Properties

Label 546.2.bi.f.17.9
Level $546$
Weight $2$
Character 546.17
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bi (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.9
Character \(\chi\) \(=\) 546.17
Dual form 546.2.bi.f.257.9

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +(0.403394 - 1.68442i) q^{3} +1.00000 q^{4} +(-1.80315 + 1.04105i) q^{5} +(0.403394 - 1.68442i) q^{6} +(-0.800654 - 2.52170i) q^{7} +1.00000 q^{8} +(-2.67455 - 1.35897i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(0.403394 - 1.68442i) q^{3} +1.00000 q^{4} +(-1.80315 + 1.04105i) q^{5} +(0.403394 - 1.68442i) q^{6} +(-0.800654 - 2.52170i) q^{7} +1.00000 q^{8} +(-2.67455 - 1.35897i) q^{9} +(-1.80315 + 1.04105i) q^{10} +(-1.07812 - 1.86736i) q^{11} +(0.403394 - 1.68442i) q^{12} +(0.217235 - 3.59900i) q^{13} +(-0.800654 - 2.52170i) q^{14} +(1.02618 + 3.45721i) q^{15} +1.00000 q^{16} +0.557271 q^{17} +(-2.67455 - 1.35897i) q^{18} +(1.94720 - 3.37265i) q^{19} +(-1.80315 + 1.04105i) q^{20} +(-4.57058 + 0.331402i) q^{21} +(-1.07812 - 1.86736i) q^{22} -2.07565i q^{23} +(0.403394 - 1.68442i) q^{24} +(-0.332437 + 0.575798i) q^{25} +(0.217235 - 3.59900i) q^{26} +(-3.36797 + 3.95686i) q^{27} +(-0.800654 - 2.52170i) q^{28} +(6.10476 + 3.52458i) q^{29} +(1.02618 + 3.45721i) q^{30} +(3.21742 - 5.57273i) q^{31} +1.00000 q^{32} +(-3.58033 + 1.06273i) q^{33} +0.557271 q^{34} +(4.06891 + 3.71347i) q^{35} +(-2.67455 - 1.35897i) q^{36} +8.31631i q^{37} +(1.94720 - 3.37265i) q^{38} +(-5.97460 - 1.81773i) q^{39} +(-1.80315 + 1.04105i) q^{40} +(0.532863 + 0.307649i) q^{41} +(-4.57058 + 0.331402i) q^{42} +(4.33366 + 7.50612i) q^{43} +(-1.07812 - 1.86736i) q^{44} +(6.23736 - 0.333908i) q^{45} -2.07565i q^{46} +(0.507011 - 0.292723i) q^{47} +(0.403394 - 1.68442i) q^{48} +(-5.71791 + 4.03801i) q^{49} +(-0.332437 + 0.575798i) q^{50} +(0.224800 - 0.938678i) q^{51} +(0.217235 - 3.59900i) q^{52} +(-6.68551 - 3.85988i) q^{53} +(-3.36797 + 3.95686i) q^{54} +(3.88803 + 2.24475i) q^{55} +(-0.800654 - 2.52170i) q^{56} +(-4.89547 - 4.64041i) q^{57} +(6.10476 + 3.52458i) q^{58} -1.56562i q^{59} +(1.02618 + 3.45721i) q^{60} +(-7.10333 - 4.10111i) q^{61} +(3.21742 - 5.57273i) q^{62} +(-1.28552 + 7.83246i) q^{63} +1.00000 q^{64} +(3.35503 + 6.71569i) q^{65} +(-3.58033 + 1.06273i) q^{66} +(12.3495 - 7.12999i) q^{67} +0.557271 q^{68} +(-3.49626 - 0.837303i) q^{69} +(4.06891 + 3.71347i) q^{70} +(6.52888 + 11.3084i) q^{71} +(-2.67455 - 1.35897i) q^{72} +(0.198890 - 0.344488i) q^{73} +8.31631i q^{74} +(0.835783 + 0.792237i) q^{75} +(1.94720 - 3.37265i) q^{76} +(-3.84572 + 4.21381i) q^{77} +(-5.97460 - 1.81773i) q^{78} +(5.73441 + 9.93228i) q^{79} +(-1.80315 + 1.04105i) q^{80} +(5.30640 + 7.26926i) q^{81} +(0.532863 + 0.307649i) q^{82} -12.4455i q^{83} +(-4.57058 + 0.331402i) q^{84} +(-1.00484 + 0.580146i) q^{85} +(4.33366 + 7.50612i) q^{86} +(8.39951 - 8.86119i) q^{87} +(-1.07812 - 1.86736i) q^{88} -8.70736i q^{89} +(6.23736 - 0.333908i) q^{90} +(-9.24952 + 2.33375i) q^{91} -2.07565i q^{92} +(-8.08894 - 7.66749i) q^{93} +(0.507011 - 0.292723i) q^{94} +8.10851i q^{95} +(0.403394 - 1.68442i) q^{96} +(1.64731 + 2.85322i) q^{97} +(-5.71791 + 4.03801i) q^{98} +(0.345799 + 6.45949i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + O(q^{10}) \) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + 9q^{10} + 9q^{11} + 6q^{12} + 8q^{13} + 4q^{14} - 17q^{15} + 34q^{16} + 12q^{17} + 4q^{18} - 5q^{19} + 9q^{20} - 7q^{21} + 9q^{22} + 6q^{24} + 16q^{25} + 8q^{26} - 18q^{27} + 4q^{28} + 27q^{29} - 17q^{30} - q^{31} + 34q^{32} + 12q^{34} - 3q^{35} + 4q^{36} - 5q^{38} - 10q^{39} + 9q^{40} - 3q^{41} - 7q^{42} - 3q^{43} + 9q^{44} + 9q^{45} - 27q^{47} + 6q^{48} - 2q^{49} + 16q^{50} - 36q^{51} + 8q^{52} - 21q^{53} - 18q^{54} - 57q^{55} + 4q^{56} - 17q^{57} + 27q^{58} - 17q^{60} - 51q^{61} - q^{62} - 24q^{63} + 34q^{64} - 21q^{65} - 21q^{67} + 12q^{68} + 30q^{69} - 3q^{70} - 15q^{71} + 4q^{72} - 19q^{73} - 54q^{75} - 5q^{76} + 9q^{77} - 10q^{78} - 9q^{79} + 9q^{80} + 28q^{81} - 3q^{82} - 7q^{84} - 42q^{85} - 3q^{86} - 81q^{87} + 9q^{88} + 9q^{90} - 72q^{91} - 17q^{93} - 27q^{94} + 6q^{96} + 19q^{97} - 2q^{98} - 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.403394 1.68442i 0.232900 0.972501i
\(4\) 1.00000 0.500000
\(5\) −1.80315 + 1.04105i −0.806393 + 0.465571i −0.845702 0.533656i \(-0.820818\pi\)
0.0393090 + 0.999227i \(0.487484\pi\)
\(6\) 0.403394 1.68442i 0.164685 0.687662i
\(7\) −0.800654 2.52170i −0.302619 0.953112i
\(8\) 1.00000 0.353553
\(9\) −2.67455 1.35897i −0.891516 0.452990i
\(10\) −1.80315 + 1.04105i −0.570206 + 0.329208i
\(11\) −1.07812 1.86736i −0.325066 0.563031i 0.656460 0.754361i \(-0.272053\pi\)
−0.981526 + 0.191330i \(0.938720\pi\)
\(12\) 0.403394 1.68442i 0.116450 0.486250i
\(13\) 0.217235 3.59900i 0.0602501 0.998183i
\(14\) −0.800654 2.52170i −0.213984 0.673952i
\(15\) 1.02618 + 3.45721i 0.264960 + 0.892649i
\(16\) 1.00000 0.250000
\(17\) 0.557271 0.135158 0.0675790 0.997714i \(-0.478473\pi\)
0.0675790 + 0.997714i \(0.478473\pi\)
\(18\) −2.67455 1.35897i −0.630397 0.320312i
\(19\) 1.94720 3.37265i 0.446718 0.773738i −0.551452 0.834207i \(-0.685926\pi\)
0.998170 + 0.0604682i \(0.0192594\pi\)
\(20\) −1.80315 + 1.04105i −0.403196 + 0.232785i
\(21\) −4.57058 + 0.331402i −0.997382 + 0.0723178i
\(22\) −1.07812 1.86736i −0.229856 0.398123i
\(23\) 2.07565i 0.432802i −0.976305 0.216401i \(-0.930568\pi\)
0.976305 0.216401i \(-0.0694319\pi\)
\(24\) 0.403394 1.68442i 0.0823424 0.343831i
\(25\) −0.332437 + 0.575798i −0.0664874 + 0.115160i
\(26\) 0.217235 3.59900i 0.0426033 0.705822i
\(27\) −3.36797 + 3.95686i −0.648167 + 0.761499i
\(28\) −0.800654 2.52170i −0.151309 0.476556i
\(29\) 6.10476 + 3.52458i 1.13363 + 0.654499i 0.944844 0.327520i \(-0.106213\pi\)
0.188781 + 0.982019i \(0.439546\pi\)
\(30\) 1.02618 + 3.45721i 0.187355 + 0.631198i
\(31\) 3.21742 5.57273i 0.577865 1.00089i −0.417859 0.908512i \(-0.637219\pi\)
0.995724 0.0923797i \(-0.0294474\pi\)
\(32\) 1.00000 0.176777
\(33\) −3.58033 + 1.06273i −0.623256 + 0.184997i
