i −0.716050 + 0.413412i
\(650\) −0.162995 + 5.87251i −0.00639318 + 0.230339i
\(651\) −28.6311 3.20770i −1.12214 0.125720i
\(652\) 8.67648 5.00937i 0.339797 0.196182i
\(653\) −31.1098 17.9612i −1.21742 0.702878i −0.253055 0.967452i \(-0.581435\pi\)
−0.964365 + 0.264574i \(0.914769\pi\)
\(654\) −2.07175 7.37375i −0.0810117 0.288336i
\(655\) 15.7648 + 9.10179i 0.615981 + 0.355637i
\(656\) 5.02507i 0.196196i
\(657\) −22.9249 + 13.9861i −0.894384 + 0.545651i
\(658\) 18.9561 + 24.3378i 0.738985 + 0.948786i
\(659\) 14.9107 + 8.60870i 0.580839 + 0.335348i 0.761467 0.648204i \(-0.224480\pi\)
−0.180628 + 0.983552i \(0.557813\pi\)
\(660\) −7.53529 + 7.71992i −0.293311 + 0.300497i
\(661\) 5.99169 0.233050 0.116525 0.993188i \(-0.462825\pi\)
0.116525 + 0.993188i \(0.462825\pi\)
\(662\) −7.25351 4.18782i −0.281916 0.162764i
\(663\) −19.1300 5.44806i −0.742949 0.211585i
\(664\) 13.0790i 0.507564i
\(665\) −3.71052 + 9.14437i −0.143888 + 0.354603i
\(666\) −1.51130 + 0.0365861i −0.0585616 + 0.00141768i
\(667\) −5.19853 −0.201288
\(668\) 3.11618 + 1.79913i 0.120569 + 0.0696103i
\(669\) 47.6842 13.3975i 1.84358 0.517977i
\(670\) −18.2270 −0.704170
\(671\) 39.6262i 1.52975i
\(672\) −2.71891 + 3.68884i −0.104884 + 0.142300i
\(673\) −16.9593 29.3743i −0.653732 1.13230i −0.982210 0.187786i \(-0.939869\pi\)
0.328478 0.944512i \(-0.393464\pi\)
\(674\) 4.57171 7.91844i 0.176096 0.305007i
\(675\) −2.48667 8.09303i −0.0957120 0.311501i
\(676\) 7.11447 10.8805i 0.273634 0.418479i
\(677\) 6.91552 + 11.9780i 0.265785 + 0.460353i 0.967769 0.251840i \(-0.0810356\pi\)
−0.701984 + 0.712193i \(0.747702\pi\)
\(678\) −7.48659 26.6462i −0.287521 1.02334i
\(679\) −3.49649 25.1524i −0.134183 0.965261i
\(680\) 5.06412 + 2.92377i 0.194200 + 0.112121i
\(681\) −2.81561 10.0213i −0.107894 0.384017i
\(682\) 10.6641 + 18.4708i 0.408350 + 0.707283i
\(683\) −2.34804 4.06692i −0.0898451 0.155616i 0.817600 0.575786i \(-0.195304\pi\)
−0.907446 + 0.420170i \(0.861971\pi\)
\(684\) −0.147505 6.09314i −0.00564000 0.232977i
\(685\) −5.06095 2.92194i −0.193369 0.111642i
\(686\) 18.4099 + 2.01872i 0.702894 + 0.0770752i
\(687\) 23.4394 6.58559i 0.894268 0.251256i
\(688\) 0.528972 + 0.916206i 0.0201669 + 0.0349300i
\(689\) −11.5219 21.3002i −0.438948 0.811474i
\(690\) −5.63345 5.49873i −0.214462 0.209333i
\(691\) 11.9009 20.6130i 0.452732 0.784156i −0.545822 0.837901i \(-0.683783\pi\)
0.998555 + 0.0537454i \(0.0171159\pi\)
\(692\) 0.476807 + 0.825853i 0.0181255 + 0.0313942i
\(693\) −26.5731 + 4.35192i −1.00943 + 0.165316i
\(694\) 31.0967i 1.18042i
\(695\) −0.208111 −0.00789411
\(696\) −0.983809 3.50156i −0.0372912 0.132726i
\(697\) −13.8609 8.00258i −0.525018 0.303119i
\(698\) 28.0662 1.06232
\(699\) −13.0078 46.2973i −0.492001 1.75113i
\(700\) 3.40101 2.64896i 0.128546 0.100121i
\(701\) 35.3397i 1.33476i 0.744716 + 0.667382i \(0.232585\pi\)
−0.744716 + 0.667382i \(0.767415\pi\)
\(702\) −4.69394 + 18.1374i −0.177161 + 0.684554i
\(703\) 0.886611 + 0.511885i 0.0334392 + 0.0193061i
\(704\) 3.39249 0.127859
\(705\) −26.5330 25.8984i −0.999290 0.975392i
\(706\) −24.5364 14.1661i −0.923438 0.533147i
\(707\) 19.6014 15.2670i 0.737186 0.574175i
\(708\) 7.51177 7.69582i 0.282310 0.289227i
\(709\) 12.3456i 0.463648i −0.972758 0.231824i \(-0.925531\pi\)
0.972758 0.231824i \(-0.0744694\pi\)
\(710\) −24.7090 14.2657i −0.927310 0.535383i
\(711\) −0.569795 23.5371i −0.0213690 0.882709i
\(712\) 4.61906 + 2.66681i 0.173107 + 0.0999431i
