Properties

Label 546.2.bi.f.17.6
Level $546$
Weight $2$
Character 546.17
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bi (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.6
Character \(\chi\) \(=\) 546.17
Dual form 546.2.bi.f.257.6

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-0.889878 - 1.48597i) q^{3} +1.00000 q^{4} +(-2.84717 + 1.64381i) q^{5} +(-0.889878 - 1.48597i) q^{6} +(1.87202 + 1.86964i) q^{7} +1.00000 q^{8} +(-1.41623 + 2.64467i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(-0.889878 - 1.48597i) q^{3} +1.00000 q^{4} +(-2.84717 + 1.64381i) q^{5} +(-0.889878 - 1.48597i) q^{6} +(1.87202 + 1.86964i) q^{7} +1.00000 q^{8} +(-1.41623 + 2.64467i) q^{9} +(-2.84717 + 1.64381i) q^{10} +(1.03510 + 1.79285i) q^{11} +(-0.889878 - 1.48597i) q^{12} +(3.53365 + 0.716460i) q^{13} +(1.87202 + 1.86964i) q^{14} +(4.97629 + 2.76802i) q^{15} +1.00000 q^{16} -1.12362 q^{17} +(-1.41623 + 2.64467i) q^{18} +(-0.505430 + 0.875431i) q^{19} +(-2.84717 + 1.64381i) q^{20} +(1.11237 - 4.44552i) q^{21} +(1.03510 + 1.79285i) q^{22} +3.50085i q^{23} +(-0.889878 - 1.48597i) q^{24} +(2.90424 - 5.03029i) q^{25} +(3.53365 + 0.716460i) q^{26} +(5.19019 - 0.248945i) q^{27} +(1.87202 + 1.86964i) q^{28} +(7.97573 + 4.60479i) q^{29} +(4.97629 + 2.76802i) q^{30} +(-1.86666 + 3.23315i) q^{31} +1.00000 q^{32} +(1.74301 - 3.13355i) q^{33} -1.12362 q^{34} +(-8.40328 - 2.24594i) q^{35} +(-1.41623 + 2.64467i) q^{36} -6.97226i q^{37} +(-0.505430 + 0.875431i) q^{38} +(-2.07988 - 5.88847i) q^{39} +(-2.84717 + 1.64381i) q^{40} +(-8.52566 - 4.92229i) q^{41} +(1.11237 - 4.44552i) q^{42} +(3.35600 + 5.81276i) q^{43} +(1.03510 + 1.79285i) q^{44} +(-0.315084 - 9.85784i) q^{45} +3.50085i q^{46} +(-1.05515 + 0.609193i) q^{47} +(-0.889878 - 1.48597i) q^{48} +(0.00888497 + 6.99999i) q^{49} +(2.90424 - 5.03029i) q^{50} +(0.999885 + 1.66967i) q^{51} +(3.53365 + 0.716460i) q^{52} +(5.05843 + 2.92049i) q^{53} +(5.19019 - 0.248945i) q^{54} +(-5.89421 - 3.40302i) q^{55} +(1.87202 + 1.86964i) q^{56} +(1.75064 - 0.0279705i) q^{57} +(7.97573 + 4.60479i) q^{58} -9.80909i q^{59} +(4.97629 + 2.76802i) q^{60} +(-0.209571 - 0.120996i) q^{61} +(-1.86666 + 3.23315i) q^{62} +(-7.59580 + 2.30301i) q^{63} +1.00000 q^{64} +(-11.2386 + 3.76878i) q^{65} +(1.74301 - 3.13355i) q^{66} +(-10.2316 + 5.90721i) q^{67} -1.12362 q^{68} +(5.20218 - 3.11533i) q^{69} +(-8.40328 - 2.24594i) q^{70} +(-3.94585 - 6.83441i) q^{71} +(-1.41623 + 2.64467i) q^{72} +(0.878160 - 1.52102i) q^{73} -6.97226i q^{74} +(-10.0593 + 0.160721i) q^{75} +(-0.505430 + 0.875431i) q^{76} +(-1.41426 + 5.29150i) q^{77} +(-2.07988 - 5.88847i) q^{78} +(-2.48977 - 4.31240i) q^{79} +(-2.84717 + 1.64381i) q^{80} +(-4.98856 - 7.49095i) q^{81} +(-8.52566 - 4.92229i) q^{82} -0.999900i q^{83} +(1.11237 - 4.44552i) q^{84} +(3.19914 - 1.84702i) q^{85} +(3.35600 + 5.81276i) q^{86} +(-0.254829 - 15.9494i) q^{87} +(1.03510 + 1.79285i) q^{88} +7.61879i q^{89} +(-0.315084 - 9.85784i) q^{90} +(5.27553 + 7.94788i) q^{91} +3.50085i q^{92} +(6.46548 - 0.103301i) q^{93} +(-1.05515 + 0.609193i) q^{94} -3.32333i q^{95} +(-0.889878 - 1.48597i) q^{96} +(-3.21628 - 5.57077i) q^{97} +(0.00888497 + 6.99999i) q^{98} +(-6.20743 + 0.198407i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + O(q^{10}) \) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + 9q^{10} + 9q^{11} + 6q^{12} + 8q^{13} + 4q^{14} - 17q^{15} + 34q^{16} + 12q^{17} + 4q^{18} - 5q^{19} + 9q^{20} - 7q^{21} + 9q^{22} + 6q^{24} + 16q^{25} + 8q^{26} - 18q^{27} + 4q^{28} + 27q^{29} - 17q^{30} - q^{31} + 34q^{32} + 12q^{34} - 3q^{35} + 4q^{36} - 5q^{38} - 10q^{39} + 9q^{40} - 3q^{41} - 7q^{42} - 3q^{43} + 9q^{44} + 9q^{45} - 27q^{47} + 6q^{48} - 2q^{49} + 16q^{50} - 36q^{51} + 8q^{52} - 21q^{53} - 18q^{54} - 57q^{55} + 4q^{56} - 17q^{57} + 27q^{58} - 17q^{60} - 51q^{61} - q^{62} - 24q^{63} + 34q^{64} - 21q^{65} - 21q^{67} + 12q^{68} + 30q^{69} - 3q^{70} - 15q^{71} + 4q^{72} - 19q^{73} - 54q^{75} - 5q^{76} + 9q^{77} - 10q^{78} - 9q^{79} + 9q^{80} + 28q^{81} - 3q^{82} - 7q^{84} - 42q^{85} - 3q^{86} - 81q^{87} + 9q^{88} + 9q^{90} - 72q^{91} - 17q^{93} - 27q^{94} + 6q^{96} + 19q^{97} - 2q^{98} - 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −0.889878 1.48597i −0.513771 0.857927i
\(4\) 1.00000 0.500000
\(5\) −2.84717 + 1.64381i −1.27329 + 0.735135i −0.975606 0.219529i \(-0.929548\pi\)
−0.297686 + 0.954664i \(0.596215\pi\)
\(6\) −0.889878 1.48597i −0.363291 0.606646i
\(7\) 1.87202 + 1.86964i 0.707555 + 0.706658i
\(8\) 1.00000 0.353553
\(9\) −1.41623 + 2.64467i −0.472078 + 0.881557i
\(10\) −2.84717 + 1.64381i −0.900353 + 0.519819i
\(11\) 1.03510 + 1.79285i 0.312095 + 0.540564i 0.978816 0.204744i \(-0.0656361\pi\)