\(34\) 0.557271 0.0955711
\(35\) 4.06891 + 3.71347i 0.687771 + 0.627692i
\(36\) −2.67455 1.35897i −0.445758 0.226495i
\(37\) 8.31631i 1.36719i 0.729860 + 0.683596i \(0.239585\pi\)
−0.729860 + 0.683596i \(0.760415\pi\)
\(38\) 1.94720 3.37265i 0.315877 0.547116i
\(39\) −5.97460 1.81773i −0.956702 0.291070i
\(40\) −1.80315 + 1.04105i −0.285103 + 0.164604i
\(41\) 0.532863 + 0.307649i 0.0832192 + 0.0480466i 0.541032 0.841002i \(-0.318034\pi\)
−0.457813 + 0.889049i \(0.651367\pi\)
\(42\) −4.57058 + 0.331402i −0.705255 + 0.0511364i
\(43\) 4.33366 + 7.50612i 0.660877 + 1.14467i 0.980386 + 0.197089i \(0.0631487\pi\)
−0.319509 + 0.947583i \(0.603518\pi\)
\(44\) −1.07812 1.86736i −0.162533 0.281516i
\(45\) 6.23736 0.333908i 0.929810 0.0497761i
\(46\) 2.07565i 0.306037i
\(47\) 0.507011 0.292723i 0.0739551 0.0426980i −0.462566 0.886585i \(-0.653071\pi\)
0.536522 + 0.843887i \(0.319738\pi\)
\(48\) 0.403394 1.68442i 0.0582249 0.243125i
\(49\) −5.71791 + 4.03801i −0.816844 + 0.576859i
\(50\) −0.332437 + 0.575798i −0.0470137 + 0.0814301i
\(51\) 0.224800 0.938678i 0.0314782 0.131441i
\(52\) 0.217235 3.59900i 0.0301251 0.499092i
\(53\) −6.68551 3.85988i −0.918325 0.530195i −0.0352249 0.999379i \(-0.511215\pi\)
−0.883100 + 0.469184i \(0.844548\pi\)
\(54\) −3.36797 + 3.95686i −0.458323 + 0.538461i
\(55\) 3.88803 + 2.24475i 0.524262 + 0.302683i
\(56\) −0.800654 2.52170i −0.106992 0.336976i
\(57\) −4.89547 4.64041i −0.648421 0.614637i
\(58\) 6.10476 + 3.52458i 0.801594 + 0.462801i
\(59\) 1.56562i 0.203827i −0.994793 0.101913i \(-0.967504\pi\)
0.994793 0.101913i \(-0.0324965\pi\)
\(60\) 1.02618 + 3.45721i 0.132480 + 0.446324i
\(61\) −7.10333 4.10111i −0.909488 0.525093i −0.0292218 0.999573i \(-0.509303\pi\)
−0.880266 + 0.474480i \(0.842636\pi\)
\(62\) 3.21742 5.57273i 0.408612 0.707737i
\(63\) −1.28552 + 7.83246i −0.161961 + 0.986797i
\(64\) 1.00000 0.125000
\(65\) 3.35503 + 6.71569i 0.416140 + 0.832978i
\(66\) −3.58033 + 1.06273i −0.440708 + 0.130813i
\(67\) 12.3495 7.12999i 1.50873 0.871067i 0.508784 0.860894i \(-0.330095\pi\)
0.999948 0.0101724i \(-0.00323804\pi\)
\(68\) 0.557271 0.0675790
\(69\) −3.49626 0.837303i −0.420900 0.100799i
\(70\) 4.06891 + 3.71347i 0.486327 + 0.443845i
\(71\) 6.52888 + 11.3084i 0.774836 + 1.34206i 0.934887 + 0.354946i \(0.115501\pi\)
−0.160051 + 0.987109i \(0.551166\pi\)
\(72\) −2.67455 1.35897i −0.315198 0.160156i
\(73\) 0.198890 0.344488i 0.0232783 0.0403192i −0.854152 0.520024i \(-0.825923\pi\)
0.877430 + 0.479705i \(0.159256\pi\)
\(74\) 8.31631i 0.966751i
\(75\) 0.835783 + 0.792237i 0.0965079 + 0.0914796i
\(76\) 1.94720 3.37265i 0.223359 0.386869i
\(77\) −3.84572 + 4.21381i −0.438260 + 0.480208i
\(78\) −5.97460 1.81773i −0.676490 0.205817i
\(79\) 5.73441 + 9.93228i 0.645171 + 1.11747i 0.984262 + 0.176715i \(0.0565472\pi\)
−0.339091 + 0.940754i \(0.610119\pi\)
\(80\) −1.80315 + 1.04105i −0.201598 + 0.116393i
\(81\) 5.30640 + 7.26926i 0.589600 + 0.807695i
\(82\) 0.532863 + 0.307649i 0.0588449 + 0.0339741i
\(83\) 12.4455i 1.36607i −0.730385 0.683035i \(-0.760660\pi\)
0.730385 0.683035i \(-0.239340\pi\)
\(84\) −4.57058 + 0.331402i −0.498691 + 0.0361589i
\(85\) −1.00484 + 0.580146i −0.108990 + 0.0629256i
\(86\) 4.33366 + 7.50612i 0.467310 + 0.809405i
\(87\) 8.39951 8.86119i 0.900522 0.950019i
\(88\) −1.07812 1.86736i −0.114928 0.199062i
\(89\) 8.70736i 0.922978i −0.887146 0.461489i \(-0.847315\pi\)
0.887146 0.461489i \(-0.152685\pi\)
\(90\) 6.23736 0.333908i 0.657475 0.0351970i
\(91\) −9.24952 + 2.33375i −0.969613 + 0.244644i
\(92\) 2.07565i 0.216401i
\(93\) −8.08894 7.66749i −0.838783 0.795081i
\(94\) 0.507011 0.292723i 0.0522942 0.0301921i
\(95\) 8.10851i 0.831916i
\(96\) 0.403394 1.68442i 0.0411712 0.171915i
\(97\) 1.64731 + 2.85322i 0.167259 + 0.289701i 0.937455 0.348106i \(-0.113175\pi\)
−0.770196 + 0.637807i \(0.779842\pi\)
\(98\) −5.71791 + 4.03801i −0.577596 + 0.407901i
\(99\) 0.345799 + 6.45949i 0.0347541 + 0.649203i
\(100\) −0.332437 + 0.575798i −0.0332437 + 0.0575798i
\(101\) 7.94537 + 13.7618i 0.790594 + 1.36935i 0.925599 + 0.378505i \(0.123562\pi\)
−0.135005 + 0.990845i \(0.543105\pi\)
\(102\) 0.224800 0.938678i 0.0222585 0.0929430i
\(103\) −2.32058 + 1.33979i −0.228653 + 0.132013i −0.609951 0.792439i \(-0.708811\pi\)
0.381297 + 0.924452i \(0.375477\pi\)
\(104\) 0.217235 3.59900i 0.0213016 0.352911i
\(105\) 7.89642 5.35576i 0.770612 0.522668i
\(106\) −6.68551 3.85988i −0.649354 0.374905i
\(107\) 13.7207i 1.32643i −0.748427 0.663217i \(-0.769191\pi\)
0.748427 0.663217i \(-0.230809\pi\)
\(108\) −3.36797 + 3.95686i −0.324083 + 0.380749i
\(109\) −2.51915 1.45443i −0.241291 0.139309i 0.374479 0.927235i \(-0.377822\pi\)
−0.615770 + 0.787926i \(0.711155\pi\)
\(110\) 3.88803 + 2.24475i 0.370709 + 0.214029i
\(111\) 14.0082 + 3.35475i 1.32960 + 0.318419i
\(112\) −0.800654 2.52170i −0.0756547 0.238278i
\(113\) 17.2893 9.98197i 1.62644 0.939025i 0.641295 0.767295i \(-0.278398\pi\)
0.985144 0.171730i \(-0.0549357\pi\)
\(114\) −4.89547 4.64041i −0.458503 0.434614i
\(115\) 2.16085 + 3.74270i 0.201500 + 0.349008i
\(116\) 6.10476 + 3.52458i 0.566813 + 0.327249i
\(117\) −5.47194 + 9.33048i −0.505881 + 0.862603i
\(118\) 1.56562i 0.144127i
\(119\) −0.446181 1.40527i −0.0409014 0.128821i
\(120\) 1.02618 + 3.45721i 0.0936774 + 0.315599i
\(121\) 3.17530 5.49979i 0.288664 0.499981i
\(122\) −7.10333 4.10111i −0.643105 0.371297i
\(123\) 0.733163 0.773462i 0.0661071 0.0697407i
\(124\) 3.21742 5.57273i 0.288933 0.500446i
\(125\) 11.7948i 1.05496i
\(126\) −1.28552 + 7.83246i −0.114523 + 0.697771i
\(127\) −7.35797 + 12.7444i −0.652915 + 1.13088i 0.329498 + 0.944156i \(0.393121\pi\)
−0.982412 + 0.186725i \(0.940213\pi\)
\(128\) 1.00000 0.0883883
\(129\) 14.3916 4.27178i 1.26711 0.376110i
\(130\) 3.35503 + 6.71569i 0.294255 + 0.589005i
\(131\) 2.82161 + 4.88718i 0.246526 + 0.426995i 0.962559 0.271071i \(-0.0873777\pi\)
−0.716034 + 0.698066i \(0.754044\pi\)
\(132\) −3.58033 + 1.06273i −0.311628 + 0.0924987i
\(133\) −10.0638 2.20992i −0.872644 0.191624i
\(134\) 12.3495 7.12999i 1.06683 0.615937i