\(713\) −13.4787 + 7.78193i −0.504781 + 0.291435i
\(714\) 5.84515 + 13.3743i 0.218749 + 0.500519i
\(715\) −22.4481 0.623059i −0.839510 0.0233011i
\(716\) −15.3789 + 8.87903i −0.574738 + 0.331825i
\(717\) 2.27421 8.91779i 0.0849320 0.333041i
\(718\) 21.7359 0.811176
\(719\) 3.75984 0.140218 0.0701091 0.997539i \(-0.477665\pi\)
0.0701091 + 0.997539i \(0.477665\pi\)
\(720\) 2.63765 4.83513i 0.0982994 0.180195i
\(721\) −13.2841 + 32.7378i −0.494724 + 1.21922i
\(722\) 7.43622 12.8799i 0.276747 0.479341i
\(723\) −32.1119 + 9.02225i −1.19426 + 0.335541i
\(724\) 4.77669 2.75782i 0.177524 0.102494i
\(725\) 3.42152i 0.127072i
\(726\) 0.630884 + 0.615796i 0.0234143 + 0.0228544i
\(727\) 10.4236i 0.386592i 0.981141 + 0.193296i \(0.0619177\pi\)
−0.981141 + 0.193296i \(0.938082\pi\)
\(728\) −9.48134 + 1.05081i −0.351402 + 0.0389455i
\(729\) −1.95878 26.9289i −0.0725473 0.997365i
\(730\) 14.2325 + 8.21714i 0.526768 + 0.304130i
\(731\) 3.36961 0.124630
\(732\) 5.47235 + 19.4772i 0.202264 + 0.719896i
\(733\) −17.7435 30.7327i −0.655373 1.13514i −0.981800 0.189917i \(-0.939178\pi\)
0.326428 0.945222i \(-0.394155\pi\)
\(734\) −13.6561 7.88437i −0.504057 0.291017i
\(735\) −22.2516 + 0.591061i −0.820763 + 0.0218016i
\(736\) 2.47560i 0.0912519i
\(737\) 33.6804i 1.24063i
\(738\) −7.21944 + 13.2341i −0.265751 + 0.487154i
\(739\) 6.23954i 0.229525i −0.993393 0.114763i \(-0.963389\pi\)
0.993393 0.114763i \(-0.0366108\pi\)
\(740\) 0.462574 + 0.801202i 0.0170046 + 0.0294528i
\(741\) 9.11075 8.83002i 0.334692 0.324379i
\(742\) −6.68155 + 16.4663i −0.245287 + 0.604497i
\(743\) 21.5450 + 37.3170i 0.790408 + 1.36903i 0.925714 + 0.378223i \(0.123465\pi\)
−0.135306 + 0.990804i \(0.543202\pi\)
\(744\) −7.79246 7.60610i −0.285685 0.278853i
\(745\) −34.5221 + 19.9314i −1.26479 + 0.730229i
\(746\) 3.62253 6.27441i 0.132630 0.229723i
\(747\) 18.7904 34.4451i 0.687504 1.26028i
\(748\) 5.40264 9.35765i 0.197540 0.342150i
\(749\) 35.0393 4.87088i 1.28031 0.177978i
\(750\) −14.7249 + 15.0857i −0.537679 + 0.550853i
\(751\) 15.6943 27.1834i 0.572695 0.991937i −0.423593 0.905853i \(-0.639231\pi\)
0.996288 0.0860840i \(-0.0274353\pi\)
\(752\) 11.6598i 0.425190i
\(753\) −11.7898 11.5078i −0.429644 0.419368i
\(754\) 3.96613 6.44940i 0.144438 0.234873i
\(755\) 9.95736 0.362385
\(756\) 12.4603 5.80879i 0.453175 0.211264i
\(757\) 6.13845 + 10.6321i 0.223106 + 0.386430i 0.955749 0.294182i \(-0.0950472\pi\)
−0.732644 + 0.680612i \(0.761714\pi\)
\(758\) 4.89839i 0.177918i
\(759\) −10.1607 + 10.4097i −0.368811 + 0.377848i
\(760\) −3.23023 + 1.86497i −0.117173 + 0.0676497i
\(761\) 16.9601i 0.614801i −0.951580 0.307401i \(-0.900541\pi\)
0.951580 0.307401i \(-0.0994592\pi\)
\(762\) 0.407452 1.59773i 0.0147604 0.0578796i
\(763\) −11.5883 + 1.61091i −0.419524 + 0.0583189i
\(764\) 17.4751 10.0893i 0.632228 0.365017i
\(765\) −9.13642 14.9756i −0.330328 0.541445i
\(766\) −6.85462 3.95752i −0.247668 0.142991i
\(767\) 22.3780 + 0.621114i 0.808022 + 0.0224271i
\(768\) −1.66749 + 0.468501i −0.0601702 + 0.0169056i
\(769\) −18.2706 31.6457i −0.658856 1.14117i −0.980912 0.194451i \(-0.937707\pi\)
0.322056 0.946720i \(-0.395626\pi\)
\(770\) 10.1258 + 13.0006i 0.364910 + 0.468509i
\(771\) 6.52427 + 6.36824i 0.234966 + 0.229347i
\(772\) −3.93413 + 2.27137i −0.141593 + 0.0817485i
\(773\) 0.840536 0.485284i 0.0302320 0.0174545i −0.484808 0.874621i \(-0.661110\pi\)
0.515040 + 0.857166i \(0.327777\pi\)
\(774\) −0.0768109 3.17290i −0.00276091 0.114048i