−0.666721 + 0.745307i \(0.732303\pi\)
\(12\) −0.889878 1.48597i −0.256886 0.428964i
\(13\) 3.53365 + 0.716460i 0.980058 + 0.198710i
\(14\) 1.87202 + 1.86964i 0.500317 + 0.499683i
\(15\) 4.97629 + 2.76802i 1.28487 + 0.714700i
\(16\) 1.00000 0.250000
\(17\) −1.12362 −0.272518 −0.136259 0.990673i \(-0.543508\pi\)
−0.136259 + 0.990673i \(0.543508\pi\)
\(18\) −1.41623 + 2.64467i −0.333810 + 0.623355i
\(19\) −0.505430 + 0.875431i −0.115954 + 0.200838i −0.918161 0.396209i \(-0.870326\pi\)
0.802207 + 0.597046i \(0.203659\pi\)
\(20\) −2.84717 + 1.64381i −0.636646 + 0.367568i
\(21\) 1.11237 4.44552i 0.242739 0.970092i
\(22\) 1.03510 + 1.79285i 0.220684 + 0.382236i
\(23\) 3.50085i 0.729979i 0.931012 + 0.364989i \(0.118927\pi\)
−0.931012 + 0.364989i \(0.881073\pi\)
\(24\) −0.889878 1.48597i −0.181646 0.303323i
\(25\) 2.90424 5.03029i 0.580848 1.00606i
\(26\) 3.53365 + 0.716460i 0.693006 + 0.140509i
\(27\) 5.19019 0.248945i 0.998852 0.0479096i
\(28\) 1.87202 + 1.86964i 0.353778 + 0.353329i
\(29\) 7.97573 + 4.60479i 1.48106 + 0.855088i 0.999769 0.0214746i \(-0.00683611\pi\)
0.481287 + 0.876563i \(0.340169\pi\)
\(30\) 4.97629 + 2.76802i 0.908543 + 0.505369i
\(31\) −1.86666 + 3.23315i −0.335262 + 0.580691i −0.983535 0.180717i \(-0.942158\pi\)
0.648273 + 0.761408i \(0.275492\pi\)
\(32\) 1.00000 0.176777
\(33\) 1.74301 3.13355i 0.303419 0.545480i
\(34\) −1.12362 −0.192699
\(35\) −8.40328 2.24594i −1.42041 0.379633i
\(36\) −1.41623 + 2.64467i −0.236039 + 0.440778i
\(37\) 6.97226i 1.14623i −0.819474 0.573116i \(-0.805734\pi\)
0.819474 0.573116i \(-0.194266\pi\)
\(38\) −0.505430 + 0.875431i −0.0819916 + 0.142014i
\(39\) −2.07988 5.88847i −0.333047 0.942910i
\(40\) −2.84717 + 1.64381i −0.450177 + 0.259910i
\(41\) −8.52566 4.92229i −1.33148 0.768733i −0.345957 0.938250i \(-0.612446\pi\)
−0.985527 + 0.169517i \(0.945779\pi\)
\(42\) 1.11237 4.44552i 0.171643 0.685958i
\(43\) 3.35600 + 5.81276i 0.511785 + 0.886438i 0.999907 + 0.0136621i \(0.00434890\pi\)
−0.488122 + 0.872776i \(0.662318\pi\)
\(44\) 1.03510 + 1.79285i 0.156047 + 0.270282i
\(45\) −0.315084 9.85784i −0.0469700 1.46952i
\(46\) 3.50085i 0.516173i
\(47\) −1.05515 + 0.609193i −0.153910 + 0.0888599i −0.574977 0.818170i \(-0.694989\pi\)
0.421067 + 0.907029i \(0.361656\pi\)
\(48\) −0.889878 1.48597i −0.128443 0.214482i
\(49\) 0.00888497 + 6.99999i 0.00126928 + 0.999999i
\(50\) 2.90424 5.03029i 0.410722 0.711391i
\(51\) 0.999885 + 1.66967i 0.140012 + 0.233801i
\(52\) 3.53365 + 0.716460i 0.490029 + 0.0993551i
\(53\) 5.05843 + 2.92049i 0.694829 + 0.401160i 0.805419 0.592706i \(-0.201941\pi\)
−0.110589 + 0.993866i \(0.535274\pi\)
\(54\) 5.19019 0.248945i 0.706295 0.0338772i
\(55\) −5.89421 3.40302i −0.794775 0.458863i
\(56\) 1.87202 + 1.86964i 0.250159 + 0.249841i
\(57\) 1.75064 0.0279705i 0.231878 0.00370479i
\(58\) 7.97573 + 4.60479i 1.04727 + 0.604639i
\(59\) 9.80909i 1.27703i −0.769607 0.638517i \(-0.779548\pi\)
0.769607 0.638517i \(-0.220452\pi\)
\(60\) 4.97629 + 2.76802i 0.642437 + 0.357350i
\(61\) −0.209571 0.120996i −0.0268328 0.0154919i 0.486524 0.873667i \(-0.338265\pi\)
−0.513356 + 0.858176i \(0.671598\pi\)
\(62\) −1.86666 + 3.23315i −0.237066 + 0.410611i
\(63\) −7.59580 + 2.30301i −0.956980 + 0.290152i
\(64\) 1.00000 0.125000
\(65\) −11.2386 + 3.76878i −1.39398 + 0.467459i
\(66\) 1.74301 3.13355i 0.214550 0.385713i
\(67\) −10.2316 + 5.90721i −1.24999 + 0.721680i −0.971107 0.238645i \(-0.923297\pi\)
−0.278880 + 0.960326i \(0.589963\pi\)
\(68\) −1.12362 −0.136259
\(69\) 5.20218 3.11533i 0.626268 0.375042i
\(70\) −8.40328 2.24594i −1.00438 0.268441i
\(71\) −3.94585 6.83441i −0.468286 0.811096i 0.531057 0.847336i \(-0.321795\pi\)
−0.999343 + 0.0362405i \(0.988462\pi\)
\(72\) −1.41623 + 2.64467i −0.166905 + 0.311677i
\(73\) 0.878160 1.52102i 0.102781 0.178022i −0.810049 0.586363i \(-0.800559\pi\)
0.912829 + 0.408341i \(0.133893\pi\)
\(74\) 6.97226i 0.810509i
\(75\) −10.0593 + 0.160721i −1.16155 + 0.0185584i
\(76\) −0.505430 + 0.875431i −0.0579768 + 0.100419i
\(77\) −1.41426 + 5.29150i −0.161169 + 0.603023i
\(78\) −2.07988 5.88847i −0.235500 0.666738i
\(79\) −2.48977 4.31240i −0.280121 0.485183i 0.691294 0.722574i \(-0.257041\pi\)
−0.971414 + 0.237391i \(0.923708\pi\)
\(80\) −2.84717 + 1.64381i −0.318323 + 0.183784i
\(81\) −4.98856 7.49095i −0.554284 0.832328i
\(82\) −8.52566 4.92229i −0.941502 0.543576i
\(83\) 0.999900i 0.109753i −0.998493 0.0548767i \(-0.982523\pi\)
0.998493 0.0548767i \(-0.0174766\pi\)
\(84\) 1.11237 4.44552i 0.121370 0.485046i
\(85\) 3.19914 1.84702i 0.346995 0.200338i
\(86\) 3.35600 + 5.81276i 0.361887 + 0.626806i
\(87\) −0.254829 15.9494i −0.0273206 1.70996i
