Properties

Label 546.2.bn.e.101.12
Level $546$
Weight $2$
Character 546.101
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bn (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.12
Character \(\chi\) \(=\) 546.101
Dual form 546.2.bn.e.173.12

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.925467 + 1.46407i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-2.64914 + 1.52948i) q^{5} +(-1.73066 + 0.0694407i) q^{6} +(2.61668 - 0.391106i) q^{7} +1.00000 q^{8} +(-1.28702 + 2.70990i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.925467 + 1.46407i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-2.64914 + 1.52948i) q^{5} +(-1.73066 + 0.0694407i) q^{6} +(2.61668 - 0.391106i) q^{7} +1.00000 q^{8} +(-1.28702 + 2.70990i) q^{9} -3.05896i q^{10} -2.26580 q^{11} +(0.805192 - 1.53351i) q^{12} +(-3.11743 + 1.81152i) q^{13} +(-0.969634 + 2.46167i) q^{14} +(-4.69096 - 2.46305i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(1.79771 + 3.11373i) q^{17} +(-1.70333 - 2.46955i) q^{18} -0.827642 q^{19} +(2.64914 + 1.52948i) q^{20} +(2.99426 + 3.46906i) q^{21} +(1.13290 - 1.96224i) q^{22} +(-4.00182 - 2.31045i) q^{23} +(0.925467 + 1.46407i) q^{24} +(2.17863 - 3.77350i) q^{25} +(-0.0101040 - 3.60554i) q^{26} +(-5.15859 + 0.623627i) q^{27} +(-1.64705 - 2.07056i) q^{28} +(-7.61619 + 4.39721i) q^{29} +(4.47855 - 2.83097i) q^{30} +(4.78177 - 8.28226i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-2.09693 - 3.31730i) q^{33} -3.59543 q^{34} +(-6.33377 + 5.03827i) q^{35} +(2.99036 - 0.240356i) q^{36} +(1.16568 + 0.673004i) q^{37} +(0.413821 - 0.716759i) q^{38} +(-5.53728 - 2.88765i) q^{39} +(-2.64914 + 1.52948i) q^{40} +(7.03626 - 4.06239i) q^{41} +(-4.50143 + 0.858576i) q^{42} +(-4.70036 + 8.14127i) q^{43} +(1.13290 + 1.96224i) q^{44} +(-0.735241 - 9.14739i) q^{45} +(4.00182 - 2.31045i) q^{46} +(-2.73905 + 1.58139i) q^{47} +(-1.73066 + 0.0694407i) q^{48} +(6.69407 - 2.04680i) q^{49} +(2.17863 + 3.77350i) q^{50} +(-2.89501 + 5.51364i) q^{51} +(3.12754 + 1.79402i) q^{52} +(1.44524 + 0.834408i) q^{53} +(2.03922 - 4.77929i) q^{54} +(6.00243 - 3.46551i) q^{55} +(2.61668 - 0.391106i) q^{56} +(-0.765955 - 1.21173i) q^{57} -8.79442i q^{58} +(9.34806 - 5.39710i) q^{59} +(0.212417 + 5.29402i) q^{60} +10.5604i q^{61} +(4.78177 + 8.28226i) q^{62} +(-2.30787 + 7.59432i) q^{63} +1.00000 q^{64} +(5.48784 - 9.56703i) q^{65} +(3.92133 - 0.157339i) q^{66} -4.06211i q^{67} +(1.79771 - 3.11373i) q^{68} +(-0.320879 - 7.99721i) q^{69} +(-1.19638 - 8.00434i) q^{70} +(-3.81286 + 6.60406i) q^{71} +(-1.28702 + 2.70990i) q^{72} +(-5.74190 + 9.94525i) q^{73} +(-1.16568 + 0.673004i) q^{74} +(7.54092 - 0.302571i) q^{75} +(0.413821 + 0.716759i) q^{76} +(-5.92889 + 0.886170i) q^{77} +(5.26942 - 3.35160i) q^{78} +(2.91514 + 5.04917i) q^{79} -3.05896i q^{80} +(-5.68714 - 6.97541i) q^{81} +8.12477i q^{82} +3.79233i q^{83} +(1.50717 - 4.32764i) q^{84} +(-9.52479 - 5.49914i) q^{85} +(-4.70036 - 8.14127i) q^{86} +(-13.4864 - 7.08120i) q^{87} -2.26580 q^{88} +(7.22886 + 4.17358i) q^{89} +(8.28949 + 3.93696i) q^{90} +(-7.44885 + 5.95942i) q^{91} +4.62091i q^{92} +(16.5512 - 0.664099i) q^{93} -3.16278i q^{94} +(2.19254 - 1.26586i) q^{95} +(0.805192 - 1.53351i) q^{96} +(-7.99888 + 13.8545i) q^{97} +(-1.57445 + 6.82064i) q^{98} +(2.91614 - 6.14011i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 17q^{2} + 3q^{3} - 17q^{4} + 9q^{5} - 6q^{6} + 5q^{7} + 34q^{8} + 7q^{9} + O(q^{10}) \) \( 34q - 17q^{2} + 3q^{3} - 17q^{4} + 9q^{5} - 6q^{6} + 5q^{7} + 34q^{8} + 7q^{9} - 18q^{11} + 3q^{12} - 8q^{13} - 4q^{14} - 17q^{15} - 17q^{16} + 6q^{17} - 11q^{18} - 10q^{19} - 9q^{20} - 4q^{21} + 9q^{22} + 6q^{23} + 3q^{24} + 16q^{25} + 13q^{26} + 18q^{27} - q^{28} + 27q^{29} + 13q^{30} + q^{31} - 17q^{32} + 21q^{33} - 12q^{34} - 3q^{35} + 4q^{36} + 6q^{37} + 5q^{38} + 20q^{39} + 9q^{40} + 3q^{41} + 20q^{42} - 3q^{43} + 9q^{44} - 6q^{46} - 27q^{47} - 6q^{48} - 5q^{49} + 16q^{50} + 24q^{51} - 5q^{52} + 21q^{53} - 18q^{54} + 57q^{55} + 5q^{56} - 17q^{57} - 6q^{59} + 4q^{60} + q^{62} - 21q^{63} + 34q^{64} + 33q^{65} - 21q^{66} + 6q^{68} - 30q^{69} + 3q^{70} - 15q^{71} + 7q^{72} + 19q^{73} - 6q^{74} - 63q^{75} + 5q^{76} - 9q^{77} - 10q^{78} - 9q^{79} - 5q^{81} - 16q^{84} - 42q^{85} - 3q^{86} - 75q^{87} - 18q^{88} - 18q^{89} - 9q^{90} - 27q^{91} + 25q^{93} - 3q^{95} + 3q^{96} - 19q^{97} + 7q^{98} - 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0.925467 + 1.46407i 0.534318 + 0.845283i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −2.64914 + 1.52948i −1.18473 + 0.684005i −0.957104 0.289743i \(-0.906430\pi\)
−0.227627 + 0.973748i \(0.573097\pi\)
\(6\) −1.73066 + 0.0694407i −0.706538 + 0.0283491i
\(7\) 2.61668 0.391106i 0.989014 0.147824i
\(8\) 1.00000 0.353553
\(9\) −1.28702 + 2.70990i −0.429008 + 0.903301i
\(10\) 3.05896i 0.967329i
\(11\) −2.26580 −0.683166 −0.341583 0.939852i \(-0.610963\pi\)
−0.341583 + 0.939852i \(0.610963\pi\)
\(12\) 0.805192 1.53351i 0.232439 0.442687i
\(13\) −3.11743 + 1.81152i −0.864621 + 0.502425i
\(14\) −0.969634 + 2.46167i −0.259146 + 0.657908i
\(15\) −4.69096 2.46305i −1.21120 0.635957i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.79771 + 3.11373i 0.436010 + 0.755191i 0.997377 0.0723757i \(-0.0230581\pi\)
−0.561368 + 0.827566i \(0.689725\pi\)
\(18\) −1.70333 2.46955i −0.401479 0.582078i
\(19\) −0.827642 −0.189874 −0.0949370 0.995483i \(-0.530265\pi\)
−0.0949370 + 0.995483i \(0.530265\pi\)
\(20\) 2.64914 + 1.52948i 0.592366 + 0.342003i
\(21\) 2.99426 + 3.46906i 0.653402 + 0.757012i
\(22\) 1.13290 1.96224i 0.241536 0.418352i
\(23\) −4.00182 2.31045i −0.834438 0.481763i 0.0209317 0.999781i \(-0.493337\pi\)
−0.855370 + 0.518018i \(0.826670\pi\)
\(24\) 0.925467 + 1.46407i 0.188910 + 0.298853i
\(25\) 2.17863 3.77350i 0.435726 0.754699i
\(26\) −0.0101040 3.60554i −0.00198156 0.707104i
\(27\) −5.15859 + 0.623627i −0.992772 + 0.120017i
\(28\) −1.64705 2.07056i −0.311263 0.391299i
\(29\) −7.61619 + 4.39721i −1.41429 + 0.816542i −0.995789 0.0916739i \(-0.970778\pi\)
−0.418503 + 0.908216i \(0.637445\pi\)