\(135\) 1.95367 10.6410i 0.168145 0.915834i
\(136\) 0.557271 0.0477856
\(137\) 12.8200 1.09528 0.547642 0.836713i \(-0.315526\pi\)
0.547642 + 0.836713i \(0.315526\pi\)
\(138\) −3.49626 0.837303i −0.297622 0.0712759i
\(139\) −3.54239 + 2.04520i −0.300462 + 0.173472i −0.642650 0.766160i \(-0.722165\pi\)
0.342189 + 0.939631i \(0.388832\pi\)
\(140\) 4.06891 + 3.71347i 0.343885 + 0.313846i
\(141\) −0.288543 0.972102i −0.0242997 0.0818658i
\(142\) 6.52888 + 11.3084i 0.547892 + 0.948976i
\(143\) −6.95485 + 3.47451i −0.581593 + 0.290553i
\(144\) −2.67455 1.35897i −0.222879 0.113247i
\(145\) −14.6771 −1.21886
\(146\) 0.198890 0.344488i 0.0164603 0.0285100i
\(147\) 4.49515 + 11.2603i 0.370753 + 0.928731i
\(148\) 8.31631i 0.683596i
\(149\) −0.573527 + 0.993378i −0.0469852 + 0.0813807i −0.888562 0.458757i \(-0.848295\pi\)
0.841576 + 0.540138i \(0.181628\pi\)
\(150\) 0.835783 + 0.792237i 0.0682414 + 0.0646859i
\(151\) −4.15879 2.40108i −0.338438 0.195397i 0.321143 0.947031i \(-0.395933\pi\)
−0.659581 + 0.751633i \(0.729266\pi\)
\(152\) 1.94720 3.37265i 0.157939 0.273558i
\(153\) −1.49045 0.757314i −0.120495 0.0612252i
\(154\) −3.84572 + 4.21381i −0.309897 + 0.339558i
\(155\) 13.3979i 1.07615i
\(156\) −5.97460 1.81773i −0.478351 0.145535i
\(157\) −6.04701 3.49124i −0.482604 0.278631i 0.238897 0.971045i \(-0.423214\pi\)
−0.721501 + 0.692414i \(0.756547\pi\)
\(158\) 5.73441 + 9.93228i 0.456205 + 0.790170i
\(159\) −9.19856 + 9.70416i −0.729493 + 0.769590i
\(160\) −1.80315 + 1.04105i −0.142551 + 0.0823021i
\(161\) −5.23415 + 1.66187i −0.412509 + 0.130974i
\(162\) 5.30640 + 7.26926i 0.416910 + 0.571127i
\(163\) −17.0431 9.83983i −1.33492 0.770715i −0.348869 0.937171i \(-0.613434\pi\)
−0.986049 + 0.166456i \(0.946768\pi\)
\(164\) 0.532863 + 0.307649i 0.0416096 + 0.0240233i
\(165\) 5.34952 5.64356i 0.416459 0.439350i
\(166\) 12.4455i 0.965958i
\(167\) 11.1356 + 6.42913i 0.861698 + 0.497501i 0.864580 0.502495i \(-0.167584\pi\)
−0.00288283 + 0.999996i \(0.500918\pi\)
\(168\) −4.57058 + 0.331402i −0.352628 + 0.0255682i
\(169\) −12.9056 1.56366i −0.992740 0.120281i
\(170\) −1.00484 + 0.580146i −0.0770679 + 0.0444951i
\(171\) −9.79120 + 6.37412i −0.748752 + 0.487441i
\(172\) 4.33366 + 7.50612i 0.330438 + 0.572336i
\(173\) −2.21541 + 3.83719i −0.168434 + 0.291736i −0.937869 0.346988i \(-0.887204\pi\)
0.769435 + 0.638725i \(0.220538\pi\)
\(174\) 8.39951 8.86119i 0.636765 0.671765i
\(175\) 1.71815 + 0.377290i 0.129880 + 0.0285205i
\(176\) −1.07812 1.86736i −0.0812665 0.140758i
\(177\) −2.63717 0.631563i −0.198222 0.0474712i
\(178\) 8.70736i 0.652644i
\(179\) −19.6844 + 11.3648i −1.47128 + 0.849443i −0.999479 0.0322629i \(-0.989729\pi\)
−0.471799 + 0.881706i \(0.656395\pi\)
\(180\) 6.23736 0.333908i 0.464905 0.0248880i
\(181\) 10.2663i 0.763090i 0.924350 + 0.381545i \(0.124608\pi\)
−0.924350 + 0.381545i \(0.875392\pi\)
\(182\) −9.24952 + 2.33375i −0.685620 + 0.172989i
\(183\) −9.77343 + 10.3106i −0.722473 + 0.762184i
\(184\) 2.07565i 0.153019i
\(185\) −8.65768 14.9955i −0.636525 1.10249i
\(186\) −8.08894 7.66749i −0.593109 0.562208i
\(187\) −0.600806 1.04063i −0.0439353 0.0760982i
\(188\) 0.507011 0.292723i 0.0369776 0.0213490i
\(189\) 12.6746 + 5.32493i 0.921941 + 0.387331i
\(190\) 8.10851i 0.588253i
\(191\) 3.37227 + 1.94698i 0.244009 + 0.140879i 0.617018 0.786949i \(-0.288341\pi\)
−0.373009 + 0.927828i \(0.621674\pi\)
\(192\) 0.403394 1.68442i 0.0291124 0.121563i
\(193\) −3.11672 + 1.79944i −0.224346 + 0.129526i −0.607961 0.793967i \(-0.708012\pi\)
0.383615 + 0.923493i \(0.374679\pi\)
\(194\) 1.64731 + 2.85322i 0.118270 + 0.204849i
\(195\) 12.6654 2.94221i 0.906991 0.210696i
\(196\) −5.71791 + 4.03801i −0.408422 + 0.288430i
\(197\) 5.48497 9.50024i 0.390788 0.676864i −0.601766 0.798673i \(-0.705536\pi\)
0.992554 + 0.121808i \(0.0388693\pi\)
\(198\) 0.345799 + 6.45949i 0.0245749 + 0.459056i
\(199\) 20.2743i 1.43721i 0.695421 + 0.718603i \(0.255218\pi\)
−0.695421 + 0.718603i \(0.744782\pi\)
\(200\) −0.332437 + 0.575798i −0.0235068 + 0.0407150i
\(201\) −7.02819 23.6780i −0.495730 1.67011i
\(202\) 7.94537 + 13.7618i 0.559035 + 0.968276i
\(203\) 4.00013 18.2163i 0.280754 1.27854i
\(204\) 0.224800 0.938678i 0.0157391 0.0657206i
\(205\) −1.28111 −0.0894765
\(206\) −2.32058 + 1.33979i −0.161682 + 0.0933474i
\(207\) −2.82074 + 5.55141i −0.196055 + 0.385850i
\(208\) 0.217235 3.59900i 0.0150625 0.249546i
\(209\) −8.39727 −0.580852
\(210\) 7.89642 5.35576i 0.544905 0.369582i
\(211\) 6.39897 11.0833i 0.440523 0.763009i −0.557205 0.830375i \(-0.688126\pi\)
0.997728 + 0.0673662i \(0.0214596\pi\)
\(212\) −6.68551 3.85988i −0.459163 0.265098i
\(213\) 21.6817 6.43567i 1.48561 0.440965i
\(214\) 13.7207i 0.937930i
\(215\) −15.6285 9.02310i −1.06585 0.615370i
\(216\) −3.36797 + 3.95686i −0.229162 + 0.269230i
\(217\) −16.6288 3.65152i −1.12883 0.247881i
\(218\) −2.51915 1.45443i −0.170618 0.0985065i
\(219\) −0.500031 0.473979i −0.0337890 0.0320285i
\(220\) 3.88803 + 2.24475i 0.262131 + 0.151341i
\(221\) 0.121059 2.00562i 0.00814328 0.134912i
\(222\) 14.0082 + 3.35475i 0.940166 + 0.225156i
\(223\) 6.84088 11.8488i 0.458099 0.793451i −0.540761 0.841176i \(-0.681864\pi\)
0.998861 + 0.0477249i \(0.0151971\pi\)
\(224\) −0.800654 2.52170i −0.0534960 0.168488i
\(225\) 1.67161 1.08823i 0.111441 0.0725484i
\(226\) 17.2893 9.98197i 1.15007 0.663991i
\(227\) 3.74358i 0.248470i 0.992253 + 0.124235i \(0.0396477\pi\)
−0.992253 + 0.124235i \(0.960352\pi\)
\(228\) −4.89547 4.64041i −0.324210 0.307318i
\(229\) −4.38767 7.59967i −0.289946 0.502201i 0.683851 0.729622i \(-0.260304\pi\)
−0.973796 + 0.227421i \(0.926971\pi\)
\(230\) 2.16085 + 3.74270i 0.142482 + 0.246786i
\(231\) 5.54649 + 8.17763i 0.364932 + 0.538049i
\(232\) 6.10476 + 3.52458i 0.400797 + 0.231400i
\(233\) 19.0891 11.0211i 1.25057 0.722017i 0.279347 0.960190i \(-0.409882\pi\)
0.971223 + 0.238173i \(0.0765487\pi\)
\(234\) −5.47194 + 9.33048i −0.357712 + 0.609953i
\(235\) −0.609477 + 1.05565i −0.0397579 + 0.0688627i
\(236\) 1.56562i 0.101913i
\(237\) 19.0434 5.65253i 1.23700 0.367171i
