Properties

Label 546.2.bi.f.257.2
Level $546$
Weight $2$
Character 546.257
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bi (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 257.2
Character \(\chi\) \(=\) 546.257
Dual form 546.2.bi.f.17.2

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-1.66986 + 0.459961i) q^{3} +1.00000 q^{4} +(0.567570 + 0.327687i) q^{5} +(-1.66986 + 0.459961i) q^{6} +(-2.37289 - 1.17020i) q^{7} +1.00000 q^{8} +(2.57687 - 1.53614i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(-1.66986 + 0.459961i) q^{3} +1.00000 q^{4} +(0.567570 + 0.327687i) q^{5} +(-1.66986 + 0.459961i) q^{6} +(-2.37289 - 1.17020i) q^{7} +1.00000 q^{8} +(2.57687 - 1.53614i) q^{9} +(0.567570 + 0.327687i) q^{10} +(1.54655 - 2.67870i) q^{11} +(-1.66986 + 0.459961i) q^{12} +(3.50535 + 0.844105i) q^{13} +(-2.37289 - 1.17020i) q^{14} +(-1.09849 - 0.286132i) q^{15} +1.00000 q^{16} +7.02284 q^{17} +(2.57687 - 1.53614i) q^{18} +(3.25972 + 5.64600i) q^{19} +(0.567570 + 0.327687i) q^{20} +(4.50065 + 0.862636i) q^{21} +(1.54655 - 2.67870i) q^{22} -1.43530i q^{23} +(-1.66986 + 0.459961i) q^{24} +(-2.28524 - 3.95816i) q^{25} +(3.50535 + 0.844105i) q^{26} +(-3.59645 + 3.75040i) q^{27} +(-2.37289 - 1.17020i) q^{28} +(-3.89073 + 2.24631i) q^{29} +(-1.09849 - 0.286132i) q^{30} +(2.26475 + 3.92266i) q^{31} +1.00000 q^{32} +(-1.35042 + 5.18441i) q^{33} +7.02284 q^{34} +(-0.963325 - 1.44174i) q^{35} +(2.57687 - 1.53614i) q^{36} -2.96384i q^{37} +(3.25972 + 5.64600i) q^{38} +(-6.24170 + 0.202785i) q^{39} +(0.567570 + 0.327687i) q^{40} +(7.52039 - 4.34190i) q^{41} +(4.50065 + 0.862636i) q^{42} +(-0.0380219 + 0.0658559i) q^{43} +(1.54655 - 2.67870i) q^{44} +(1.96593 - 0.0274608i) q^{45} -1.43530i q^{46} +(-8.04448 - 4.64448i) q^{47} +(-1.66986 + 0.459961i) q^{48} +(4.26126 + 5.55353i) q^{49} +(-2.28524 - 3.95816i) q^{50} +(-11.7272 + 3.23023i) q^{51} +(3.50535 + 0.844105i) q^{52} +(9.68544 - 5.59189i) q^{53} +(-3.59645 + 3.75040i) q^{54} +(1.75555 - 1.01357i) q^{55} +(-2.37289 - 1.17020i) q^{56} +(-8.04022 - 7.92869i) q^{57} +(-3.89073 + 2.24631i) q^{58} -7.07861i q^{59} +(-1.09849 - 0.286132i) q^{60} +(-13.2960 + 7.67646i) q^{61} +(2.26475 + 3.92266i) q^{62} +(-7.91224 + 0.629640i) q^{63} +1.00000 q^{64} +(1.71293 + 1.62775i) q^{65} +(-1.35042 + 5.18441i) q^{66} +(3.46095 + 1.99818i) q^{67} +7.02284 q^{68} +(0.660182 + 2.39676i) q^{69} +(-0.963325 - 1.44174i) q^{70} +(0.469521 - 0.813235i) q^{71} +(2.57687 - 1.53614i) q^{72} +(-5.44642 - 9.43348i) q^{73} -2.96384i q^{74} +(5.63663 + 5.55845i) q^{75} +(3.25972 + 5.64600i) q^{76} +(-6.80442 + 4.54650i) q^{77} +(-6.24170 + 0.202785i) q^{78} +(-1.40194 + 2.42822i) q^{79} +(0.567570 + 0.327687i) q^{80} +(4.28054 - 7.91688i) q^{81} +(7.52039 - 4.34190i) q^{82} -7.24087i q^{83} +(4.50065 + 0.862636i) q^{84} +(3.98595 + 2.30129i) q^{85} +(-0.0380219 + 0.0658559i) q^{86} +(5.46376 - 5.54062i) q^{87} +(1.54655 - 2.67870i) q^{88} +10.9296i q^{89} +(1.96593 - 0.0274608i) q^{90} +(-7.33005 - 6.10494i) q^{91} -1.43530i q^{92} +(-5.58609 - 5.50861i) q^{93} +(-8.04448 - 4.64448i) q^{94} +4.27267i q^{95} +(-1.66986 + 0.459961i) q^{96} +(-8.57395 + 14.8505i) q^{97} +(4.26126 + 5.55353i) q^{98} +(-0.129604 - 9.27839i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + O(q^{10}) \) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + 9q^{10} + 9q^{11} + 6q^{12} + 8q^{13} + 4q^{14} - 17q^{15} + 34q^{16} + 12q^{17} + 4q^{18} - 5q^{19} + 9q^{20} - 7q^{21} + 9q^{22} + 6q^{24} + 16q^{25} + 8q^{26} - 18q^{27} + 4q^{28} + 27q^{29} - 17q^{30} - q^{31} + 34q^{32} + 12q^{34} - 3q^{35} + 4q^{36} - 5q^{38} - 10q^{39} + 9q^{40} - 3q^{41} - 7q^{42} - 3q^{43} + 9q^{44} + 9q^{45} - 27q^{47} + 6q^{48} - 2q^{49} + 16q^{50} - 36q^{51} + 8q^{52} - 21q^{53} - 18q^{54} - 57q^{55} + 4q^{56} - 17q^{57} + 27q^{58} - 17q^{60} - 51q^{61} - q^{62} - 24q^{63} + 34q^{64} - 21q^{65} - 21q^{67} + 12q^{68} + 30q^{69} - 3q^{70} - 15q^{71} + 4q^{72} - 19q^{73} - 54q^{75} - 5q^{76} + 9q^{77} - 10q^{78} - 9q^{79} + 9q^{80} + 28q^{81} - 3q^{82} - 7q^{84} - 42q^{85} - 3q^{86} - 81q^{87} + 9q^{88} + 9q^{90} - 72q^{91} - 17q^{93} - 27q^{94} + 6q^{96} + 19q^{97} - 2q^{98} - 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.66986 + 0.459961i −0.964095 + 0.265558i
\(4\) 1.00000 0.500000
\(5\) 0.567570 + 0.327687i 0.253825 + 0.146546i 0.621515 0.783403i \(-0.286518\pi\)
−0.367689 + 0.929949i \(0.619851\pi\)
\(6\) −1.66986 + 0.459961i −0.681718 + 0.187778i
\(7\) −2.37289 1.17020i −0.896870 0.442295i
\(8\) 1.00000 0.353553
\(9\) 2.57687 1.53614i 0.858957 0.512047i
\(10\) 0.567570 + 0.327687i 0.179482 + 0.103624i
\(11\) 1.54655 2.67870i 0.466302 0.807659i −0.532957 0.846142i \(-0.678919\pi\)
0.999259 + 0.0384835i \(0.0122527\pi\)
\(12\) −1.66986 + 0.459961i −0.482047 + 0.132779i
\(13\) 3.50535 + 0.844105i 0.972209 + 0.234113i
\(14\) −2.37289 1.17020i −0.634183 0.312750i
\(15\) −1.09849 0.286132i −0.283628 0.0738789i
\(16\) 1.00000 0.250000
\(17\) 7.02284 1.70329 0.851644 0.524121i \(-0.175606\pi\)
0.851644 + 0.524121i \(0.175606\pi\)
\(18\) 2.57687 1.53614i 0.607375 0.362072i
\(19\) 3.25972 + 5.64600i 0.747831 + 1.29528i 0.948860 + 0.315696i \(0.102238\pi\)
−0.201029 + 0.979585i \(0.564429\pi\)
\(20\) 0.567570 + 0.327687i 0.126913 + 0.0732730i
\(21\) 4.50065 + 0.862636i 0.982123 + 0.188243i
\(22\) 1.54655 2.67870i 0.329725 0.571101i
\(23\) 1.43530i 0.299281i −0.988740 0.149641i \(-0.952188\pi\)
0.988740 0.149641i \(-0.0478117\pi\)
\(24\) −1.66986 + 0.459961i −0.340859 + 0.0938891i
\(25\) −2.28524 3.95816i −0.457049 0.791631i
\(26\) 3.50535 + 0.844105i 0.687456 + 0.165543i
\(27\) −3.59645 + 3.75040i −0.692138 + 0.721765i
\(28\) −2.37289 1.17020i −0.448435 0.221147i
\(29\) −3.89073 + 2.24631i −0.722491 + 0.417130i −0.815669 0.578519i \(-0.803631\pi\)
0.0931780 + 0.995649i \(0.470297\pi\)
\(30\) −1.09849 0.286132i −0.200555 0.0522402i
\(31\) 2.26475 + 3.92266i 0.406761 + 0.704531i 0.994525 0.104502i \(-0.0333248\pi\)
−0.587763 + 0.809033i \(0.699991\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.35042 + 5.18441i −0.235079 + 0.902490i