\(30\) 4.47855 2.83097i 0.817667 0.516862i
\(31\) 4.78177 8.28226i 0.858831 1.48754i −0.0142145 0.999899i \(-0.504525\pi\)
0.873045 0.487639i \(-0.162142\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −2.09693 3.31730i −0.365028 0.577469i
\(34\) −3.59543 −0.616611
\(35\) −6.33377 + 5.03827i −1.07060 + 0.851622i
\(36\) 2.99036 0.240356i 0.498393 0.0400594i
\(37\) 1.16568 + 0.673004i 0.191636 + 0.110641i 0.592748 0.805388i \(-0.298043\pi\)
−0.401112 + 0.916029i \(0.631376\pi\)
\(38\) 0.413821 0.716759i 0.0671306 0.116274i
\(39\) −5.53728 2.88765i −0.886674 0.462395i
\(40\) −2.64914 + 1.52948i −0.418866 + 0.241832i
\(41\) 7.03626 4.06239i 1.09888 0.634438i 0.162953 0.986634i \(-0.447898\pi\)
0.935926 + 0.352196i \(0.114565\pi\)
\(42\) −4.50143 + 0.858576i −0.694585 + 0.132481i
\(43\) −4.70036 + 8.14127i −0.716799 + 1.24153i 0.245463 + 0.969406i \(0.421060\pi\)
−0.962262 + 0.272126i \(0.912273\pi\)
\(44\) 1.13290 + 1.96224i 0.170791 + 0.295819i
\(45\) −0.735241 9.14739i −0.109603 1.36361i
\(46\) 4.00182 2.31045i 0.590037 0.340658i
\(47\) −2.73905 + 1.58139i −0.399531 + 0.230669i −0.686282 0.727336i \(-0.740758\pi\)
0.286751 + 0.958005i \(0.407425\pi\)
\(48\) −1.73066 + 0.0694407i −0.249799 + 0.0100229i
\(49\) 6.69407 2.04680i 0.956296 0.292400i
\(50\) 2.17863 + 3.77350i 0.308105 + 0.533653i
\(51\) −2.89501 + 5.51364i −0.405382 + 0.772064i
\(52\) 3.12754 + 1.79402i 0.433712 + 0.248786i
\(53\) 1.44524 + 0.834408i 0.198519 + 0.114615i 0.595964 0.803011i \(-0.296770\pi\)
−0.397446 + 0.917626i \(0.630103\pi\)
\(54\) 2.03922 4.77929i 0.277503 0.650379i
\(55\) 6.00243 3.46551i 0.809368 0.467289i
\(56\) 2.61668 0.391106i 0.349669 0.0522638i
\(57\) −0.765955 1.21173i −0.101453 0.160497i
\(58\) 8.79442i 1.15476i
\(59\) 9.34806 5.39710i 1.21701 0.702643i 0.252735 0.967535i \(-0.418670\pi\)
0.964278 + 0.264892i \(0.0853364\pi\)
\(60\) 0.212417 + 5.29402i 0.0274229 + 0.683455i
\(61\) 10.5604i 1.35212i 0.736845 + 0.676062i \(0.236315\pi\)
−0.736845 + 0.676062i \(0.763685\pi\)
\(62\) 4.78177 + 8.28226i 0.607285 + 1.05185i
\(63\) −2.30787 + 7.59432i −0.290765 + 0.956795i
\(64\) 1.00000 0.125000
\(65\) 5.48784 9.56703i 0.680682 1.18664i
\(66\) 3.92133 0.157339i 0.482683 0.0193671i
\(67\) 4.06211i 0.496266i −0.968726 0.248133i \(-0.920183\pi\)
0.968726 0.248133i \(-0.0798170\pi\)
\(68\) 1.79771 3.11373i 0.218005 0.377595i
\(69\) −0.320879 7.99721i −0.0386293 0.962752i
\(70\) −1.19638 8.00434i −0.142995 0.956702i
\(71\) −3.81286 + 6.60406i −0.452503 + 0.783758i −0.998541 0.0540027i \(-0.982802\pi\)
0.546038 + 0.837760i \(0.316135\pi\)
\(72\) −1.28702 + 2.70990i −0.151677 + 0.319365i
\(73\) −5.74190 + 9.94525i −0.672038 + 1.16400i 0.305287 + 0.952260i \(0.401248\pi\)
−0.977325 + 0.211744i \(0.932086\pi\)
\(74\) −1.16568 + 0.673004i −0.135507 + 0.0782351i
\(75\) 7.54092 0.302571i 0.870751 0.0349379i
\(76\) 0.413821 + 0.716759i 0.0474685 + 0.0822179i
\(77\) −5.92889 + 0.886170i −0.675660 + 0.100988i
\(78\) 5.26942 3.35160i 0.596644 0.379494i
\(79\) 2.91514 + 5.04917i 0.327979 + 0.568077i 0.982111 0.188304i \(-0.0602991\pi\)
−0.654132 + 0.756381i \(0.726966\pi\)
\(80\) 3.05896i 0.342003i
\(81\) −5.68714 6.97541i −0.631905 0.775046i
\(82\) 8.12477i 0.897231i
\(83\) 3.79233i 0.416262i 0.978101 + 0.208131i \(0.0667381\pi\)
−0.978101 + 0.208131i \(0.933262\pi\)
\(84\) 1.50717 4.32764i 0.164445 0.472184i
\(85\) −9.52479 5.49914i −1.03311 0.596465i
\(86\) −4.70036 8.14127i −0.506853 0.877896i
\(87\) −13.4864 7.08120i −1.44589 0.759184i
\(88\) −2.26580 −0.241536
\(89\) 7.22886 + 4.17358i 0.766257 + 0.442399i 0.831538 0.555468i \(-0.187461\pi\)
−0.0652806 + 0.997867i \(0.520794\pi\)
\(90\) 8.28949 + 3.93696i 0.873789 + 0.414992i
\(91\) −7.44885 + 5.95942i −0.780851 + 0.624717i
\(92\) 4.62091i 0.481763i
\(93\) 16.5512 0.664099i 1.71628 0.0688638i
\(94\) 3.16278i 0.326216i
\(95\) 2.19254 1.26586i 0.224950 0.129875i
\(96\) 0.805192 1.53351i 0.0821795 0.156514i
\(97\) −7.99888 + 13.8545i −0.812164 + 1.40671i 0.0991832 + 0.995069i \(0.468377\pi\)
−0.911347 + 0.411639i \(0.864956\pi\)
\(98\) −1.57445 + 6.82064i −0.159044 + 0.688988i
\(99\) 2.91614 6.14011i 0.293083 0.617104i
\(100\) −4.35726 −0.435726
\(101\) 7.13992 0.710448 0.355224 0.934781i \(-0.384405\pi\)
0.355224 + 0.934781i \(0.384405\pi\)
\(102\) −3.32745 5.26397i −0.329466 0.521211i
\(103\) 1.53644 0.887062i 0.151390 0.0874048i −0.422392 0.906413i \(-0.638809\pi\)
0.573781 + 0.819009i \(0.305476\pi\)
\(104\) −3.11743 + 1.81152i −0.305690 + 0.177634i
\(105\) −13.2381 4.61036i −1.29191 0.449925i
\(106\) −1.44524 + 0.834408i −0.140374 + 0.0810449i
\(107\) 5.44777 + 3.14527i 0.526656 + 0.304065i 0.739654 0.672988i \(-0.234989\pi\)
−0.212998 + 0.977053i \(0.568323\pi\)
\(108\) 3.11937 + 4.15566i 0.300162 + 0.399879i
\(109\) −9.02357 5.20976i −0.864302 0.499005i 0.00114874 0.999999i \(-0.499634\pi\)
−0.865450 + 0.500995i \(0.832968\pi\)
\(110\) 6.93101i 0.660846i
\(111\) 0.0934678 + 2.32948i 0.00887157 + 0.221104i
\(112\) −0.969634 + 2.46167i −0.0916218 + 0.232606i
\(113\) 7.25521 + 4.18880i 0.682513 + 0.394049i 0.800801 0.598930i \(-0.204407\pi\)
−0.118288 + 0.992979i \(0.537741\pi\)
\(114\) 1.43236 0.0574720i 0.134153 0.00538275i
\(115\) 14.1352 1.31811
\(116\) 7.61619 + 4.39721i 0.707146 + 0.408271i
\(117\) −0.896828 10.7794i −0.0829118 0.996557i
\(118\) 10.7942i 0.993687i
\(119\) 5.92185 + 7.44455i 0.542855 + 0.682441i
\(120\) −4.69096 2.46305i −0.428225 0.224845i
\(121\) −5.86613 −0.533285
\(122\) −9.14560 5.28021i −0.828004 0.478048i
\(123\) 12.4595 + 6.54200i 1.12343 + 0.589872i
\(124\) −9.56353 −0.858831
\(125\) 1.96613i 0.175856i
\(126\) −5.42294 5.79584i −0.483114 0.516334i
\(127\) −0.0429290 0.0743552i −0.00380933 0.00659795i 0.864114 0.503295i \(-0.167879\pi\)
−0.867924 + 0.496697i \(0.834546\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −16.2694 + 0.652793i −1.43244 + 0.0574753i
\(130\) 5.54137 + 9.53612i 0.486010 + 0.836373i
\(131\) −1.03041 1.78473i −0.0900276 0.155932i 0.817495 0.575936i \(-0.195362\pi\)
−0.907523 + 0.420003i \(0.862029\pi\)
