Properties

Label 546.2.bn.e.101.7
Level $546$
Weight $2$
Character 546.101
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bn (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.7
Character \(\chi\) \(=\) 546.101
Dual form 546.2.bn.e.173.7

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.786858 + 1.54300i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.98183 - 1.14421i) q^{5} +(-0.942850 - 1.45294i) q^{6} +(-2.60041 + 0.487738i) q^{7} +1.00000 q^{8} +(-1.76171 - 2.42825i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.786858 + 1.54300i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.98183 - 1.14421i) q^{5} +(-0.942850 - 1.45294i) q^{6} +(-2.60041 + 0.487738i) q^{7} +1.00000 q^{8} +(-1.76171 - 2.42825i) q^{9} +2.28842i q^{10} -0.297141 q^{11} +(1.72971 - 0.0900624i) q^{12} +(-3.20028 - 1.66078i) q^{13} +(0.877809 - 2.49589i) q^{14} +(0.206101 + 3.95830i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-0.446664 - 0.773644i) q^{17} +(2.98378 - 0.311563i) q^{18} -7.89067 q^{19} +(-1.98183 - 1.14421i) q^{20} +(1.29357 - 4.39621i) q^{21} +(0.148570 - 0.257331i) q^{22} +(-6.76573 - 3.90620i) q^{23} +(-0.786858 + 1.54300i) q^{24} +(0.118437 - 0.205138i) q^{25} +(3.03842 - 1.94114i) q^{26} +(5.13300 - 0.807639i) q^{27} +(1.72260 + 2.00815i) q^{28} +(0.980947 - 0.566350i) q^{29} +(-3.53104 - 1.80066i) q^{30} +(0.839051 - 1.45328i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(0.233807 - 0.458489i) q^{33} +0.893327 q^{34} +(-4.59549 + 3.94203i) q^{35} +(-1.22207 + 2.73981i) q^{36} +(4.32929 + 2.49951i) q^{37} +(3.94533 - 6.83352i) q^{38} +(5.08075 - 3.63124i) q^{39} +(1.98183 - 1.14421i) q^{40} +(6.52086 - 3.76482i) q^{41} +(3.16045 + 3.31837i) q^{42} +(-1.94207 + 3.36377i) q^{43} +(0.148570 + 0.257331i) q^{44} +(-6.26984 - 2.79660i) q^{45} +(6.76573 - 3.90620i) q^{46} +(-5.21062 + 3.00835i) q^{47} +(-0.942850 - 1.45294i) q^{48} +(6.52422 - 2.53663i) q^{49} +(0.118437 + 0.205138i) q^{50} +(1.54520 - 0.0804552i) q^{51} +(0.161862 + 3.60192i) q^{52} +(-6.28351 - 3.62779i) q^{53} +(-1.86707 + 4.84913i) q^{54} +(-0.588883 + 0.339992i) q^{55} +(-2.60041 + 0.487738i) q^{56} +(6.20883 - 12.1753i) q^{57} +1.13270i q^{58} +(5.21709 - 3.01209i) q^{59} +(3.32494 - 2.15764i) q^{60} -8.44757i q^{61} +(0.839051 + 1.45328i) q^{62} +(5.76551 + 5.45517i) q^{63} +1.00000 q^{64} +(-8.24270 + 0.370410i) q^{65} +(0.280159 + 0.431727i) q^{66} -3.39883i q^{67} +(-0.446664 + 0.773644i) q^{68} +(11.3509 - 7.36592i) q^{69} +(-1.11615 - 5.95083i) q^{70} +(1.14995 - 1.99178i) q^{71} +(-1.76171 - 2.42825i) q^{72} +(-6.16302 + 10.6747i) q^{73} +(-4.32929 + 2.49951i) q^{74} +(0.223336 + 0.344163i) q^{75} +(3.94533 + 6.83352i) q^{76} +(0.772686 - 0.144927i) q^{77} +(0.604372 + 6.21568i) q^{78} +(4.46469 + 7.73307i) q^{79} +2.28842i q^{80} +(-2.79275 + 8.55573i) q^{81} +7.52964i q^{82} +1.54870i q^{83} +(-4.45402 + 1.07784i) q^{84} +(-1.77042 - 1.02215i) q^{85} +(-1.94207 - 3.36377i) q^{86} +(0.102014 + 1.95924i) q^{87} -0.297141 q^{88} +(-12.3933 - 7.15530i) q^{89} +(5.55685 - 4.03154i) q^{90} +(9.13206 + 2.75781i) q^{91} +7.81240i q^{92} +(1.58220 + 2.43818i) q^{93} -6.01671i q^{94} +(-15.6380 + 9.02859i) q^{95} +(1.72971 - 0.0900624i) q^{96} +(1.19346 - 2.06713i) q^{97} +(-1.06532 + 6.91846i) q^{98} +(0.523476 + 0.721530i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 17q^{2} + 3q^{3} - 17q^{4} + 9q^{5} - 6q^{6} + 5q^{7} + 34q^{8} + 7q^{9} + O(q^{10}) \) \( 34q - 17q^{2} + 3q^{3} - 17q^{4} + 9q^{5} - 6q^{6} + 5q^{7} + 34q^{8} + 7q^{9} - 18q^{11} + 3q^{12} - 8q^{13} - 4q^{14} - 17q^{15} - 17q^{16} + 6q^{17} - 11q^{18} - 10q^{19} - 9q^{20} - 4q^{21} + 9q^{22} + 6q^{23} + 3q^{24} + 16q^{25} + 13q^{26} + 18q^{27} - q^{28} + 27q^{29} + 13q^{30} + q^{31} - 17q^{32} + 21q^{33} - 12q^{34} - 3q^{35} + 4q^{36} + 6q^{37} + 5q^{38} + 20q^{39} + 9q^{40} + 3q^{41} + 20q^{42} - 3q^{43} + 9q^{44} - 6q^{46} - 27q^{47} - 6q^{48} - 5q^{49} + 16q^{50} + 24q^{51} - 5q^{52} + 21q^{53} - 18q^{54} + 57q^{55} + 5q^{56} - 17q^{57} - 6q^{59} + 4q^{60} + q^{62} - 21q^{63} + 34q^{64} + 33q^{65} - 21q^{66} + 6q^{68} - 30q^{69} + 3q^{70} - 15q^{71} + 7q^{72} + 19q^{73} - 6q^{74} - 63q^{75} + 5q^{76} - 9q^{77} - 10q^{78} - 9q^{79} - 5q^{81} - 16q^{84} - 42q^{85} - 3q^{86} - 75q^{87} - 18q^{88} - 18q^{89} - 9q^{90} - 27q^{91} + 25q^{93} - 3q^{95} + 3q^{96} - 19q^{97} + 7q^{98} - 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −0.786858 + 1.54300i −0.454292 + 0.890853i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.98183 1.14421i 0.886302 0.511707i 0.0135708 0.999908i \(-0.495680\pi\)
0.872731 + 0.488201i \(0.162347\pi\)
\(6\) −0.942850 1.45294i −0.384917 0.593160i
\(7\) −2.60041 + 0.487738i −0.982861 + 0.184348i
\(8\) 1.00000 0.353553
\(9\) −1.76171 2.42825i −0.587237 0.809415i
\(10\) 2.28842i 0.723662i
\(11\) −0.297141 −0.0895913 −0.0447956 0.998996i \(-0.514264\pi\)
−0.0447956 + 0.998996i \(0.514264\pi\)
\(12\) 1.72971 0.0900624i 0.499324 0.0259988i
\(13\) −3.20028 1.66078i −0.887599 0.460618i
\(14\) 0.877809 2.49589i 0.234604 0.667054i
\(15\) 0.206101 + 3.95830i 0.0532150 + 1.02203i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.446664 0.773644i −0.108332 0.187636i 0.806763 0.590876i \(-0.201218\pi\)
−0.915095 + 0.403239i \(0.867884\pi\)
\(18\) 2.98378 0.311563i 0.703283 0.0734362i
\(19\) −7.89067 −1.81024 −0.905122 0.425152i \(-0.860220\pi\)
−0.905122 + 0.425152i \(0.860220\pi\)
\(20\) −1.98183 1.14421i −0.443151 0.255853i
\(21\) 1.29357 4.39621i 0.282280 0.959332i
\(22\) 0.148570 0.257331i 0.0316753 0.0548632i
\(23\) −6.76573 3.90620i −1.41075 0.814499i −0.415294 0.909687i \(-0.636321\pi\)
−0.995459 + 0.0951887i \(0.969655\pi\)
\(24\) −0.786858 + 1.54300i −0.160617 + 0.314964i
\(25\) 0.118437 0.205138i 0.0236873 0.0410277i
\(26\) 3.03842 1.94114i 0.595883 0.380688i
\(27\) 5.13300 0.807639i 0.987847 0.155430i
\(28\) 1.72260 + 2.00815i 0.325540 + 0.379504i
\(29\) 0.980947 0.566350i 0.182157 0.105169i −0.406149 0.913807i \(-0.633128\pi\)
0.588306 + 0.808639i \(0.299795\pi\)
\(30\) −3.53104 1.80066i −0.644677 0.328754i