\(238\) −0.446181 1.40527i −0.0289216 0.0910900i
\(239\) −12.3469 −0.798656 −0.399328 0.916808i \(-0.630757\pi\)
−0.399328 + 0.916808i \(0.630757\pi\)
\(240\) 1.02618 + 3.45721i 0.0662399 + 0.223162i
\(241\) −1.22458 −0.0788821 −0.0394410 0.999222i \(-0.512558\pi\)
−0.0394410 + 0.999222i \(0.512558\pi\)
\(242\) 3.17530 5.49979i 0.204116 0.353540i
\(243\) 14.3851 6.00584i 0.922802 0.385275i
\(244\) −7.10333 4.10111i −0.454744 0.262547i
\(245\) 6.10647 13.2338i 0.390128 0.845474i
\(246\) 0.733163 0.773462i 0.0467448 0.0493141i
\(247\) −11.7152 7.74063i −0.745418 0.492524i
\(248\) 3.21742 5.57273i 0.204306 0.353869i
\(249\) −20.9635 5.02044i −1.32850 0.318157i
\(250\) 11.7948i 0.745970i
\(251\) 6.93362 + 12.0094i 0.437646 + 0.758026i 0.997507 0.0705608i \(-0.0224789\pi\)
−0.559861 + 0.828586i \(0.689146\pi\)
\(252\) −1.28552 + 7.83246i −0.0809803 + 0.493399i
\(253\) −3.87598 + 2.23780i −0.243681 + 0.140689i
\(254\) −7.35797 + 12.7444i −0.461680 + 0.799654i
\(255\) 0.571863 + 1.92660i 0.0358114 + 0.120649i
\(256\) 1.00000 0.0625000
\(257\) −10.6560 −0.664703 −0.332351 0.943156i \(-0.607842\pi\)
−0.332351 + 0.943156i \(0.607842\pi\)
\(258\) 14.3916 4.27178i 0.895984 0.265950i
\(259\) 20.9712 6.65849i 1.30309 0.413738i
\(260\) 3.35503 + 6.71569i 0.208070 + 0.416489i
\(261\) −11.5377 17.7229i −0.714163 1.09702i
\(262\) 2.82161 + 4.88718i 0.174320 + 0.301931i
\(263\) −21.1985 + 12.2389i −1.30715 + 0.754686i −0.981620 0.190844i \(-0.938877\pi\)
−0.325534 + 0.945530i \(0.605544\pi\)
\(264\) −3.58033 + 1.06273i −0.220354 + 0.0654065i
\(265\) 16.0733 0.987374
\(266\) −10.0638 2.20992i −0.617053 0.135499i
\(267\) −14.6669 3.51250i −0.897597 0.214961i
\(268\) 12.3495 7.12999i 0.754366 0.435533i
\(269\) −11.0410 −0.673182 −0.336591 0.941651i \(-0.609274\pi\)
−0.336591 + 0.941651i \(0.609274\pi\)
\(270\) 1.95367 10.6410i 0.118897 0.647593i
\(271\) 14.2522 0.865757 0.432879 0.901452i \(-0.357498\pi\)
0.432879 + 0.901452i \(0.357498\pi\)
\(272\) 0.557271 0.0337895
\(273\) 0.199826 + 16.5215i 0.0120940 + 0.999927i
\(274\) 12.8200 0.774483
\(275\) 1.43363 0.0864512
\(276\) −3.49626 0.837303i −0.210450 0.0503997i
\(277\) −9.76756 −0.586876 −0.293438 0.955978i \(-0.594799\pi\)
−0.293438 + 0.955978i \(0.594799\pi\)
\(278\) −3.54239 + 2.04520i −0.212459 + 0.122663i
\(279\) −16.1783 + 10.5322i −0.968570 + 0.630544i
\(280\) 4.06891 + 3.71347i 0.243164 + 0.221922i
\(281\) −0.791501 −0.0472170 −0.0236085 0.999721i \(-0.507516\pi\)
−0.0236085 + 0.999721i \(0.507516\pi\)
\(282\) −0.288543 0.972102i −0.0171825 0.0578878i
\(283\) 10.1855 5.88059i 0.605464 0.349565i −0.165724 0.986172i \(-0.552996\pi\)
0.771188 + 0.636607i \(0.219663\pi\)
\(284\) 6.52888 + 11.3084i 0.387418 + 0.671028i
\(285\) 13.6581 + 3.27092i 0.809039 + 0.193753i
\(286\) −6.95485 + 3.47451i −0.411249 + 0.205452i
\(287\) 0.349157 1.59004i 0.0206101 0.0938570i
\(288\) −2.67455 1.35897i −0.157599 0.0800781i
\(289\) −16.6894 −0.981732
\(290\) −14.6771 −0.861866
\(291\) 5.47054 1.62379i 0.320689 0.0951882i
\(292\) 0.198890 0.344488i 0.0116392 0.0201596i
\(293\) −6.68038 + 3.85692i −0.390272 + 0.225324i −0.682278 0.731093i \(-0.739011\pi\)
0.292006 + 0.956416i \(0.405677\pi\)
\(294\) 4.49515 + 11.2603i 0.262162 + 0.656712i
\(295\) 1.62989 + 2.82305i 0.0948959 + 0.164364i
\(296\) 8.31631i 0.483376i
\(297\) 11.0200 + 2.02325i 0.639444 + 0.117401i
\(298\) −0.573527 + 0.993378i −0.0332235 + 0.0575449i
\(299\) −7.47025 0.450903i −0.432016 0.0260764i
\(300\) 0.835783 + 0.792237i 0.0482539 + 0.0457398i
\(301\) 15.4584 16.9380i 0.891007 0.976289i
\(302\) −4.15879 2.40108i −0.239312 0.138167i
\(303\) 26.3858 7.83193i 1.51582 0.449933i
\(304\) 1.94720 3.37265i 0.111680 0.193435i
\(305\) 17.0778 0.977873
\(306\) −1.49045 0.757314i −0.0852032 0.0432928i
\(307\) 22.5567 1.28738 0.643689 0.765287i \(-0.277403\pi\)
0.643689 + 0.765287i \(0.277403\pi\)
\(308\) −3.84572 + 4.21381i −0.219130 + 0.240104i
\(309\) 1.32066 + 4.44929i 0.0751296 + 0.253111i
\(310\) 13.3979i 0.760952i
\(311\) 6.64375 11.5073i 0.376733 0.652520i −0.613852 0.789421i \(-0.710381\pi\)
0.990585 + 0.136901i \(0.0437143\pi\)
\(312\) −5.97460 1.81773i −0.338245 0.102909i
\(313\) 14.7574 8.52018i 0.834137 0.481589i −0.0211303 0.999777i \(-0.506726\pi\)
0.855267 + 0.518188i \(0.173393\pi\)
\(314\) −6.04701 3.49124i −0.341252 0.197022i
\(315\) −5.83598 15.4614i −0.328820 0.871150i
\(316\) 5.73441 + 9.93228i 0.322585 + 0.558734i
\(317\) −7.60593 13.1739i −0.427192 0.739918i 0.569431 0.822039i \(-0.307164\pi\)
−0.996622 + 0.0821217i \(0.973830\pi\)
\(318\) −9.19856 + 9.70416i −0.515829 + 0.544182i
\(319\) 15.1997i 0.851022i
\(320\) −1.80315 + 1.04105i −0.100799 + 0.0581964i
\(321\) −23.1115 5.53486i −1.28996 0.308926i
\(322\) −5.23415 + 1.66187i −0.291688 + 0.0926126i
\(323\) 1.08512 1.87948i 0.0603775 0.104577i
\(324\) 5.30640 + 7.26926i 0.294800 + 0.403848i
\(325\) 2.00008 + 1.32152i 0.110944 + 0.0733050i
\(326\) −17.0431 9.83983i −0.943929 0.544978i
\(327\) −3.46608 + 3.65660i −0.191675 + 0.202210i
\(328\) 0.532863 + 0.307649i 0.0294224 + 0.0169871i
\(329\) −1.14410 1.04416i −0.0630762 0.0575663i
\(330\) 5.34952 5.64356i 0.294481 0.310668i
\(331\) −9.89667 5.71384i −0.543970 0.314061i 0.202716 0.979238i \(-0.435023\pi\)
−0.746686 + 0.665176i \(0.768356\pi\)
\(332\) 12.4455i 0.683035i
\(333\) 11.3016 22.2424i 0.619325 1.21887i
\(334\) 11.1356 + 6.42913i 0.609312 + 0.351787i
\(335\) −14.8453 + 25.7129i −0.811087 + 1.40484i
\(336\) −4.57058 + 0.331402i −0.249345 + 0.0180794i
\(337\) 0.692991 0.0377496 0.0188748 0.999822i \(-0.493992\pi\)
0.0188748 + 0.999822i \(0.493992\pi\)
\(338\) −12.9056 1.56366i −0.701973 0.0850517i
\(339\) −9.83945 33.1491i −0.534406 1.80041i
\(340\) −1.00484 + 0.580146i −0.0544952 + 0.0314628i
\(341\) −13.8751 −0.751377
\(342\) −9.79120 + 6.37412i −0.529447 + 0.344673i
\(343\) 14.7607 + 11.1858i 0.797003 + 0.603975i
\(344\) 4.33366 + 7.50612i 0.233655 + 0.404703i
\(345\) 7.17595 2.13000i 0.386340 0.114675i
\(346\) −2.21541 + 3.83719i −0.119101 + 0.206289i