\(132\) −1.82441 + 3.47464i −0.158794 + 0.302429i
\(133\) −2.16568 + 0.323696i −0.187788 + 0.0280680i
\(134\) 3.51789 + 2.03106i 0.303900 + 0.175456i
\(135\) 12.7120 9.54205i 1.09408 0.821249i
\(136\) 1.79771 + 3.11373i 0.154153 + 0.267000i
\(137\) 4.48732 + 7.77227i 0.383378 + 0.664030i 0.991543 0.129781i \(-0.0414274\pi\)
−0.608165 + 0.793811i \(0.708094\pi\)
\(138\) 7.08623 + 3.72072i 0.603220 + 0.316729i
\(139\) 18.0789 + 10.4379i 1.53343 + 0.885328i 0.999200 + 0.0399902i \(0.0127327\pi\)
0.534233 + 0.845338i \(0.320601\pi\)
\(140\) 7.53015 + 2.96608i 0.636414 + 0.250679i
\(141\) −4.85016 2.54664i −0.408457 0.214466i
\(142\) −3.81286 6.60406i −0.319968 0.554200i
\(143\) 7.06350 4.10455i 0.590679 0.343239i
\(144\) −1.70333 2.46955i −0.141944 0.205796i
\(145\) 13.4509 23.2977i 1.11704 1.93477i
\(146\) −5.74190 9.94525i −0.475203 0.823075i
\(147\) 9.19181 + 7.90637i 0.758128 + 0.652106i
\(148\) 1.34601i 0.110641i
\(149\) −1.70300 −0.139515 −0.0697576 0.997564i \(-0.522223\pi\)
−0.0697576 + 0.997564i \(0.522223\pi\)
\(150\) −3.50843 + 6.68192i −0.286462 + 0.545576i
\(151\) 19.2492 + 11.1135i 1.56648 + 0.904406i 0.996575 + 0.0826936i \(0.0263523\pi\)
0.569902 + 0.821712i \(0.306981\pi\)
\(152\) −0.827642 −0.0671306
\(153\) −10.7516 + 0.864184i −0.869216 + 0.0698651i
\(154\) 2.19700 5.57766i 0.177039 0.449460i
\(155\) 29.2545i 2.34978i
\(156\) 0.267858 + 6.23925i 0.0214458 + 0.499540i
\(157\) 10.2785 + 5.93431i 0.820316 + 0.473610i 0.850525 0.525934i \(-0.176284\pi\)
−0.0302095 + 0.999544i \(0.509617\pi\)
\(158\) −5.83028 −0.463833
\(159\) 0.115884 + 2.88815i 0.00919018 + 0.229045i
\(160\) 2.64914 + 1.52948i 0.209433 + 0.120916i
\(161\) −11.3751 4.48059i −0.896487 0.353120i
\(162\) 8.88446 1.43750i 0.698029 0.112941i
\(163\) 9.61240i 0.752901i 0.926437 + 0.376451i \(0.122856\pi\)
−0.926437 + 0.376451i \(0.877144\pi\)
\(164\) −7.03626 4.06239i −0.549440 0.317219i
\(165\) 10.6288 + 5.58079i 0.827451 + 0.434464i
\(166\) −3.28425 1.89616i −0.254908 0.147171i
\(167\) 21.5888 12.4643i 1.67059 0.964517i 0.703285 0.710908i \(-0.251716\pi\)
0.967307 0.253608i \(-0.0816174\pi\)
\(168\) 2.99426 + 3.46906i 0.231012 + 0.267644i
\(169\) 6.43680 11.2946i 0.495138 0.868814i
\(170\) 9.52479 5.49914i 0.730518 0.421765i
\(171\) 1.06519 2.24283i 0.0814574 0.171513i
\(172\) 9.40073 0.716799
\(173\) −4.02553 −0.306055 −0.153028 0.988222i \(-0.548902\pi\)
−0.153028 + 0.988222i \(0.548902\pi\)
\(174\) 12.8757 8.13894i 0.976103 0.617012i
\(175\) 4.22495 10.7261i 0.319376 0.810819i
\(176\) 1.13290 1.96224i 0.0853957 0.147910i
\(177\) 16.5531 + 8.69141i 1.24421 + 0.653286i
\(178\) −7.22886 + 4.17358i −0.541826 + 0.312823i
\(179\) 12.6376i 0.944577i −0.881444 0.472289i \(-0.843428\pi\)
0.881444 0.472289i \(-0.156572\pi\)
\(180\) −7.55425 + 5.21043i −0.563061 + 0.388363i
\(181\) 1.79097i 0.133122i 0.997782 + 0.0665610i \(0.0212027\pi\)
−0.997782 + 0.0665610i \(0.978797\pi\)
\(182\) −1.43659 9.43060i −0.106487 0.699043i
\(183\) −15.4612 + 9.77332i −1.14293 + 0.722465i
\(184\) −4.00182 2.31045i −0.295018 0.170329i
\(185\) −4.11739 −0.302717
\(186\) −7.70048 + 14.6658i −0.564626 + 1.07535i
\(187\) −4.07327 7.05510i −0.297867 0.515920i
\(188\) 2.73905 + 1.58139i 0.199765 + 0.115335i
\(189\) −13.2545 + 3.64939i −0.964123 + 0.265454i
\(190\) 2.53173i 0.183671i
\(191\) 9.76173i 0.706334i 0.935560 + 0.353167i \(0.114895\pi\)
−0.935560 + 0.353167i \(0.885105\pi\)
\(192\) 0.925467 + 1.46407i 0.0667898 + 0.105660i
\(193\) 10.4318i 0.750899i 0.926843 + 0.375450i \(0.122512\pi\)
−0.926843 + 0.375450i \(0.877488\pi\)
\(194\) −7.99888 13.8545i −0.574286 0.994693i
\(195\) 19.0856 0.819367i 1.36675 0.0586761i
\(196\) −5.11962 4.77383i −0.365687 0.340988i
\(197\) −3.77403 6.53681i −0.268888 0.465728i 0.699687 0.714450i \(-0.253323\pi\)
−0.968575 + 0.248721i \(0.919990\pi\)
\(198\) 3.85942 + 5.59551i 0.274277 + 0.397655i
\(199\) −10.5985 + 6.11903i −0.751306 + 0.433767i −0.826166 0.563427i \(-0.809483\pi\)
0.0748595 + 0.997194i \(0.476149\pi\)
\(200\) 2.17863 3.77350i 0.154052 0.266826i
\(201\) 5.94723 3.75935i 0.419485 0.265164i
\(202\) −3.56996 + 6.18335i −0.251181 + 0.435059i
\(203\) −18.2094 + 14.4849i −1.27805 + 1.01664i
\(204\) 6.22246 0.249669i 0.435659 0.0174803i
\(205\) −12.4267 + 21.5237i −0.867918 + 1.50328i
\(206\) 1.77412i 0.123609i
\(207\) 11.4115 7.87095i 0.793157 0.547069i
\(208\) −0.0101040 3.60554i −0.000700588 0.249999i
\(209\) 1.87527 0.129715
\(210\) 10.6117 9.15934i 0.732279 0.632054i
\(211\) −3.36247 5.82397i −0.231482 0.400939i 0.726762 0.686889i \(-0.241024\pi\)
−0.958244 + 0.285950i \(0.907691\pi\)
\(212\) 1.66882i 0.114615i
\(213\) −13.1975 + 0.529535i −0.904278 + 0.0362831i
\(214\) −5.44777 + 3.14527i −0.372402 + 0.215006i
\(215\) 28.7565i 1.96118i
\(216\) −5.15859 + 0.623627i −0.350998 + 0.0424325i
\(217\) 9.27313 23.5422i 0.629501 1.59815i
\(218\) 9.02357 5.20976i 0.611154 0.352850i
\(219\) −19.8745 + 0.797443i −1.34300 + 0.0538862i
\(220\) −6.00243 3.46551i −0.404684 0.233644i
\(221\) −11.2448 6.45026i −0.756410 0.433892i
\(222\) −2.06412 1.08379i −0.138535 0.0727395i
\(223\) −6.23733 10.8034i −0.417683 0.723448i 0.578023 0.816020i \(-0.303824\pi\)
−0.995706 + 0.0925727i \(0.970491\pi\)
\(224\) −1.64705 2.07056i −0.110048 0.138345i
\(225\) 7.42186 + 10.7604i 0.494791 + 0.717363i
\(226\) −7.25521 + 4.18880i −0.482609 + 0.278635i
\(227\) 18.5738 10.7236i 1.23278 0.711748i 0.265175 0.964200i \(-0.414570\pi\)
0.967609 + 0.252452i \(0.0812369\pi\)
\(228\) −0.666410 + 1.26920i −0.0441341 + 0.0840548i
\(229\) −11.7463 20.3453i −0.776220 1.34445i −0.934106 0.356995i \(-0.883801\pi\)
0.157886 0.987457i \(-0.449532\pi\)
\(230\) −7.06760 + 12.2414i −0.466024 + 0.807176i
\(231\) −6.78441 7.86022i −0.446381 0.517164i
\(232\) −7.61619 + 4.39721i −0.500028 + 0.288691i
\(233\) −11.1727 + 6.45055i −0.731947 + 0.422590i −0.819134 0.573602i \(-0.805545\pi\)
0.0871872 + 0.996192i \(0.472212\pi\)
\(234\) 9.78366 + 4.61303i 0.639578 + 0.301563i
\(235\) 4.83741 8.37864i 0.315558 0.546562i