\(88\) 1.03510 + 1.79285i 0.110342 + 0.191118i
\(89\) 7.61879i 0.807590i 0.914849 + 0.403795i \(0.132309\pi\)
−0.914849 + 0.403795i \(0.867691\pi\)
\(90\) −0.315084 9.85784i −0.0332128 1.03911i
\(91\) 5.27553 + 7.94788i 0.553025 + 0.833164i
\(92\) 3.50085i 0.364989i
\(93\) 6.46548 0.103301i 0.670439 0.0107118i
\(94\) −1.05515 + 0.609193i −0.108831 + 0.0628334i
\(95\) 3.32333i 0.340967i
\(96\) −0.889878 1.48597i −0.0908228 0.151662i
\(97\) −3.21628 5.57077i −0.326564 0.565626i 0.655264 0.755400i \(-0.272558\pi\)
−0.981828 + 0.189775i \(0.939224\pi\)
\(98\) 0.00888497 + 6.99999i 0.000897518 + 0.707106i
\(99\) −6.20743 + 0.198407i −0.623870 + 0.0199407i
\(100\) 2.90424 5.03029i 0.290424 0.503029i
\(101\) 9.66204 + 16.7351i 0.961409 + 1.66521i 0.718968 + 0.695043i \(0.244615\pi\)
0.242441 + 0.970166i \(0.422052\pi\)
\(102\) 0.999885 + 1.66967i 0.0990034 + 0.165322i
\(103\) −7.86720 + 4.54213i −0.775178 + 0.447549i −0.834719 0.550677i \(-0.814370\pi\)
0.0595405 + 0.998226i \(0.481036\pi\)
\(104\) 3.53365 + 0.716460i 0.346503 + 0.0702547i
\(105\) 4.14049 + 14.4857i 0.404070 + 1.41366i
\(106\) 5.05843 + 2.92049i 0.491318 + 0.283663i
\(107\) 3.76351i 0.363832i −0.983314 0.181916i \(-0.941770\pi\)
0.983314 0.181916i \(-0.0582299\pi\)
\(108\) 5.19019 0.248945i 0.499426 0.0239548i
\(109\) −2.43945 1.40841i −0.233657 0.134902i 0.378601 0.925560i \(-0.376405\pi\)
−0.612258 + 0.790658i \(0.709739\pi\)
\(110\) −5.89421 3.40302i −0.561991 0.324465i
\(111\) −10.3606 + 6.20446i −0.983384 + 0.588901i
\(112\) 1.87202 + 1.86964i 0.176889 + 0.176664i
\(113\) −4.57774 + 2.64296i −0.430637 + 0.248629i −0.699618 0.714517i \(-0.746646\pi\)
0.268981 + 0.963146i \(0.413313\pi\)
\(114\) 1.75064 0.0279705i 0.163962 0.00261968i
\(115\) −5.75475 9.96752i −0.536633 0.929476i
\(116\) 7.97573 + 4.60479i 0.740528 + 0.427544i
\(117\) −6.89928 + 8.33066i −0.637839 + 0.770170i
\(118\) 9.80909i 0.903000i
\(119\) −2.10344 2.10077i −0.192822 0.192577i
\(120\) 4.97629 + 2.76802i 0.454271 + 0.252685i
\(121\) 3.35713 5.81473i 0.305194 0.528612i
\(122\) −0.209571 0.120996i −0.0189736 0.0109544i
\(123\) 0.272400 + 17.0491i 0.0245615 + 1.53727i
\(124\) −1.86666 + 3.23315i −0.167631 + 0.290346i
\(125\) 2.65798i 0.237737i
\(126\) −7.59580 + 2.30301i −0.676687 + 0.205169i
\(127\) 9.40084 16.2827i 0.834190 1.44486i −0.0604988 0.998168i \(-0.519269\pi\)
0.894688 0.446691i \(-0.147398\pi\)
\(128\) 1.00000 0.0883883
\(129\) 5.65118 10.1596i 0.497559 0.894500i
\(130\) −11.2386 + 3.76878i −0.985692 + 0.330544i
\(131\) 1.45204 + 2.51500i 0.126865 + 0.219737i 0.922460 0.386092i \(-0.126175\pi\)
−0.795595 + 0.605828i \(0.792842\pi\)
\(132\) 1.74301 3.13355i 0.151710 0.272740i
\(133\) −2.58291 + 0.693847i −0.223967 + 0.0601642i
\(134\) −10.2316 + 5.90721i −0.883874 + 0.510305i
\(135\) −14.3681 + 9.24048i −1.23661 + 0.795294i
\(136\) −1.12362 −0.0963497
\(137\) 21.1790 1.80945 0.904724 0.425999i \(-0.140077\pi\)
0.904724 + 0.425999i \(0.140077\pi\)
\(138\) 5.20218 3.11533i 0.442839 0.265195i
\(139\) 17.6205 10.1732i 1.49455 0.862878i 0.494568 0.869139i \(-0.335326\pi\)
0.999980 + 0.00626156i \(0.00199313\pi\)
\(140\) −8.40328 2.24594i −0.710207 0.189816i
\(141\) 1.84420 + 1.02582i 0.155310 + 0.0863898i
\(142\) −3.94585 6.83441i −0.331128 0.573531i
\(143\) 2.37318 + 7.07690i 0.198455 + 0.591800i
\(144\) −1.41623 + 2.64467i −0.118020 + 0.220389i
\(145\) −30.2777 −2.51442
\(146\) 0.878160 1.52102i 0.0726770 0.125880i
\(147\) 10.3939 6.24234i 0.857274 0.514860i
\(148\) 6.97226i 0.573116i
\(149\) 6.62502 11.4749i 0.542743 0.940058i −0.456003 0.889978i \(-0.650719\pi\)
0.998745 0.0500793i \(-0.0159474\pi\)
\(150\) −10.0593 + 0.160721i −0.821338 + 0.0131228i
\(151\) −15.0137 8.66818i −1.22180 0.705407i −0.256499 0.966545i \(-0.582569\pi\)
−0.965301 + 0.261138i \(0.915902\pi\)
\(152\) −0.505430 + 0.875431i −0.0409958 + 0.0710068i
\(153\) 1.59131 2.97161i 0.128650 0.240240i
\(154\) −1.41426 + 5.29150i −0.113964 + 0.426401i
\(155\) 12.2738i 0.985852i
\(156\) −2.07988 5.88847i −0.166523 0.471455i
\(157\) 12.2223 + 7.05652i 0.975442 + 0.563172i 0.900891 0.434045i \(-0.142914\pi\)
0.0745511 + 0.997217i \(0.476248\pi\)
\(158\) −2.48977 4.31240i −0.198075 0.343076i
\(159\) −0.161620 10.1156i −0.0128173 0.802217i
\(160\) −2.84717 + 1.64381i −0.225088 + 0.129955i
\(161\) −6.54534 + 6.55365i −0.515845 + 0.516500i
\(162\) −4.98856 7.49095i −0.391938 0.588544i
\(163\) −8.93321 5.15759i −0.699703 0.403974i 0.107534 0.994201i \(-0.465705\pi\)
−0.807237 + 0.590228i \(0.799038\pi\)
\(164\) −8.52566 4.92229i −0.665742 0.384366i
\(165\) 0.188323 + 11.7869i 0.0146610 + 0.917610i
\(166\) 0.999900i 0.0776073i