\(34\) 7.02284 1.20441
\(35\) −0.963325 1.44174i −0.162832 0.243698i
\(36\) 2.57687 1.53614i 0.429479 0.256023i
\(37\) 2.96384i 0.487252i −0.969869 0.243626i \(-0.921663\pi\)
0.969869 0.243626i \(-0.0783369\pi\)
\(38\) 3.25972 + 5.64600i 0.528796 + 0.915902i
\(39\) −6.24170 + 0.202785i −0.999473 + 0.0324716i
\(40\) 0.567570 + 0.327687i 0.0897408 + 0.0518119i
\(41\) 7.52039 4.34190i 1.17449 0.678091i 0.219755 0.975555i \(-0.429474\pi\)
0.954733 + 0.297465i \(0.0961410\pi\)
\(42\) 4.50065 + 0.862636i 0.694466 + 0.133108i
\(43\) −0.0380219 + 0.0658559i −0.00579829 + 0.0100429i −0.868910 0.494970i \(-0.835179\pi\)
0.863112 + 0.505013i \(0.168512\pi\)
\(44\) 1.54655 2.67870i 0.233151 0.403829i
\(45\) 1.96593 0.0274608i 0.293064 0.00409361i
\(46\) 1.43530i 0.211624i
\(47\) −8.04448 4.64448i −1.17341 0.677468i −0.218928 0.975741i \(-0.570256\pi\)
−0.954480 + 0.298273i \(0.903589\pi\)
\(48\) −1.66986 + 0.459961i −0.241024 + 0.0663896i
\(49\) 4.26126 + 5.55353i 0.608751 + 0.793361i
\(50\) −2.28524 3.95816i −0.323182 0.559768i
\(51\) −11.7272 + 3.23023i −1.64213 + 0.452322i
\(52\) 3.50535 + 0.844105i 0.486105 + 0.117056i
\(53\) 9.68544 5.59189i 1.33040 0.768105i 0.345037 0.938589i \(-0.387867\pi\)
0.985360 + 0.170484i \(0.0545332\pi\)
\(54\) −3.59645 + 3.75040i −0.489415 + 0.510365i
\(55\) 1.75555 1.01357i 0.236718 0.136669i
\(56\) −2.37289 1.17020i −0.317091 0.156375i
\(57\) −8.04022 7.92869i −1.06495 1.05018i
\(58\) −3.89073 + 2.24631i −0.510878 + 0.294956i
\(59\) 7.07861i 0.921556i −0.887515 0.460778i \(-0.847570\pi\)
0.887515 0.460778i \(-0.152430\pi\)
\(60\) −1.09849 0.286132i −0.141814 0.0369394i
\(61\) −13.2960 + 7.67646i −1.70238 + 0.982870i −0.759041 + 0.651043i \(0.774332\pi\)
−0.943340 + 0.331828i \(0.892335\pi\)
\(62\) 2.26475 + 3.92266i 0.287624 + 0.498179i
\(63\) −7.91224 + 0.629640i −0.996849 + 0.0793271i
\(64\) 1.00000 0.125000
\(65\) 1.71293 + 1.62775i 0.212463 + 0.201897i
\(66\) −1.35042 + 5.18441i −0.166226 + 0.638157i
\(67\) 3.46095 + 1.99818i 0.422822 + 0.244116i 0.696284 0.717766i \(-0.254835\pi\)
−0.273462 + 0.961883i \(0.588169\pi\)
\(68\) 7.02284 0.851644
\(69\) 0.660182 + 2.39676i 0.0794766 + 0.288535i
\(70\) −0.963325 1.44174i −0.115139 0.172321i
\(71\) 0.469521 0.813235i 0.0557219 0.0965132i −0.836819 0.547480i \(-0.815587\pi\)
0.892541 + 0.450967i \(0.148921\pi\)
\(72\) 2.57687 1.53614i 0.303687 0.181036i
\(73\) −5.44642 9.43348i −0.637456 1.10411i −0.985989 0.166809i \(-0.946654\pi\)
0.348534 0.937296i \(-0.386680\pi\)
\(74\) 2.96384i 0.344539i
\(75\) 5.63663 + 5.55845i 0.650862 + 0.641834i
\(76\) 3.25972 + 5.64600i 0.373915 + 0.647641i
\(77\) −6.80442 + 4.54650i −0.775435 + 0.518122i
\(78\) −6.24170 + 0.202785i −0.706734 + 0.0229609i
\(79\) −1.40194 + 2.42822i −0.157730 + 0.273197i −0.934050 0.357143i \(-0.883751\pi\)
0.776320 + 0.630339i \(0.217084\pi\)
\(80\) 0.567570 + 0.327687i 0.0634563 + 0.0366365i
\(81\) 4.28054 7.91688i 0.475616 0.879653i
\(82\) 7.52039 4.34190i 0.830488 0.479483i
\(83\) 7.24087i 0.794789i −0.917648 0.397394i \(-0.869915\pi\)
0.917648 0.397394i \(-0.130085\pi\)
\(84\) 4.50065 + 0.862636i 0.491061 + 0.0941213i
\(85\) 3.98595 + 2.30129i 0.432337 + 0.249610i
\(86\) −0.0380219 + 0.0658559i −0.00410001 + 0.00710143i
\(87\) 5.46376 5.54062i 0.585777 0.594017i
\(88\) 1.54655 2.67870i 0.164863 0.285550i
\(89\) 10.9296i 1.15854i 0.815137 + 0.579268i \(0.196662\pi\)
−0.815137 + 0.579268i \(0.803338\pi\)
\(90\) 1.96593 0.0274608i 0.207227 0.00289462i
\(91\) −7.33005 6.10494i −0.768399 0.639972i
\(92\) 1.43530i 0.149641i
\(93\) −5.58609 5.50861i −0.579251 0.571216i
\(94\) −8.04448 4.64448i −0.829725 0.479042i
\(95\) 4.27267i 0.438367i
\(96\) −1.66986 + 0.459961i −0.170429 + 0.0469445i
\(97\) −8.57395 + 14.8505i −0.870553 + 1.50784i −0.00912654 + 0.999958i \(0.502905\pi\)
−0.861426 + 0.507883i \(0.830428\pi\)
\(98\) 4.26126 + 5.55353i 0.430452 + 0.560991i
\(99\) −0.129604 9.27839i −0.0130256 0.932513i
\(100\) −2.28524 3.95816i −0.228524 0.395816i
\(101\) −3.72432 + 6.45070i −0.370583 + 0.641869i −0.989655 0.143465i \(-0.954175\pi\)
0.619072 + 0.785334i \(0.287509\pi\)
\(102\) −11.7272 + 3.23023i −1.16116 + 0.319840i
\(103\) −15.3456 8.85976i −1.51204 0.872978i −0.999901 0.0140769i \(-0.995519\pi\)
−0.512141 0.858901i \(-0.671148\pi\)
\(104\) 3.50535 + 0.844105i 0.343728 + 0.0827713i
\(105\) 2.27176 + 1.96441i 0.221701 + 0.191707i
\(106\) 9.68544 5.59189i 0.940733 0.543132i
\(107\) 17.5930i 1.70078i 0.526155 + 0.850389i \(0.323633\pi\)
−0.526155 + 0.850389i \(0.676367\pi\)
\(108\) −3.59645 + 3.75040i −0.346069 + 0.360883i
\(109\) −8.31249 + 4.79922i −0.796192 + 0.459682i −0.842138 0.539262i \(-0.818703\pi\)
0.0459460 + 0.998944i \(0.485370\pi\)
\(110\) 1.75555 1.01357i 0.167385 0.0966399i
\(111\) 1.36325 + 4.94919i 0.129394 + 0.469757i
\(112\) −2.37289 1.17020i −0.224217 0.110574i
\(113\) −2.25506 1.30196i −0.212138 0.122478i 0.390166 0.920744i \(-0.372417\pi\)
−0.602305 + 0.798266i \(0.705751\pi\)
\(114\) −8.04022 7.92869i −0.753035 0.742590i
\(115\) 0.470330 0.814635i 0.0438585 0.0759651i
\(116\) −3.89073 + 2.24631i −0.361245 + 0.208565i
\(117\) 10.3295 3.20956i 0.954963 0.296724i
\(118\) 7.07861i 0.651639i
\(119\) −16.6644 8.21813i −1.52763 0.753355i
\(120\) −1.09849 0.286132i −0.100278 0.0261201i
\(121\) 0.716375 + 1.24080i 0.0651250 + 0.112800i
\(122\) −13.2960 + 7.67646i −1.20377 + 0.694994i
\(123\) −10.5609 + 10.7095i −0.952245 + 0.965639i
\(124\) 2.26475 + 3.92266i 0.203381 + 0.352266i
\(125\) 6.27225i 0.561007i
\(126\) −7.91224 + 0.629640i −0.704878 + 0.0560928i
\(127\) −3.11947 5.40309i −0.276808 0.479446i 0.693781 0.720186i \(-0.255943\pi\)
−0.970590 + 0.240739i \(0.922610\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0.0332002 0.127459i 0.00292312 0.0112221i
\(130\) 1.71293 + 1.62775i 0.150234 + 0.142763i
\(131\) −1.86046 + 3.22241i −0.162549 + 0.281543i −0.935782 0.352579i \(-0.885305\pi\)
0.773233 + 0.634122i \(0.218638\pi\)
\(132\) −1.35042 + 5.18441i −0.117539 + 0.451245i