\(236\) −9.34806 5.39710i −0.608507 0.351322i
\(237\) −4.69450 + 8.94083i −0.304940 + 0.580769i
\(238\) −9.40810 + 1.40619i −0.609836 + 0.0911500i
\(239\) −23.0402 −1.49035 −0.745175 0.666869i \(-0.767634\pi\)
−0.745175 + 0.666869i \(0.767634\pi\)
\(240\) 4.47855 2.83097i 0.289089 0.182738i
\(241\) −13.8893 24.0570i −0.894688 1.54964i −0.834191 0.551476i \(-0.814065\pi\)
−0.0604968 0.998168i \(-0.519269\pi\)
\(242\) 2.93307 5.08022i 0.188545 0.326569i
\(243\) 4.94926 14.7819i 0.317495 0.948260i
\(244\) 9.14560 5.28021i 0.585487 0.338031i
\(245\) −14.6030 + 15.6607i −0.932951 + 1.00053i
\(246\) −11.8953 + 7.51920i −0.758414 + 0.479407i
\(247\) 2.58012 1.49929i 0.164169 0.0953974i
\(248\) 4.78177 8.28226i 0.303642 0.525924i
\(249\) −5.55225 + 3.50967i −0.351860 + 0.222417i
\(250\) 1.70271 + 0.983063i 0.107689 + 0.0621743i
\(251\) −6.68358 + 11.5763i −0.421864 + 0.730690i −0.996122 0.0879848i \(-0.971957\pi\)
0.574258 + 0.818674i \(0.305291\pi\)
\(252\) 7.73081 1.79848i 0.486995 0.113294i
\(253\) 9.06735 + 5.23504i 0.570059 + 0.329124i
\(254\) 0.0858580 0.00538721
\(255\) −0.763729 19.0343i −0.0478265 1.19197i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −1.35563 + 2.34802i −0.0845618 + 0.146465i −0.905204 0.424976i \(-0.860282\pi\)
0.820643 + 0.571442i \(0.193616\pi\)
\(258\) 7.56939 14.4161i 0.471249 0.897510i
\(259\) 3.31343 + 1.30514i 0.205886 + 0.0810972i
\(260\) −11.0292 + 0.0309078i −0.684002 + 0.00191682i
\(261\) −2.11380 26.2985i −0.130841 1.62783i
\(262\) 2.06083 0.127318
\(263\) 14.7063i 0.906832i −0.891299 0.453416i \(-0.850205\pi\)
0.891299 0.453416i \(-0.149795\pi\)
\(264\) −2.09693 3.31730i −0.129057 0.204166i
\(265\) −5.10485 −0.313588
\(266\) 0.802510 2.03738i 0.0492050 0.124920i
\(267\) 0.579633 + 14.4461i 0.0354730 + 0.884086i
\(268\) −3.51789 + 2.03106i −0.214889 + 0.124066i
\(269\) 3.75936 + 6.51140i 0.229212 + 0.397007i 0.957575 0.288185i \(-0.0930517\pi\)
−0.728363 + 0.685192i \(0.759718\pi\)
\(270\) 1.90765 + 15.7799i 0.116096 + 0.960337i
\(271\) −0.0123926 + 0.0214646i −0.000752797 + 0.00130388i −0.866402 0.499348i \(-0.833573\pi\)
0.865649 + 0.500652i \(0.166906\pi\)
\(272\) −3.59543 −0.218005
\(273\) −15.6187 5.39041i −0.945286 0.326243i
\(274\) −8.97465 −0.542178
\(275\) −4.93635 + 8.55000i −0.297673 + 0.515585i
\(276\) −6.76535 + 4.27650i −0.407226 + 0.257415i
\(277\) −3.09062 5.35311i −0.185697 0.321637i 0.758114 0.652122i \(-0.226121\pi\)
−0.943811 + 0.330485i \(0.892788\pi\)
\(278\) −18.0789 + 10.4379i −1.08430 + 0.626021i
\(279\) 16.2899 + 23.6176i 0.975250 + 1.41395i
\(280\) −6.33377 + 5.03827i −0.378515 + 0.301094i
\(281\) 29.5748 1.76428 0.882142 0.470984i \(-0.156101\pi\)
0.882142 + 0.470984i \(0.156101\pi\)
\(282\) 4.63054 2.92704i 0.275745 0.174303i
\(283\) 21.2029i 1.26038i 0.776439 + 0.630192i \(0.217024\pi\)
−0.776439 + 0.630192i \(0.782976\pi\)
\(284\) 7.62571 0.452503
\(285\) 3.88244 + 2.03852i 0.229976 + 0.120752i
\(286\) 0.0228937 + 8.16944i 0.00135374 + 0.483069i
\(287\) 16.8228 13.3819i 0.993021 0.789909i
\(288\) 2.99036 0.240356i 0.176208 0.0141631i
\(289\) 2.03645 3.52724i 0.119791 0.207485i
\(290\) 13.4509 + 23.2977i 0.789865 + 1.36809i
\(291\) −27.6867 + 1.11090i −1.62302 + 0.0651219i
\(292\) 11.4838 0.672038
\(293\) −10.1781 5.87631i −0.594609 0.343298i 0.172309 0.985043i \(-0.444877\pi\)
−0.766918 + 0.641745i \(0.778211\pi\)
\(294\) −11.4430 + 4.00716i −0.667370 + 0.233702i
\(295\) −16.5095 + 28.5954i −0.961223 + 1.66489i
\(296\) 1.16568 + 0.673004i 0.0677536 + 0.0391176i
\(297\) 11.6884 1.41302i 0.678228 0.0819916i
\(298\) 0.851501 1.47484i 0.0493261 0.0854353i
\(299\) 16.6609 0.0466898i 0.963522 0.00270014i
\(300\) −4.03250 6.37935i −0.232816 0.368312i
\(301\) −9.11527 + 23.1415i −0.525395 + 1.33385i
\(302\) −19.2492 + 11.1135i −1.10767 + 0.639512i
\(303\) 6.60775 + 10.4534i 0.379605 + 0.600530i
\(304\) 0.413821 0.716759i 0.0237342 0.0411089i
\(305\) −16.1520 27.9761i −0.924860 1.60190i
\(306\) 4.62740 9.74326i 0.264531 0.556985i
\(307\) 12.2431 0.698749 0.349375 0.936983i \(-0.386394\pi\)
0.349375 + 0.936983i \(0.386394\pi\)
\(308\) 3.73189 + 4.69149i 0.212644 + 0.267322i
\(309\) 2.72064 + 1.42851i 0.154772 + 0.0812651i
\(310\) −25.3351 14.6272i −1.43894 0.830772i
\(311\) 4.81504 8.33990i 0.273036 0.472912i −0.696602 0.717458i \(-0.745306\pi\)
0.969638 + 0.244546i \(0.0786388\pi\)
\(312\) −5.53728 2.88765i −0.313487 0.163481i
\(313\) 12.0523 6.95841i 0.681237 0.393312i −0.119084 0.992884i \(-0.537996\pi\)
0.800321 + 0.599572i \(0.204662\pi\)
\(314\) −10.2785 + 5.93431i −0.580051 + 0.334893i
\(315\) −5.50150 23.6483i −0.309974 1.33243i
\(316\) 2.91514 5.04917i 0.163990 0.284038i
\(317\) −11.8204 20.4735i −0.663900 1.14991i −0.979582 0.201044i \(-0.935567\pi\)
0.315682 0.948865i \(-0.397767\pi\)
\(318\) −2.55915 1.34372i −0.143510 0.0753519i
\(319\) 17.2568 9.96322i 0.966195 0.557833i
\(320\) −2.64914 + 1.52948i −0.148091 + 0.0855006i
\(321\) 0.436820 + 10.8868i 0.0243809 + 0.607641i
\(322\) 9.56788 7.61087i 0.533197 0.424137i
\(323\) −1.48786 2.57705i −0.0827869 0.143391i
\(324\) −3.19732 + 8.41292i −0.177629 + 0.467384i
\(325\) 0.0440258 + 15.7103i 0.00244211 + 0.871448i
\(326\) −8.32458 4.80620i −0.461056 0.266191i
\(327\) −0.723540 18.0326i −0.0400118 0.997207i
\(328\) 7.03626 4.06239i 0.388512 0.224308i
\(329\) −6.54873 + 5.20925i −0.361043 + 0.287195i
\(330\) −10.1475 + 6.41442i −0.558602 + 0.353102i
\(331\) 15.0644i 0.828014i 0.910274 + 0.414007i \(0.135871\pi\)
−0.910274 + 0.414007i \(0.864129\pi\)
\(332\) 3.28425 1.89616i 0.180247 0.104066i
\(333\) −3.32403 + 2.29270i −0.182156 + 0.125639i
\(334\) 24.9286i 1.36403i
\(335\) 6.21292 + 10.7611i 0.339448 + 0.587942i
\(336\) −4.50143 + 0.858576i −0.245573 + 0.0468391i
\(337\) −9.93070 −0.540960 −0.270480 0.962726i \(-0.587182\pi\)
−0.270480 + 0.962726i \(0.587182\pi\)
\(338\) 6.56300 + 11.2217i 0.356980 + 0.610381i
\(339\) 0.581746 + 14.4988i 0.0315961 + 0.787464i
\(340\) 10.9983i 0.596465i
\(341\) −10.8345 + 18.7660i −0.586724 + 1.01624i
\(342\) 1.40975 + 2.04390i 0.0762305 + 0.110521i