\(167\) 12.1099 + 6.99167i 0.937094 + 0.541032i 0.889048 0.457813i \(-0.151367\pi\)
0.0480461 + 0.998845i \(0.484701\pi\)
\(168\) 1.11237 4.44552i 0.0858214 0.342979i
\(169\) 11.9734 + 5.06344i 0.921028 + 0.389495i
\(170\) 3.19914 1.84702i 0.245363 0.141660i
\(171\) −1.59942 2.57651i −0.122311 0.197031i
\(172\) 3.35600 + 5.81276i 0.255893 + 0.443219i
\(173\) 2.53897 4.39763i 0.193035 0.334346i −0.753220 0.657769i \(-0.771500\pi\)
0.946254 + 0.323423i \(0.104834\pi\)
\(174\) −0.254829 15.9494i −0.0193186 1.20912i
\(175\) 14.8416 3.98690i 1.12192 0.301381i
\(176\) 1.03510 + 1.79285i 0.0780236 + 0.135141i
\(177\) −14.5760 + 8.72889i −1.09560 + 0.656104i
\(178\) 7.61879i 0.571053i
\(179\) 10.1439 5.85660i 0.758193 0.437743i −0.0704536 0.997515i \(-0.522445\pi\)
0.828647 + 0.559772i \(0.189111\pi\)
\(180\) −0.315084 9.85784i −0.0234850 0.734760i
\(181\) 22.6731i 1.68528i −0.538480 0.842638i \(-0.681001\pi\)
0.538480 0.842638i \(-0.318999\pi\)
\(182\) 5.27553 + 7.94788i 0.391048 + 0.589136i
\(183\) 0.00669590 + 0.419088i 0.000494975 + 0.0309798i
\(184\) 3.50085i 0.258086i
\(185\) 11.4611 + 19.8512i 0.842636 + 1.45949i
\(186\) 6.46548 0.103301i 0.474072 0.00757440i
\(187\) −1.16306 2.01448i −0.0850514 0.147313i
\(188\) −1.05515 + 0.609193i −0.0769549 + 0.0444299i
\(189\) 10.1815 + 9.23775i 0.740599 + 0.671948i
\(190\) 3.32333i 0.241100i
\(191\) −22.3913 12.9276i −1.62017 0.935408i −0.986872 0.161503i \(-0.948366\pi\)
−0.633302 0.773905i \(-0.718301\pi\)
\(192\) −0.889878 1.48597i −0.0642214 0.107241i
\(193\) 18.8878 10.9049i 1.35957 0.784951i 0.370008 0.929029i \(-0.379355\pi\)
0.989566 + 0.144078i \(0.0460216\pi\)
\(194\) −3.21628 5.57077i −0.230916 0.399958i
\(195\) 15.6013 + 13.3465i 1.11723 + 0.955765i
\(196\) 0.00888497 + 6.99999i 0.000634641 + 0.500000i
\(197\) 3.51025 6.07993i 0.250095 0.433177i −0.713457 0.700699i \(-0.752872\pi\)
0.963552 + 0.267522i \(0.0862049\pi\)
\(198\) −6.20743 + 0.198407i −0.441143 + 0.0141002i
\(199\) 15.0791i 1.06893i −0.845191 0.534464i \(-0.820513\pi\)
0.845191 0.534464i \(-0.179487\pi\)
\(200\) 2.90424 5.03029i 0.205361 0.355695i
\(201\) 17.8828 + 9.94717i 1.26136 + 0.701619i
\(202\) 9.66204 + 16.7351i 0.679819 + 1.17748i
\(203\) 6.32139 + 23.5320i 0.443675 + 1.65162i
\(204\) 0.999885 + 1.66967i 0.0700060 + 0.116900i
\(205\) 32.3653 2.26049
\(206\) −7.86720 + 4.54213i −0.548134 + 0.316465i
\(207\) −9.25860 4.95803i −0.643517 0.344607i
\(208\) 3.53365 + 0.716460i 0.245015 + 0.0496776i
\(209\) −2.09268 −0.144754
\(210\) 4.14049 + 14.4857i 0.285721 + 0.999606i
\(211\) −10.2101 + 17.6845i −0.702895 + 1.21745i 0.264550 + 0.964372i \(0.414776\pi\)
−0.967446 + 0.253079i \(0.918557\pi\)
\(212\) 5.05843 + 2.92049i 0.347415 + 0.200580i
\(213\) −6.64443 + 11.9452i −0.455269 + 0.818473i
\(214\) 3.76351i 0.257268i
\(215\) −19.1102 11.0333i −1.30330 0.752463i
\(216\) 5.19019 0.248945i 0.353147 0.0169386i
\(217\) −9.53925 + 2.56252i −0.647567 + 0.173955i
\(218\) −2.43945 1.40841i −0.165220 0.0953899i
\(219\) −3.04165 + 0.0485974i −0.205535 + 0.00328391i
\(220\) −5.89421 3.40302i −0.397387 0.229432i
\(221\) −3.97048 0.805029i −0.267084 0.0541521i
\(222\) −10.3606 + 6.20446i −0.695358 + 0.416416i
\(223\) 1.37326 2.37855i 0.0919602 0.159280i −0.816376 0.577521i \(-0.804020\pi\)
0.908336 + 0.418241i \(0.137353\pi\)
\(224\) 1.87202 + 1.86964i 0.125079 + 0.124921i
\(225\) 9.19037 + 14.8048i 0.612692 + 0.986989i
\(226\) −4.57774 + 2.64296i −0.304507 + 0.175807i
\(227\) 8.98000i 0.596024i −0.954562 0.298012i \(-0.903676\pi\)
0.954562 0.298012i \(-0.0963235\pi\)
\(228\) 1.75064 0.0279705i 0.115939 0.00185239i
\(229\) 8.23500 + 14.2634i 0.544184 + 0.942554i 0.998658 + 0.0517940i \(0.0164939\pi\)
−0.454474 + 0.890760i \(0.650173\pi\)
\(230\) −5.75475 9.96752i −0.379457 0.657239i
\(231\) 9.12155 2.60725i 0.600154 0.171544i
\(232\) 7.97573 + 4.60479i 0.523633 + 0.302319i
\(233\) −4.79194 + 2.76663i −0.313931 + 0.181248i −0.648684 0.761058i \(-0.724680\pi\)
0.334753 + 0.942306i \(0.391347\pi\)
\(234\) −6.89928 + 8.33066i −0.451020 + 0.544592i
\(235\) 2.00280 3.46895i 0.130648 0.226289i
\(236\) 9.80909i 0.638517i
\(237\) −4.19253 + 7.53724i −0.272334 + 0.489596i
\(238\) −2.10344 2.10077i −0.136346 0.136173i
\(239\) 4.33497 0.280406 0.140203 0.990123i \(-0.455224\pi\)
0.140203 + 0.990123i \(0.455224\pi\)
\(240\) 4.97629 + 2.76802i 0.321218 + 0.178675i
\(241\) 4.20698 0.270995 0.135498 0.990778i \(-0.456737\pi\)
0.135498 + 0.990778i \(0.456737\pi\)
\(242\) 3.35713 5.81473i 0.215805 0.373785i
\(243\) −6.69214 + 14.0789i −0.429301 + 0.903161i
\(244\) −0.209571 0.120996i −0.0134164 0.00774595i
\(245\) −11.5320 19.9155i −0.736751 1.27236i