\(133\) −1.12801 17.2119i −0.0978110 1.49246i
\(134\) 3.46095 + 1.99818i 0.298980 + 0.172616i
\(135\) −3.27020 + 0.950106i −0.281454 + 0.0817721i
\(136\) 7.02284 0.602203
\(137\) 6.92624 0.591748 0.295874 0.955227i \(-0.404389\pi\)
0.295874 + 0.955227i \(0.404389\pi\)
\(138\) 0.660182 + 2.39676i 0.0561985 + 0.204025i
\(139\) −2.27775 1.31506i −0.193196 0.111542i 0.400282 0.916392i \(-0.368912\pi\)
−0.593478 + 0.804850i \(0.702246\pi\)
\(140\) −0.963325 1.44174i −0.0814158 0.121849i
\(141\) 15.5694 + 4.05550i 1.31118 + 0.341535i
\(142\) 0.469521 0.813235i 0.0394014 0.0682451i
\(143\) 7.68230 8.08434i 0.642426 0.676046i
\(144\) 2.57687 1.53614i 0.214739 0.128012i
\(145\) −2.94435 −0.244515
\(146\) −5.44642 9.43348i −0.450749 0.780720i
\(147\) −9.67011 7.31361i −0.797577 0.603217i
\(148\) 2.96384i 0.243626i
\(149\) 3.03198 + 5.25155i 0.248390 + 0.430224i 0.963079 0.269218i \(-0.0867653\pi\)
−0.714689 + 0.699442i \(0.753432\pi\)
\(150\) 5.63663 + 5.55845i 0.460229 + 0.453845i
\(151\) −0.715824 + 0.413281i −0.0582530 + 0.0336324i −0.528844 0.848719i \(-0.677374\pi\)
0.470591 + 0.882352i \(0.344041\pi\)
\(152\) 3.25972 + 5.64600i 0.264398 + 0.457951i
\(153\) 18.0969 10.7881i 1.46305 0.872163i
\(154\) −6.80442 + 4.54650i −0.548316 + 0.366367i
\(155\) 2.96852i 0.238437i
\(156\) −6.24170 + 0.202785i −0.499736 + 0.0162358i
\(157\) 5.69728 3.28932i 0.454692 0.262517i −0.255118 0.966910i \(-0.582114\pi\)
0.709810 + 0.704393i \(0.248781\pi\)
\(158\) −1.40194 + 2.42822i −0.111532 + 0.193179i
\(159\) −13.6013 + 13.7926i −1.07865 + 1.09382i
\(160\) 0.567570 + 0.327687i 0.0448704 + 0.0259059i
\(161\) −1.67959 + 3.40582i −0.132370 + 0.268416i
\(162\) 4.28054 7.91688i 0.336311 0.622009i
\(163\) 3.86463 2.23125i 0.302701 0.174765i −0.340955 0.940080i \(-0.610750\pi\)
0.643656 + 0.765315i \(0.277417\pi\)
\(164\) 7.52039 4.34190i 0.587244 0.339045i
\(165\) −2.46532 + 2.50000i −0.191925 + 0.194625i
\(166\) 7.24087i 0.562000i
\(167\) −1.12359 + 0.648707i −0.0869463 + 0.0501985i −0.542843 0.839834i \(-0.682652\pi\)
0.455896 + 0.890033i \(0.349319\pi\)
\(168\) 4.50065 + 0.862636i 0.347233 + 0.0665538i
\(169\) 11.5750 + 5.91777i 0.890383 + 0.455213i
\(170\) 3.98595 + 2.30129i 0.305709 + 0.176501i
\(171\) 17.0729 + 9.54163i 1.30560 + 0.729667i
\(172\) −0.0380219 + 0.0658559i −0.00289915 + 0.00502147i
\(173\) 6.33267 + 10.9685i 0.481464 + 0.833919i 0.999774 0.0212733i \(-0.00677201\pi\)
−0.518310 + 0.855193i \(0.673439\pi\)
\(174\) 5.46376 5.54062i 0.414207 0.420033i
\(175\) 0.790798 + 12.0665i 0.0597787 + 0.912140i
\(176\) 1.54655 2.67870i 0.116575 0.201915i
\(177\) 3.25588 + 11.8203i 0.244727 + 0.888468i
\(178\) 10.9296i 0.819209i
\(179\) 12.5760 + 7.26077i 0.939976 + 0.542696i 0.889953 0.456052i \(-0.150737\pi\)
0.0500235 + 0.998748i \(0.484070\pi\)
\(180\) 1.96593 0.0274608i 0.146532 0.00204680i
\(181\) 3.57257i 0.265547i 0.991146 + 0.132773i \(0.0423883\pi\)
−0.991146 + 0.132773i \(0.957612\pi\)
\(182\) −7.33005 6.10494i −0.543340 0.452528i
\(183\) 18.6716 18.9343i 1.38025 1.39966i
\(184\) 1.43530i 0.105812i
\(185\) 0.971210 1.68219i 0.0714048 0.123677i
\(186\) −5.58609 5.50861i −0.409592 0.403911i
\(187\) 10.8612 18.8121i 0.794246 1.37568i
\(188\) −8.04448 4.64448i −0.586704 0.338734i
\(189\) 12.9227 4.69073i 0.939991 0.341200i
\(190\) 4.27267i 0.309972i
\(191\) 5.22709 3.01786i 0.378219 0.218365i −0.298824 0.954308i \(-0.596594\pi\)
0.677043 + 0.735943i \(0.263261\pi\)
\(192\) −1.66986 + 0.459961i −0.120512 + 0.0331948i
\(193\) −20.2555 11.6945i −1.45802 0.841791i −0.459111 0.888379i \(-0.651832\pi\)
−0.998914 + 0.0465881i \(0.985165\pi\)
\(194\) −8.57395 + 14.8505i −0.615574 + 1.06620i
\(195\) −3.60906 1.93023i −0.258450 0.138227i
\(196\) 4.26126 + 5.55353i 0.304375 + 0.396681i
\(197\) −7.90007 13.6833i −0.562857 0.974896i −0.997246 0.0741708i \(-0.976369\pi\)
0.434389 0.900725i \(-0.356964\pi\)
\(198\) −0.129604 9.27839i −0.00921052 0.659386i
\(199\) 24.5006i 1.73680i 0.495863 + 0.868401i \(0.334852\pi\)
−0.495863 + 0.868401i \(0.665148\pi\)
\(200\) −2.28524 3.95816i −0.161591 0.279884i
\(201\) −6.69838 1.74478i −0.472468 0.123067i
\(202\) −3.72432 + 6.45070i −0.262042 + 0.453870i
\(203\) 11.8609 0.777327i 0.832475 0.0545577i
\(204\) −11.7272 + 3.23023i −0.821065 + 0.226161i
\(205\) 5.69113 0.397486
\(206\) −15.3456 8.85976i −1.06918 0.617289i
\(207\) −2.20483 3.69859i −0.153246 0.257070i
\(208\) 3.50535 + 0.844105i 0.243052 + 0.0585282i
\(209\) 20.1653 1.39486
\(210\) 2.27176 + 1.96441i 0.156766 + 0.135557i
\(211\) −5.93332 10.2768i −0.408467 0.707485i 0.586251 0.810129i \(-0.300603\pi\)
−0.994718 + 0.102644i \(0.967270\pi\)
\(212\) 9.68544 5.59189i 0.665198 0.384053i
\(213\) −0.409979 + 1.57395i −0.0280913 + 0.107845i
\(214\) 17.5930i 1.20263i
\(215\) −0.0431603 + 0.0249186i −0.00294351 + 0.00169943i
\(216\) −3.59645 + 3.75040i −0.244708 + 0.255183i
\(217\) −0.783707 11.9583i −0.0532015 0.811781i
\(218\) −8.31249 + 4.79922i −0.562993 + 0.325044i
\(219\) 13.4338 + 13.2475i 0.907772 + 0.895181i
\(220\) 1.75555 1.01357i 0.118359 0.0683347i
\(221\) 24.6175 + 5.92801i 1.65595 + 0.398761i
\(222\) 1.36325 + 4.94919i 0.0914952 + 0.332168i
\(223\) 11.4114 + 19.7652i 0.764166 + 1.32358i 0.940686 + 0.339278i \(0.110183\pi\)
−0.176520 + 0.984297i \(0.556484\pi\)
\(224\) −2.37289 1.17020i −0.158546 0.0781874i
\(225\) −11.9691 6.68921i −0.797938 0.445947i
\(226\) −2.25506 1.30196i −0.150005 0.0866052i
\(227\) 10.6843i 0.709140i −0.935029 0.354570i \(-0.884627\pi\)
0.935029 0.354570i \(-0.115373\pi\)
\(228\) −8.04022 7.92869i −0.532476 0.525091i
\(229\) 1.86852 3.23637i 0.123475 0.213865i −0.797661 0.603106i \(-0.793929\pi\)
0.921136 + 0.389241i \(0.127263\pi\)
\(230\) 0.470330 0.814635i 0.0310126 0.0537154i
\(231\) 9.27122 10.7218i 0.610001 0.705442i
\(232\) −3.89073 + 2.24631i −0.255439 + 0.147478i
\(233\) −7.73067 4.46331i −0.506453 0.292401i 0.224921 0.974377i \(-0.427788\pi\)
−0.731375 + 0.681976i \(0.761121\pi\)
\(234\) 10.3295 3.20956i 0.675261 0.209816i
\(235\) −3.04387 5.27214i −0.198560 0.343917i
\(236\) 7.07861i 0.460778i