\(343\) 16.7158 7.97393i 0.902566 0.430552i
\(344\) −4.70036 + 8.14127i −0.253427 + 0.438948i
\(345\) 13.0816 + 20.6950i 0.704292 + 1.11418i
\(346\) 2.01276 3.48621i 0.108207 0.187420i
\(347\) 2.91766 1.68451i 0.156628 0.0904293i −0.419637 0.907692i \(-0.637843\pi\)
0.576265 + 0.817263i \(0.304509\pi\)
\(348\) 0.610691 + 15.2201i 0.0327365 + 0.815885i
\(349\) −15.4110 26.6927i −0.824935 1.42883i −0.901969 0.431800i \(-0.857879\pi\)
0.0770347 0.997028i \(-0.475455\pi\)
\(350\) 7.17662 + 9.02197i 0.383607 + 0.482245i
\(351\) 14.9519 11.2890i 0.798072 0.602563i
\(352\) 1.13290 + 1.96224i 0.0603839 + 0.104588i
\(353\) 19.6388i 1.04527i 0.852557 + 0.522634i \(0.175050\pi\)
−0.852557 + 0.522634i \(0.824950\pi\)
\(354\) −15.8035 + 9.98968i −0.839947 + 0.530945i
\(355\) 23.3268i 1.23806i
\(356\) 8.34716i 0.442399i
\(357\) −5.41890 + 15.5597i −0.286799 + 0.823507i
\(358\) 10.9445 + 6.31879i 0.578433 + 0.333958i
\(359\) −5.20022 9.00705i −0.274457 0.475374i 0.695541 0.718487i \(-0.255165\pi\)
−0.969998 + 0.243113i \(0.921831\pi\)
\(360\) −0.735241 9.14739i −0.0387506 0.482110i
\(361\) −18.3150 −0.963948
\(362\) −1.55103 0.895486i −0.0815202 0.0470657i
\(363\) −5.42891 8.58845i −0.284944 0.450777i
\(364\) 8.88543 + 3.47118i 0.465723 + 0.181939i
\(365\) 35.1285i 1.83871i
\(366\) −0.733324 18.2765i −0.0383315 0.955328i
\(367\) 22.6438i 1.18200i −0.806673 0.590998i \(-0.798734\pi\)
0.806673 0.590998i \(-0.201266\pi\)
\(368\) 4.00182 2.31045i 0.208610 0.120441i
\(369\) 1.95284 + 24.2960i 0.101661 + 1.26480i
\(370\) 2.05870 3.56576i 0.107026 0.185375i
\(371\) 4.10807 + 1.61814i 0.213280 + 0.0840097i
\(372\) −8.85073 14.0017i −0.458889 0.725955i
\(373\) 16.7805 0.868861 0.434431 0.900705i \(-0.356950\pi\)
0.434431 + 0.900705i \(0.356950\pi\)
\(374\) 8.14653 0.421247
\(375\) 2.87855 1.81958i 0.148648 0.0939629i
\(376\) −2.73905 + 1.58139i −0.141255 + 0.0815539i
\(377\) 15.7774 27.5049i 0.812575 1.41657i
\(378\) 3.46679 13.3034i 0.178312 0.684255i
\(379\) −3.91399 + 2.25974i −0.201048 + 0.116075i −0.597144 0.802134i \(-0.703698\pi\)
0.396096 + 0.918209i \(0.370365\pi\)
\(380\) −2.19254 1.26586i −0.112475 0.0649374i
\(381\) 0.0691321 0.131664i 0.00354175 0.00674537i
\(382\) −8.45391 4.88087i −0.432540 0.249727i
\(383\) 3.45864i 0.176728i −0.996088 0.0883641i \(-0.971836\pi\)
0.996088 0.0883641i \(-0.0281639\pi\)
\(384\) −1.73066 + 0.0694407i −0.0883173 + 0.00354363i
\(385\) 14.3511 11.4157i 0.731399 0.581799i
\(386\) −9.03423 5.21591i −0.459830 0.265483i
\(387\) −16.0126 23.2155i −0.813964 1.18011i
\(388\) 15.9978 0.812164
\(389\) −3.12443 1.80389i −0.158415 0.0914609i 0.418697 0.908126i \(-0.362487\pi\)
−0.577112 + 0.816665i \(0.695820\pi\)
\(390\) −8.83323 + 16.9383i −0.447288 + 0.857706i
\(391\) 16.6141i 0.840213i
\(392\) 6.69407 2.04680i 0.338102 0.103379i
\(393\) 1.65936 3.16031i 0.0837036 0.159416i
\(394\) 7.54806 0.380266
\(395\) −15.4452 8.91731i −0.777134 0.448679i
\(396\) −6.77556 + 0.544600i −0.340485 + 0.0273672i
\(397\) 30.3439 1.52292 0.761458 0.648214i \(-0.224484\pi\)
0.761458 + 0.648214i \(0.224484\pi\)
\(398\) 12.2381i 0.613439i
\(399\) −2.47818 2.87114i −0.124064 0.143737i
\(400\) 2.17863 + 3.77350i 0.108931 + 0.188675i
\(401\) −16.6091 + 28.7678i −0.829419 + 1.43660i 0.0690758 + 0.997611i \(0.477995\pi\)
−0.898495 + 0.438984i \(0.855338\pi\)
\(402\) 0.282076 + 7.03013i 0.0140687 + 0.350631i
\(403\) 0.0966302 + 34.4817i 0.00481349 + 1.71765i
\(404\) −3.56996 6.18335i −0.177612 0.307633i
\(405\) 25.7348 + 9.78047i 1.27877 + 0.485996i
\(406\) −3.43955 23.0122i −0.170702 1.14208i
\(407\) −2.64120 1.52490i −0.130919 0.0755863i
\(408\) −2.89501 + 5.51364i −0.143324 + 0.272966i
\(409\) 7.72952 + 13.3879i 0.382200 + 0.661990i 0.991376 0.131045i \(-0.0418331\pi\)
−0.609176 + 0.793035i \(0.708500\pi\)
\(410\) −12.4267 21.5237i −0.613710 1.06298i
\(411\) −7.22631 + 13.7628i −0.356448 + 0.678866i
\(412\) −1.53644 0.887062i −0.0756948 0.0437024i
\(413\) 22.3501 17.7786i 1.09978 0.874828i
\(414\) 1.11066 + 13.8182i 0.0545862 + 0.679126i
\(415\) −5.80030 10.0464i −0.284725 0.493159i
\(416\) 3.12754 + 1.79402i 0.153340 + 0.0879590i
\(417\) 1.44963 + 36.1287i 0.0709885 + 1.76923i
\(418\) −0.937637 + 1.62403i −0.0458613 + 0.0794341i
\(419\) −6.78747 11.7562i −0.331590 0.574330i 0.651234 0.758877i \(-0.274252\pi\)
−0.982824 + 0.184547i \(0.940918\pi\)
\(420\) 2.62635 + 13.7697i 0.128153 + 0.671893i
\(421\) 22.2151i 1.08270i −0.840797 0.541350i \(-0.817913\pi\)
0.840797 0.541350i \(-0.182087\pi\)
\(422\) 6.72494 0.327365
\(423\) −0.760194 9.45783i −0.0369619 0.459855i
\(424\) 1.44524 + 0.834408i 0.0701869 + 0.0405224i
\(425\) 15.6662 0.759922
\(426\) 6.14016 11.6941i 0.297492 0.566583i
\(427\) 4.13025 + 27.6333i 0.199877 + 1.33727i
\(428\) 6.29055i 0.304065i
\(429\) 12.5464 + 6.54286i 0.605745 + 0.315892i
\(430\) 24.9038 + 14.3782i 1.20097 + 0.693380i
\(431\) −8.80577 −0.424159 −0.212079 0.977252i \(-0.568024\pi\)
−0.212079 + 0.977252i \(0.568024\pi\)
\(432\) 2.03922 4.77929i 0.0981120 0.229944i
\(433\) 3.16975 + 1.83006i 0.152328 + 0.0879468i 0.574227 0.818696i \(-0.305303\pi\)
−0.421898 + 0.906643i \(0.638636\pi\)
\(434\) 15.7516 + 19.8019i 0.756102 + 0.950521i
\(435\) 46.5579 1.86808i 2.23228 0.0895677i
\(436\) 10.4195i 0.499005i
\(437\) 3.31208 + 1.91223i 0.158438 + 0.0914743i
\(438\) 9.24665 17.6106i 0.441822 0.841465i
\(439\) −15.4018 8.89222i −0.735087 0.424402i 0.0851935 0.996364i \(-0.472849\pi\)
−0.820280 + 0.571962i \(0.806182\pi\)
\(440\) 6.00243 3.46551i 0.286155 0.165212i
\(441\) −3.06879 + 20.7746i −0.146133 + 0.989265i
\(442\) 11.2085 6.51318i 0.533134 0.309801i
\(443\) −20.0861 + 11.5967i −0.954319 + 0.550976i −0.894420 0.447228i \(-0.852411\pi\)
−0.0598990 + 0.998204i \(0.519078\pi\)
\(444\) 1.97066 1.24569i 0.0935232 0.0591176i
\(445\) −25.5337 −1.21041
\(446\) 12.4747 0.590692
\(447\) −1.57607 2.49332i −0.0745456 0.117930i
\(448\) 2.61668 0.391106i 0.123627 0.0184780i
\(449\) −4.03168 + 6.98308i −0.190267 + 0.329552i −0.945339 0.326090i \(-0.894269\pi\)
0.755072 + 0.655642i \(0.227602\pi\)