\(246\) 0.272400 + 17.0491i 0.0173676 + 1.08701i
\(247\) −2.41322 + 2.73135i −0.153550 + 0.173791i
\(248\) −1.86666 + 3.23315i −0.118533 + 0.205305i
\(249\) −1.48583 + 0.889789i −0.0941604 + 0.0563881i
\(250\) 2.65798i 0.168105i
\(251\) 9.79168 + 16.9597i 0.618045 + 1.07049i 0.989842 + 0.142172i \(0.0454086\pi\)
−0.371797 + 0.928314i \(0.621258\pi\)
\(252\) −7.59580 + 2.30301i −0.478490 + 0.145076i
\(253\) −6.27649 + 3.62374i −0.394600 + 0.227822i
\(254\) 9.40084 16.2827i 0.589861 1.02167i
\(255\) −5.59147 3.11021i −0.350151 0.194769i
\(256\) 1.00000 0.0625000
\(257\) 17.9497 1.11967 0.559837 0.828603i \(-0.310864\pi\)
0.559837 + 0.828603i \(0.310864\pi\)
\(258\) 5.65118 10.1596i 0.351827 0.632507i
\(259\) 13.0356 13.0522i 0.809994 0.811023i
\(260\) −11.2386 + 3.76878i −0.696990 + 0.233730i
\(261\) −23.4737 + 14.5717i −1.45298 + 0.901967i
\(262\) 1.45204 + 2.51500i 0.0897072 + 0.155377i
\(263\) −24.1161 + 13.9235i −1.48707 + 0.858557i −0.999891 0.0147476i \(-0.995306\pi\)
−0.487174 + 0.873305i \(0.661972\pi\)
\(264\) 1.74301 3.13355i 0.107275 0.192856i
\(265\) −19.2029 −1.17963
\(266\) −2.58291 + 0.693847i −0.158369 + 0.0425425i
\(267\) 11.3213 6.77979i 0.692854 0.414917i
\(268\) −10.2316 + 5.90721i −0.624994 + 0.360840i
\(269\) 28.3069 1.72590 0.862951 0.505288i \(-0.168614\pi\)
0.862951 + 0.505288i \(0.168614\pi\)
\(270\) −14.3681 + 9.24048i −0.874415 + 0.562358i
\(271\) 25.3037 1.53709 0.768546 0.639795i \(-0.220981\pi\)
0.768546 + 0.639795i \(0.220981\pi\)
\(272\) −1.12362 −0.0681295
\(273\) 7.11577 14.9119i 0.430666 0.902511i
\(274\) 21.1790 1.27947
\(275\) 12.0247 0.725118
\(276\) 5.20218 3.11533i 0.313134 0.187521i
\(277\) −13.0935 −0.786713 −0.393356 0.919386i \(-0.628686\pi\)
−0.393356 + 0.919386i \(0.628686\pi\)
\(278\) 17.6205 10.1732i 1.05680 0.610147i
\(279\) −5.90699 9.51560i −0.353642 0.569684i
\(280\) −8.40328 2.24594i −0.502192 0.134220i
\(281\) −16.5616 −0.987980 −0.493990 0.869468i \(-0.664462\pi\)
−0.493990 + 0.869468i \(0.664462\pi\)
\(282\) 1.84420 + 1.02582i 0.109821 + 0.0610868i
\(283\) −15.9278 + 9.19594i −0.946811 + 0.546642i −0.892089 0.451860i \(-0.850761\pi\)
−0.0547224 + 0.998502i \(0.517427\pi\)
\(284\) −3.94585 6.83441i −0.234143 0.405548i
\(285\) −4.93838 + 2.95736i −0.292524 + 0.175179i
\(286\) 2.37318 + 7.07690i 0.140329 + 0.418466i
\(287\) −6.75725 25.1545i −0.398868 1.48483i
\(288\) −1.41623 + 2.64467i −0.0834524 + 0.155839i
\(289\) −15.7375 −0.925734
\(290\) −30.2777 −1.77797
\(291\) −5.41591 + 9.73662i −0.317486 + 0.570771i
\(292\) 0.878160 1.52102i 0.0513904 0.0890108i
\(293\) −7.37759 + 4.25945i −0.431003 + 0.248840i −0.699774 0.714364i \(-0.746716\pi\)
0.268771 + 0.963204i \(0.413383\pi\)
\(294\) 10.3939 6.24234i 0.606185 0.364061i
\(295\) 16.1243 + 27.9281i 0.938793 + 1.62604i
\(296\) 6.97226i 0.405254i
\(297\) 5.81868 + 9.04752i 0.337634 + 0.524991i
\(298\) 6.62502 11.4749i 0.383777 0.664721i
\(299\) −2.50822 + 12.3708i −0.145054 + 0.715422i
\(300\) −10.0593 + 0.160721i −0.580774 + 0.00927922i
\(301\) −4.58529 + 17.1561i −0.264292 + 0.988861i
\(302\) −15.0137 8.66818i −0.863943 0.498798i
\(303\) 16.2699 29.2498i 0.934684 1.68036i
\(304\) −0.505430 + 0.875431i −0.0289884 + 0.0502094i
\(305\) 0.795576 0.0455546
\(306\) 1.59131 2.97161i 0.0909692 0.169875i
\(307\) −21.3161 −1.21658 −0.608288 0.793716i \(-0.708143\pi\)
−0.608288 + 0.793716i \(0.708143\pi\)
\(308\) −1.41426 + 5.29150i −0.0805847 + 0.301511i
\(309\) 13.7503 + 7.64851i 0.782229 + 0.435109i
\(310\) 12.2738i 0.697103i
\(311\) 7.40693 12.8292i 0.420008 0.727476i −0.575931 0.817498i \(-0.695361\pi\)
0.995940 + 0.0900223i \(0.0286938\pi\)
\(312\) −2.07988 5.88847i −0.117750 0.333369i
\(313\) −22.7031 + 13.1077i −1.28326 + 0.740889i −0.977442 0.211203i \(-0.932262\pi\)
−0.305814 + 0.952091i \(0.598929\pi\)
\(314\) 12.2223 + 7.05652i 0.689742 + 0.398223i
\(315\) 17.8408 19.0431i 1.00521 1.07296i
\(316\) −2.48977 4.31240i −0.140060 0.242592i
\(317\) −9.80532 16.9833i −0.550722 0.953878i −0.998223 0.0595945i \(-0.981019\pi\)
0.447501 0.894283i \(-0.352314\pi\)
\(318\) −0.161620 10.1156i −0.00906319 0.567253i
\(319\) 19.0657i 1.06747i
\(320\) −2.84717 + 1.64381i −0.159161 + 0.0918919i
\(321\) −5.59247 + 3.34906i −0.312141 + 0.186926i
\(322\) −6.54534 + 6.55365i −0.364758 + 0.365221i
\(323\) 0.567912 0.983652i 0.0315995 0.0547319i
\(324\) −4.98856 7.49095i −0.277142 0.416164i
\(325\) 13.8666 15.6945i 0.769179 0.870575i
\(326\) −8.93321 5.15759i −0.494765 0.285652i
\(327\) 0.0779417 + 4.87827i 0.00431019 + 0.269769i
\(328\) −8.52566 4.92229i −0.470751 0.271788i
\(329\) −3.11423 0.832338i −0.171693 0.0458883i
\(330\) 0.188323 + 11.7869i 0.0103669 + 0.648848i