\(237\) 1.22415 4.69963i 0.0795171 0.305274i
\(238\) −16.6644 8.21813i −1.08020 0.532702i
\(239\) 2.27619 0.147234 0.0736172 0.997287i \(-0.476546\pi\)
0.0736172 + 0.997287i \(0.476546\pi\)
\(240\) −1.09849 0.286132i −0.0709070 0.0184697i
\(241\) −4.13240 −0.266191 −0.133096 0.991103i \(-0.542492\pi\)
−0.133096 + 0.991103i \(0.542492\pi\)
\(242\) 0.716375 + 1.24080i 0.0460503 + 0.0797615i
\(243\) −3.50646 + 15.1890i −0.224939 + 0.974373i
\(244\) −13.2960 + 7.67646i −0.851191 + 0.491435i
\(245\) 0.598743 + 4.54838i 0.0382523 + 0.290585i
\(246\) −10.5609 + 10.7095i −0.673339 + 0.682810i
\(247\) 6.66064 + 22.5428i 0.423807 + 1.43436i
\(248\) 2.26475 + 3.92266i 0.143812 + 0.249089i
\(249\) 3.33051 + 12.0912i 0.211063 + 0.766251i
\(250\) 6.27225i 0.396692i
\(251\) 3.75716 6.50759i 0.237150 0.410756i −0.722745 0.691114i \(-0.757120\pi\)
0.959895 + 0.280359i \(0.0904534\pi\)
\(252\) −7.91224 + 0.629640i −0.498424 + 0.0396636i
\(253\) −3.84474 2.21976i −0.241717 0.139555i
\(254\) −3.11947 5.40309i −0.195733 0.339020i
\(255\) −7.71449 2.00946i −0.483100 0.125837i
\(256\) 1.00000 0.0625000
\(257\) −25.2022 −1.57207 −0.786034 0.618184i \(-0.787869\pi\)
−0.786034 + 0.618184i \(0.787869\pi\)
\(258\) 0.0332002 0.127459i 0.00206696 0.00793524i
\(259\) −3.46829 + 7.03287i −0.215509 + 0.437001i
\(260\) 1.71293 + 1.62775i 0.106231 + 0.100949i
\(261\) −6.57526 + 11.7652i −0.406999 + 0.728246i
\(262\) −1.86046 + 3.22241i −0.114940 + 0.199081i
\(263\) −17.2636 9.96713i −1.06452 0.614600i −0.137839 0.990455i \(-0.544016\pi\)
−0.926679 + 0.375855i \(0.877349\pi\)
\(264\) −1.35042 + 5.18441i −0.0831129 + 0.319078i
\(265\) 7.32956 0.450251
\(266\) −1.12801 17.2119i −0.0691628 1.05533i
\(267\) −5.02719 18.2509i −0.307659 1.11694i
\(268\) 3.46095 + 1.99818i 0.211411 + 0.122058i
\(269\) 20.2140 1.23247 0.616235 0.787562i \(-0.288657\pi\)
0.616235 + 0.787562i \(0.288657\pi\)
\(270\) −3.27020 + 0.950106i −0.199018 + 0.0578216i
\(271\) −26.4526 −1.60688 −0.803442 0.595383i \(-0.797000\pi\)
−0.803442 + 0.595383i \(0.797000\pi\)
\(272\) 7.02284 0.425822
\(273\) 15.0482 + 6.82287i 0.910759 + 0.412939i
\(274\) 6.92624 0.418429
\(275\) −14.1370 −0.852490
\(276\) 0.660182 + 2.39676i 0.0397383 + 0.144268i
\(277\) 3.36980 0.202472 0.101236 0.994862i \(-0.467720\pi\)
0.101236 + 0.994862i \(0.467720\pi\)
\(278\) −2.27775 1.31506i −0.136610 0.0788719i
\(279\) 11.8617 + 6.62923i 0.710144 + 0.396881i
\(280\) −0.963325 1.44174i −0.0575697 0.0861604i
\(281\) −20.1579 −1.20252 −0.601259 0.799055i \(-0.705334\pi\)
−0.601259 + 0.799055i \(0.705334\pi\)
\(282\) 15.5694 + 4.05550i 0.927147 + 0.241501i
\(283\) 5.52469 + 3.18968i 0.328409 + 0.189607i 0.655134 0.755512i \(-0.272612\pi\)
−0.326726 + 0.945119i \(0.605945\pi\)
\(284\) 0.469521 0.813235i 0.0278610 0.0482566i
\(285\) −1.96526 7.13477i −0.116412 0.422627i
\(286\) 7.68230 8.08434i 0.454264 0.478037i
\(287\) −22.9260 + 1.50249i −1.35328 + 0.0886895i
\(288\) 2.57687 1.53614i 0.151844 0.0905180i
\(289\) 32.3202 1.90119
\(290\) −2.94435 −0.172898
\(291\) 7.48665 28.7420i 0.438875 1.68488i
\(292\) −5.44642 9.43348i −0.318728 0.552053i
\(293\) −5.30689 3.06394i −0.310032 0.178997i 0.336909 0.941537i \(-0.390619\pi\)
−0.646941 + 0.762540i \(0.723952\pi\)
\(294\) −9.67011 7.31361i −0.563972 0.426539i
\(295\) 2.31957 4.01761i 0.135050 0.233914i
\(296\) 2.96384i 0.172269i
\(297\) 4.48411 + 15.4340i 0.260195 + 0.895572i
\(298\) 3.03198 + 5.25155i 0.175638 + 0.304214i
\(299\) 1.21155 5.03124i 0.0700655 0.290964i
\(300\) 5.63663 + 5.55845i 0.325431 + 0.320917i
\(301\) 0.167287 0.111776i 0.00964225 0.00644265i
\(302\) −0.715824 + 0.413281i −0.0411911 + 0.0237817i
\(303\) 3.25202 12.4848i 0.186824 0.717234i
\(304\) 3.25972 + 5.64600i 0.186958 + 0.323820i
\(305\) −10.0619 −0.576143
\(306\) 18.0969 10.7881i 1.03453 0.616713i
\(307\) 5.38161 0.307145 0.153572 0.988137i \(-0.450922\pi\)
0.153572 + 0.988137i \(0.450922\pi\)
\(308\) −6.80442 + 4.54650i −0.387718 + 0.259061i
\(309\) 29.7001 + 7.73622i 1.68958 + 0.440098i
\(310\) 2.96852i 0.168600i
\(311\) −3.15077 5.45729i −0.178664 0.309454i 0.762759 0.646682i \(-0.223844\pi\)
−0.941423 + 0.337228i \(0.890511\pi\)
\(312\) −6.24170 + 0.202785i −0.353367 + 0.0114805i
\(313\) −9.08951 5.24783i −0.513770 0.296625i 0.220612 0.975362i \(-0.429194\pi\)
−0.734382 + 0.678737i \(0.762528\pi\)
\(314\) 5.69728 3.28932i 0.321516 0.185627i
\(315\) −4.69708 2.23537i −0.264650 0.125949i
\(316\) −1.40194 + 2.42822i −0.0788651 + 0.136598i
\(317\) −0.443737 + 0.768575i −0.0249227 + 0.0431674i −0.878218 0.478261i \(-0.841267\pi\)
0.853295 + 0.521428i \(0.174601\pi\)
\(318\) −13.6013 + 13.7926i −0.762722 + 0.773451i
\(319\) 13.8961i 0.778035i
\(320\) 0.567570 + 0.327687i 0.0317282 + 0.0183183i
\(321\) −8.09208 29.3778i −0.451656 1.63971i
\(322\) −1.67959 + 3.40582i −0.0936001 + 0.189799i
\(323\) 22.8925 + 39.6509i 1.27377 + 2.20624i
\(324\) 4.28054 7.91688i 0.237808 0.439827i
\(325\) −4.66948 15.8037i −0.259016 0.876632i
\(326\) 3.86463 2.23125i 0.214042 0.123577i
\(327\) 11.6732 11.8374i 0.645532 0.654612i
\(328\) 7.52039 4.34190i 0.415244 0.239741i
\(329\) 13.6537 + 20.4345i 0.752754 + 1.12659i
\(330\) −2.46532 + 2.50000i −0.135712 + 0.137621i
\(331\) 16.7252 9.65631i 0.919301 0.530759i 0.0358889 0.999356i \(-0.488574\pi\)
0.883412 + 0.468597i \(0.155240\pi\)
\(332\) 7.24087i 0.397394i
\(333\) −4.55287 7.63743i −0.249496 0.418528i
\(334\) −1.12359 + 0.648707i −0.0614803 + 0.0354957i
\(335\) 1.30955 + 2.26821i 0.0715486 + 0.123926i
\(336\) 4.50065 + 0.862636i 0.245531 + 0.0470607i
\(337\) −1.76473 −0.0961307 −0.0480654 0.998844i \(-0.515306\pi\)
−0.0480654 + 0.998844i \(0.515306\pi\)
\(338\) 11.5750 + 5.91777i 0.629596 + 0.321884i
\(339\) 4.36449 + 1.13685i 0.237047 + 0.0617454i
\(340\) 3.98595 + 2.30129i 0.216169 + 0.124805i
\(341\) 14.0102 0.758694
\(342\) 17.0729 + 9.54163i 0.923198 + 0.515952i
\(343\) −3.61276 18.1645i −0.195071 0.980789i
\(344\) −0.0380219 + 0.0658559i −0.00205001 + 0.00355071i
\(345\) −0.410685 + 1.57666i −0.0221106 + 0.0848845i