\(450\) −13.0298 + 1.04729i −0.614228 + 0.0493699i
\(451\) −15.9428 + 9.20457i −0.750716 + 0.433426i
\(452\) 8.37759i 0.394049i
\(453\) 1.54346 + 38.4674i 0.0725182 + 1.80736i
\(454\) 21.4471i 1.00656i
\(455\) 10.6182 27.1802i 0.497789 1.27423i
\(456\) −0.765955 1.21173i −0.0358691 0.0567444i
\(457\) 13.3000 + 7.67875i 0.622147 + 0.359197i 0.777704 0.628630i \(-0.216384\pi\)
−0.155557 + 0.987827i \(0.549717\pi\)
\(458\) 23.4927 1.09774
\(459\) −11.2155 14.9414i −0.523494 0.697403i
\(460\) −7.06760 12.2414i −0.329528 0.570760i
\(461\) −1.90360 1.09904i −0.0886596 0.0511876i 0.455015 0.890484i \(-0.349634\pi\)
−0.543674 + 0.839296i \(0.682967\pi\)
\(462\) 10.1994 1.94536i 0.474517 0.0905065i
\(463\) 9.47072i 0.440142i 0.975484 + 0.220071i \(0.0706289\pi\)
−0.975484 + 0.220071i \(0.929371\pi\)
\(464\) 8.79442i 0.408271i
\(465\) −42.8307 + 27.0741i −1.98623 + 1.25553i
\(466\) 12.9011i 0.597632i
\(467\) 7.74149 + 13.4087i 0.358234 + 0.620479i 0.987666 0.156577i \(-0.0500458\pi\)
−0.629432 + 0.777055i \(0.716712\pi\)
\(468\) −8.88683 + 6.16638i −0.410794 + 0.285041i
\(469\) −1.58872 10.6293i −0.0733601 0.490814i
\(470\) 4.83741 + 8.37864i 0.223133 + 0.386478i
\(471\) 0.824166 + 20.5405i 0.0379756 + 0.946458i
\(472\) 9.34806 5.39710i 0.430279 0.248422i
\(473\) 10.6501 18.4465i 0.489692 0.848172i
\(474\) −5.39573 8.53597i −0.247834 0.392070i
\(475\) −1.80312 + 3.12310i −0.0827330 + 0.143298i
\(476\) 3.48625 8.85075i 0.159792 0.405673i
\(477\) −4.12122 + 2.84255i −0.188698 + 0.130151i
\(478\) 11.5201 19.9534i 0.526918 0.912649i
\(479\) 41.3112i 1.88756i 0.330577 + 0.943779i \(0.392757\pi\)
−0.330577 + 0.943779i \(0.607243\pi\)
\(480\) 0.212417 + 5.29402i 0.00969545 + 0.241638i
\(481\) −4.85308 + 0.0136001i −0.221282 + 0.000620111i
\(482\) 27.7786 1.26528
\(483\) −3.96740 20.8007i −0.180523 0.946464i
\(484\) 2.93307 + 5.08022i 0.133321 + 0.230919i
\(485\) 48.9366i 2.22210i
\(486\) 10.3269 + 11.6771i 0.468437 + 0.529686i
\(487\) −2.19492 + 1.26724i −0.0994614 + 0.0574240i −0.548906 0.835884i \(-0.684955\pi\)
0.449444 + 0.893308i \(0.351622\pi\)
\(488\) 10.5604i 0.478048i
\(489\) −14.0733 + 8.89595i −0.636415 + 0.402289i
\(490\) −6.26110 20.4769i −0.282847 0.925053i
\(491\) −22.3657 + 12.9129i −1.00935 + 0.582749i −0.911001 0.412403i \(-0.864690\pi\)
−0.0983491 + 0.995152i \(0.531356\pi\)
\(492\) −0.564190 14.0612i −0.0254357 0.633928i
\(493\) −27.3835 15.8099i −1.23329 0.712040i
\(494\) 0.00836251 + 2.98409i 0.000376247 + 0.134261i
\(495\) 1.66591 + 20.7262i 0.0748772 + 0.931573i
\(496\) 4.78177 + 8.28226i 0.214708 + 0.371885i
\(497\) −7.39415 + 18.7720i −0.331673 + 0.842038i
\(498\) −0.263342 6.56323i −0.0118006 0.294105i
\(499\) 24.8498 14.3470i 1.11243 0.642261i 0.172972 0.984927i \(-0.444663\pi\)
0.939458 + 0.342665i \(0.111330\pi\)
\(500\) −1.70271 + 0.983063i −0.0761477 + 0.0439639i
\(501\) 38.2284 + 20.0723i 1.70792 + 0.896764i
\(502\) −6.68358 11.5763i −0.298303 0.516676i
\(503\) −14.9785 + 25.9435i −0.667858 + 1.15676i 0.310644 + 0.950526i \(0.399455\pi\)
−0.978502 + 0.206238i \(0.933878\pi\)
\(504\) −2.30787 + 7.59432i −0.102801 + 0.338278i
\(505\) −18.9146 + 10.9204i −0.841690 + 0.485950i
\(506\) −9.06735 + 5.23504i −0.403093 + 0.232726i
\(507\) 22.4931 1.02881i 0.998956 0.0456912i
\(508\) −0.0429290 + 0.0743552i −0.00190467 + 0.00329898i
\(509\) −11.2118 6.47312i −0.496953 0.286916i 0.230501 0.973072i \(-0.425963\pi\)
−0.727454 + 0.686156i \(0.759297\pi\)
\(510\) 16.8660 + 8.85572i 0.746840 + 0.392138i
\(511\) −11.1351 + 28.2693i −0.492587 + 1.25056i
\(512\) 1.00000 0.0441942
\(513\) 4.26947 0.516140i 0.188502 0.0227881i
\(514\) −1.35563 2.34802i −0.0597942 0.103567i
\(515\) −2.71349 + 4.69990i −0.119571 + 0.207102i
\(516\) 8.70006 + 13.7634i 0.382999 + 0.605898i
\(517\) 6.20614 3.58312i 0.272946 0.157585i
\(518\) −2.78699 + 2.21694i −0.122453 + 0.0974069i
\(519\) −3.72549 5.89367i −0.163531 0.258703i
\(520\) 5.48784 9.56703i 0.240658 0.419542i
\(521\) 19.0122 32.9301i 0.832940 1.44269i −0.0627562 0.998029i \(-0.519989\pi\)
0.895696 0.444666i \(-0.146678\pi\)
\(522\) 23.8320 + 11.3186i 1.04310 + 0.495403i
\(523\) 29.0753 + 16.7866i 1.27137 + 0.734028i 0.975247 0.221120i \(-0.0709714\pi\)
0.296127 + 0.955148i \(0.404305\pi\)
\(524\) −1.03041 + 1.78473i −0.0450138 + 0.0779662i
\(525\) 19.6139 3.74104i 0.856020 0.163272i
\(526\) 12.7361 + 7.35317i 0.555319 + 0.320614i
\(527\) 34.3850 1.49783
\(528\) 3.92133 0.157339i 0.170654 0.00684731i
\(529\) −0.823599 1.42651i −0.0358086 0.0620224i
\(530\) 2.55242 4.42093i 0.110870 0.192033i
\(531\) 2.59446 + 32.2785i 0.112590 + 1.40077i
\(532\) 1.36317 + 1.71368i 0.0591008 + 0.0742976i
\(533\) −14.5760 + 25.4105i −0.631356 + 1.10065i
\(534\) −12.8005 6.72107i −0.553932 0.290849i
\(535\) −19.2426 −0.831928
\(536\) 4.06211i 0.175456i
\(537\) 18.5023 11.6957i 0.798435 0.504705i
\(538\) −7.51872 −0.324155
\(539\) −15.1675 + 4.63765i −0.653309 + 0.199758i
\(540\) −14.6197 6.23790i −0.629130 0.268436i
\(541\) −1.91892 + 1.10789i −0.0825009 + 0.0476319i −0.540683 0.841226i \(-0.681834\pi\)
0.458182 + 0.888858i \(0.348501\pi\)
\(542\) −0.0123926 0.0214646i −0.000532308 0.000921984i
\(543\) −2.62212 + 1.65749i −0.112526 + 0.0711295i
\(544\) 1.79771 3.11373i 0.0770763 0.133500i
\(545\) 31.8730 1.36529
\(546\) 12.4776 10.8310i 0.533991 0.463523i
\(547\) 35.2174 1.50579 0.752895 0.658141i \(-0.228657\pi\)
0.752895 + 0.658141i \(0.228657\pi\)
\(548\) 4.48732 7.77227i 0.191689 0.332015i
\(549\) −28.6177 13.5915i −1.22138 0.580072i
\(550\) −4.93635 8.55000i −0.210487 0.364573i
\(551\) 6.30348 3.63931i 0.268537 0.155040i
\(552\) −0.320879 7.99721i −0.0136575 0.340384i
\(553\) 9.60277 + 12.0720i 0.408351 + 0.513352i
\(554\) 6.18124 0.262616
\(555\) −3.81051 6.02816i −0.161747 0.255881i
\(556\) 20.8757i 0.885328i
\(557\) −8.14764 −0.345227 −0.172613 0.984990i \(-0.555221\pi\)
−0.172613 + 0.984990i \(0.555221\pi\)
\(558\) −28.5984 + 2.29866i −1.21067 + 0.0973099i
\(559\) −0.0949852 33.8947i −0.00401745 1.43359i
\(560\) −1.19638 8.00434i −0.0505563 0.338245i