\(331\) 22.5837 + 13.0387i 1.24131 + 0.716671i 0.969361 0.245641i \(-0.0789985\pi\)
0.271949 + 0.962312i \(0.412332\pi\)
\(332\) 0.999900i 0.0548767i
\(333\) 18.4393 + 9.87436i 1.01047 + 0.541112i
\(334\) 12.1099 + 6.99167i 0.662626 + 0.382567i
\(335\) 19.4207 33.6376i 1.06107 1.83782i
\(336\) 1.11237 4.44552i 0.0606849 0.242523i
\(337\) −13.5184 −0.736394 −0.368197 0.929748i \(-0.620025\pi\)
−0.368197 + 0.929748i \(0.620025\pi\)
\(338\) 11.9734 + 5.06344i 0.651265 + 0.275415i
\(339\) 8.00099 + 4.45049i 0.434554 + 0.241717i
\(340\) 3.19914 1.84702i 0.173498 0.100169i
\(341\) −7.72873 −0.418534
\(342\) −1.59942 2.57651i −0.0864866 0.139322i
\(343\) −13.0708 + 13.1207i −0.705759 + 0.708452i
\(344\) 3.35600 + 5.81276i 0.180943 + 0.313403i
\(345\) −9.69044 + 17.4213i −0.521716 + 0.937930i
\(346\) 2.53897 4.39763i 0.136496 0.236418i
\(347\) 33.5765i 1.80248i 0.433322 + 0.901239i \(0.357341\pi\)
−0.433322 + 0.901239i \(0.642659\pi\)
\(348\) −0.254829 15.9494i −0.0136603 0.854979i
\(349\) 11.8845 20.5845i 0.636161 1.10186i −0.350107 0.936710i \(-0.613855\pi\)
0.986268 0.165153i \(-0.0528118\pi\)
\(350\) 14.8416 3.98690i 0.793318 0.213109i
\(351\) 18.5187 + 2.83887i 0.988453 + 0.151528i
\(352\) 1.03510 + 1.79285i 0.0551710 + 0.0955590i
\(353\) −9.28444 + 5.36037i −0.494161 + 0.285304i −0.726299 0.687379i \(-0.758761\pi\)
0.232138 + 0.972683i \(0.425428\pi\)
\(354\) −14.5760 + 8.72889i −0.774708 + 0.463935i
\(355\) 22.4690 + 12.9725i 1.19253 + 0.688508i
\(356\) 7.61879i 0.403795i
\(357\) −1.24988 + 4.99508i −0.0661509 + 0.264368i
\(358\) 10.1439 5.85660i 0.536123 0.309531i
\(359\) −7.26878 12.5899i −0.383632 0.664469i 0.607947 0.793978i \(-0.291993\pi\)
−0.991578 + 0.129508i \(0.958660\pi\)
\(360\) −0.315084 9.85784i −0.0166064 0.519554i
\(361\) 8.98908 + 15.5695i 0.473110 + 0.819450i
\(362\) 22.6731i 1.19167i
\(363\) −11.6280 + 0.185784i −0.610310 + 0.00975113i
\(364\) 5.27553 + 7.94788i 0.276513 + 0.416582i
\(365\) 5.77412i 0.302231i
\(366\) 0.00669590 + 0.419088i 0.000350000 + 0.0219061i
\(367\) −15.1524 + 8.74823i −0.790948 + 0.456654i −0.840296 0.542128i \(-0.817619\pi\)
0.0493484 + 0.998782i \(0.484286\pi\)
\(368\) 3.50085i 0.182495i
\(369\) 25.0922 15.5764i 1.30625 0.810877i
\(370\) 11.4611 + 19.8512i 0.595834 + 1.03201i
\(371\) 4.00920 + 14.9247i 0.208147 + 0.774849i
\(372\) 6.46548 0.103301i 0.335219 0.00535591i
\(373\) 5.93324 10.2767i 0.307211 0.532106i −0.670540 0.741874i \(-0.733937\pi\)
0.977751 + 0.209768i \(0.0672708\pi\)
\(374\) −1.16306 2.01448i −0.0601404 0.104166i
\(375\) 3.94968 2.36528i 0.203961 0.122142i
\(376\) −1.05515 + 0.609193i −0.0544153 + 0.0314167i
\(377\) 24.8843 + 21.9860i 1.28161 + 1.13234i
\(378\) 10.1815 + 9.23775i 0.523682 + 0.475139i
\(379\) 10.9141 + 6.30127i 0.560620 + 0.323674i 0.753394 0.657569i \(-0.228415\pi\)
−0.192774 + 0.981243i \(0.561748\pi\)
\(380\) 3.32333i 0.170483i
\(381\) −32.5613 + 0.520243i −1.66817 + 0.0266528i
\(382\) −22.3913 12.9276i −1.14564 0.661433i
\(383\) 0.920885 + 0.531673i 0.0470550 + 0.0271672i 0.523343 0.852122i \(-0.324685\pi\)
−0.476288 + 0.879289i \(0.658018\pi\)
\(384\) −0.889878 1.48597i −0.0454114 0.0758308i
\(385\) −4.67162 17.3906i −0.238088 0.886305i
\(386\) 18.8878 10.9049i 0.961364 0.555044i
\(387\) −20.1257 + 0.643275i −1.02305 + 0.0326995i
\(388\) −3.21628 5.57077i −0.163282 0.282813i
\(389\) 2.28039 + 1.31658i 0.115620 + 0.0667534i 0.556695 0.830717i \(-0.312069\pi\)
−0.441075 + 0.897470i \(0.645403\pi\)
\(390\) 15.6013 + 13.3465i 0.790003 + 0.675828i
\(391\) 3.93363i 0.198932i
\(392\) 0.00888497 + 6.99999i 0.000448759 + 0.353553i
\(393\) 2.44509 4.39574i 0.123339 0.221736i
\(394\) 3.51025 6.07993i 0.176844 0.306302i
\(395\) 14.1776 + 8.18542i 0.713351 + 0.411853i
\(396\) −6.20743 + 0.198407i −0.311935 + 0.00997033i
\(397\) −4.27357 + 7.40204i −0.214484 + 0.371498i −0.953113 0.302615i \(-0.902140\pi\)
0.738629 + 0.674113i \(0.235474\pi\)
\(398\) 15.0791i 0.755846i
\(399\) 3.32952 + 3.22070i 0.166684 + 0.161237i
\(400\) 2.90424 5.03029i 0.145212 0.251515i
\(401\) 15.5754 0.777797 0.388898 0.921281i \(-0.372856\pi\)
0.388898 + 0.921281i \(0.372856\pi\)
\(402\) 17.8828 + 9.94717i 0.891914 + 0.496120i
\(403\) −8.91255 + 10.0874i −0.443966 + 0.502491i
\(404\) 9.66204 + 16.7351i 0.480705 + 0.832605i
\(405\) 26.5170 + 13.1277i 1.31764 + 0.652322i
\(406\) 6.32139 + 23.5320i 0.313725 + 1.16787i
\(407\) 12.5002 7.21699i 0.619612 0.357733i
\(408\) 0.999885 + 1.66967i 0.0495017 + 0.0826610i
\(409\) 10.8097 0.534504 0.267252 0.963627i \(-0.413884\pi\)
0.267252 + 0.963627i \(0.413884\pi\)
\(410\) 32.3653 1.59841
\(411\) −18.8468 31.4715i −0.929642 1.55237i