\(346\) 6.33267 + 10.9685i 0.340446 + 0.589670i
\(347\) 22.7100i 1.21914i 0.792733 + 0.609569i \(0.208657\pi\)
−0.792733 + 0.609569i \(0.791343\pi\)
\(348\) 5.46376 5.54062i 0.292889 0.297008i
\(349\) −0.756268 1.30990i −0.0404821 0.0701171i 0.845074 0.534649i \(-0.179556\pi\)
−0.885557 + 0.464532i \(0.846223\pi\)
\(350\) 0.790798 + 12.0665i 0.0422699 + 0.644981i
\(351\) −15.7726 + 10.1107i −0.841877 + 0.539669i
\(352\) 1.54655 2.67870i 0.0824313 0.142775i
\(353\) −28.2367 16.3025i −1.50289 0.867692i −0.999994 0.00334317i \(-0.998936\pi\)
−0.502892 0.864349i \(-0.667731\pi\)
\(354\) 3.25588 + 11.8203i 0.173048 + 0.628241i
\(355\) 0.532973 0.307712i 0.0282873 0.0163317i
\(356\) 10.9296i 0.579268i
\(357\) 31.6073 + 6.05815i 1.67284 + 0.320631i
\(358\) 12.5760 + 7.26077i 0.664664 + 0.383744i
\(359\) 3.19150 5.52784i 0.168441 0.291748i −0.769431 0.638730i \(-0.779460\pi\)
0.937872 + 0.346982i \(0.112793\pi\)
\(360\) 1.96593 0.0274608i 0.103614 0.00144731i
\(361\) −11.7515 + 20.3543i −0.618502 + 1.07128i
\(362\) 3.57257i 0.187770i
\(363\) −1.76696 1.74246i −0.0927416 0.0914552i
\(364\) −7.33005 6.10494i −0.384199 0.319986i
\(365\) 7.13889i 0.373666i
\(366\) 18.6716 18.9343i 0.975982 0.989710i
\(367\) −10.4124 6.01163i −0.543525 0.313804i 0.202981 0.979183i \(-0.434937\pi\)
−0.746506 + 0.665378i \(0.768270\pi\)
\(368\) 1.43530i 0.0748203i
\(369\) 12.7093 22.7409i 0.661620 1.18384i
\(370\) 0.971210 1.68219i 0.0504908 0.0874527i
\(371\) −29.5262 + 1.93505i −1.53292 + 0.100463i
\(372\) −5.58609 5.50861i −0.289625 0.285608i
\(373\) 10.8556 + 18.8024i 0.562081 + 0.973553i 0.997315 + 0.0732353i \(0.0233324\pi\)
−0.435234 + 0.900317i \(0.643334\pi\)
\(374\) 10.8612 18.8121i 0.561617 0.972749i
\(375\) 2.88499 + 10.4738i 0.148980 + 0.540864i
\(376\) −8.04448 4.64448i −0.414863 0.239521i
\(377\) −15.5345 + 4.58994i −0.800068 + 0.236394i
\(378\) 12.9227 4.69073i 0.664674 0.241265i
\(379\) −2.54234 + 1.46782i −0.130591 + 0.0753970i −0.563873 0.825862i \(-0.690689\pi\)
0.433281 + 0.901259i \(0.357356\pi\)
\(380\) 4.27267i 0.219183i
\(381\) 7.69429 + 7.58757i 0.394191 + 0.388723i
\(382\) 5.22709 3.01786i 0.267441 0.154407i
\(383\) 26.1275 15.0847i 1.33505 0.770793i 0.348984 0.937129i \(-0.386527\pi\)
0.986069 + 0.166335i \(0.0531934\pi\)
\(384\) −1.66986 + 0.459961i −0.0852147 + 0.0234723i
\(385\) −5.35181 + 0.350741i −0.272754 + 0.0178754i
\(386\) −20.2555 11.6945i −1.03098 0.595236i
\(387\) 0.00318631 + 0.228109i 0.000161969 + 0.0115955i
\(388\) −8.57395 + 14.8505i −0.435276 + 0.753921i
\(389\) −19.1621 + 11.0633i −0.971559 + 0.560930i −0.899711 0.436485i \(-0.856223\pi\)
−0.0718481 + 0.997416i \(0.522890\pi\)
\(390\) −3.60906 1.93023i −0.182752 0.0977410i
\(391\) 10.0799i 0.509762i
\(392\) 4.26126 + 5.55353i 0.215226 + 0.280496i
\(393\) 1.62453 6.23671i 0.0819465 0.314601i
\(394\) −7.90007 13.6833i −0.398000 0.689356i
\(395\) −1.59139 + 0.918792i −0.0800718 + 0.0462295i
\(396\) −0.129604 9.27839i −0.00651282 0.466256i
\(397\) 6.54053 + 11.3285i 0.328260 + 0.568562i 0.982167 0.188013i \(-0.0602046\pi\)
−0.653907 + 0.756575i \(0.726871\pi\)
\(398\) 24.5006i 1.22810i
\(399\) 9.80042 + 28.2226i 0.490634 + 1.41290i
\(400\) −2.28524 3.95816i −0.114262 0.197908i
\(401\) −6.92658 −0.345897 −0.172948 0.984931i \(-0.555329\pi\)
−0.172948 + 0.984931i \(0.555329\pi\)
\(402\) −6.69838 1.74478i −0.334085 0.0870218i
\(403\) 4.62761 + 15.6620i 0.230517 + 0.780180i
\(404\) −3.72432 + 6.45070i −0.185292 + 0.320934i
\(405\) 5.02377 3.09071i 0.249633 0.153579i
\(406\) 11.8609 0.777327i 0.588648 0.0385781i
\(407\) −7.93923 4.58372i −0.393533 0.227206i
\(408\) −11.7272 + 3.23023i −0.580581 + 0.159920i
\(409\) 32.6793 1.61589 0.807944 0.589260i \(-0.200580\pi\)
0.807944 + 0.589260i \(0.200580\pi\)
\(410\) 5.69113 0.281065
\(411\) −11.5659 + 3.18580i −0.570501 + 0.157144i
\(412\) −15.3456 8.85976i −0.756021 0.436489i
\(413\) −8.28340 + 16.7968i −0.407599 + 0.826516i
\(414\) −2.20483 3.69859i −0.108361 0.181776i
\(415\) 2.37274 4.10970i 0.116473 0.201737i
\(416\) 3.50535 + 0.844105i 0.171864 + 0.0413857i
\(417\) 4.40839 + 1.14829i 0.215880 + 0.0562319i
\(418\) 20.1653 0.986315
\(419\) −3.98319 6.89908i −0.194591 0.337042i 0.752175 0.658963i \(-0.229005\pi\)
−0.946766 + 0.321921i \(0.895671\pi\)
\(420\) 2.27176 + 1.96441i 0.110851 + 0.0958535i
\(421\) 14.1689i 0.690552i −0.938501 0.345276i \(-0.887785\pi\)
0.938501 0.345276i \(-0.112215\pi\)
\(422\) −5.93332 10.2768i −0.288830 0.500268i
\(423\) −27.8642 + 0.389216i −1.35480 + 0.0189243i
\(424\) 9.68544 5.59189i 0.470366 0.271566i
\(425\) −16.0489 27.7975i −0.778485 1.34838i
\(426\) −0.409979 + 1.57395i −0.0198636 + 0.0762582i
\(427\) 40.5331 2.65641i 1.96153 0.128552i
\(428\) 17.5930i 0.850389i
\(429\) −9.10990 + 17.0333i −0.439830 + 0.822374i
\(430\) −0.0431603 + 0.0249186i −0.00208137 + 0.00120168i
\(431\) 12.9721 22.4684i 0.624845 1.08226i −0.363725 0.931506i \(-0.618495\pi\)
0.988571 0.150758i \(-0.0481713\pi\)
\(432\) −3.59645 + 3.75040i −0.173034 + 0.180441i
\(433\) −14.7383 8.50919i −0.708280 0.408925i 0.102144 0.994770i \(-0.467430\pi\)
−0.810424 + 0.585844i \(0.800763\pi\)
\(434\) −0.783707 11.9583i −0.0376191 0.574016i
\(435\) 4.91666 1.35429i 0.235736 0.0649331i
\(436\) −8.31249 + 4.79922i −0.398096 + 0.229841i
\(437\) 8.10372 4.67868i 0.387653 0.223812i
\(438\) 13.4338 + 13.2475i 0.641892 + 0.632988i
\(439\) 29.6229i 1.41382i 0.707301 + 0.706912i \(0.249913\pi\)
−0.707301 + 0.706912i \(0.750087\pi\)
\(440\) 1.75555 1.01357i 0.0836926 0.0483199i
\(441\) 19.5117 + 7.76485i 0.929129 + 0.369755i
\(442\) 24.6175 + 5.92801i 1.17094 + 0.281967i
\(443\) 15.3962 + 8.88898i 0.731494 + 0.422328i 0.818968 0.573839i \(-0.194546\pi\)
−0.0874748 + 0.996167i \(0.527880\pi\)
\(444\) 1.36325 + 4.94919i 0.0646969 + 0.234878i
\(445\) −3.58149 + 6.20333i −0.169779 + 0.294066i
\(446\) 11.4114 + 19.7652i 0.540347 + 0.935909i
\(447\) −7.47850 7.37476i −0.353721 0.348814i
\(448\) −2.37289 1.17020i −0.112109 0.0552868i
\(449\) −11.2383 + 19.4653i −0.530369 + 0.918626i 0.469003 + 0.883197i \(0.344613\pi\)