\(347\) 14.8415i 0.796733i 0.917226 + 0.398366i \(0.130423\pi\)
−0.917226 + 0.398366i \(0.869577\pi\)
\(348\) 8.39951 8.86119i 0.450261 0.475010i
\(349\) −9.35756 + 16.2078i −0.500899 + 0.867582i 0.499101 + 0.866544i \(0.333664\pi\)
−0.999999 + 0.00103797i \(0.999670\pi\)
\(350\) 1.71815 + 0.377290i 0.0918392 + 0.0201670i
\(351\) 13.5091 + 12.9809i 0.721063 + 0.692870i
\(352\) −1.07812 1.86736i −0.0574641 0.0995308i
\(353\) −21.1090 + 12.1873i −1.12352 + 0.648664i −0.942297 0.334778i \(-0.891339\pi\)
−0.181222 + 0.983442i \(0.558005\pi\)
\(354\) −2.63717 0.631563i −0.140164 0.0335672i
\(355\) −23.5451 13.5938i −1.24964 0.721482i
\(356\) 8.70736i 0.461489i
\(357\) −2.54705 + 0.184680i −0.134804 + 0.00977433i
\(358\) −19.6844 + 11.3648i −1.04035 + 0.600647i
\(359\) −2.79005 4.83250i −0.147253 0.255050i 0.782958 0.622074i \(-0.213710\pi\)
−0.930211 + 0.367025i \(0.880377\pi\)
\(360\) 6.23736 0.333908i 0.328738 0.0175985i
\(361\) 1.91683 + 3.32005i 0.100886 + 0.174740i
\(362\) 10.2663i 0.539586i
\(363\) −7.98306 7.56713i −0.419002 0.397171i
\(364\) −9.24952 + 2.33375i −0.484806 + 0.122322i
\(365\) 0.828216i 0.0433508i
\(366\) −9.77343 + 10.3106i −0.510866 + 0.538946i
\(367\) 28.5675 16.4934i 1.49121 0.860951i 0.491261 0.871013i \(-0.336536\pi\)
0.999949 + 0.0100621i \(0.00320291\pi\)
\(368\) 2.07565i 0.108201i
\(369\) −1.00708 1.54697i −0.0524266 0.0805318i
\(370\) −8.65768 14.9955i −0.450091 0.779581i
\(371\) −4.38067 + 19.9493i −0.227433 + 1.03571i
\(372\) −8.08894 7.66749i −0.419392 0.397541i
\(373\) −9.62708 + 16.6746i −0.498471 + 0.863378i −0.999998 0.00176408i \(-0.999438\pi\)
0.501527 + 0.865142i \(0.332772\pi\)
\(374\) −0.600806 1.04063i −0.0310669 0.0538095i
\(375\) −19.8674 4.75796i −1.02595 0.245700i
\(376\) 0.507011 0.292723i 0.0261471 0.0150960i
\(377\) 14.0112 21.2054i 0.721611 1.09213i
\(378\) 12.6746 + 5.32493i 0.651910 + 0.273885i
\(379\) 10.8971 + 6.29144i 0.559746 + 0.323169i 0.753043 0.657971i \(-0.228585\pi\)
−0.193298 + 0.981140i \(0.561918\pi\)
\(380\) 8.10851i 0.415958i
\(381\) 18.4987 + 17.5349i 0.947720 + 0.898342i
\(382\) 3.37227 + 1.94698i 0.172541 + 0.0996163i
\(383\) 1.03501 + 0.597562i 0.0528864 + 0.0305340i 0.526210 0.850355i \(-0.323613\pi\)
−0.473324 + 0.880889i \(0.656946\pi\)
\(384\) 0.403394 1.68442i 0.0205856 0.0859577i
\(385\) 2.54762 11.6017i 0.129839 0.591278i
\(386\) −3.11672 + 1.79944i −0.158637 + 0.0915890i
\(387\) −1.38999 25.9648i −0.0706570 1.31986i
\(388\) 1.64731 + 2.85322i 0.0836294 + 0.144850i
\(389\) −13.1871 7.61359i −0.668614 0.386024i 0.126937 0.991911i \(-0.459485\pi\)
−0.795551 + 0.605886i \(0.792819\pi\)
\(390\) 12.6654 2.94221i 0.641339 0.148985i
\(391\) 1.15670i 0.0584967i
\(392\) −5.71791 + 4.03801i −0.288798 + 0.203950i
\(393\) 9.37029 2.78133i 0.472668 0.140299i
\(394\) 5.48497 9.50024i 0.276329 0.478615i
\(395\) −20.6800 11.9396i −1.04052 0.600746i
\(396\) 0.345799 + 6.45949i 0.0173771 + 0.324601i
\(397\) −13.0144 + 22.5415i −0.653172 + 1.13133i 0.329177 + 0.944268i \(0.393229\pi\)
−0.982349 + 0.187058i \(0.940105\pi\)
\(398\) 20.2743i 1.01626i
\(399\) −7.78212 + 16.0602i −0.389593 + 0.804018i
\(400\) −0.332437 + 0.575798i −0.0166218 + 0.0287899i
\(401\) 36.6997 1.83269 0.916347 0.400385i \(-0.131124\pi\)
0.916347 + 0.400385i \(0.131124\pi\)
\(402\) −7.02819 23.6780i −0.350534 1.18095i
\(403\) −19.3573 12.7901i −0.964257 0.637119i
\(404\) 7.94537 + 13.7618i 0.395297 + 0.684675i
\(405\) −17.1359 7.58333i −0.851489 0.376819i
\(406\) 4.00013 18.2163i 0.198523 0.904061i
\(407\) 15.5296 8.96600i 0.769772 0.444428i
\(408\) 0.224800 0.938678i 0.0111292 0.0464715i
\(409\) −29.3160 −1.44958 −0.724791 0.688969i \(-0.758064\pi\)
−0.724791 + 0.688969i \(0.758064\pi\)
\(410\) −1.28111 −0.0632694
\(411\) 5.17150 21.5942i 0.255091 1.06516i
\(412\) −2.32058 + 1.33979i −0.114327 + 0.0660065i
\(413\) −3.94803 + 1.25352i −0.194270 + 0.0616819i
\(414\) −2.82074 + 5.55141i −0.138632 + 0.272837i
\(415\) 12.9564 + 22.4411i 0.636003 + 1.10159i
\(416\) 0.217235 3.59900i 0.0106508 0.176456i
\(417\) 2.01600 + 6.79190i 0.0987240 + 0.332601i
\(418\) −8.39727 −0.410724
\(419\) 18.5356 32.1046i 0.905523 1.56841i 0.0853087 0.996355i \(-0.472812\pi\)
0.820214 0.572057i \(-0.193854\pi\)
\(420\) 7.89642 5.35576i 0.385306 0.261334i
\(421\) 15.9315i 0.776451i −0.921564 0.388226i \(-0.873088\pi\)
0.921564 0.388226i \(-0.126912\pi\)
\(422\) 6.39897 11.0833i 0.311497 0.539529i
\(423\) −1.75383 + 0.0938885i −0.0852739 + 0.00456502i
\(424\) −6.68551 3.85988i −0.324677 0.187452i
\(425\) −0.185257 + 0.320875i −0.00898630 + 0.0155647i
\(426\) 21.6817 6.43567i 1.05048 0.311809i
\(427\) −4.65444 + 21.1960i −0.225244 + 1.02575i
\(428\) 13.7207i 0.663217i
\(429\) 3.04699 + 13.1165i 0.147110 + 0.633270i
\(430\) −15.6285 9.02310i −0.753671 0.435132i
\(431\) 14.0904 + 24.4053i 0.678710 + 1.17556i 0.975370 + 0.220576i \(0.0707938\pi\)
−0.296660 + 0.954983i \(0.595873\pi\)
\(432\) −3.36797 + 3.95686i −0.162042 + 0.190375i
\(433\) 10.7990 6.23481i 0.518967 0.299626i −0.217545 0.976050i \(-0.569805\pi\)
0.736512 + 0.676425i \(0.236472\pi\)
\(434\) −16.6288 3.65152i −0.798206 0.175279i
\(435\) −5.92063 + 24.7223i −0.283873 + 1.18534i
\(436\) −2.51915 1.45443i −0.120645 0.0696546i
\(437\) −7.00042 4.04170i −0.334876 0.193341i
\(438\) −0.500031 0.473979i −0.0238924 0.0226476i
\(439\) 36.4164i 1.73806i 0.494761 + 0.869029i \(0.335256\pi\)
−0.494761 + 0.869029i \(0.664744\pi\)
\(440\) 3.88803 + 2.24475i 0.185355 + 0.107014i
\(441\) 20.7803 3.02939i 0.989540 0.144257i
\(442\) 0.121059 2.00562i 0.00575817 0.0953975i
\(443\) −11.6506 + 6.72648i −0.553537 + 0.319585i −0.750547 0.660817i \(-0.770210\pi\)
0.197011 + 0.980401i \(0.436877\pi\)
\(444\) 14.0082 + 3.35475i 0.664798 + 0.159209i
\(445\) 9.06478 + 15.7007i 0.429712 + 0.744283i
\(446\) 6.84088 11.8488i 0.323925 0.561055i
\(447\) 1.44191 + 1.36678i 0.0682000 + 0.0646467i
\(448\) −0.800654 2.52170i −0.0378274 0.119139i
\(449\) 10.8390 + 18.7736i 0.511522 + 0.885982i 0.999911 + 0.0133556i \(0.00425136\pi\)
−0.488389 + 0.872626i \(0.662415\pi\)