\(31\) 0.839051 1.45328i 0.150698 0.261017i −0.780786 0.624798i \(-0.785181\pi\)
0.931484 + 0.363782i \(0.118515\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0.233807 0.458489i 0.0407006 0.0798126i
\(34\) 0.893327 0.153204
\(35\) −4.59549 + 3.94203i −0.776780 + 0.666324i
\(36\) −1.22207 + 2.73981i −0.203678 + 0.456635i
\(37\) 4.32929 + 2.49951i 0.711730 + 0.410918i 0.811701 0.584073i \(-0.198542\pi\)
−0.0999712 + 0.994990i \(0.531875\pi\)
\(38\) 3.94533 6.83352i 0.640018 1.10854i
\(39\) 5.08075 3.63124i 0.813572 0.581464i
\(40\) 1.98183 1.14421i 0.313355 0.180916i
\(41\) 6.52086 3.76482i 1.01839 0.587966i 0.104751 0.994498i \(-0.466595\pi\)
0.913636 + 0.406532i \(0.133262\pi\)
\(42\) 3.16045 + 3.31837i 0.487668 + 0.512035i
\(43\) −1.94207 + 3.36377i −0.296163 + 0.512970i −0.975255 0.221084i \(-0.929041\pi\)
0.679092 + 0.734054i \(0.262374\pi\)
\(44\) 0.148570 + 0.257331i 0.0223978 + 0.0387942i
\(45\) −6.26984 2.79660i −0.934652 0.416893i
\(46\) 6.76573 3.90620i 0.997553 0.575938i
\(47\) −5.21062 + 3.00835i −0.760047 + 0.438813i −0.829313 0.558785i \(-0.811268\pi\)
0.0692655 + 0.997598i \(0.477934\pi\)
\(48\) −0.942850 1.45294i −0.136089 0.209714i
\(49\) 6.52422 2.53663i 0.932032 0.362376i
\(50\) 0.118437 + 0.205138i 0.0167495 + 0.0290109i
\(51\) 1.54520 0.0804552i 0.216371 0.0112660i
\(52\) 0.161862 + 3.60192i 0.0224463 + 0.499496i
\(53\) −6.28351 3.62779i −0.863107 0.498315i 0.00194455 0.999998i \(-0.499381\pi\)
−0.865051 + 0.501683i \(0.832714\pi\)
\(54\) −1.86707 + 4.84913i −0.254075 + 0.659883i
\(55\) −0.588883 + 0.339992i −0.0794049 + 0.0458444i
\(56\) −2.60041 + 0.487738i −0.347494 + 0.0651768i
\(57\) 6.20883 12.1753i 0.822380 1.61266i
\(58\) 1.13270i 0.148731i
\(59\) 5.21709 3.01209i 0.679207 0.392141i −0.120349 0.992732i \(-0.538401\pi\)
0.799556 + 0.600591i \(0.205068\pi\)
\(60\) 3.32494 2.15764i 0.429248 0.278550i
\(61\) 8.44757i 1.08160i −0.841151 0.540800i \(-0.818121\pi\)
0.841151 0.540800i \(-0.181879\pi\)
\(62\) 0.839051 + 1.45328i 0.106560 + 0.184567i
\(63\) 5.76551 + 5.45517i 0.726386 + 0.687287i
\(64\) 1.00000 0.125000
\(65\) −8.24270 + 0.370410i −1.02238 + 0.0459437i
\(66\) 0.280159 + 0.431727i 0.0344852 + 0.0531420i
\(67\) 3.39883i 0.415233i −0.978210 0.207617i \(-0.933429\pi\)
0.978210 0.207617i \(-0.0665706\pi\)
\(68\) −0.446664 + 0.773644i −0.0541659 + 0.0938181i
\(69\) 11.3509 7.36592i 1.36649 0.886752i
\(70\) −1.11615 5.95083i −0.133406 0.711260i
\(71\) 1.14995 1.99178i 0.136474 0.236381i −0.789685 0.613512i \(-0.789756\pi\)
0.926160 + 0.377131i \(0.123090\pi\)
\(72\) −1.76171 2.42825i −0.207620 0.286171i
\(73\) −6.16302 + 10.6747i −0.721327 + 1.24937i 0.239141 + 0.970985i \(0.423134\pi\)
−0.960468 + 0.278390i \(0.910199\pi\)
\(74\) −4.32929 + 2.49951i −0.503269 + 0.290563i
\(75\) 0.223336 + 0.344163i 0.0257886 + 0.0397405i
\(76\) 3.94533 + 6.83352i 0.452561 + 0.783858i
\(77\) 0.772686 0.144927i 0.0880558 0.0165159i
\(78\) 0.604372 + 6.21568i 0.0684317 + 0.703788i
\(79\) 4.46469 + 7.73307i 0.502317 + 0.870039i 0.999996 + 0.00267764i \(0.000852321\pi\)
−0.497679 + 0.867361i \(0.665814\pi\)
\(80\) 2.28842i 0.255853i
\(81\) −2.79275 + 8.55573i −0.310306 + 0.950637i
\(82\) 7.52964i 0.831510i
\(83\) 1.54870i 0.169992i 0.996381 + 0.0849962i \(0.0270878\pi\)
−0.996381 + 0.0849962i \(0.972912\pi\)
\(84\) −4.45402 + 1.07784i −0.485973 + 0.117602i
\(85\) −1.77042 1.02215i −0.192029 0.110868i
\(86\) −1.94207 3.36377i −0.209419 0.362725i
\(87\) 0.102014 + 1.95924i 0.0109370 + 0.210053i
\(88\) −0.297141 −0.0316753
\(89\) −12.3933 7.15530i −1.31369 0.758460i −0.330986 0.943636i \(-0.607381\pi\)
−0.982705 + 0.185176i \(0.940715\pi\)
\(90\) 5.55685 4.03154i 0.585743 0.424961i
\(91\) 9.13206 + 2.75781i 0.957300 + 0.289097i
\(92\) 7.81240i 0.814499i
\(93\) 1.58220 + 2.43818i 0.164066 + 0.252828i
\(94\) 6.01671i 0.620576i
\(95\) −15.6380 + 9.02859i −1.60442 + 0.926314i
\(96\) 1.72971 0.0900624i 0.176538 0.00919195i
\(97\) 1.19346 2.06713i 0.121178 0.209886i −0.799055 0.601258i \(-0.794666\pi\)
0.920232 + 0.391373i \(0.128000\pi\)
\(98\) −1.06532 + 6.91846i −0.107614 + 0.698870i
\(99\) 0.523476 + 0.721530i 0.0526113 + 0.0725165i
\(100\) −0.236873 −0.0236873
\(101\) −18.7772 −1.86840 −0.934200 0.356749i \(-0.883885\pi\)
−0.934200 + 0.356749i \(0.883885\pi\)
\(102\) −0.702921 + 1.37841i −0.0695996 + 0.136483i
\(103\) −12.3898 + 7.15323i −1.22080 + 0.704828i −0.965088 0.261925i \(-0.915643\pi\)
−0.255710 + 0.966753i \(0.582309\pi\)
\(104\) −3.20028 1.66078i −0.313813 0.162853i
\(105\) −2.46656 10.1927i −0.240712 0.994702i
\(106\) 6.28351 3.62779i 0.610309 0.352362i
\(107\) 14.4499 + 8.34267i 1.39693 + 0.806516i 0.994070 0.108746i \(-0.0346836\pi\)
0.402858 + 0.915263i \(0.368017\pi\)
\(108\) −3.26594 4.04149i −0.314265 0.388893i
\(109\) 9.70354 + 5.60234i 0.929431 + 0.536607i 0.886632 0.462476i \(-0.153039\pi\)
0.0427994 + 0.999084i \(0.486372\pi\)
\(110\) 0.679983i 0.0648338i
\(111\) −7.26329 + 4.71333i −0.689401 + 0.447370i
\(112\) 0.877809 2.49589i 0.0829452 0.235839i
\(113\) 7.27033 + 4.19753i 0.683935 + 0.394870i 0.801336 0.598214i \(-0.204123\pi\)
−0.117401 + 0.993085i \(0.537456\pi\)
\(114\) 7.43972 + 11.4647i 0.696793 + 1.07376i
\(115\) −17.8781 −1.66714
\(116\) −0.980947 0.566350i −0.0910786 0.0525843i
\(117\) 1.60519 + 10.6969i 0.148400 + 0.988927i
\(118\) 6.02418i 0.554571i
\(119\) 1.53884 + 1.79393i 0.141065 + 0.164450i
\(120\) 0.206101 + 3.95830i 0.0188143 + 0.361342i
\(121\) −10.9117 −0.991973
\(122\) 7.31581 + 4.22379i 0.662343 + 0.382404i
\(123\) 0.678137 + 13.0241i 0.0611456 + 1.17434i
\(124\) −1.67810 −0.150698
\(125\) 10.9000i 0.974929i
\(126\) −7.60707 + 2.26549i −0.677692 + 0.201826i
\(127\) 2.63228 + 4.55924i 0.233577 + 0.404567i 0.958858 0.283886i \(-0.0916236\pi\)
−0.725281 + 0.688453i \(0.758290\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −3.66217 5.64343i −0.322436 0.496876i
\(130\) 3.80057 7.32359i 0.333332 0.642322i
\(131\) 0.386257 + 0.669016i 0.0337474 + 0.0584522i 0.882406 0.470489i \(-0.155922\pi\)
−0.848658 + 0.528941i \(0.822589\pi\)