\(412\) −7.86720 + 4.54213i −0.387589 + 0.223775i
\(413\) 18.3395 18.3628i 0.902427 0.903573i
\(414\) −9.25860 4.95803i −0.455036 0.243674i
\(415\) 1.64365 + 2.84688i 0.0806836 + 0.139748i
\(416\) 3.53365 + 0.716460i 0.173251 + 0.0351273i
\(417\) −30.7971 17.1307i −1.50814 0.838892i
\(418\) −2.09268 −0.102357
\(419\) 7.13932 12.3657i 0.348779 0.604102i −0.637254 0.770654i \(-0.719930\pi\)
0.986033 + 0.166551i \(0.0532632\pi\)
\(420\) 4.14049 + 14.4857i 0.202035 + 0.706828i
\(421\) 31.1553i 1.51842i −0.650848 0.759208i \(-0.725586\pi\)
0.650848 0.759208i \(-0.274414\pi\)
\(422\) −10.2101 + 17.6845i −0.497022 + 0.860867i
\(423\) −0.116769 3.65329i −0.00567753 0.177629i
\(424\) 5.05843 + 2.92049i 0.245659 + 0.141831i
\(425\) −3.26326 + 5.65214i −0.158292 + 0.274169i
\(426\) −6.64443 + 11.9452i −0.321924 + 0.578748i
\(427\) −0.166101 0.618327i −0.00803819 0.0299230i
\(428\) 3.76351i 0.181916i
\(429\) 8.40425 9.82406i 0.405761 0.474310i
\(430\) −19.1102 11.0333i −0.921575 0.532071i
\(431\) −10.7951 18.6976i −0.519981 0.900634i −0.999730 0.0232279i \(-0.992606\pi\)
0.479749 0.877406i \(-0.340728\pi\)
\(432\) 5.19019 0.248945i 0.249713 0.0119774i
\(433\) 16.2009 9.35358i 0.778565 0.449505i −0.0573567 0.998354i \(-0.518267\pi\)
0.835921 + 0.548849i \(0.184934\pi\)
\(434\) −9.53925 + 2.56252i −0.457899 + 0.123005i
\(435\) 26.9434 + 44.9918i 1.29184 + 2.15719i
\(436\) −2.43945 1.40841i −0.116828 0.0674508i
\(437\) −3.06476 1.76944i −0.146607 0.0846437i
\(438\) −3.04165 + 0.0485974i −0.145336 + 0.00232207i
\(439\) 14.3709i 0.685885i 0.939356 + 0.342943i \(0.111424\pi\)
−0.939356 + 0.342943i \(0.888576\pi\)
\(440\) −5.89421 3.40302i −0.280995 0.162233i
\(441\) −18.5253 9.89014i −0.882155 0.470959i
\(442\) −3.97048 0.805029i −0.188857 0.0382913i
\(443\) −1.21594 + 0.702023i −0.0577711 + 0.0333541i −0.528607 0.848866i \(-0.677286\pi\)
0.470836 + 0.882221i \(0.343952\pi\)
\(444\) −10.3606 + 6.20446i −0.491692 + 0.294451i
\(445\) −12.5239 21.6920i −0.593688 1.02830i
\(446\) 1.37326 2.37855i 0.0650257 0.112628i
\(447\) −22.9468 + 0.366629i −1.08535 + 0.0173409i
\(448\) 1.87202 + 1.86964i 0.0884444 + 0.0883322i
\(449\) −11.0266 19.0987i −0.520379 0.901323i −0.999719 0.0236937i \(-0.992457\pi\)
0.479340 0.877629i \(-0.340876\pi\)
\(450\) 9.19037 + 14.8048i 0.433238 + 0.697906i
\(451\) 20.3803i 0.959669i
\(452\) −4.57774 + 2.64296i −0.215319 + 0.124314i
\(453\) 0.479698 + 30.0236i 0.0225382 + 1.41063i
\(454\) 8.98000i 0.421453i
\(455\) −28.0851 13.9570i −1.31665 0.654313i
\(456\) 1.75064 0.0279705i 0.0819812 0.00130984i
\(457\) 42.3253i 1.97990i 0.141432 + 0.989948i \(0.454829\pi\)
−0.141432 + 0.989948i \(0.545171\pi\)
\(458\) 8.23500 + 14.2634i 0.384796 + 0.666486i
\(459\) −5.83180 + 0.279720i −0.272205 + 0.0130562i
\(460\) −5.75475 9.96752i −0.268317 0.464738i
\(461\) −10.2913 + 5.94166i −0.479312 + 0.276731i −0.720130 0.693839i \(-0.755918\pi\)
0.240818 + 0.970570i \(0.422584\pi\)
\(462\) 9.12155 2.60725i 0.424373 0.121300i
\(463\) 3.56440i 0.165652i −0.996564 0.0828258i \(-0.973605\pi\)
0.996564 0.0828258i \(-0.0263945\pi\)
\(464\) 7.97573 + 4.60479i 0.370264 + 0.213772i
\(465\) −18.2385 + 10.9221i −0.845790 + 0.506503i
\(466\) −4.79194 + 2.76663i −0.221983 + 0.128162i
\(467\) 3.56143 + 6.16858i 0.164803 + 0.285448i 0.936585 0.350439i \(-0.113968\pi\)
−0.771782 + 0.635887i \(0.780634\pi\)
\(468\) −6.89928 + 8.33066i −0.318919 + 0.385085i
\(469\) −30.1981 8.07101i −1.39442 0.372684i
\(470\) 2.00280 3.46895i 0.0923821 0.160011i
\(471\) −0.390508 24.4414i −0.0179937 1.12620i
\(472\) 9.80909i 0.451500i
\(473\) −6.94759 + 12.0336i −0.319451 + 0.553305i
\(474\) −4.19253 + 7.53724i −0.192569 + 0.346197i
\(475\) 2.93578 + 5.08492i 0.134703 + 0.233312i
\(476\) −2.10344 2.10077i −0.0964108 0.0962885i
\(477\) −14.8877 + 9.24179i −0.681659 + 0.423152i
\(478\) 4.33497 0.198277
\(479\) −26.4547 + 15.2736i −1.20875 + 0.697870i −0.962485 0.271334i \(-0.912535\pi\)
−0.246260 + 0.969204i \(0.579202\pi\)
\(480\) 4.97629 + 2.76802i 0.227136 + 0.126342i
\(481\) 4.99535 24.6375i 0.227768 1.12337i
\(482\) 4.20698 0.191623
\(483\) 15.5631 + 3.89425i 0.708146 + 0.177195i
\(484\) 3.35713 5.81473i 0.152597 0.264306i
\(485\) 18.3146 + 10.5739i 0.831623 + 0.480138i
\(486\) −6.69214 + 14.0789i −0.303562 + 0.638632i
\(487\) 32.0202i 1.45098i 0.688235 + 0.725488i \(0.258386\pi\)
−0.688235 + 0.725488i \(0.741614\pi\)
\(488\) −0.209571 0.120996i −0.00948681 0.00547721i
\(489\) 0.285421 + 17.8641i 0.0129072 + 0.807844i
\(490\) −11.5320 19.9155i −0.520962 0.899693i
\(491\) −13.0865 7.55549i −0.590585 0.340975i 0.174744 0.984614i \(-0.444090\pi\)
−0.765329 + 0.643639i \(0.777424\pi\)