\(561\) 6.55952 12.4928i 0.276943 0.527447i
\(562\) −14.7874 + 25.6125i −0.623769 + 1.08040i
\(563\) −10.9475 18.9616i −0.461380 0.799134i 0.537650 0.843168i \(-0.319312\pi\)
−0.999030 + 0.0440340i \(0.985979\pi\)
\(564\) 0.219626 + 5.47369i 0.00924790 + 0.230484i
\(565\) −25.6268 −1.07813
\(566\) −18.3623 10.6015i −0.771824 0.445613i
\(567\) −17.6096 16.0282i −0.739533 0.673120i
\(568\) −3.81286 + 6.60406i −0.159984 + 0.277100i
\(569\) 34.1087 + 19.6927i 1.42991 + 0.825560i 0.997113 0.0759301i \(-0.0241926\pi\)
0.432799 + 0.901490i \(0.357526\pi\)
\(570\) −3.70663 + 2.34303i −0.155254 + 0.0981386i
\(571\) −10.0406 + 17.3909i −0.420187 + 0.727786i −0.995958 0.0898257i \(-0.971369\pi\)
0.575770 + 0.817612i \(0.304702\pi\)
\(572\) −7.08639 4.06489i −0.296297 0.169962i
\(573\) −14.2919 + 9.03416i −0.597053 + 0.377407i
\(574\) 3.17765 + 21.2600i 0.132632 + 0.887374i
\(575\) −17.4370 + 10.0672i −0.727172 + 0.419833i
\(576\) −1.28702 + 2.70990i −0.0536260 + 0.112913i
\(577\) −10.1331 + 17.5510i −0.421847 + 0.730660i −0.996120 0.0880038i \(-0.971951\pi\)
0.574274 + 0.818663i \(0.305285\pi\)
\(578\) 2.03645 + 3.52724i 0.0847053 + 0.146714i
\(579\) −15.2730 + 9.65431i −0.634723 + 0.401219i
\(580\) −26.9018 −1.11704
\(581\) 1.48320 + 9.92333i 0.0615337 + 0.411689i
\(582\) 12.8813 24.5328i 0.533946 1.01692i
\(583\) −3.27462 1.89060i −0.135621 0.0783009i
\(584\) −5.74190 + 9.94525i −0.237601 + 0.411538i
\(585\) 18.8627 + 27.1845i 0.779878 + 1.12394i
\(586\) 10.1781 5.87631i 0.420452 0.242748i
\(587\) 5.90203 3.40754i 0.243603 0.140644i −0.373229 0.927739i \(-0.621749\pi\)
0.616831 + 0.787095i \(0.288416\pi\)
\(588\) 2.25121 11.9135i 0.0928383 0.491305i
\(589\) −3.95759 + 6.85474i −0.163070 + 0.282445i
\(590\) −16.5095 28.5954i −0.679687 1.17725i
\(591\) 6.07763 11.5751i 0.250000 0.476134i
\(592\) −1.16568 + 0.673004i −0.0479090 + 0.0276603i
\(593\) −30.3893 + 17.5453i −1.24794 + 0.720498i −0.970698 0.240302i \(-0.922754\pi\)
−0.277242 + 0.960800i \(0.589420\pi\)
\(594\) −4.62047 + 10.8289i −0.189580 + 0.444316i
\(595\) −27.0741 10.6643i −1.10993 0.437194i
\(596\) 0.851501 + 1.47484i 0.0348788 + 0.0604119i
\(597\) −18.7673 9.85399i −0.768093 0.403297i
\(598\) −8.29000 + 14.4521i −0.339003 + 0.590989i
\(599\) 3.02800 + 1.74821i 0.123721 + 0.0714301i 0.560583 0.828098i \(-0.310577\pi\)
−0.436863 + 0.899528i \(0.643910\pi\)
\(600\) 7.54092 0.302571i 0.307857 0.0123524i
\(601\) 30.2974 17.4922i 1.23586 0.713521i 0.267611 0.963527i \(-0.413766\pi\)
0.968244 + 0.250006i \(0.0804325\pi\)
\(602\) −15.4835 19.4648i −0.631059 0.793325i
\(603\) 11.0079 + 5.22803i 0.448277 + 0.212902i
\(604\) 22.2271i 0.904406i
\(605\) 15.5402 8.97214i 0.631799 0.364769i
\(606\) −12.3568 + 0.495801i −0.501959 + 0.0201405i
\(607\) 17.5126i 0.710815i 0.934711 + 0.355408i \(0.115658\pi\)
−0.934711 + 0.355408i \(0.884342\pi\)
\(608\) 0.413821 + 0.716759i 0.0167826 + 0.0290684i
\(609\) −38.0591 13.2546i −1.54223 0.537105i
\(610\) 32.3040 1.30795
\(611\) 5.67408 9.89171i 0.229549 0.400176i
\(612\) 6.12421 + 8.87907i 0.247556 + 0.358915i
\(613\) 13.3294i 0.538370i −0.963089 0.269185i \(-0.913246\pi\)
0.963089 0.269185i \(-0.0867543\pi\)
\(614\) −6.12154 + 10.6028i −0.247045 + 0.427895i
\(615\) −43.0127 + 1.72584i −1.73444 + 0.0695925i
\(616\) −5.92889 + 0.886170i −0.238882 + 0.0357048i
\(617\) 16.4579 28.5059i 0.662569 1.14760i −0.317369 0.948302i \(-0.602799\pi\)
0.979938 0.199301i \(-0.0638673\pi\)
\(618\) −2.59745 + 1.64189i −0.104485 + 0.0660466i
\(619\) −3.67239 + 6.36076i −0.147606 + 0.255661i −0.930342 0.366693i \(-0.880490\pi\)
0.782736 + 0.622353i \(0.213823\pi\)
\(620\) 25.3351 14.6272i 1.01748 0.587444i
\(621\) 22.0847 + 9.42305i 0.886227 + 0.378134i
\(622\) 4.81504 + 8.33990i 0.193066 + 0.334399i
\(623\) 20.5479 + 8.09369i 0.823236 + 0.324267i
\(624\) 5.26942 3.35160i 0.210946 0.134171i
\(625\) 13.9003 + 24.0760i 0.556012 + 0.963041i
\(626\) 13.9168i 0.556228i
\(627\) 1.73550 + 2.74554i 0.0693093 + 0.109646i
\(628\) 11.8686i 0.473610i
\(629\) 4.83947i 0.192962i
\(630\) 23.2308 + 7.05970i 0.925535 + 0.281265i
\(631\) −23.3905 13.5045i −0.931159 0.537605i −0.0439813 0.999032i \(-0.514004\pi\)
−0.887178 + 0.461427i \(0.847338\pi\)
\(632\) 2.91514 + 5.04917i 0.115958 + 0.200845i
\(633\) 5.41487 10.3128i 0.215222 0.409897i
\(634\) 23.6408 0.938897
\(635\) 0.227450 + 0.131318i 0.00902607 + 0.00521120i
\(636\) 2.44327 1.54443i 0.0968819 0.0612408i
\(637\) −17.1605 + 18.5072i −0.679924 + 0.733282i
\(638\) 19.9264i 0.788895i
\(639\) −12.9891 18.8320i −0.513842 0.744984i
\(640\) 3.05896i 0.120916i
\(641\) 17.9909 10.3870i 0.710597 0.410263i −0.100685 0.994918i \(-0.532103\pi\)
0.811282 + 0.584655i \(0.198770\pi\)
\(642\) −9.64664 5.06510i −0.380723 0.199903i
\(643\) −0.127258 + 0.220417i −0.00501857 + 0.00869242i −0.868524 0.495647i \(-0.834931\pi\)
0.863505 + 0.504340i \(0.168264\pi\)
\(644\) 1.80727 + 12.0915i 0.0712163 + 0.476470i
\(645\) 42.1016 26.6132i 1.65775 1.04789i
\(646\) 2.97572 0.117078
\(647\) 24.4315 0.960502 0.480251 0.877131i \(-0.340546\pi\)
0.480251 + 0.877131i \(0.340546\pi\)
\(648\) −5.68714 6.97541i −0.223412 0.274020i
\(649\) −21.1809 + 12.2288i −0.831422 + 0.480022i
\(650\) −13.6275 7.81700i −0.534514 0.306608i
\(651\) 43.0495 8.21102i 1.68724 0.321815i
\(652\) 8.32458 4.80620i 0.326016 0.188225i
\(653\) 0.677915 + 0.391394i 0.0265289 + 0.0153164i 0.513206 0.858266i \(-0.328458\pi\)
−0.486677 + 0.873582i \(0.661791\pi\)
\(654\) 15.9785 + 8.38972i 0.624809 + 0.328064i
\(655\) 5.45942 + 3.15200i 0.213317 + 0.123159i
\(656\) 8.12477i 0.317219i
\(657\) −19.5607 28.3597i −0.763136 1.10642i
\(658\) −1.23698 8.27599i −0.0482226 0.322632i
\(659\) 37.5123 + 21.6577i 1.46127 + 0.843666i 0.999070 0.0431091i \(-0.0137263\pi\)
0.462202 + 0.886775i \(0.347060\pi\)
\(660\) −0.481295 11.9952i −0.0187344 0.466913i
\(661\) 13.0259 0.506648 0.253324 0.967382i \(-0.418476\pi\)
0.253324 + 0.967382i \(0.418476\pi\)
\(662\) −13.0461 7.53219i −0.507053 0.292747i
\(663\) −0.963063 22.4328i −0.0374023 0.871217i