\(132\) −0.513966 + 0.0267612i −0.0447350 + 0.00232926i
\(133\) 20.5189 3.84858i 1.77922 0.333714i
\(134\) 2.94347 + 1.69941i 0.254277 + 0.146807i
\(135\) 9.24864 7.47384i 0.795996 0.643246i
\(136\) −0.446664 0.773644i −0.0383011 0.0663394i
\(137\) 1.29342 + 2.24027i 0.110505 + 0.191399i 0.915974 0.401238i \(-0.131420\pi\)
−0.805469 + 0.592638i \(0.798087\pi\)
\(138\) 0.703603 + 13.5132i 0.0598947 + 1.15032i
\(139\) −10.2034 5.89092i −0.865438 0.499661i 0.000391380 1.00000i \(-0.499875\pi\)
−0.865830 + 0.500339i \(0.833209\pi\)
\(140\) 5.71164 + 2.00880i 0.482722 + 0.169774i
\(141\) −0.541879 10.4071i −0.0456345 0.876440i
\(142\) 1.14995 + 1.99178i 0.0965020 + 0.167146i
\(143\) 0.950934 + 0.493486i 0.0795211 + 0.0412673i
\(144\) 2.98378 0.311563i 0.248648 0.0259636i
\(145\) 1.29605 2.24482i 0.107631 0.186422i
\(146\) −6.16302 10.6747i −0.510055 0.883441i
\(147\) −1.21960 + 12.0629i −0.100591 + 0.994928i
\(148\) 4.99903i 0.410918i
\(149\) 3.28750 0.269322 0.134661 0.990892i \(-0.457005\pi\)
0.134661 + 0.990892i \(0.457005\pi\)
\(150\) −0.409722 + 0.0213334i −0.0334536 + 0.00174186i
\(151\) −10.5899 6.11409i −0.861795 0.497557i 0.00281814 0.999996i \(-0.499103\pi\)
−0.864613 + 0.502439i \(0.832436\pi\)
\(152\) −7.89067 −0.640018
\(153\) −1.09171 + 2.44755i −0.0882592 + 0.197872i
\(154\) −0.260833 + 0.741629i −0.0210185 + 0.0597622i
\(155\) 3.84021i 0.308453i
\(156\) −5.68513 2.58444i −0.455174 0.206921i
\(157\) −15.4715 8.93248i −1.23476 0.712889i −0.266742 0.963768i \(-0.585947\pi\)
−0.968019 + 0.250879i \(0.919280\pi\)
\(158\) −8.92938 −0.710384
\(159\) 10.5419 6.84092i 0.836028 0.542520i
\(160\) −1.98183 1.14421i −0.156678 0.0904578i
\(161\) 19.4989 + 6.85779i 1.53673 + 0.540470i
\(162\) −6.01310 6.69646i −0.472434 0.526124i
\(163\) 2.31758i 0.181526i −0.995872 0.0907632i \(-0.971069\pi\)
0.995872 0.0907632i \(-0.0289307\pi\)
\(164\) −6.52086 3.76482i −0.509194 0.293983i
\(165\) −0.0612409 1.17617i −0.00476760 0.0915649i
\(166\) −1.34122 0.774352i −0.104099 0.0601014i
\(167\) 11.5588 6.67349i 0.894449 0.516410i 0.0190536 0.999818i \(-0.493935\pi\)
0.875395 + 0.483408i \(0.160601\pi\)
\(168\) 1.29357 4.39621i 0.0998009 0.339175i
\(169\) 7.48361 + 10.6299i 0.575662 + 0.817687i
\(170\) 1.77042 1.02215i 0.135785 0.0783957i
\(171\) 13.9011 + 19.1605i 1.06304 + 1.46524i
\(172\) 3.88415 0.296163
\(173\) −18.3618 −1.39602 −0.698011 0.716087i \(-0.745931\pi\)
−0.698011 + 0.716087i \(0.745931\pi\)
\(174\) −1.74776 0.891273i −0.132497 0.0675673i
\(175\) −0.207930 + 0.591209i −0.0157180 + 0.0446912i
\(176\) 0.148570 0.257331i 0.0111989 0.0193971i
\(177\) 0.542552 + 10.4201i 0.0407807 + 0.783220i
\(178\) 12.3933 7.15530i 0.928920 0.536312i
\(179\) 10.3189i 0.771268i −0.922652 0.385634i \(-0.873983\pi\)
0.922652 0.385634i \(-0.126017\pi\)
\(180\) 0.712988 + 6.82814i 0.0531430 + 0.508940i
\(181\) 5.21743i 0.387809i −0.981020 0.193904i \(-0.937885\pi\)
0.981020 0.193904i \(-0.0621151\pi\)
\(182\) −6.95436 + 6.52969i −0.515491 + 0.484013i
\(183\) 13.0346 + 6.64704i 0.963547 + 0.491363i
\(184\) −6.76573 3.90620i −0.498777 0.287969i
\(185\) 11.4399 0.841077
\(186\) −2.90263 + 0.151134i −0.212831 + 0.0110817i
\(187\) 0.132722 + 0.229881i 0.00970559 + 0.0168106i
\(188\) 5.21062 + 3.00835i 0.380024 + 0.219407i
\(189\) −12.9540 + 4.60375i −0.942263 + 0.334874i
\(190\) 18.0572i 1.31001i
\(191\) 26.3728i 1.90827i −0.299378 0.954135i \(-0.596779\pi\)
0.299378 0.954135i \(-0.403221\pi\)
\(192\) −0.786858 + 1.54300i −0.0567866 + 0.111357i
\(193\) 3.20479i 0.230686i −0.993326 0.115343i \(-0.963203\pi\)
0.993326 0.115343i \(-0.0367967\pi\)
\(194\) 1.19346 + 2.06713i 0.0856855 + 0.148412i
\(195\) 5.91429 13.0100i 0.423531 0.931663i
\(196\) −5.45890 4.38183i −0.389922 0.312988i
\(197\) 12.9869 + 22.4940i 0.925278 + 1.60263i 0.791113 + 0.611670i \(0.209502\pi\)
0.134165 + 0.990959i \(0.457165\pi\)
\(198\) −0.886602 + 0.0925781i −0.0630080 + 0.00657924i
\(199\) 4.80414 2.77367i 0.340557 0.196621i −0.319961 0.947431i \(-0.603670\pi\)
0.660518 + 0.750810i \(0.270337\pi\)
\(200\) 0.118437 0.205138i 0.00837474 0.0145055i
\(201\) 5.24440 + 2.67439i 0.369911 + 0.188637i
\(202\) 9.38860 16.2615i 0.660579 1.14416i
\(203\) −2.27463 + 1.95118i −0.159648 + 0.136946i
\(204\) −0.842274 1.29795i −0.0589710 0.0908747i
\(205\) 8.61550 14.9225i 0.601732 1.04223i
\(206\) 14.3065i 0.996778i
\(207\) 2.43406 + 23.3105i 0.169179 + 1.62019i
\(208\) 3.03842 1.94114i 0.210677 0.134594i
\(209\) 2.34464 0.162182
\(210\) 10.0604 + 2.96023i 0.694233 + 0.204275i
\(211\) 1.17040 + 2.02719i 0.0805736 + 0.139558i 0.903496 0.428596i \(-0.140991\pi\)
−0.822923 + 0.568153i \(0.807658\pi\)
\(212\) 7.25558i 0.498315i
\(213\) 2.16847 + 3.34163i 0.148581 + 0.228965i
\(214\) −14.4499 + 8.34267i −0.987777 + 0.570293i
\(215\) 8.88856i 0.606195i
\(216\) 5.13300 0.807639i 0.349257 0.0549529i
\(217\) −1.47305 + 4.18835i −0.0999975 + 0.284324i
\(218\) −9.70354 + 5.60234i −0.657207 + 0.379439i
\(219\) −11.6216 17.9090i −0.785315 1.21018i
\(220\) 0.588883 + 0.339992i 0.0397025 + 0.0229222i
\(221\) 0.144596 + 3.21769i 0.00972659 + 0.216445i
\(222\) −0.450224 8.64686i −0.0302171 0.580339i
\(223\) −0.746837 1.29356i −0.0500119 0.0866232i 0.839936 0.542686i \(-0.182593\pi\)
−0.889948 + 0.456063i \(0.849259\pi\)
\(224\) 1.72260 + 2.00815i 0.115096 + 0.134175i
\(225\) −0.706777 + 0.0738010i −0.0471185 + 0.00492007i
\(226\) −7.27033 + 4.19753i −0.483615 + 0.279215i
\(227\) −5.51731 + 3.18542i −0.366197 + 0.211424i −0.671796 0.740737i \(-0.734477\pi\)
0.305599 + 0.952160i \(0.401143\pi\)
\(228\) −13.6485 + 0.710652i −0.903897 + 0.0470641i
\(229\) 3.93382 + 6.81358i 0.259954 + 0.450254i 0.966229 0.257684i \(-0.0829592\pi\)
−0.706275 + 0.707937i \(0.749626\pi\)
\(230\) 8.93903 15.4829i 0.589422 1.02091i
\(231\) −0.384372 + 1.30629i −0.0252898 + 0.0859478i
\(232\) 0.980947 0.566350i 0.0644023 0.0371827i
\(233\) −8.04627 + 4.64552i −0.527129 + 0.304338i −0.739847 0.672776i \(-0.765102\pi\)
0.212718 + 0.977114i \(0.431769\pi\)
\(234\) −10.0664 3.95831i −0.658059 0.258763i
\(235\) −6.88438 + 11.9241i −0.449088 + 0.777842i