−0.999372 + 0.0354297i \(0.988720\pi\)
\(450\) −11.9691 6.68921i −0.564227 0.315332i
\(451\) 26.8598i 1.26478i
\(452\) −2.25506 1.30196i −0.106069 0.0612391i
\(453\) 1.00523 1.01937i 0.0472300 0.0478943i
\(454\) 10.6843i 0.501438i
\(455\) −2.15981 5.86695i −0.101254 0.275047i
\(456\) −8.04022 7.92869i −0.376518 0.371295i
\(457\) 26.4676i 1.23810i −0.785350 0.619051i \(-0.787517\pi\)
0.785350 0.619051i \(-0.212483\pi\)
\(458\) 1.86852 3.23637i 0.0873101 0.151226i
\(459\) −25.2573 + 26.3385i −1.17891 + 1.22937i
\(460\) 0.470330 0.814635i 0.0219292 0.0379826i
\(461\) 6.02929 + 3.48101i 0.280812 + 0.162127i 0.633791 0.773504i \(-0.281498\pi\)
−0.352979 + 0.935631i \(0.614831\pi\)
\(462\) 9.27122 10.7218i 0.431336 0.498823i
\(463\) 10.3837i 0.482572i 0.970454 + 0.241286i \(0.0775692\pi\)
−0.970454 + 0.241286i \(0.922431\pi\)
\(464\) −3.89073 + 2.24631i −0.180623 + 0.104283i
\(465\) −1.36540 4.95701i −0.0633190 0.229876i
\(466\) −7.73067 4.46331i −0.358117 0.206759i
\(467\) −11.7463 + 20.3453i −0.543556 + 0.941467i 0.455140 + 0.890420i \(0.349589\pi\)
−0.998696 + 0.0510470i \(0.983744\pi\)
\(468\) 10.3295 3.20956i 0.477482 0.148362i
\(469\) −5.87419 8.79147i −0.271245 0.405953i
\(470\) −3.04387 5.27214i −0.140403 0.243186i
\(471\) −8.00070 + 8.11324i −0.368653 + 0.373838i
\(472\) 7.07861i 0.325819i
\(473\) 0.117606 + 0.203699i 0.00540751 + 0.00936608i
\(474\) 1.22415 4.69963i 0.0562271 0.215861i
\(475\) 14.8985 25.8050i 0.683590 1.18401i
\(476\) −16.6644 8.21813i −0.763814 0.376678i
\(477\) 16.3682 29.2878i 0.749449 1.34100i
\(478\) 2.27619 0.104110
\(479\) −7.41327 4.28005i −0.338721 0.195561i 0.320985 0.947084i \(-0.395986\pi\)
−0.659706 + 0.751524i \(0.729319\pi\)
\(480\) −1.09849 0.286132i −0.0501388 0.0130601i
\(481\) 2.50179 10.3893i 0.114072 0.473711i
\(482\) −4.13240 −0.188226
\(483\) 1.23814 6.45979i 0.0563375 0.293931i
\(484\) 0.716375 + 1.24080i 0.0325625 + 0.0563999i
\(485\) −9.73264 + 5.61914i −0.441936 + 0.255152i
\(486\) −3.50646 + 15.1890i −0.159056 + 0.688986i
\(487\) 17.5739i 0.796348i −0.917310 0.398174i \(-0.869644\pi\)
0.917310 0.398174i \(-0.130356\pi\)
\(488\) −13.2960 + 7.67646i −0.601883 + 0.347497i
\(489\) −5.42711 + 5.50345i −0.245422 + 0.248875i
\(490\) 0.598743 + 4.54838i 0.0270485 + 0.205475i
\(491\) 7.73222 4.46420i 0.348950 0.201467i −0.315273 0.949001i \(-0.602096\pi\)
0.664223 + 0.747535i \(0.268763\pi\)
\(492\) −10.5609 + 10.7095i −0.476122 + 0.482819i
\(493\) −27.3240 + 15.7755i −1.23061 + 0.710493i
\(494\) 6.66064 + 22.5428i 0.299677 + 1.01425i
\(495\) 2.96685 5.30861i 0.133350 0.238604i
\(496\) 2.26475 + 3.92266i 0.101690 + 0.176133i
\(497\) −2.06577 + 1.38029i −0.0926626 + 0.0619143i
\(498\) 3.33051 + 12.0912i 0.149244 + 0.541822i
\(499\) −8.26926 4.77426i −0.370183 0.213725i 0.303355 0.952877i \(-0.401893\pi\)
−0.673538 + 0.739152i \(0.735226\pi\)
\(500\) 6.27225i 0.280503i
\(501\) 1.57787 1.60006i 0.0704938 0.0714854i
\(502\) 3.75716 6.50759i 0.167690 0.290448i
\(503\) −12.4146 + 21.5027i −0.553539 + 0.958757i 0.444477 + 0.895790i \(0.353390\pi\)
−0.998016 + 0.0629667i \(0.979944\pi\)
\(504\) −7.91224 + 0.629640i −0.352439 + 0.0280464i
\(505\) −4.22762 + 2.44082i −0.188127 + 0.108615i
\(506\) −3.84474 2.21976i −0.170920 0.0986806i
\(507\) −22.0505 4.55782i −0.979299 0.202420i
\(508\) −3.11947 5.40309i −0.138404 0.239723i
\(509\) 14.4428i 0.640168i 0.947389 + 0.320084i \(0.103711\pi\)
−0.947389 + 0.320084i \(0.896289\pi\)
\(510\) −7.71449 2.00946i −0.341603 0.0889802i
\(511\) 1.88471 + 28.7581i 0.0833747 + 1.27218i
\(512\) 1.00000 0.0441942
\(513\) −32.8982 8.08032i −1.45249 0.356755i
\(514\) −25.2022 −1.11162
\(515\) −5.80646 10.0571i −0.255863 0.443168i
\(516\) 0.0332002 0.127459i 0.00146156 0.00561106i
\(517\) −24.8824 + 14.3658i −1.09433 + 0.631809i
\(518\) −3.46829 + 7.03287i −0.152388 + 0.309007i
\(519\) −15.6197 15.4031i −0.685631 0.676121i
\(520\) 1.71293 + 1.62775i 0.0751170 + 0.0713814i
\(521\) −15.0954 26.1460i −0.661341 1.14548i −0.980264 0.197695i \(-0.936654\pi\)
0.318923 0.947781i \(-0.396679\pi\)
\(522\) −6.57526 + 11.7652i −0.287791 + 0.514948i
\(523\) 15.5942i 0.681887i 0.940084 + 0.340944i \(0.110747\pi\)
−0.940084 + 0.340944i \(0.889253\pi\)
\(524\) −1.86046 + 3.22241i −0.0812745 + 0.140772i
\(525\) −6.87063 19.7856i −0.299859 0.863515i
\(526\) −17.2636 9.96713i −0.752728 0.434588i
\(527\) 15.9050 + 27.5482i 0.692831 + 1.20002i
\(528\) −1.35042 + 5.18441i −0.0587697 + 0.225622i
\(529\) 20.9399 0.910431
\(530\) 7.32956 0.318376
\(531\) −10.8737 18.2407i −0.471880 0.791578i
\(532\) −1.12801 17.2119i −0.0489055 0.746230i
\(533\) 30.0266 8.87188i 1.30060 0.384284i
\(534\) −5.02719 18.2509i −0.217548 0.789795i
\(535\) −5.76499 + 9.98526i −0.249242 + 0.431700i
\(536\) 3.46095 + 1.99818i 0.149490 + 0.0863082i
\(537\) −24.3399 6.34000i −1.05034 0.273591i
\(538\) 20.2140 0.871488
\(539\) 21.4665 2.82582i 0.924627 0.121717i
\(540\) −3.27020 + 0.950106i −0.140727 + 0.0408861i
\(541\) −36.0971 20.8407i −1.55194 0.896011i −0.997984 0.0634632i \(-0.979785\pi\)
−0.553953 0.832548i \(-0.686881\pi\)
\(542\) −26.4526 −1.13624
\(543\) −1.64324 5.96569i −0.0705182 0.256012i
\(544\) 7.02284 0.301102
\(545\) −6.29056 −0.269458
\(546\) 15.0482 + 6.82287i 0.644004 + 0.291992i
\(547\) −0.933149 −0.0398986 −0.0199493 0.999801i \(-0.506350\pi\)
−0.0199493 + 0.999801i \(0.506350\pi\)
\(548\) 6.92624 0.295874
\(549\) −22.4700 + 40.2058i −0.958997 + 1.71594i
\(550\) −14.1370 −0.602802
\(551\) −25.3654 14.6447i −1.08060 0.623886i
\(552\) 0.660182 + 2.39676i 0.0280992 + 0.102013i
\(553\) 6.16816 4.12137i 0.262297 0.175259i
\(554\) 3.36980 0.143169
\(555\) −0.848047 + 3.25574i −0.0359976 + 0.138198i
\(556\) −2.27775 1.31506i −0.0965979 0.0557708i
\(557\) 16.7603 29.0296i 0.710155 1.23002i −0.254644 0.967035i \(-0.581958\pi\)
0.964799 0.262990i \(-0.0847085\pi\)
\(558\) 11.8617 + 6.62923i 0.502147 + 0.280638i
\(559\) −0.188870 + 0.198754i −0.00798833 + 0.00840638i
\(560\) −0.963325 1.44174i −0.0407079 0.0609246i
\(561\) −9.48381 + 36.4093i −0.400407 + 1.53720i