\(450\) 1.67161 1.08823i 0.0788004 0.0512995i
\(451\) 1.32673i 0.0624733i
\(452\) 17.2893 9.98197i 0.813219 0.469512i
\(453\) −5.72206 + 6.03658i −0.268846 + 0.283623i
\(454\) 3.74358i 0.175695i
\(455\) 14.2487 13.8373i 0.667990 0.648703i
\(456\) −4.89547 4.64041i −0.229251 0.217307i
\(457\) 14.4590i 0.676366i −0.941080 0.338183i \(-0.890188\pi\)
0.941080 0.338183i \(-0.109812\pi\)
\(458\) −4.38767 7.59967i −0.205023 0.355109i
\(459\) −1.87687 + 2.20504i −0.0876049 + 0.102923i
\(460\) 2.16085 + 3.74270i 0.100750 + 0.174504i
\(461\) −29.7738 + 17.1899i −1.38670 + 0.800614i −0.992942 0.118598i \(-0.962160\pi\)
−0.393762 + 0.919212i \(0.628827\pi\)
\(462\) 5.54649 + 8.17763i 0.258046 + 0.380458i
\(463\) 3.55647i 0.165283i 0.996579 + 0.0826415i \(0.0263357\pi\)
−0.996579 + 0.0826415i \(0.973664\pi\)
\(464\) 6.10476 + 3.52458i 0.283406 + 0.163625i
\(465\) 22.5678 + 5.40465i 1.04656 + 0.250635i
\(466\) 19.0891 11.0211i 0.884286 0.510543i
\(467\) 0.408159 + 0.706953i 0.0188874 + 0.0327139i 0.875315 0.483554i \(-0.160654\pi\)
−0.856427 + 0.516268i \(0.827321\pi\)
\(468\) −5.47194 + 9.33048i −0.252940 + 0.431302i
\(469\) −27.8673 25.4330i −1.28679 1.17439i
\(470\) −0.609477 + 1.05565i −0.0281131 + 0.0486933i
\(471\) −8.32004 + 8.77736i −0.383367 + 0.404439i
\(472\) 1.56562i 0.0720637i
\(473\) 9.34443 16.1850i 0.429657 0.744188i
\(474\) 19.0434 5.65253i 0.874691 0.259629i
\(475\) 1.29464 + 2.24239i 0.0594022 + 0.102888i
\(476\) −0.446181 1.40527i −0.0204507 0.0644103i
\(477\) 12.6352 + 19.4088i 0.578528 + 0.888670i
\(478\) −12.3469 −0.564735
\(479\) −32.0593 + 18.5095i −1.46483 + 0.845719i −0.999228 0.0392758i \(-0.987495\pi\)
−0.465600 + 0.884995i \(0.654162\pi\)
\(480\) 1.02618 + 3.45721i 0.0468387 + 0.157799i
\(481\) 29.9304 + 1.80659i 1.36471 + 0.0823735i
\(482\) −1.22458 −0.0557781
\(483\) 0.687873 + 9.48690i 0.0312993 + 0.431669i
\(484\) 3.17530 5.49979i 0.144332 0.249990i
\(485\) −5.94069 3.42986i −0.269753 0.155742i
\(486\) 14.3851 6.00584i 0.652519 0.272430i
\(487\) 21.7586i 0.985977i 0.870036 + 0.492989i \(0.164096\pi\)
−0.870036 + 0.492989i \(0.835904\pi\)
\(488\) −7.10333 4.10111i −0.321553 0.185649i
\(489\) −23.4495 + 24.7384i −1.06042 + 1.11871i
\(490\) 6.10647 13.2338i 0.275862 0.597840i
\(491\) −25.7673 14.8768i −1.16286 0.671379i −0.210875 0.977513i \(-0.567631\pi\)
−0.951989 + 0.306134i \(0.900965\pi\)
\(492\) 0.733163 0.773462i 0.0330536 0.0348704i
\(493\) 3.40200 + 1.96415i 0.153219 + 0.0884608i
\(494\) −11.7152 7.74063i −0.527090 0.348267i
\(495\) −7.34816 11.2874i −0.330275 0.507332i
\(496\) 3.21742 5.57273i 0.144466 0.250223i
\(497\) 23.2889 25.5179i 1.04465 1.14464i
\(498\) −20.9635 5.02044i −0.939395 0.224971i
\(499\) −9.70337 + 5.60224i −0.434383 + 0.250791i −0.701212 0.712953i \(-0.747357\pi\)
0.266829 + 0.963744i \(0.414024\pi\)
\(500\) 11.7948i 0.527480i
\(501\) 15.3214 16.1635i 0.684509 0.722134i
\(502\) 6.93362 + 12.0094i 0.309463 + 0.536005i
\(503\) 13.0943 + 22.6800i 0.583847 + 1.01125i 0.995018 + 0.0996945i \(0.0317866\pi\)
−0.411171 + 0.911558i \(0.634880\pi\)
\(504\) −1.28552 + 7.83246i −0.0572617 + 0.348886i
\(505\) −28.6534 16.5430i −1.27506 0.736155i
\(506\) −3.87598 + 2.23780i −0.172309 + 0.0994824i
\(507\) −7.83990 + 21.1077i −0.348182 + 0.937427i
\(508\) −7.35797 + 12.7444i −0.326457 + 0.565441i
\(509\) 10.3138i 0.457151i 0.973526 + 0.228576i \(0.0734068\pi\)
−0.973526 + 0.228576i \(0.926593\pi\)
\(510\) 0.571863 + 1.92660i 0.0253225 + 0.0853114i
\(511\) −1.02794 0.225725i −0.0454732 0.00998548i
\(512\) 1.00000 0.0441942
\(513\) 6.78699 + 19.0638i 0.299653 + 0.841686i
\(514\) −10.6560 −0.470016
\(515\) 2.78957 4.83167i 0.122923 0.212909i
\(516\) 14.3916 4.27178i 0.633556 0.188055i
\(517\) −1.09324 0.631182i −0.0480806 0.0277594i
\(518\) 20.9712 6.65849i 0.921422 0.292557i
\(519\) 5.56977 + 5.27958i 0.244486 + 0.231748i
\(520\) 3.35503 + 6.71569i 0.147128 + 0.294502i
\(521\) −17.8124 + 30.8520i −0.780376 + 1.35165i 0.151346 + 0.988481i \(0.451639\pi\)
−0.931723 + 0.363171i \(0.881694\pi\)
\(522\) −11.5377 17.7229i −0.504990 0.775708i
\(523\) 11.1120i 0.485894i 0.970040 + 0.242947i \(0.0781141\pi\)
−0.970040 + 0.242947i \(0.921886\pi\)
\(524\) 2.82161 + 4.88718i 0.123263 + 0.213497i
\(525\) 1.32861 2.74190i 0.0579852 0.119666i
\(526\) −21.1985 + 12.2389i −0.924298 + 0.533644i
\(527\) 1.79297 3.10552i 0.0781031 0.135279i
\(528\) −3.58033 + 1.06273i −0.155814 + 0.0462494i
\(529\) 18.6917 0.812682
\(530\) 16.0733 0.698179
\(531\) −2.12764 + 4.18734i −0.0923315 + 0.181715i
\(532\) −10.0638 2.20992i −0.436322 0.0958122i
\(533\) 1.22298 1.85094i 0.0529733 0.0801732i
\(534\) −14.6669 3.51250i −0.634697 0.152001i
\(535\) 14.2840 + 24.7405i 0.617549 + 1.06963i
\(536\) 12.3495 7.12999i 0.533417 0.307969i
\(537\) 11.2025 + 37.7412i 0.483424 + 1.62865i
\(538\) −11.0410 −0.476012
\(539\) 13.7050 + 6.32393i 0.590318 + 0.272391i
\(540\) 1.95367 10.6410i 0.0840726 0.457917i
\(541\) 14.2432 8.22331i 0.612363 0.353548i −0.161527 0.986868i \(-0.551642\pi\)
0.773890 + 0.633320i \(0.218308\pi\)
\(542\) 14.2522 0.612183
\(543\) 17.2928 + 4.14137i 0.742106 + 0.177723i
\(544\) 0.557271 0.0238928
\(545\) 6.05653 0.259433
\(546\) 0.199826 + 16.5215i 0.00855178 + 0.707055i
\(547\) 38.7499 1.65683 0.828414 0.560116i \(-0.189243\pi\)
0.828414 + 0.560116i \(0.189243\pi\)
\(548\) 12.8200 0.547642
\(549\) 13.4249 + 20.6218i 0.572961 + 0.880118i
\(550\) 1.43363 0.0611302
\(551\) 23.7744 13.7261i 1.01282 0.584753i
\(552\) −3.49626 0.837303i −0.148811 0.0356380i
\(553\) 20.4549 22.4128i 0.869832 0.953087i
\(554\) −9.76756 −0.414984
\(555\) −28.7513 + 8.53407i −1.22042 + 0.362251i
\(556\) −3.54239 + 2.04520i −0.150231 + 0.0867359i
\(557\) 13.1455 + 22.7686i 0.556992 + 0.964738i 0.997746 + 0.0671098i \(0.0213778\pi\)
−0.440754 + 0.897628i \(0.645289\pi\)
\(558\) −16.1783 + 10.5322i −0.684882 + 0.445862i
\(559\) 27.9559 13.9663i 1.18241 0.590710i
\(560\) 4.06891 + 3.71347i 0.171943 + 0.156923i
\(561\) −1.99521 + 0.592228i −0.0842380 + 0.0250039i
\(562\) −0.791501 −0.0333875