\(236\) −5.21709 3.01209i −0.339604 0.196070i
\(237\) −15.4452 + 0.804202i −1.00328 + 0.0522385i
\(238\) −2.32301 + 0.435710i −0.150579 + 0.0282429i
\(239\) 22.6067 1.46230 0.731152 0.682215i \(-0.238983\pi\)
0.731152 + 0.682215i \(0.238983\pi\)
\(240\) −3.53104 1.80066i −0.227928 0.116232i
\(241\) 14.5437 + 25.1904i 0.936842 + 1.62266i 0.771316 + 0.636453i \(0.219599\pi\)
0.165526 + 0.986205i \(0.447068\pi\)
\(242\) 5.45585 9.44982i 0.350716 0.607457i
\(243\) −11.0040 11.0414i −0.705908 0.708304i
\(244\) −7.31581 + 4.22379i −0.468347 + 0.270400i
\(245\) 10.0275 12.4923i 0.640631 0.798102i
\(246\) −11.6183 5.92475i −0.740753 0.377749i
\(247\) 25.2524 + 13.1047i 1.60677 + 0.833830i
\(248\) 0.839051 1.45328i 0.0532798 0.0922834i
\(249\) −2.38965 1.21861i −0.151438 0.0772263i
\(250\) −9.43971 5.45002i −0.597020 0.344690i
\(251\) 6.89055 11.9348i 0.434928 0.753317i −0.562362 0.826891i \(-0.690107\pi\)
0.997290 + 0.0735742i \(0.0234406\pi\)
\(252\) 1.84156 7.72066i 0.116007 0.486356i
\(253\) 2.01037 + 1.16069i 0.126391 + 0.0729720i
\(254\) −5.26456 −0.330328
\(255\) 2.97026 1.92748i 0.186005 0.120703i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 2.81222 4.87090i 0.175421 0.303839i −0.764886 0.644166i \(-0.777205\pi\)
0.940307 + 0.340327i \(0.110538\pi\)
\(258\) 6.71844 0.349815i 0.418272 0.0217786i
\(259\) −12.4770 4.38819i −0.775284 0.272669i
\(260\) 4.44214 + 6.95319i 0.275490 + 0.431218i
\(261\) −3.10338 1.38424i −0.192094 0.0856820i
\(262\) −0.772513 −0.0477260
\(263\) 19.3817i 1.19513i −0.801821 0.597564i \(-0.796135\pi\)
0.801821 0.597564i \(-0.203865\pi\)
\(264\) 0.233807 0.458489i 0.0143898 0.0282180i
\(265\) −16.6038 −1.01996
\(266\) −6.92650 + 19.6942i −0.424691 + 1.20753i
\(267\) 20.7924 13.4927i 1.27248 0.825743i
\(268\) −2.94347 + 1.69941i −0.179801 + 0.103808i
\(269\) −13.9773 24.2094i −0.852211 1.47607i −0.879209 0.476437i \(-0.841928\pi\)
0.0269978 0.999635i \(-0.491405\pi\)
\(270\) 1.84822 + 11.7465i 0.112479 + 0.714868i
\(271\) −10.2294 + 17.7179i −0.621393 + 1.07628i 0.367834 + 0.929892i \(0.380100\pi\)
−0.989227 + 0.146392i \(0.953234\pi\)
\(272\) 0.893327 0.0541659
\(273\) −11.4409 + 11.9208i −0.692437 + 0.721479i
\(274\) −2.58684 −0.156277
\(275\) −0.0351923 + 0.0609549i −0.00212218 + 0.00367572i
\(276\) −12.0545 6.14724i −0.725598 0.370021i
\(277\) −3.25535 5.63843i −0.195595 0.338780i 0.751501 0.659732i \(-0.229330\pi\)
−0.947095 + 0.320952i \(0.895997\pi\)
\(278\) 10.2034 5.89092i 0.611957 0.353314i
\(279\) −5.00709 + 0.522835i −0.299766 + 0.0313013i
\(280\) −4.59549 + 3.94203i −0.274633 + 0.235581i
\(281\) 10.0287 0.598262 0.299131 0.954212i \(-0.403303\pi\)
0.299131 + 0.954212i \(0.403303\pi\)
\(282\) 9.28379 + 4.73429i 0.552842 + 0.281923i
\(283\) 22.8820i 1.36019i 0.733123 + 0.680097i \(0.238062\pi\)
−0.733123 + 0.680097i \(0.761938\pi\)
\(284\) −2.29991 −0.136474
\(285\) −1.62627 31.2336i −0.0963321 1.85012i
\(286\) −0.902838 + 0.576790i −0.0533859 + 0.0341063i
\(287\) −15.1206 + 12.9705i −0.892543 + 0.765626i
\(288\) −1.22207 + 2.73981i −0.0720110 + 0.161445i
\(289\) 8.10098 14.0313i 0.476528 0.825371i
\(290\) 1.29605 + 2.24482i 0.0761065 + 0.131820i
\(291\) 2.25051 + 3.46805i 0.131927 + 0.203301i
\(292\) 12.3260 0.721327
\(293\) −17.4353 10.0663i −1.01858 0.588080i −0.104890 0.994484i \(-0.533449\pi\)
−0.913693 + 0.406404i \(0.866783\pi\)
\(294\) −9.83694 7.08764i −0.573702 0.413359i
\(295\) 6.89293 11.9389i 0.401322 0.695110i
\(296\) 4.32929 + 2.49951i 0.251635 + 0.145281i
\(297\) −1.52522 + 0.239983i −0.0885025 + 0.0139252i
\(298\) −1.64375 + 2.84705i −0.0952198 + 0.164925i
\(299\) 15.1649 + 23.7373i 0.877010 + 1.37277i
\(300\) 0.186386 0.365496i 0.0107610 0.0211019i
\(301\) 3.40954 9.69439i 0.196523 0.558775i
\(302\) 10.5899 6.11409i 0.609381 0.351826i
\(303\) 14.7750 28.9732i 0.848800 1.66447i
\(304\) 3.94533 6.83352i 0.226280 0.391929i
\(305\) −9.66580 16.7417i −0.553462 0.958625i
\(306\) −1.57378 2.16922i −0.0899673 0.124006i
\(307\) −3.07801 −0.175672 −0.0878358 0.996135i \(-0.527995\pi\)
−0.0878358 + 0.996135i \(0.527995\pi\)
\(308\) −0.511853 0.596703i −0.0291656 0.0340003i
\(309\) −1.28847 24.7460i −0.0732987 1.40775i
\(310\) 3.32572 + 1.92010i 0.188888 + 0.109055i
\(311\) 7.75963 13.4401i 0.440008 0.762117i −0.557681 0.830055i \(-0.688309\pi\)
0.997690 + 0.0679384i \(0.0216421\pi\)
\(312\) 5.08075 3.63124i 0.287641 0.205579i
\(313\) 13.7068 7.91361i 0.774752 0.447303i −0.0598149 0.998209i \(-0.519051\pi\)
0.834567 + 0.550906i \(0.185718\pi\)
\(314\) 15.4715 8.93248i 0.873108 0.504089i
\(315\) 17.6681 + 4.21427i 0.995487 + 0.237447i
\(316\) 4.46469 7.73307i 0.251159 0.435019i
\(317\) 6.47213 + 11.2101i 0.363511 + 0.629619i 0.988536 0.150985i \(-0.0482446\pi\)
−0.625025 + 0.780605i \(0.714911\pi\)
\(318\) 0.653455 + 12.5500i 0.0366439 + 0.703771i
\(319\) −0.291479 + 0.168286i −0.0163197 + 0.00942218i
\(320\) 1.98183 1.14421i 0.110788 0.0639633i
\(321\) −24.2428 + 15.7318i −1.35310 + 0.878062i
\(322\) −15.6885 + 13.4576i −0.874283 + 0.749963i
\(323\) 3.52448 + 6.10457i 0.196107 + 0.339667i
\(324\) 8.80586 1.85927i 0.489214 0.103293i
\(325\) −0.719721 + 0.459803i −0.0399229 + 0.0255053i
\(326\) 2.00708 + 1.15879i 0.111162 + 0.0641793i
\(327\) −16.2797 + 10.5643i −0.900271 + 0.584209i
\(328\) 6.52086 3.76482i 0.360054 0.207877i
\(329\) 12.0824 10.3644i 0.666127 0.571406i
\(330\) 1.04922 + 0.535050i 0.0577574 + 0.0294535i
\(331\) 8.96310i 0.492656i 0.969186 + 0.246328i \(0.0792241\pi\)
−0.969186 + 0.246328i \(0.920776\pi\)
\(332\) 1.34122 0.774352i 0.0736089 0.0424981i
\(333\) −1.55751 14.9160i −0.0853512 0.817391i
\(334\) 13.3470i 0.730314i
\(335\) −3.88898 6.73591i −0.212477 0.368022i
\(336\) 3.16045 + 3.31837i 0.172417 + 0.181032i
\(337\) −7.76837 −0.423170 −0.211585 0.977360i \(-0.567863\pi\)
−0.211585 + 0.977360i \(0.567863\pi\)
\(338\) −12.9476 + 1.16603i −0.704257 + 0.0634237i
\(339\) −12.1975 + 7.91528i −0.662478 + 0.429899i
\(340\) 2.04431i 0.110868i
\(341\) −0.249316 + 0.431828i −0.0135012 + 0.0233848i
\(342\) −23.5440 + 2.45844i −1.27311 + 0.132937i