\(562\) −20.1579 −0.850308
\(563\) −3.86351 −0.162828 −0.0814138 0.996680i \(-0.525944\pi\)
−0.0814138 + 0.996680i \(0.525944\pi\)
\(564\) 15.5694 + 4.05550i 0.655592 + 0.170767i
\(565\) −0.853271 1.47791i −0.0358974 0.0621761i
\(566\) 5.52469 + 3.18968i 0.232220 + 0.134072i
\(567\) −19.4216 + 13.7768i −0.815631 + 0.578572i
\(568\) 0.469521 0.813235i 0.0197007 0.0341226i
\(569\) 26.9233i 1.12868i 0.825541 + 0.564342i \(0.190870\pi\)
−0.825541 + 0.564342i \(0.809130\pi\)
\(570\) −1.96526 7.13477i −0.0823157 0.298842i
\(571\) 5.20460 + 9.01463i 0.217806 + 0.377250i 0.954137 0.299371i \(-0.0967768\pi\)
−0.736331 + 0.676621i \(0.763443\pi\)
\(572\) 7.68230 8.08434i 0.321213 0.338023i
\(573\) −7.34042 + 7.44367i −0.306651 + 0.310964i
\(574\) −22.9260 + 1.50249i −0.956912 + 0.0627129i
\(575\) −5.68115 + 3.28001i −0.236920 + 0.136786i
\(576\) 2.57687 1.53614i 0.107370 0.0640059i
\(577\) −10.2980 17.8366i −0.428711 0.742549i 0.568048 0.822995i \(-0.307699\pi\)
−0.996759 + 0.0804462i \(0.974365\pi\)
\(578\) 32.3202 1.34434
\(579\) 39.2029 + 10.2115i 1.62922 + 0.424376i
\(580\) −2.94435 −0.122258
\(581\) −8.47328 + 17.1818i −0.351531 + 0.712822i
\(582\) 7.48665 28.7420i 0.310332 1.19139i
\(583\) 34.5925i 1.43268i
\(584\) −5.44642 9.43348i −0.225375 0.390360i
\(585\) 6.91445 + 1.56319i 0.285878 + 0.0646300i
\(586\) −5.30689 3.06394i −0.219226 0.126570i
\(587\) 23.7246 13.6974i 0.979217 0.565351i 0.0771834 0.997017i \(-0.475407\pi\)
0.902034 + 0.431666i \(0.142074\pi\)
\(588\) −9.67011 7.31361i −0.398789 0.301608i
\(589\) −14.7649 + 25.5736i −0.608377 + 1.05374i
\(590\) 2.31957 4.01761i 0.0954951 0.165402i
\(591\) 19.4858 + 19.2155i 0.801539 + 0.790421i
\(592\) 2.96384i 0.121813i
\(593\) 11.0590 + 6.38494i 0.454141 + 0.262198i 0.709577 0.704628i \(-0.248886\pi\)
−0.255437 + 0.966826i \(0.582219\pi\)
\(594\) 4.48411 + 15.4340i 0.183985 + 0.633265i
\(595\) −6.76527 10.1251i −0.277349 0.415088i
\(596\) 3.03198 + 5.25155i 0.124195 + 0.215112i
\(597\) −11.2693 40.9126i −0.461222 1.67444i
\(598\) 1.21155 5.03124i 0.0495438 0.205743i
\(599\) −29.5140 + 17.0399i −1.20591 + 0.696231i −0.961863 0.273533i \(-0.911808\pi\)
−0.244045 + 0.969764i \(0.578475\pi\)
\(600\) 5.63663 + 5.55845i 0.230115 + 0.226923i
\(601\) −33.7422 + 19.4811i −1.37637 + 0.794649i −0.991721 0.128413i \(-0.959012\pi\)
−0.384652 + 0.923062i \(0.625678\pi\)
\(602\) 0.167287 0.111776i 0.00681810 0.00455564i
\(603\) 11.9879 0.167451i 0.488185 0.00681913i
\(604\) −0.715824 + 0.413281i −0.0291265 + 0.0168162i
\(605\) 0.938987i 0.0381752i
\(606\) 3.25202 12.4848i 0.132104 0.507161i
\(607\) −0.845852 + 0.488353i −0.0343321 + 0.0198216i −0.517068 0.855944i \(-0.672976\pi\)
0.482736 + 0.875766i \(0.339643\pi\)
\(608\) 3.25972 + 5.64600i 0.132199 + 0.228976i
\(609\) −19.4486 + 6.75359i −0.788096 + 0.273669i
\(610\) −10.0619 −0.407395
\(611\) −24.2783 23.0709i −0.982195 0.933350i
\(612\) 18.0969 10.7881i 0.731526 0.436082i
\(613\) 5.04618 + 2.91341i 0.203813 + 0.117672i 0.598433 0.801173i \(-0.295790\pi\)
−0.394620 + 0.918845i \(0.629124\pi\)
\(614\) 5.38161 0.217184
\(615\) −9.50340 + 2.61770i −0.383214 + 0.105556i
\(616\) −6.80442 + 4.54650i −0.274158 + 0.183184i
\(617\) −10.4203 + 18.0485i −0.419506 + 0.726606i −0.995890 0.0905731i \(-0.971130\pi\)
0.576384 + 0.817179i \(0.304463\pi\)
\(618\) 29.7001 + 7.73622i 1.19471 + 0.311196i
\(619\) −3.21016 5.56015i −0.129027 0.223481i 0.794273 0.607561i \(-0.207852\pi\)
−0.923300 + 0.384080i \(0.874519\pi\)
\(620\) 2.96852i 0.119219i
\(621\) 5.38296 + 5.16200i 0.216011 + 0.207144i
\(622\) −3.15077 5.45729i −0.126334 0.218817i
\(623\) 12.7899 25.9348i 0.512415 1.03906i
\(624\) −6.24170 + 0.202785i −0.249868 + 0.00811791i
\(625\) −9.37088 + 16.2308i −0.374835 + 0.649234i
\(626\) −9.08951 5.24783i −0.363290 0.209746i
\(627\) −33.6732 + 9.27523i −1.34478 + 0.370417i
\(628\) 5.69728 3.28932i 0.227346 0.131258i
\(629\) 20.8145i 0.829930i
\(630\) −4.69708 2.23537i −0.187136 0.0890594i
\(631\) −14.8774 8.58945i −0.592258 0.341941i 0.173732 0.984793i \(-0.444418\pi\)
−0.765990 + 0.642852i \(0.777751\pi\)
\(632\) −1.40194 + 2.42822i −0.0557660 + 0.0965896i
\(633\) 14.6348 + 14.4318i 0.581679 + 0.573611i
\(634\) −0.443737 + 0.768575i −0.0176230 + 0.0305240i
\(635\) 4.08884i 0.162261i
\(636\) −13.6013 + 13.7926i −0.539326 + 0.546912i
\(637\) 10.2494 + 23.0640i 0.406097 + 0.913830i
\(638\) 13.8961i 0.550153i
\(639\) −0.0393467 2.81685i −0.00155653 0.111433i
\(640\) 0.567570 + 0.327687i 0.0224352 + 0.0129530i
\(641\) 21.8700i 0.863814i −0.901918 0.431907i \(-0.857841\pi\)
0.901918 0.431907i \(-0.142159\pi\)
\(642\) −8.09208 29.3778i −0.319369 1.15945i
\(643\) 4.78089 8.28074i 0.188540 0.326561i −0.756224 0.654313i \(-0.772958\pi\)
0.944764 + 0.327753i \(0.106291\pi\)
\(644\) −1.67959 + 3.40582i −0.0661852 + 0.134208i
\(645\) 0.0606101 0.0614626i 0.00238652 0.00242009i
\(646\) 22.8925 + 39.6509i 0.900692 + 1.56004i
\(647\) −16.3263 + 28.2780i −0.641854 + 1.11172i 0.343164 + 0.939275i \(0.388501\pi\)
−0.985018 + 0.172449i \(0.944832\pi\)
\(648\) 4.28054 7.91688i 0.168156 0.311004i
\(649\) −18.9615 10.9474i −0.744303 0.429724i
\(650\) −4.66948 15.8037i −0.183152 0.619873i
\(651\) 6.80902 + 19.6082i 0.266867 + 0.768506i
\(652\) 3.86463 2.23125i 0.151351 0.0873823i
\(653\) 38.2820i 1.49809i −0.662519 0.749045i \(-0.730513\pi\)
0.662519 0.749045i \(-0.269487\pi\)
\(654\) 11.6732 11.8374i 0.456460 0.462881i
\(655\) −2.11188 + 1.21930i −0.0825181 + 0.0476418i
\(656\) 7.52039 4.34190i 0.293622 0.169523i
\(657\) −28.5259 15.9424i −1.11290 0.621972i
\(658\) 13.6537 + 20.4345i 0.532278 + 0.796621i
\(659\) −4.16940 2.40720i −0.162417 0.0937713i 0.416589 0.909095i \(-0.363226\pi\)
−0.579005 + 0.815324i \(0.696559\pi\)
\(660\) −2.46532 + 2.50000i −0.0959626 + 0.0973124i
\(661\) 6.39508 11.0766i 0.248740 0.430830i −0.714437 0.699700i \(-0.753317\pi\)
0.963176 + 0.268870i \(0.0866502\pi\)
\(662\) 16.7252 9.65631i 0.650044 0.375303i
\(663\) −43.8345 + 1.42413i −1.70239 + 0.0553085i
\(664\) 7.24087i 0.281000i