\(664\) 3.79233i 0.147171i
\(665\) 5.24209 4.16988i 0.203280 0.161701i
\(666\) −0.323522 4.02504i −0.0125362 0.155967i
\(667\) 40.6382 1.57352
\(668\) −21.5888 12.4643i −0.835296 0.482258i
\(669\) 10.0445 19.1301i 0.388343 0.739612i
\(670\) −12.4258 −0.480052
\(671\) 23.9279i 0.923725i
\(672\) 1.50717 4.32764i 0.0581402 0.166942i
\(673\) −16.1195 27.9199i −0.621363 1.07623i −0.989232 0.146355i \(-0.953246\pi\)
0.367869 0.929877i \(-0.380087\pi\)
\(674\) 4.96535 8.60024i 0.191258 0.331269i
\(675\) −8.88541 + 20.8246i −0.341999 + 0.801539i
\(676\) −12.9998 + 0.0728609i −0.499992 + 0.00280234i
\(677\) 12.3401 + 21.3737i 0.474268 + 0.821457i 0.999566 0.0294618i \(-0.00937935\pi\)
−0.525298 + 0.850919i \(0.676046\pi\)
\(678\) −12.8472 6.74557i −0.493392 0.259062i
\(679\) −15.5120 + 39.3812i −0.595295 + 1.51131i
\(680\) −9.52479 5.49914i −0.365259 0.210882i
\(681\) 32.8895 + 17.2691i 1.26033 + 0.661752i
\(682\) −10.8345 18.7660i −0.414876 0.718587i
\(683\) 8.12183 + 14.0674i 0.310773 + 0.538275i 0.978530 0.206105i \(-0.0660787\pi\)
−0.667757 + 0.744379i \(0.732745\pi\)
\(684\) −2.47494 + 0.198929i −0.0946318 + 0.00760624i
\(685\) −23.7751 13.7266i −0.908400 0.524465i
\(686\) −1.45225 + 18.4632i −0.0554472 + 0.704930i
\(687\) 18.9161 36.0264i 0.721694 1.37449i
\(688\) −4.70036 8.14127i −0.179200 0.310383i
\(689\) −6.01698 + 0.0168618i −0.229229 + 0.000642382i
\(690\) −24.4632 + 0.981558i −0.931298 + 0.0373673i
\(691\) −8.07718 + 13.9901i −0.307271 + 0.532208i −0.977764 0.209707i \(-0.932749\pi\)
0.670494 + 0.741915i \(0.266082\pi\)
\(692\) 2.01276 + 3.48621i 0.0765138 + 0.132526i
\(693\) 5.22919 17.2072i 0.198640 0.653649i
\(694\) 3.36902i 0.127886i
\(695\) −63.8581 −2.42227
\(696\) −13.4864 7.08120i −0.511200 0.268412i
\(697\) 25.2984 + 14.6060i 0.958243 + 0.553242i
\(698\) 30.8221 1.16663
\(699\) −19.7840 10.3879i −0.748301 0.392905i
\(700\) −11.4016 + 1.70415i −0.430939 + 0.0644108i
\(701\) 36.9386i 1.39515i −0.716510 0.697577i \(-0.754262\pi\)
0.716510 0.697577i \(-0.245738\pi\)
\(702\) 2.30063 + 18.5932i 0.0868318 + 0.701755i
\(703\) −0.964763 0.557006i −0.0363867 0.0210079i
\(704\) −2.26580 −0.0853957
\(705\) 16.7438 0.671827i 0.630608 0.0253025i
\(706\) −17.0077 9.81940i −0.640093 0.369558i
\(707\) 18.6829 2.79247i 0.702643 0.105021i
\(708\) −0.749558 18.6811i −0.0281701 0.702078i
\(709\) 2.69201i 0.101100i −0.998722 0.0505502i \(-0.983902\pi\)
0.998722 0.0505502i \(-0.0160975\pi\)
\(710\) 20.2016 + 11.6634i 0.758152 + 0.437719i
\(711\) −17.4346 + 1.40135i −0.653850 + 0.0525546i
\(712\) 7.22886 + 4.17358i 0.270913 + 0.156412i
\(713\) −38.2716 + 22.0961i −1.43328 + 0.827506i
\(714\) −10.7656 12.4728i −0.402894 0.466781i
\(715\) −12.4344 + 21.6770i −0.465019 + 0.810674i
\(716\) −10.9445 + 6.31879i −0.409014 + 0.236144i
\(717\) −21.3230 33.7326i −0.796321 1.25977i
\(718\) 10.4004 0.388141
\(719\) 19.2501 0.717908 0.358954 0.933355i \(-0.383133\pi\)
0.358954 + 0.933355i \(0.383133\pi\)
\(720\) 8.28949 + 3.93696i 0.308931 + 0.146722i
\(721\) 3.67343 2.92207i 0.136806 0.108824i
\(722\) 9.15750 15.8613i 0.340807 0.590295i
\(723\) 22.3671 42.5988i 0.831841 1.58427i
\(724\) 1.55103 0.895486i 0.0576435 0.0332805i
\(725\) 38.3196i 1.42315i
\(726\) 10.1523 0.407349i 0.376786 0.0151181i
\(727\) 29.4029i 1.09049i 0.838276 + 0.545246i \(0.183564\pi\)
−0.838276 + 0.545246i \(0.816436\pi\)
\(728\) −7.44885 + 5.95942i −0.276073 + 0.220871i
\(729\) 26.2222 6.43408i 0.971192 0.238299i
\(730\) 30.4222 + 17.5642i 1.12597 + 0.650082i
\(731\) −33.7996 −1.25012
\(732\) 16.1946 + 8.50317i 0.598569 + 0.314286i
\(733\) 13.5812 + 23.5234i 0.501635 + 0.868857i 0.999998 + 0.00188874i \(0.000601204\pi\)
−0.498363 + 0.866968i \(0.666065\pi\)
\(734\) 19.6101 + 11.3219i 0.723821 + 0.417898i
\(735\) −36.4430 6.88637i −1.34422 0.254007i
\(736\) 4.62091i 0.170329i
\(737\) 9.20395i 0.339032i
\(738\) −22.0173 10.4568i −0.810469 0.384919i
\(739\) 18.3986i 0.676803i −0.941002 0.338402i \(-0.890114\pi\)
0.941002 0.338402i \(-0.109886\pi\)
\(740\) 2.05870 + 3.56576i 0.0756791 + 0.131080i
\(741\) 4.58288 + 2.38994i 0.168356 + 0.0877967i
\(742\) −3.45539 + 2.74862i −0.126851 + 0.100905i
\(743\) −16.4058 28.4156i −0.601869 1.04247i −0.992538 0.121937i \(-0.961089\pi\)
0.390669 0.920531i \(-0.372244\pi\)
\(744\) 16.5512 0.664099i 0.606797 0.0243470i
\(745\) 4.51149 2.60471i 0.165288 0.0954292i
\(746\) −8.39025 + 14.5323i −0.307189 + 0.532067i
\(747\) −10.2768 4.88082i −0.376010 0.178580i
\(748\) −4.07327 + 7.05510i −0.148933 + 0.257960i
\(749\) 15.4852 + 6.09953i 0.565818 + 0.222872i
\(750\) 0.136529 + 3.40269i 0.00498534 + 0.124249i
\(751\) −5.74008 + 9.94211i −0.209459 + 0.362793i −0.951544 0.307512i \(-0.900503\pi\)
0.742086 + 0.670305i \(0.233837\pi\)
\(752\) 3.16278i 0.115335i
\(753\) −23.1340 + 0.928225i −0.843049 + 0.0338264i
\(754\) 15.9313 + 27.4160i 0.580182 + 0.998433i
\(755\) −67.9918 −2.47447
\(756\) 9.78772 + 9.65404i 0.355976 + 0.351114i
\(757\) −6.81712 11.8076i −0.247772 0.429154i 0.715135 0.698986i \(-0.246365\pi\)
−0.962907 + 0.269832i \(0.913032\pi\)
\(758\) 4.51949i 0.164155i
\(759\) 0.727050 + 18.1201i 0.0263902 + 0.657719i
\(760\) 2.19254 1.26586i 0.0795317 0.0459177i
\(761\) 33.9871i 1.23203i 0.787733 + 0.616016i \(0.211254\pi\)
−0.787733 + 0.616016i \(0.788746\pi\)
\(762\) 0.0794587 + 0.125702i 0.00287848 + 0.00455372i
\(763\) −25.6494 10.1031i −0.928571 0.365758i
\(764\) 8.45391 4.88087i 0.305852 0.176584i
\(765\) 27.1608 18.7337i 0.981999 0.677319i
\(766\) 2.99527 + 1.72932i 0.108223 + 0.0624828i
\(767\) −19.3650 + 33.7593i −0.699230 + 1.21898i
\(768\) 0.805192 1.53351i 0.0290549 0.0553359i
\(769\) −19.7746 34.2506i −0.713090 1.23511i −0.963692 0.267018i \(-0.913962\pi\)
0.250602 0.968090i \(-0.419372\pi\)
\(770\) 2.71076 + 18.1363i 0.0976891 + 0.653586i
\(771\) −4.69226 + 0.188272i −0.168988 + 0.00678044i
\(772\) 9.03423 5.21591i 0.325149 0.187725i
\(773\) 7.00876 4.04651i 0.252088 0.145543i −0.368632 0.929575i \(-0.620174\pi\)
0.620720 + 0.784032i \(0.286840\pi\)
\(774\) 28.1115 2.25952i 1.01045 0.0812169i