\(343\) −15.7284 + 9.77839i −0.849255 + 0.527984i
\(344\) −1.94207 + 3.36377i −0.104710 + 0.181362i
\(345\) 14.0675 27.5859i 0.757368 1.48517i
\(346\) 9.18090 15.9018i 0.493568 0.854886i
\(347\) 8.40123 4.85045i 0.451002 0.260386i −0.257251 0.966344i \(-0.582817\pi\)
0.708253 + 0.705959i \(0.249484\pi\)
\(348\) 1.64574 1.06797i 0.0882212 0.0572490i
\(349\) −13.2526 22.9542i −0.709396 1.22871i −0.965081 0.261950i \(-0.915635\pi\)
0.255686 0.966760i \(-0.417699\pi\)
\(350\) −0.408037 0.475677i −0.0218105 0.0254260i
\(351\) −17.7684 5.94012i −0.948405 0.317060i
\(352\) 0.148570 + 0.257331i 0.00791882 + 0.0137158i
\(353\) 25.6157i 1.36339i −0.731639 0.681693i \(-0.761244\pi\)
0.731639 0.681693i \(-0.238756\pi\)
\(354\) −9.29532 4.74017i −0.494041 0.251937i
\(355\) 5.26316i 0.279340i
\(356\) 14.3106i 0.758460i
\(357\) −3.97889 + 0.962867i −0.210585 + 0.0509603i
\(358\) 8.93640 + 5.15943i 0.472303 + 0.272684i
\(359\) −6.41408 11.1095i −0.338522 0.586338i 0.645633 0.763648i \(-0.276594\pi\)
−0.984155 + 0.177310i \(0.943260\pi\)
\(360\) −6.26984 2.79660i −0.330449 0.147394i
\(361\) 43.2626 2.27698
\(362\) 4.51843 + 2.60872i 0.237483 + 0.137111i
\(363\) 8.58596 16.8368i 0.450646 0.883702i
\(364\) −2.17770 9.28750i −0.114143 0.486797i
\(365\) 28.2072i 1.47643i
\(366\) −12.2738 + 7.96480i −0.641562 + 0.416327i
\(367\) 24.5596i 1.28200i −0.767541 0.641000i \(-0.778520\pi\)
0.767541 0.641000i \(-0.221480\pi\)
\(368\) 6.76573 3.90620i 0.352688 0.203625i
\(369\) −20.6298 9.20173i −1.07394 0.479023i
\(370\) −5.71994 + 9.90723i −0.297366 + 0.515052i
\(371\) 18.1091 + 6.36901i 0.940177 + 0.330663i
\(372\) 1.32043 2.58932i 0.0684610 0.134250i
\(373\) −21.4766 −1.11202 −0.556009 0.831176i \(-0.687668\pi\)
−0.556009 + 0.831176i \(0.687668\pi\)
\(374\) −0.265444 −0.0137258
\(375\) −16.8188 8.57678i −0.868518 0.442903i
\(376\) −5.21062 + 3.00835i −0.268717 + 0.155144i
\(377\) −4.07989 + 0.183342i −0.210125 + 0.00944257i
\(378\) 2.49002 13.5203i 0.128073 0.695412i
\(379\) −13.9171 + 8.03505i −0.714874 + 0.412733i −0.812863 0.582455i \(-0.802092\pi\)
0.0979889 + 0.995188i \(0.468759\pi\)
\(380\) 15.6380 + 9.02859i 0.802211 + 0.463157i
\(381\) −9.10615 + 0.474139i −0.466522 + 0.0242909i
\(382\) 22.8395 + 13.1864i 1.16857 + 0.674675i
\(383\) 26.7854i 1.36867i 0.729168 + 0.684335i \(0.239907\pi\)
−0.729168 + 0.684335i \(0.760093\pi\)
\(384\) −0.942850 1.45294i −0.0481146 0.0741450i
\(385\) 1.36551 1.17134i 0.0695927 0.0596968i
\(386\) 2.77543 + 1.60239i 0.141266 + 0.0815597i
\(387\) 11.5894 1.21016i 0.589124 0.0615157i
\(388\) −2.38692 −0.121178
\(389\) −3.67405 2.12122i −0.186282 0.107550i 0.403959 0.914777i \(-0.367634\pi\)
−0.590241 + 0.807227i \(0.700967\pi\)
\(390\) 8.30982 + 11.6269i 0.420784 + 0.588751i
\(391\) 6.97903i 0.352945i
\(392\) 6.52422 2.53663i 0.329523 0.128119i
\(393\) −1.33622 + 0.0695744i −0.0674035 + 0.00350956i
\(394\) −25.9738 −1.30854
\(395\) 17.6965 + 10.2171i 0.890409 + 0.514078i
\(396\) 0.363126 0.814109i 0.0182478 0.0409105i
\(397\) −0.710146 −0.0356412 −0.0178206 0.999841i \(-0.505673\pi\)
−0.0178206 + 0.999841i \(0.505673\pi\)
\(398\) 5.54735i 0.278063i
\(399\) −10.2071 + 34.6891i −0.510995 + 1.73662i
\(400\) 0.118437 + 0.205138i 0.00592183 + 0.0102569i
\(401\) −7.61652 + 13.1922i −0.380351 + 0.658787i −0.991112 0.133028i \(-0.957530\pi\)
0.610762 + 0.791815i \(0.290863\pi\)
\(402\) −4.93829 + 3.20459i −0.246300 + 0.159830i
\(403\) −5.09878 + 3.25742i −0.253988 + 0.162264i
\(404\) 9.38860 + 16.2615i 0.467100 + 0.809041i
\(405\) 4.25480 + 20.1515i 0.211422 + 1.00134i
\(406\) −0.552461 2.94548i −0.0274182 0.146182i
\(407\) −1.28641 0.742707i −0.0637648 0.0368146i
\(408\) 1.54520 0.0804552i 0.0764986 0.00398313i
\(409\) 13.0031 + 22.5221i 0.642964 + 1.11365i 0.984768 + 0.173875i \(0.0556289\pi\)
−0.341804 + 0.939771i \(0.611038\pi\)
\(410\) 8.61550 + 14.9225i 0.425489 + 0.736969i
\(411\) −4.47448 + 0.232977i −0.220710 + 0.0114919i
\(412\) 12.3898 + 7.15323i 0.610399 + 0.352414i
\(413\) −12.0974 + 10.3772i −0.595276 + 0.510630i
\(414\) −21.4045 9.54727i −1.05197 0.469223i
\(415\) 1.77204 + 3.06927i 0.0869863 + 0.150665i
\(416\) 0.161862 + 3.60192i 0.00793596 + 0.176598i
\(417\) 17.1183 11.1085i 0.838286 0.543986i
\(418\) −1.17232 + 2.03052i −0.0573400 + 0.0993158i
\(419\) −4.44170 7.69326i −0.216991 0.375840i 0.736895 0.676007i \(-0.236291\pi\)
−0.953887 + 0.300167i \(0.902958\pi\)
\(420\) −7.59383 + 7.23244i −0.370541 + 0.352907i
\(421\) 11.9274i 0.581308i −0.956828 0.290654i \(-0.906127\pi\)
0.956828 0.290654i \(-0.0938729\pi\)
\(422\) −2.34080 −0.113948
\(423\) 16.4846 + 7.35282i 0.801510 + 0.357506i
\(424\) −6.28351 3.62779i −0.305154 0.176181i
\(425\) −0.211605 −0.0102644
\(426\) −3.97817 + 0.207135i −0.192743 + 0.0100357i
\(427\) 4.12020 + 21.9671i 0.199391 + 1.06306i
\(428\) 16.6853i 0.806516i
\(429\) −1.50970 + 1.07899i −0.0728889 + 0.0520941i
\(430\) −7.69772 4.44428i −0.371217 0.214322i
\(431\) 19.4830 0.938462 0.469231 0.883075i \(-0.344531\pi\)
0.469231 + 0.883075i \(0.344531\pi\)
\(432\) −1.86707 + 4.84913i −0.0898292 + 0.233304i
\(433\) 15.8703 + 9.16273i 0.762679 + 0.440333i 0.830257 0.557381i \(-0.188194\pi\)
−0.0675780 + 0.997714i \(0.521527\pi\)
\(434\) −2.89069 3.36988i −0.138758 0.161759i
\(435\) 2.44396 + 3.76616i 0.117179 + 0.180573i
\(436\) 11.2047i 0.536607i
\(437\) 53.3862 + 30.8225i 2.55381 + 1.47444i
\(438\) 21.3204 1.11011i 1.01873 0.0530432i
\(439\) −2.15827 1.24608i −0.103009 0.0594720i 0.447611 0.894229i \(-0.352275\pi\)
−0.550619 + 0.834757i \(0.685608\pi\)
\(440\) −0.588883 + 0.339992i −0.0280739 + 0.0162085i
\(441\) −17.6534 11.3736i −0.840636 0.541600i
\(442\) −2.85890 1.48362i −0.135984 0.0705687i
\(443\) −14.4424 + 8.33832i −0.686179 + 0.396166i −0.802179 0.597083i \(-0.796326\pi\)
0.116000 + 0.993249i \(0.462993\pi\)
\(444\) 7.71351 + 3.93352i 0.366067 + 0.186677i
\(445\) −32.7487 −1.55244
\(446\) 1.49367 0.0707276
\(447\) −2.58679 + 5.07261i −0.122351 + 0.239926i
\(448\) −2.60041 + 0.487738i −0.122858 + 0.0230435i