\(665\) 4.99989 10.1386i 0.193887 0.393158i
\(666\) −4.55287 7.63743i −0.176420 0.295944i
\(667\) 3.22414 + 5.58437i 0.124839 + 0.216228i
\(668\) −1.12359 + 0.648707i −0.0434732 + 0.0250992i
\(669\) −28.1467 27.7563i −1.08822 1.07312i
\(670\) 1.30955 + 2.26821i 0.0505925 + 0.0876288i
\(671\) 47.4881i 1.83326i
\(672\) 4.50065 + 0.862636i 0.173616 + 0.0332769i
\(673\) 20.4148 + 35.3595i 0.786934 + 1.36301i 0.927837 + 0.372986i \(0.121666\pi\)
−0.140903 + 0.990023i \(0.545000\pi\)
\(674\) −1.76473 −0.0679747
\(675\) 23.0634 + 5.66475i 0.887713 + 0.218036i
\(676\) 11.5750 + 5.91777i 0.445191 + 0.227607i
\(677\) 1.70470 2.95263i 0.0655169 0.113479i −0.831406 0.555665i \(-0.812464\pi\)
0.896923 + 0.442186i \(0.145797\pi\)
\(678\) 4.36449 + 1.13685i 0.167617 + 0.0436606i
\(679\) 37.7232 25.2055i 1.44768 0.967297i
\(680\) 3.98595 + 2.30129i 0.152854 + 0.0882505i
\(681\) 4.91435 + 17.8413i 0.188318 + 0.683678i
\(682\) 14.0102 0.536478
\(683\) 6.61788 0.253226 0.126613 0.991952i \(-0.459589\pi\)
0.126613 + 0.991952i \(0.459589\pi\)
\(684\) 17.0729 + 9.54163i 0.652800 + 0.364833i
\(685\) 3.93113 + 2.26964i 0.150201 + 0.0867184i
\(686\) −3.61276 18.1645i −0.137936 0.693523i
\(687\) −1.63156 + 6.26373i −0.0622480 + 0.238976i
\(688\) −0.0380219 + 0.0658559i −0.00144957 + 0.00251073i
\(689\) 38.6710 11.4260i 1.47325 0.435296i
\(690\) −0.410685 + 1.57666i −0.0156345 + 0.0600224i
\(691\) 48.1215 1.83063 0.915313 0.402742i \(-0.131943\pi\)
0.915313 + 0.402742i \(0.131943\pi\)
\(692\) 6.33267 + 10.9685i 0.240732 + 0.416960i
\(693\) −10.5500 + 22.1683i −0.400763 + 0.842104i
\(694\) 22.7100i 0.862061i
\(695\) −0.861854 1.49277i −0.0326920 0.0566242i
\(696\) 5.46376 5.54062i 0.207103 0.210017i
\(697\) 52.8145 30.4924i 2.00049 1.15498i
\(698\) −0.756268 1.30990i −0.0286252 0.0495803i
\(699\) 14.9621 + 3.89730i 0.565919 + 0.147409i
\(700\) 0.790798 + 12.0665i 0.0298894 + 0.456070i
\(701\) 37.9458i 1.43319i 0.697487 + 0.716597i \(0.254301\pi\)
−0.697487 + 0.716597i \(0.745699\pi\)
\(702\) −15.7726 + 10.1107i −0.595297 + 0.381603i
\(703\) 16.7338 9.66127i 0.631128 0.364382i
\(704\) 1.54655 2.67870i 0.0582877 0.100957i
\(705\) 7.50783 + 7.40369i 0.282761 + 0.278839i
\(706\) −28.2367 16.3025i −1.06270 0.613551i
\(707\) 16.3860 10.9486i 0.616260 0.411766i
\(708\) 3.25588 + 11.8203i 0.122364 + 0.444234i
\(709\) −11.1532 + 6.43929i −0.418867 + 0.241833i −0.694592 0.719404i \(-0.744415\pi\)
0.275726 + 0.961236i \(0.411082\pi\)
\(710\) 0.532973 0.307712i 0.0200021 0.0115482i
\(711\) 0.117485 + 8.41080i 0.00440602 + 0.315429i
\(712\) 10.9296i 0.409605i
\(713\) 5.63021 3.25060i 0.210853 0.121736i
\(714\) 31.6073 + 6.05815i 1.18287 + 0.226721i
\(715\) 7.00938 2.07104i 0.262136 0.0774525i
\(716\) 12.5760 + 7.26077i 0.469988 + 0.271348i
\(717\) −3.80092 + 1.04696i −0.141948 + 0.0390993i
\(718\) 3.19150 5.52784i 0.119106 0.206297i
\(719\) −16.6678 28.8694i −0.621603 1.07665i −0.989187 0.146658i \(-0.953148\pi\)
0.367584 0.929990i \(-0.380185\pi\)
\(720\) 1.96593 0.0274608i 0.0732659 0.00102340i
\(721\) 26.0457 + 38.9807i 0.969992 + 1.45172i
\(722\) −11.7515 + 20.3543i −0.437347 + 0.757508i
\(723\) 6.90053 1.90074i 0.256633 0.0706893i
\(724\) 3.57257i 0.132773i
\(725\) 17.7825 + 10.2667i 0.660427 + 0.381297i
\(726\) −1.76696 1.74246i −0.0655782 0.0646686i
\(727\) 3.84364i 0.142553i 0.997457 + 0.0712764i \(0.0227072\pi\)
−0.997457 + 0.0712764i \(0.977293\pi\)
\(728\) −7.33005 6.10494i −0.271670 0.226264i
\(729\) −1.13103 26.9763i −0.0418900 0.999122i
\(730\) 7.13889i 0.264222i
\(731\) −0.267022 + 0.462495i −0.00987616 + 0.0171060i
\(732\) 18.6716 18.9343i 0.690124 0.699831i
\(733\) −21.0661 + 36.4875i −0.778093 + 1.34770i 0.154947 + 0.987923i \(0.450479\pi\)
−0.933040 + 0.359773i \(0.882854\pi\)
\(734\) −10.4124 6.01163i −0.384330 0.221893i
\(735\) −3.09189 7.31976i −0.114046 0.269993i
\(736\) 1.43530i 0.0529059i
\(737\) 10.7050 6.18056i 0.394325 0.227664i
\(738\) 12.7093 22.7409i 0.467836 0.837104i
\(739\) −15.5624 8.98495i −0.572471 0.330517i 0.185664 0.982613i \(-0.440556\pi\)
−0.758136 + 0.652097i \(0.773890\pi\)
\(740\) 0.971210 1.68219i 0.0357024 0.0618384i
\(741\) −21.4911 34.5796i −0.789497 1.27031i
\(742\) −29.5262 + 1.93505i −1.08394 + 0.0710379i
\(743\) −3.17479 5.49889i −0.116472 0.201735i 0.801895 0.597464i \(-0.203825\pi\)
−0.918367 + 0.395730i \(0.870492\pi\)
\(744\) −5.58609 5.50861i −0.204796 0.201955i
\(745\) 3.97416i 0.145602i
\(746\) 10.8556 + 18.8024i 0.397451 + 0.688406i
\(747\) −11.1230 18.6588i −0.406969 0.682690i
\(748\) 10.8612 18.8121i 0.397123 0.687838i
\(749\) 20.5873 41.7463i 0.752245 1.52538i
\(750\) 2.88499 + 10.4738i 0.105345 + 0.382448i
\(751\) 31.4707 1.14838 0.574191 0.818721i \(-0.305317\pi\)
0.574191 + 0.818721i \(0.305317\pi\)
\(752\) −8.04448 4.64448i −0.293352 0.169367i
\(753\) −3.28070 + 12.5949i −0.119555 + 0.458985i
\(754\) −15.5345 + 4.58994i −0.565733 + 0.167156i
\(755\) −0.541708 −0.0197148
\(756\) 12.9227 4.69073i 0.469995 0.170600i
\(757\) −2.57146 4.45391i −0.0934614 0.161880i 0.815504 0.578751i \(-0.196460\pi\)
−0.908965 + 0.416871i \(0.863127\pi\)
\(758\) −2.54234 + 1.46782i −0.0923421 + 0.0533137i
\(759\) 7.44119 + 1.93827i 0.270098 + 0.0703546i
\(760\) 4.27267i 0.154986i
\(761\) 6.50298 3.75450i 0.235733 0.136100i −0.377481 0.926017i \(-0.623210\pi\)
0.613214 + 0.789917i \(0.289876\pi\)
\(762\) 7.69429 + 7.58757i 0.278735 + 0.274869i
\(763\) 25.3407 1.66075i 0.917395 0.0601231i
\(764\) 5.22709 3.01786i 0.189110 0.109183i
\(765\) 13.8064 0.192852i 0.499171 0.00697259i
\(766\) 26.1275 15.0847i 0.944025 0.545033i
\(767\) 5.97509 24.8130i 0.215748 0.895946i
\(768\) −1.66986 + 0.459961i −0.0602559 + 0.0165974i
\(769\) 12.5070 + 21.6627i 0.451013 + 0.781177i 0.998449 0.0556704i \(-0.0177296\pi\)
−0.547437 + 0.836847i \(0.684396\pi\)
\(770\) −5.35181 + 0.350741i −0.192866 + 0.0126398i
\(771\) 42.0841 11.5920i 1.51562 0.417476i
\(772\) −20.2555 11.6945i −0.729012 0.420896i
\(773\) 13.2394i 0.476187i −0.971242 0.238093i \(-0.923478\pi\)
0.971242 0.238093i \(-0.0765224\pi\)