\(563\) −18.8788 −0.795646 −0.397823 0.917462i \(-0.630234\pi\)
−0.397823 + 0.917462i \(0.630234\pi\)
\(564\) −0.288543 0.972102i −0.0121499 0.0409329i
\(565\) −20.7834 + 35.9979i −0.874365 + 1.51445i
\(566\) 10.1855 5.88059i 0.428128 0.247180i
\(567\) 14.0823 19.2013i 0.591400 0.806379i
\(568\) 6.52888 + 11.3084i 0.273946 + 0.474488i
\(569\) 41.9057i 1.75678i 0.477947 + 0.878388i \(0.341381\pi\)
−0.477947 + 0.878388i \(0.658619\pi\)
\(570\) 13.6581 + 3.27092i 0.572077 + 0.137004i
\(571\) 3.92765 6.80288i 0.164367 0.284692i −0.772063 0.635546i \(-0.780775\pi\)
0.936430 + 0.350854i \(0.114109\pi\)
\(572\) −6.95485 + 3.47451i −0.290797 + 0.145276i
\(573\) 4.63989 4.89493i 0.193834 0.204488i
\(574\) 0.349157 1.59004i 0.0145736 0.0663669i
\(575\) 1.19515 + 0.690021i 0.0498413 + 0.0287759i
\(576\) −2.67455 1.35897i −0.111439 0.0566237i
\(577\) −11.6409 + 20.1626i −0.484617 + 0.839381i −0.999844 0.0176727i \(-0.994374\pi\)
0.515227 + 0.857054i \(0.327708\pi\)
\(578\) −16.6894 −0.694190
\(579\) 1.77375 + 5.97575i 0.0737144 + 0.248344i
\(580\) −14.6771 −0.609431
\(581\) −31.3838 + 9.96454i −1.30202 + 0.413399i
\(582\) 5.47054 1.62379i 0.226761 0.0673082i
\(583\) 16.6457i 0.689394i
\(584\) 0.198890 0.344488i 0.00823013 0.0142550i
\(585\) 0.153237 22.5208i 0.00633556 0.931120i
\(586\) −6.68038 + 3.85692i −0.275964 + 0.159328i
\(587\) 20.2618 + 11.6981i 0.836294 + 0.482834i 0.856003 0.516971i \(-0.172941\pi\)
−0.0197091 + 0.999806i \(0.506274\pi\)
\(588\) 4.49515 + 11.2603i 0.185377 + 0.464366i
\(589\) −12.5299 21.7024i −0.516286 0.894233i
\(590\) 1.62989 + 2.82305i 0.0671015 + 0.116223i
\(591\) −13.7898 13.0713i −0.567237 0.537683i
\(592\) 8.31631i 0.341798i
\(593\) −4.32543 + 2.49729i −0.177624 + 0.102551i −0.586176 0.810184i \(-0.699367\pi\)
0.408552 + 0.912735i \(0.366034\pi\)
\(594\) 11.0200 + 2.02325i 0.452155 + 0.0830148i
\(595\) 2.26748 + 2.06941i 0.0929577 + 0.0848375i
\(596\) −0.573527 + 0.993378i −0.0234926 + 0.0406904i
\(597\) 34.1504 + 8.17852i 1.39768 + 0.334724i
\(598\) −7.47025 0.450903i −0.305481 0.0184388i
\(599\) −7.43793 4.29429i −0.303905 0.175460i 0.340291 0.940320i \(-0.389475\pi\)
−0.644196 + 0.764860i \(0.722808\pi\)
\(600\) 0.835783 + 0.792237i 0.0341207 + 0.0323429i
\(601\) 42.0105 + 24.2548i 1.71364 + 0.989373i 0.929523 + 0.368765i \(0.120219\pi\)
0.784121 + 0.620608i \(0.213114\pi\)
\(602\) 15.4584 16.9380i 0.630037 0.690340i
\(603\) −42.7188 + 2.28689i −1.73964 + 0.0931292i
\(604\) −4.15879 2.40108i −0.169219 0.0976986i
\(605\) 13.2226i 0.537574i
\(606\) 26.3858 7.83193i 1.07185 0.318150i
\(607\) −7.02087 4.05350i −0.284968 0.164527i 0.350702 0.936487i \(-0.385943\pi\)
−0.635670 + 0.771961i \(0.719276\pi\)
\(608\) 1.94720 3.37265i 0.0789693 0.136779i
\(609\) −29.0703 14.0863i −1.17799 0.570804i
\(610\) 17.0778 0.691460
\(611\) −0.943369 1.88832i −0.0381646 0.0763933i
\(612\) −1.49045 0.757314i −0.0602477 0.0306126i
\(613\) −0.439299 + 0.253629i −0.0177431 + 0.0102440i −0.508845 0.860858i \(-0.669927\pi\)
0.491102 + 0.871102i \(0.336594\pi\)
\(614\) 22.5567 0.910314
\(615\) −0.516791 + 2.15793i −0.0208390 + 0.0870160i
\(616\) −3.84572 + 4.21381i −0.154948 + 0.169779i
\(617\) −14.0828 24.3922i −0.566954 0.981993i −0.996865 0.0791221i \(-0.974788\pi\)
0.429911 0.902871i \(-0.358545\pi\)
\(618\) 1.32066 + 4.44929i 0.0531246 + 0.178977i
\(619\) 12.3365 21.3674i 0.495846 0.858830i −0.504143 0.863620i \(-0.668191\pi\)
0.999989 + 0.00479018i \(0.00152477\pi\)
\(620\) 13.3979i 0.538074i
\(621\) 8.21305 + 6.99072i 0.329578 + 0.280528i
\(622\) 6.64375 11.5073i 0.266390 0.461401i
\(623\) −21.9573 + 6.97158i −0.879702 + 0.279311i
\(624\) −5.97460 1.81773i −0.239175 0.0727674i
\(625\) 10.6168 + 18.3888i 0.424671 + 0.735553i
\(626\) 14.7574 8.52018i 0.589824 0.340535i
\(627\) −3.38741 + 14.1445i −0.135280 + 0.564879i
\(628\) −6.04701 3.49124i −0.241302 0.139316i
\(629\) 4.63444i 0.184787i
\(630\) −5.83598 15.4614i −0.232511 0.615996i
\(631\) 35.8457 20.6955i 1.42699 0.823875i 0.430111 0.902776i \(-0.358474\pi\)
0.996882 + 0.0789008i \(0.0251410\pi\)
\(632\) 5.73441 + 9.93228i 0.228102 + 0.395085i
\(633\) −16.0877 15.2495i −0.639429 0.606114i
\(634\) −7.60593 13.1739i −0.302070 0.523201i
\(635\) 30.6400i 1.21591i
\(636\) −9.19856 + 9.70416i −0.364746 + 0.384795i
\(637\) 13.2907 + 21.4559i 0.526596 + 0.850116i
\(638\) 15.1997i 0.601763i
\(639\) −2.09409 39.1173i −0.0828408 1.54746i
\(640\) −1.80315 + 1.04105i −0.0712757 + 0.0411510i
\(641\) 26.7161i 1.05522i 0.849486 + 0.527612i \(0.176912\pi\)
−0.849486 + 0.527612i \(0.823088\pi\)
\(642\) −23.1115 5.53486i −0.912138 0.218444i
\(643\) −22.0044 38.1127i −0.867769 1.50302i −0.864272 0.503025i \(-0.832220\pi\)
−0.00349687 0.999994i \(-0.501113\pi\)
\(644\) −5.23415 + 1.66187i −0.206254 + 0.0654870i
\(645\) −21.5031 + 22.6850i −0.846684 + 0.893223i
\(646\) 1.08512 1.87948i 0.0426934 0.0739471i
\(647\) 7.77334 + 13.4638i 0.305601 + 0.529317i 0.977395 0.211421i \(-0.0678091\pi\)
−0.671794 + 0.740738i \(0.734476\pi\)
\(648\) 5.30640 + 7.26926i 0.208455 + 0.285563i
\(649\) −2.92359 + 1.68793i −0.114761 + 0.0662572i
\(650\) 2.00008 + 1.32152i 0.0784496 + 0.0518344i
\(651\) −12.8586 + 26.5368i −0.503970 + 1.04006i
\(652\) −17.0431 9.83983i −0.667459 0.385358i
\(653\) 27.8448i 1.08965i 0.838549 + 0.544826i \(0.183404\pi\)
−0.838549 + 0.544826i \(0.816596\pi\)
\(654\) −3.46608 + 3.65660i −0.135535 + 0.142984i
\(655\) −10.1756 5.87487i −0.397593 0.229550i
\(656\) 0.532863 + 0.307649i 0.0208048 + 0.0120117i
\(657\) −1.00009 + 0.651063i −0.0390172 + 0.0254004i
\(658\) −1.14410 1.04416i −0.0446016 0.0407055i
\(659\) 37.5062 21.6542i 1.46103 0.843528i 0.461974 0.886893i \(-0.347141\pi\)
0.999059 + 0.0433655i \(0.0138080\pi\)
\(660\) 5.34952 5.64356i 0.208230 0.219675i
\(661\) 9.67024 + 16.7493i 0.376129 + 0.651474i 0.990495 0.137547i \(-0.0439218\pi\)
−0.614367 + 0.789021i \(0.710588\pi\)
\(662\) −9.89667 5.71384i −0.384645 0.222075i
\(663\) −3.32947 1.01297i −0.129306 0.0393404i
\(664\) 12.4455i 0.482979i
\(665\) 20.4472 6.49211i 0.792909 0.251753i