\(449\) −18.5701 + 32.1643i −0.876375 + 1.51793i −0.0210850 + 0.999778i \(0.506712\pi\)
−0.855290 + 0.518149i \(0.826621\pi\)
\(450\) 0.289475 0.648988i 0.0136460 0.0305936i
\(451\) −1.93761 + 1.11868i −0.0912386 + 0.0526766i
\(452\) 8.39506i 0.394870i
\(453\) 17.7668 11.5293i 0.834757 0.541696i
\(454\) 6.37084i 0.298998i
\(455\) 21.2537 4.98350i 0.996389 0.233630i
\(456\) 6.20883 12.1753i 0.290755 0.570161i
\(457\) 13.9495 + 8.05374i 0.652529 + 0.376738i 0.789425 0.613848i \(-0.210379\pi\)
−0.136895 + 0.990586i \(0.543712\pi\)
\(458\) −7.86764 −0.367631
\(459\) −2.91755 3.61037i −0.136180 0.168518i
\(460\) 8.93903 + 15.4829i 0.416784 + 0.721892i
\(461\) 12.1978 + 7.04240i 0.568108 + 0.327997i 0.756393 0.654117i \(-0.226960\pi\)
−0.188285 + 0.982114i \(0.560293\pi\)
\(462\) −0.939097 0.986022i −0.0436908 0.0458739i
\(463\) 20.5027i 0.952843i −0.879217 0.476421i \(-0.841934\pi\)
0.879217 0.476421i \(-0.158066\pi\)
\(464\) 1.13270i 0.0525843i
\(465\) 5.92545 + 3.02170i 0.274786 + 0.140128i
\(466\) 9.29104i 0.430399i
\(467\) −2.86923 4.96965i −0.132772 0.229968i 0.791972 0.610557i \(-0.209054\pi\)
−0.924744 + 0.380589i \(0.875721\pi\)
\(468\) 8.46118 6.73858i 0.391118 0.311491i
\(469\) 1.65774 + 8.83834i 0.0765473 + 0.408116i
\(470\) −6.88438 11.9241i −0.317553 0.550018i
\(471\) 25.9567 16.8440i 1.19602 0.776129i
\(472\) 5.21709 3.01209i 0.240136 0.138643i
\(473\) 0.577069 0.999512i 0.0265336 0.0459576i
\(474\) 7.02615 13.7781i 0.322722 0.632847i
\(475\) −0.934544 + 1.61868i −0.0428798 + 0.0742701i
\(476\) 0.784171 2.22964i 0.0359424 0.102196i
\(477\) 2.26057 + 21.6490i 0.103504 + 0.991241i
\(478\) −11.3033 + 19.5780i −0.517003 + 0.895475i
\(479\) 28.1682i 1.28704i −0.765430 0.643519i \(-0.777474\pi\)
0.765430 0.643519i \(-0.222526\pi\)
\(480\) 3.32494 2.15764i 0.151762 0.0984823i
\(481\) −9.70379 15.1891i −0.442455 0.692565i
\(482\) −29.0874 −1.32489
\(483\) −25.9244 + 24.6907i −1.17960 + 1.12346i
\(484\) 5.45585 + 9.44982i 0.247993 + 0.429537i
\(485\) 5.46228i 0.248029i
\(486\) 15.0641 4.00907i 0.683322 0.181855i
\(487\) 25.7292 14.8548i 1.16590 0.673133i 0.213190 0.977011i \(-0.431615\pi\)
0.952711 + 0.303877i \(0.0982813\pi\)
\(488\) 8.44757i 0.382404i
\(489\) 3.57602 + 1.82360i 0.161713 + 0.0824661i
\(490\) 5.80489 + 14.9302i 0.262238 + 0.674476i
\(491\) −35.4120 + 20.4451i −1.59812 + 0.922676i −0.606272 + 0.795258i \(0.707336\pi\)
−0.991849 + 0.127418i \(0.959331\pi\)
\(492\) 10.9401 7.09932i 0.493218 0.320062i
\(493\) −0.876307 0.505936i −0.0394669 0.0227862i
\(494\) −23.9752 + 15.3169i −1.07869 + 0.689138i
\(495\) 1.86302 + 0.830985i 0.0837367 + 0.0373500i
\(496\) 0.839051 + 1.45328i 0.0376745 + 0.0652542i
\(497\) −2.01888 + 5.74031i −0.0905592 + 0.257488i
\(498\) 2.25017 1.46020i 0.100833 0.0654330i
\(499\) −11.0351 + 6.37111i −0.493998 + 0.285210i −0.726232 0.687450i \(-0.758730\pi\)
0.232233 + 0.972660i \(0.425397\pi\)
\(500\) 9.43971 5.45002i 0.422157 0.243732i
\(501\) 1.20206 + 23.0864i 0.0537041 + 1.03142i
\(502\) 6.89055 + 11.9348i 0.307540 + 0.532675i
\(503\) −20.5763 + 35.6392i −0.917453 + 1.58908i −0.114183 + 0.993460i \(0.536425\pi\)
−0.803270 + 0.595615i \(0.796908\pi\)
\(504\) 5.76551 + 5.45517i 0.256816 + 0.242993i
\(505\) −37.2132 + 21.4851i −1.65597 + 0.956073i
\(506\) −2.01037 + 1.16069i −0.0893720 + 0.0515990i
\(507\) −22.2905 + 3.18298i −0.989958 + 0.141361i
\(508\) 2.63228 4.55924i 0.116788 0.202284i
\(509\) −15.5770 8.99339i −0.690439 0.398625i 0.113338 0.993557i \(-0.463846\pi\)
−0.803776 + 0.594932i \(0.797179\pi\)
\(510\) 0.184115 + 3.53606i 0.00815277 + 0.156579i
\(511\) 10.8199 30.7644i 0.478645 1.36094i
\(512\) 1.00000 0.0441942
\(513\) −40.5028 + 6.37282i −1.78824 + 0.281367i
\(514\) 2.81222 + 4.87090i 0.124042 + 0.214846i
\(515\) −16.3696 + 28.3530i −0.721331 + 1.24938i
\(516\) −3.05627 + 5.99324i −0.134545 + 0.263838i
\(517\) 1.54829 0.893904i 0.0680936 0.0393139i
\(518\) 10.0388 8.61131i 0.441079 0.378359i
\(519\) 14.4481 28.3323i 0.634202 1.24365i
\(520\) −8.24270 + 0.370410i −0.361466 + 0.0162435i
\(521\) 12.5794 21.7881i 0.551113 0.954555i −0.447082 0.894493i \(-0.647537\pi\)
0.998195 0.0600622i \(-0.0191299\pi\)
\(522\) 2.75047 1.99549i 0.120385 0.0873402i
\(523\) −36.4677 21.0547i −1.59462 0.920656i −0.992499 0.122253i \(-0.960988\pi\)
−0.602124 0.798403i \(-0.705679\pi\)
\(524\) 0.386257 0.669016i 0.0168737 0.0292261i
\(525\) −0.748626 0.786033i −0.0326727 0.0343053i
\(526\) 16.7851 + 9.69087i 0.731864 + 0.422542i
\(527\) −1.49910 −0.0653016
\(528\) 0.280159 + 0.431727i 0.0121924 + 0.0187885i
\(529\) 19.0168 + 32.9380i 0.826816 + 1.43209i
\(530\) 8.30191 14.3793i 0.360612 0.624598i
\(531\) −16.5051 7.36195i −0.716260 0.319481i
\(532\) −13.5924 15.8456i −0.589307 0.686995i
\(533\) −27.1211 + 1.21877i −1.17475 + 0.0527906i
\(534\) 1.28885 + 24.7531i 0.0557738 + 1.07117i
\(535\) 38.1831 1.65080
\(536\) 3.39883i 0.146807i
\(537\) 15.9220 + 8.11947i 0.687086 + 0.350381i
\(538\) 27.9546 1.20521
\(539\) −1.93861 + 0.753737i −0.0835019 + 0.0324658i
\(540\) −11.0969 4.27263i −0.477533 0.183865i
\(541\) 15.7491 9.09276i 0.677107 0.390928i −0.121657 0.992572i \(-0.538821\pi\)
0.798764 + 0.601644i \(0.205487\pi\)
\(542\) −10.2294 17.7179i −0.439391 0.761048i
\(543\) 8.05051 + 4.10538i 0.345480 + 0.176179i
\(544\) −0.446664 + 0.773644i −0.0191505 + 0.0331697i
\(545\) 25.6410 1.09834
\(546\) −4.60324 15.8685i −0.197000 0.679110i
\(547\) 7.61792 0.325719 0.162859 0.986649i \(-0.447928\pi\)
0.162859 + 0.986649i \(0.447928\pi\)
\(548\) 1.29342 2.24027i 0.0552523 0.0956997i
\(549\) −20.5128 + 14.8822i −0.875464 + 0.635156i
\(550\) −0.0351923 0.0609549i −0.00150061 0.00259913i
\(551\) −7.74033 + 4.46888i −0.329749 + 0.190381i
\(552\) 11.3509 7.36592i 0.483128 0.313514i
\(553\) −15.3817 17.9315i −0.654098 0.762526i
\(554\) 6.51069 0.276613
\(555\) −9.00156 + 17.6518i −0.382095 + 0.749276i
\(556\) 11.7818i 0.499661i
\(557\) −31.7201 −1.34402 −0.672011 0.740541i \(-0.734569\pi\)
−0.672011 + 0.740541i \(0.734569\pi\)
\(558\) 2.05075 4.59768i 0.0868154 0.194635i
\(559\) 11.8017 7.53965i 0.499157 0.318893i
\(560\) −1.11615 5.95083i −0.0471660 0.251468i
\(561\) −0.459140 + 0.0239065i −0.0193849 + 0.00100933i
\(562\) −5.01435 + 8.68510i −0.211517 + 0.366359i
\(563\) −1.44913 2.50997i −0.0610737 0.105783i 0.833872 0.551958i \(-0.186119\pi\)
−0.894946 + 0.446175i \(0.852786\pi\)
\(564\) −8.74191 + 5.67285i −0.368101 + 0.238870i
\(565\) 19.2114 0.808231
\(566\) −19.8164 11.4410i −0.832945 0.480901i
\(567\) 3.08933 23.6105i 0.129740 0.991548i
\(568\) 1.14995 1.99178i 0.0482510 0.0835732i
\(569\) −32.8060 18.9406i −1.37530 0.794030i −0.383711 0.923453i \(-0.625354\pi\)
−0.991589 + 0.129423i \(0.958688\pi\)
\(570\) 27.8623 + 14.2084i 1.16702 + 0.595125i
\(571\) −13.5869 + 23.5332i −0.568594 + 0.984834i 0.428111 + 0.903726i \(0.359179\pi\)
−0.996705 + 0.0811082i \(0.974154\pi\)
\(572\) −0.0480959 1.07028i −0.00201099 0.0447505i
\(573\) 40.6933 + 20.7516i 1.69999 + 0.866912i
\(574\) −3.67249 19.5801i −0.153287 0.817259i
\(575\) −1.60262 + 0.925274i −0.0668340 + 0.0385866i
\(576\) −1.76171 2.42825i −0.0734046 0.101177i
\(577\) 19.0478 32.9918i 0.792972 1.37347i −0.131147 0.991363i \(-0.541866\pi\)
0.924119 0.382105i \(-0.124801\pi\)
\(578\) 8.10098 + 14.0313i 0.336956 + 0.583626i
\(579\) 4.94500 + 2.52171i 0.205507 + 0.104799i
\(580\) −2.59209 −0.107631
\(581\) −0.755362 4.02726i −0.0313377 0.167079i
\(582\) −4.12868 + 0.214972i −0.171139 + 0.00891087i
\(583\) 1.86709 + 1.07796i 0.0773268 + 0.0446447i
\(584\) −6.16302 + 10.6747i −0.255028 + 0.441721i
\(585\) 15.4207 + 19.3628i 0.637568 + 0.800551i
\(586\) 17.4353 10.0663i 0.720248 0.415835i
\(587\) −19.1503 + 11.0565i −0.790419 + 0.456349i −0.840110 0.542416i \(-0.817510\pi\)
0.0496910 + 0.998765i \(0.484176\pi\)
\(588\) 11.0565 4.97522i 0.455964 0.205175i
\(589\) −6.62068 + 11.4673i −0.272800 + 0.472504i
\(590\) 6.89293 + 11.9389i 0.283777 + 0.491517i
\(591\) −44.9271 + 2.33926i −1.84805 + 0.0962244i
\(592\) −4.32929 + 2.49951i −0.177933 + 0.102729i
\(593\) 22.7957 13.1611i 0.936109 0.540463i 0.0473705 0.998877i \(-0.484916\pi\)
0.888738 + 0.458415i \(0.151583\pi\)
\(594\) 0.554781 1.44087i 0.0227629 0.0591198i
\(595\) 5.10237 + 1.79451i 0.209177 + 0.0735679i
\(596\) −1.64375 2.84705i −0.0673305 0.116620i
\(597\) 0.499607 + 9.59529i 0.0204476 + 0.392709i
\(598\) −28.1396 + 1.26453i −1.15071 + 0.0517106i
\(599\) 5.69118 + 3.28581i 0.232536 + 0.134254i 0.611741 0.791058i \(-0.290469\pi\)
−0.379206 + 0.925312i \(0.623803\pi\)
\(600\) 0.223336 + 0.344163i 0.00911766 + 0.0140504i
\(601\) −22.1774 + 12.8041i −0.904634 + 0.522291i −0.878701 0.477373i \(-0.841589\pi\)
−0.0259335 + 0.999664i \(0.508256\pi\)
\(602\) 6.69082 + 7.79994i 0.272697 + 0.317902i
\(603\) −8.25319 + 5.98775i −0.336096 + 0.243840i
\(604\) 12.2282i 0.497557i
\(605\) −21.6252 + 12.4853i −0.879188 + 0.507599i
\(606\) 17.7041 + 27.2821i 0.719179 + 1.10826i
\(607\) 42.6384i 1.73064i −0.501220 0.865320i \(-0.667115\pi\)
0.501220 0.865320i \(-0.332885\pi\)
\(608\) 3.94533 + 6.83352i 0.160004 + 0.277136i
\(609\) −1.22087 5.04506i −0.0494723 0.204436i
\(610\) 19.3316 0.782714
\(611\) 21.6717 0.973879i 0.876742 0.0393989i
\(612\) 2.66549 0.278328i 0.107746 0.0112507i
\(613\) 4.01879i 0.162318i 0.996701 + 0.0811588i \(0.0258621\pi\)
−0.996701 + 0.0811588i \(0.974138\pi\)
\(614\) 1.53901 2.66564i 0.0621093 0.107576i
\(615\) 16.2462 + 25.0356i 0.655112 + 1.00953i
\(616\) 0.772686 0.144927i 0.0311324 0.00583927i
\(617\) 12.9809 22.4837i 0.522593 0.905158i −0.477061 0.878870i \(-0.658298\pi\)
0.999654 0.0262879i \(-0.00836868\pi\)
\(618\) 22.0749 + 11.2571i 0.887982 + 0.452829i
\(619\) −2.84282 + 4.92392i −0.114263 + 0.197909i −0.917485 0.397771i \(-0.869784\pi\)
0.803222 + 0.595680i \(0.203117\pi\)
\(620\) −3.32572 + 1.92010i −0.133564 + 0.0771132i
\(621\) −37.8833 14.5863i −1.52021 0.585326i
\(622\) 7.75963 + 13.4401i 0.311133 + 0.538898i
\(623\) 35.7176 + 12.5620i 1.43100 + 0.503285i
\(624\) 0.604372 + 6.21568i 0.0241942 + 0.248827i
\(625\) 13.0641 + 22.6277i 0.522565 + 0.905109i
\(626\) 15.8272i 0.632583i
\(627\) −1.84490 + 3.61778i −0.0736781 + 0.144480i
\(628\) 17.8650i 0.712889i
\(629\) 4.46577i 0.178062i
\(630\) −12.4837 + 13.1939i −0.497364 + 0.525658i
\(631\) 11.9099 + 6.87621i 0.474128 + 0.273738i 0.717966 0.696078i \(-0.245073\pi\)
−0.243838 + 0.969816i \(0.578407\pi\)
\(632\) 4.46469 + 7.73307i 0.177596 + 0.307605i
\(633\) −4.04890 + 0.210818i −0.160929 + 0.00837926i
\(634\) −12.9443 −0.514082
\(635\) 10.4335 + 6.02376i 0.414039 + 0.239046i
\(636\) −11.1954 5.70910i −0.443925 0.226381i
\(637\) −25.0921 2.71736i −0.994187 0.107666i
\(638\) 0.336571i 0.0133250i
\(639\) −6.86241 + 0.716567i −0.271473 + 0.0283469i
\(640\) 2.28842i 0.0904578i
\(641\) 5.44576 3.14411i 0.215094 0.124185i −0.388582 0.921414i \(-0.627035\pi\)
0.603677 + 0.797229i \(0.293702\pi\)
\(642\) −1.50272 28.8608i −0.0593077 1.13904i
\(643\) 17.3160 29.9922i 0.682877 1.18278i −0.291222 0.956656i \(-0.594062\pi\)
0.974099 0.226122i \(-0.0726049\pi\)
\(644\) −3.81040 20.3154i −0.150151 0.800539i
\(645\) −13.7151 6.99403i −0.540030 0.275390i
\(646\) −7.04895 −0.277337
\(647\) 18.1269 0.712643 0.356322 0.934363i \(-0.384031\pi\)
0.356322 + 0.934363i \(0.384031\pi\)
\(648\) −2.79275 + 8.55573i −0.109710 + 0.336101i
\(649\) −1.55021 + 0.895014i −0.0608511 + 0.0351324i
\(650\) −0.0383409 0.853198i −0.00150385 0.0334652i
\(651\) −5.30356 5.56856i −0.207863 0.218249i
\(652\) −2.00708 + 1.15879i −0.0786033 + 0.0453816i
\(653\) 34.7749 + 20.0773i 1.36085 + 0.785685i 0.989737 0.142904i \(-0.0456440\pi\)
0.371110 + 0.928589i \(0.378977\pi\)
\(654\) −1.00912 19.3808i −0.0394598 0.757851i
\(655\) 1.53099 + 0.883918i 0.0598208 + 0.0345375i
\(656\) 7.52964i 0.293983i
\(657\) 36.7782 3.84034i 1.43485 0.149826i
\(658\) 2.93458 + 15.6459i 0.114402 + 0.609940i
\(659\) −15.7627 9.10062i −0.614029 0.354510i 0.160512 0.987034i \(-0.448686\pi\)
−0.774541 + 0.632524i \(0.782019\pi\)
\(660\) −0.987974 + 0.641122i −0.0384568 + 0.0249556i
\(661\) 23.1137 0.899020 0.449510 0.893275i \(-0.351599\pi\)
0.449510 + 0.893275i \(0.351599\pi\)
\(662\) −7.76227 4.48155i −0.301689 0.174180i