\(666\) 11.3016 22.2424i 0.437929 0.861874i
\(667\) 7.31579 12.6713i 0.283269 0.490635i
\(668\) 11.1356 + 6.42913i 0.430849 + 0.248751i
\(669\) −17.1987 16.3026i −0.664941 0.630296i
\(670\) −14.8453 + 25.7129i −0.573525 + 0.993374i
\(671\) 17.6860i 0.682760i
\(672\) −4.57058 + 0.331402i −0.176314 + 0.0127841i
\(673\) 11.4777 19.8800i 0.442434 0.766319i −0.555435 0.831560i \(-0.687448\pi\)
0.997870 + 0.0652410i \(0.0207816\pi\)
\(674\) 0.692991 0.0266930
\(675\) −1.15871 3.25468i −0.0445989 0.125273i
\(676\) −12.9056 1.56366i −0.496370 0.0601407i
\(677\) −1.50584 2.60819i −0.0578740 0.100241i 0.835637 0.549282i \(-0.185099\pi\)
−0.893511 + 0.449042i \(0.851766\pi\)
\(678\) −9.83945 33.1491i −0.377882 1.27308i
\(679\) 5.87604 6.43846i 0.225502 0.247085i
\(680\) −1.00484 + 0.580146i −0.0385339 + 0.0222476i
\(681\) 6.30577 + 1.51014i 0.241638 + 0.0578686i
\(682\) −13.8751 −0.531304
\(683\) 31.1190 1.19074 0.595368 0.803453i \(-0.297006\pi\)
0.595368 + 0.803453i \(0.297006\pi\)
\(684\) −9.79120 + 6.37412i −0.374376 + 0.243721i
\(685\) −23.1163 + 13.3462i −0.883229 + 0.509932i
\(686\) 14.7607 + 11.1858i 0.563566 + 0.427075i
\(687\) −14.5710 + 4.32503i −0.555919 + 0.165010i
\(688\) 4.33366 + 7.50612i 0.165219 + 0.286168i
\(689\) −15.3440 + 23.2227i −0.584561 + 0.884713i
\(690\) 7.17595 2.13000i 0.273184 0.0810875i
\(691\) −46.8665 −1.78288 −0.891442 0.453134i \(-0.850306\pi\)
−0.891442 + 0.453134i \(0.850306\pi\)
\(692\) −2.21541 + 3.83719i −0.0842171 + 0.145868i
\(693\) 16.0120 6.04381i 0.608245 0.229585i
\(694\) 14.8415i 0.563375i
\(695\) 4.25831 7.37560i 0.161527 0.279773i
\(696\) 8.39951 8.86119i 0.318382 0.335882i
\(697\) 0.296949 + 0.171444i 0.0112477 + 0.00649389i
\(698\) −9.35756 + 16.2078i −0.354189 + 0.613473i
\(699\) −10.8638 36.6000i −0.410905 1.38434i
\(700\) 1.71815 + 0.377290i 0.0649401 + 0.0142602i
\(701\) 27.7719i 1.04893i −0.851433 0.524464i \(-0.824266\pi\)
0.851433 0.524464i \(-0.175734\pi\)
\(702\) 13.5091 + 12.9809i 0.509869 + 0.489933i
\(703\) 28.0480 + 16.1935i 1.05785 + 0.610750i
\(704\) −1.07812 1.86736i −0.0406333 0.0703789i
\(705\) 1.53229 + 1.45246i 0.0577094 + 0.0547027i
\(706\) −21.1090 + 12.1873i −0.794448 + 0.458675i
\(707\) 28.3416 31.0543i 1.06589 1.16792i
\(708\) −2.63717 0.631563i −0.0991109 0.0237356i
\(709\) −27.8176 16.0605i −1.04471 0.603165i −0.123548 0.992339i \(-0.539427\pi\)
−0.921164 + 0.389174i \(0.872761\pi\)
\(710\) −23.5451 13.5938i −0.883632 0.510165i
\(711\) −1.83926 34.3572i −0.0689778 1.28850i
\(712\) 8.70736i 0.326322i
\(713\) −11.5670 6.67822i −0.433188 0.250101i
\(714\) −2.54705 + 0.184680i −0.0953209 + 0.00691149i
\(715\) 8.92349 13.5054i 0.333720 0.505073i
\(716\) −19.6844 + 11.3648i −0.735639 + 0.424722i
\(717\) −4.98067 + 20.7974i −0.186007 + 0.776694i
\(718\) −2.79005 4.83250i −0.104124 0.180347i
\(719\) 18.5249 32.0860i 0.690861 1.19661i −0.280695 0.959797i \(-0.590565\pi\)
0.971556 0.236810i \(-0.0761018\pi\)
\(720\) 6.23736 0.333908i 0.232453 0.0124440i
\(721\) 5.23652 + 4.77909i 0.195018 + 0.177983i
\(722\) 1.91683 + 3.32005i 0.0713372 + 0.123560i
\(723\) −0.493988 + 2.06271i −0.0183716 + 0.0767129i
\(724\) 10.2663i 0.381545i
\(725\) −4.05890 + 2.34340i −0.150744 + 0.0870318i
\(726\) −7.98306 7.56713i −0.296279 0.280842i
\(727\) 8.65396i 0.320957i 0.987039 + 0.160479i \(0.0513038\pi\)
−0.987039 + 0.160479i \(0.948696\pi\)
\(728\) −9.24952 + 2.33375i −0.342810 + 0.0864947i
\(729\) −4.31352 26.6532i −0.159760 0.987156i
\(730\) 0.828216i 0.0306537i
\(731\) 2.41502 + 4.18294i 0.0893228 + 0.154712i
\(732\) −9.77343 + 10.3106i −0.361237 + 0.381092i
\(733\) −11.2469 19.4802i −0.415413 0.719516i 0.580059 0.814574i \(-0.303029\pi\)
−0.995472 + 0.0950586i \(0.969696\pi\)
\(734\) 28.5675 16.4934i 1.05444 0.608784i
\(735\) −19.8279 15.6243i −0.731363 0.576310i
\(736\) 2.07565i 0.0765093i
\(737\) −26.6286 15.3740i −0.980875 0.566309i
\(738\) −1.00708 1.54697i −0.0370712 0.0569446i
\(739\) −19.7692 + 11.4138i −0.727223 + 0.419862i −0.817405 0.576063i \(-0.804588\pi\)
0.0901827 + 0.995925i \(0.471255\pi\)
\(740\) −8.65768 14.9955i −0.318263 0.551247i
\(741\) −17.7643 + 16.6107i −0.652588 + 0.610211i
\(742\) −4.38067 + 19.9493i −0.160819 + 0.732360i
\(743\) −5.89495 + 10.2104i −0.216265 + 0.374582i −0.953663 0.300877i \(-0.902721\pi\)
0.737398 + 0.675458i \(0.236054\pi\)
\(744\) −8.08894 7.66749i −0.296555 0.281104i
\(745\) 2.38828i 0.0874997i
\(746\) −9.62708 + 16.6746i −0.352473 + 0.610500i
\(747\) −16.9131 + 33.2861i −0.618816 + 1.21787i
\(748\) −0.600806 1.04063i −0.0219676 0.0380491i
\(749\) −34.5995 + 10.9856i −1.26424 + 0.401404i
\(750\) −19.8674 4.75796i −0.725456 0.173736i
\(751\) 4.14828 0.151373 0.0756864 0.997132i \(-0.475885\pi\)
0.0756864 + 0.997132i \(0.475885\pi\)
\(752\) 0.507011 0.292723i 0.0184888 0.0106745i
\(753\) 23.0258 6.83462i 0.839108 0.249068i
\(754\) 14.0112 21.2054i 0.510256 0.772254i
\(755\) 9.99856 0.363885
\(756\) 12.6746 + 5.32493i 0.460970 + 0.193666i
\(757\) 16.7609 29.0308i 0.609186 1.05514i −0.382189 0.924084i \(-0.624830\pi\)
0.991375 0.131057i \(-0.0418372\pi\)
\(758\) 10.8971 + 6.29144i 0.395800 + 0.228515i
\(759\) 2.20585 + 7.43150i 0.0800673 + 0.269746i
\(760\) 8.10851i 0.294127i
\(761\) 6.12517 + 3.53637i 0.222037 + 0.128193i 0.606893 0.794783i \(-0.292416\pi\)
−0.384856 + 0.922977i \(0.625749\pi\)
\(762\) 18.4987 + 17.5349i 0.670139 + 0.635224i
\(763\) −1.65067 + 7.51702i −0.0597581 + 0.272134i
\(764\) 3.37227 + 1.94698i 0.122005 + 0.0704394i
\(765\) 3.47590 0.186077i 0.125671 0.00672763i
\(766\) 1.03501 + 0.597562i 0.0373964 + 0.0215908i
\(767\) −5.63468 0.340108i −0.203457 0.0122806i
\(768\) 0.403394 1.68442i 0.0145562 0.0607813i
\(769\) −3.05595 + 5.29306i −0.110200 + 0.190872i −0.915851 0.401518i \(-0.868483\pi\)
0.805651 + 0.592391i \(0.201816\pi\)
\(770\) 2.54762 11.6017i 0.0918100 0.418096i
\(771\) −4.29856 + 17.9492i −0.154809 + 0.646424i
\(772\) −3.11672 + 1.79944i −0.112173 + 0.0647632i
\(773\) 38.6084i 1.38865i −0.719662 0.694324i \(-0.755703\pi\)
0.719662 0.694324i \(-0.244297\pi\)