\(663\) −5.07868 2.30875i −0.197240 0.0896645i
\(664\) 1.54870i 0.0601014i
\(665\) 36.2615 31.1052i 1.40616 1.20621i
\(666\) 13.6964 + 6.10915i 0.530724 + 0.236725i
\(667\) −8.84910 −0.342639
\(668\) −11.5588 6.67349i −0.447224 0.258205i
\(669\) 2.58362 0.134524i 0.0998886 0.00520100i
\(670\) 7.77795 0.300489
\(671\) 2.51012i 0.0969020i
\(672\) −4.45402 + 1.07784i −0.171817 + 0.0415787i
\(673\) −18.1450 31.4281i −0.699438 1.21146i −0.968661 0.248385i \(-0.920100\pi\)
0.269223 0.963078i \(-0.413233\pi\)
\(674\) 3.88418 6.72760i 0.149613 0.259138i
\(675\) 0.442258 1.14863i 0.0170225 0.0442108i
\(676\) 5.46399 11.7960i 0.210153 0.453691i
\(677\) −2.13681 3.70106i −0.0821243 0.142243i 0.822038 0.569433i \(-0.192837\pi\)
−0.904162 + 0.427189i \(0.859504\pi\)
\(678\) −0.756079 14.5210i −0.0290370 0.557675i
\(679\) −2.09526 + 5.95749i −0.0804088 + 0.228627i
\(680\) −1.77042 1.02215i −0.0678927 0.0391978i
\(681\) −0.573773 11.0197i −0.0219870 0.422276i
\(682\) −0.249316 0.431828i −0.00954681 0.0165356i
\(683\) −15.0386 26.0477i −0.575438 0.996688i −0.995994 0.0894210i \(-0.971498\pi\)
0.420556 0.907267i \(-0.361835\pi\)
\(684\) 9.64293 21.6189i 0.368706 0.826620i
\(685\) 5.12669 + 2.95989i 0.195881 + 0.113092i
\(686\) −0.604128 18.5104i −0.0230657 0.706730i
\(687\) −13.6087 + 0.708579i −0.519205 + 0.0270340i
\(688\) −1.94207 3.36377i −0.0740408 0.128242i
\(689\) 14.0841 + 22.0455i 0.536560 + 0.839866i
\(690\) 16.8563 + 25.9757i 0.641709 + 0.988879i
\(691\) −8.59159 + 14.8811i −0.326840 + 0.566103i −0.981883 0.189489i \(-0.939317\pi\)
0.655043 + 0.755591i \(0.272650\pi\)
\(692\) 9.18090 + 15.9018i 0.349006 + 0.604495i
\(693\) −1.71317 1.62095i −0.0650778 0.0615749i
\(694\) 9.70091i 0.368241i
\(695\) −26.9618 −1.02272
\(696\) 0.102014 + 1.95924i 0.00386682 + 0.0742648i
\(697\) −5.82526 3.36322i −0.220648 0.127391i
\(698\) 26.5052 1.00324
\(699\) −0.836773 16.0708i −0.0316497 0.607853i
\(700\) 0.615967 0.115532i 0.0232814 0.00436671i
\(701\) 33.7755i 1.27568i −0.770167 0.637842i \(-0.779827\pi\)
0.770167 0.637842i \(-0.220173\pi\)
\(702\) 14.0285 12.4178i 0.529471 0.468680i
\(703\) −34.1610 19.7228i −1.28840 0.743861i
\(704\) −0.297141 −0.0111989
\(705\) −12.9819 20.0052i −0.488926 0.753439i
\(706\) 22.1838 + 12.8078i 0.834900 + 0.482030i
\(707\) 48.8283 9.15835i 1.83638 0.344435i
\(708\) 8.75277 5.67990i 0.328949 0.213464i
\(709\) 1.22167i 0.0458807i −0.999737 0.0229403i \(-0.992697\pi\)
0.999737 0.0229403i \(-0.00730278\pi\)
\(710\) 4.55803 + 2.63158i 0.171060 + 0.0987614i
\(711\) 10.9123 24.4648i 0.409243 0.917502i
\(712\) −12.3933 7.15530i −0.464460 0.268156i
\(713\) −11.3536 + 6.55500i −0.425196 + 0.245487i
\(714\) 1.15558 3.92726i 0.0432465 0.146974i
\(715\) 2.44924 0.110064i 0.0915965 0.00411615i
\(716\) −8.93640 + 5.15943i −0.333969 + 0.192817i
\(717\) −17.7882 + 34.8821i −0.664314 + 1.30270i
\(718\) 12.8282 0.478743
\(719\) 31.0368 1.15748 0.578738 0.815514i \(-0.303545\pi\)
0.578738 + 0.815514i \(0.303545\pi\)
\(720\) 5.55685 4.03154i 0.207092 0.150246i
\(721\) 28.7295 24.6443i 1.06994 0.917800i
\(722\) −21.6313 + 37.4666i −0.805035 + 1.39436i
\(723\) −50.3127 + 2.61968i −1.87115 + 0.0974270i
\(724\) −4.51843 + 2.60872i −0.167926 + 0.0969522i
\(725\) 0.268306i 0.00996465i
\(726\) 10.2881 + 15.8541i 0.381827 + 0.588399i
\(727\) 33.4726i 1.24143i −0.784036 0.620716i \(-0.786842\pi\)
0.784036 0.620716i \(-0.213158\pi\)
\(728\) 9.13206 + 2.75781i 0.338457 + 0.102211i
\(729\) 25.6954 8.29123i 0.951683 0.307083i
\(730\) −24.4281 14.1036i −0.904125 0.521997i
\(731\) 3.46981 0.128336
\(732\) −0.760809 14.6118i −0.0281203 0.540069i
\(733\) 12.3342 + 21.3634i 0.455573 + 0.789076i 0.998721 0.0505610i \(-0.0161009\pi\)
−0.543148 + 0.839637i \(0.682768\pi\)
\(734\) 21.2692 + 12.2798i 0.785061 + 0.453255i
\(735\) 11.3854 + 25.3020i 0.419957 + 0.933280i
\(736\) 7.81240i 0.287969i
\(737\) 1.00993i 0.0372013i
\(738\) 18.2838 13.2650i 0.673037 0.488293i
\(739\) 44.5264i 1.63793i −0.573845 0.818964i \(-0.694549\pi\)
0.573845 0.818964i \(-0.305451\pi\)
\(740\) −5.71994 9.90723i −0.210269 0.364197i
\(741\) −40.0906 + 28.6529i −1.47276 + 1.05259i
\(742\) −14.5703 + 12.4984i −0.534892 + 0.458832i
\(743\) −19.9258 34.5124i −0.731006 1.26614i −0.956454 0.291884i \(-0.905718\pi\)
0.225448 0.974255i \(-0.427615\pi\)
\(744\) 1.58220 + 2.43818i 0.0580063 + 0.0893881i
\(745\) 6.51526 3.76159i 0.238701 0.137814i
\(746\) 10.7383 18.5993i 0.393158 0.680969i
\(747\) 3.76064 2.72837i 0.137594 0.0998258i
\(748\) 0.132722 0.229881i 0.00485279 0.00840529i
\(749\) −41.6447 14.6465i −1.52166 0.535173i
\(750\) 15.8371 10.2771i 0.578289 0.375267i
\(751\) 8.99264 15.5757i 0.328146 0.568366i −0.653998 0.756496i \(-0.726909\pi\)
0.982144 + 0.188130i \(0.0602428\pi\)
\(752\) 6.01671i 0.219407i
\(753\) 12.9935 + 20.0231i 0.473510 + 0.729683i
\(754\) 1.88117 3.62496i 0.0685080 0.132013i
\(755\) −27.9832 −1.01841
\(756\) 10.4640 + 8.91660i 0.380570 + 0.324293i
\(757\) 20.2665 + 35.1027i 0.736600 + 1.27583i 0.954018 + 0.299750i \(0.0969034\pi\)
−0.217417 + 0.976079i \(0.569763\pi\)
\(758\) 16.0701i 0.583692i
\(759\) −3.37283 + 2.18871i −0.122426 + 0.0794453i
\(760\) −15.6380 + 9.02859i −0.567249 + 0.327501i
\(761\) 1.38144i 0.0500770i −0.999686 0.0250385i \(-0.992029\pi\)
0.999686 0.0250385i \(-0.00797084\pi\)
\(762\) 4.14246 8.12322i 0.150065 0.294273i
\(763\) −27.9656 9.83558i −1.01242 0.356072i
\(764\) −22.8395 + 13.1864i −0.826305 + 0.477067i
\(765\) 0.636932 + 6.09977i 0.0230283 + 0.220537i
\(766\) −23.1968 13.3927i −0.838136 0.483898i
\(767\) −21.6986 + 0.975089i −0.783491 + 0.0352084i
\(768\) 1.72971 0.0900624i 0.0624155 0.00324985i
\(769\) 3.70242 + 6.41278i 0.133513 + 0.231251i 0.925028 0.379898i \(-0.124041\pi\)
−0.791516 + 0.611149i \(0.790708\pi\)
\(770\) 0.331654 + 1.76823i 0.0119520 + 0.0637227i
\(771\) 5.30300 + 8.17196i 0.190983 + 0.294306i
\(772\) −2.77543 + 1.60239i −0.0998899 + 0.0576714i
\(773\) 4.71590 2.72273i 0.169619 0.0979297i −0.412787 0.910828i \(-0.635445\pi\)
0.582406 + 0.812898i \(0.302111\pi\)
\(774\) −4.74669 + 10.6418i −0.170616 +