\(492\) 0.272400 + 17.0491i 0.0122807 + 0.768635i
\(493\) −8.96170 5.17404i −0.403615 0.233027i
\(494\) −2.41322 + 2.73135i −0.108576 + 0.122889i
\(495\) 17.3475 10.7688i 0.779710 0.484019i
\(496\) −1.86666 + 3.23315i −0.0838156 + 0.145173i
\(497\) 5.39121 20.1715i 0.241829 0.904813i
\(498\) −1.48583 + 0.889789i −0.0665814 + 0.0398724i
\(499\) −4.18606 + 2.41682i −0.187394 + 0.108192i −0.590762 0.806846i \(-0.701173\pi\)
0.403368 + 0.915038i \(0.367839\pi\)
\(500\) 2.65798i 0.118868i
\(501\) −0.386919 24.2168i −0.0172863 1.08193i
\(502\) 9.79168 + 16.9597i 0.437024 + 0.756948i
\(503\) −13.7946 23.8930i −0.615073 1.06534i −0.990372 0.138433i \(-0.955793\pi\)
0.375299 0.926904i \(-0.377540\pi\)
\(504\) −7.59580 + 2.30301i −0.338344 + 0.102584i
\(505\) −55.0189 31.7652i −2.44831 1.41353i
\(506\) −6.27649 + 3.62374i −0.279024 + 0.161095i
\(507\) −3.13070 22.2980i −0.139039 0.990287i
\(508\) 9.40084 16.2827i 0.417095 0.722429i
\(509\) 31.3889i 1.39129i −0.718386 0.695645i \(-0.755119\pi\)
0.718386 0.695645i \(-0.244881\pi\)
\(510\) −5.59147 3.11021i −0.247594 0.137722i
\(511\) 4.48769 1.20553i 0.198524 0.0533293i
\(512\) 1.00000 0.0441942
\(513\) −2.40534 + 4.66947i −0.106198 + 0.206162i
\(514\) 17.9497 0.791728
\(515\) 14.9328 25.8644i 0.658019 1.13972i
\(516\) 5.65118 10.1596i 0.248779 0.447250i
\(517\) −2.18438 1.26115i −0.0960688 0.0554654i
\(518\) 13.0356 13.0522i 0.572753 0.573480i
\(519\) −8.79414 + 0.140507i −0.386020 + 0.00616757i
\(520\) −11.2386 + 3.76878i −0.492846 + 0.165272i
\(521\) −0.178115 + 0.308505i −0.00780338 + 0.0135159i −0.869901 0.493227i \(-0.835817\pi\)
0.862097 + 0.506743i \(0.169151\pi\)
\(522\) −23.4737 + 14.5717i −1.02741 + 0.637787i
\(523\) 24.9103i 1.08925i −0.838679 0.544626i \(-0.816672\pi\)
0.838679 0.544626i \(-0.183328\pi\)
\(524\) 1.45204 + 2.51500i 0.0634326 + 0.109868i
\(525\) −19.1317 18.5064i −0.834974 0.807686i
\(526\) −24.1161 + 13.9235i −1.05151 + 0.607092i
\(527\) 2.09742 3.63284i 0.0913650 0.158249i
\(528\) 1.74301 3.13355i 0.0758548 0.136370i
\(529\) 10.7440 0.467131
\(530\) −19.2029 −0.834122
\(531\) 25.9418 + 13.8920i 1.12578 + 0.602860i
\(532\) −2.58291 + 0.693847i −0.111984 + 0.0300821i
\(533\) −26.6001 23.5020i −1.15218 1.01798i
\(534\) 11.3213 6.77979i 0.489922 0.293390i
\(535\) 6.18650 + 10.7153i 0.267466 + 0.463264i
\(536\) −10.2316 + 5.90721i −0.441937 + 0.255153i
\(537\) −17.7296 9.86195i −0.765089 0.425575i
\(538\) 28.3069 1.22040
\(539\) −12.5407 + 7.26163i −0.540167 + 0.312780i
\(540\) −14.3681 + 9.24048i −0.618305 + 0.397647i
\(541\) 17.5713 10.1448i 0.755447 0.436158i −0.0722115 0.997389i \(-0.523006\pi\)
0.827659 + 0.561232i \(0.189672\pi\)
\(542\) 25.3037 1.08689
\(543\) −33.6916 + 20.1763i −1.44584 + 0.865846i
\(544\) −1.12362 −0.0481748
\(545\) 9.26068 0.396684
\(546\) 7.11577 14.9119i 0.304527 0.638172i
\(547\) −18.3443 −0.784344 −0.392172 0.919892i \(-0.628276\pi\)
−0.392172 + 0.919892i \(0.628276\pi\)
\(548\) 21.1790 0.904724
\(549\) 0.616794 0.382887i 0.0263241 0.0163412i
\(550\) 12.0247 0.512736
\(551\) −8.06235 + 4.65480i −0.343468 + 0.198301i
\(552\) 5.20218 3.11533i 0.221419 0.132597i
\(553\) 3.40176 12.7279i 0.144658 0.541243i
\(554\) −13.0935 −0.556290
\(555\) 19.2994 34.6960i 0.819213 1.47276i
\(556\) 17.6205 10.1732i 0.747274 0.431439i
\(557\) 6.08906 + 10.5466i 0.258002 + 0.446872i 0.965707 0.259636i \(-0.0836026\pi\)
−0.707705 + 0.706508i \(0.750269\pi\)
\(558\) −5.90699 9.51560i −0.250063 0.402828i
\(559\) 7.69432 + 22.9447i 0.325435 + 0.970457i
\(560\) −8.40328 2.24594i −0.355103 0.0949082i
\(561\) −1.95848 + 3.52092i −0.0826872 + 0.148653i
\(562\) −16.5616 −0.698608
\(563\) −11.3717 −0.479262 −0.239631 0.970864i \(-0.577026\pi\)
−0.239631 + 0.970864i \(0.577026\pi\)
\(564\) 1.84420 + 1.02582i 0.0776549 + 0.0431949i
\(565\) 8.68905 15.0499i 0.365551 0.633153i
\(566\) −15.9278 + 9.19594i −0.669497 + 0.386534i
\(567\) 4.66673 23.3500i 0.195984 0.980607i
\(568\) −3.94585 6.83441i −0.165564 0.286766i
\(569\) 24.0497i 1.00822i −0.863641 0.504108i \(-0.831821\pi\)
0.863641 0.504108i \(-0.168179\pi\)
\(570\) −4.93838 + 2.95736i −0.206846 + 0.123870i
\(571\) 3.64194 6.30802i 0.152410 0.263983i −0.779703 0.626150i \(-0.784630\pi\)
0.932113 + 0.362167i \(0.117963\pi\)
\(572\) 2.37318 + 7.07690i 0.0992277 + 0.295900i
\(573\) 0.715414 + 44.7768i 0.0298868 + 1.87058i
\(574\) −6.75725 25.1545i −0.282042 1.04993i
\(575\) 17.6103 + 10.1673i 0.734401 + 0.424007i
\(576\) −1.41623 + 2.64467i −0.0590098 + 0.110195i
\(577\) −2.11186 + 3.65785i −0.0879179 + 0.152278i −0.906631 0.421925i \(-0.861355\pi\)
0.818713 + 0.574203i \(0.194688\pi\)
\(578\) −15.7375 −0.654593
\(579\) −33.0122 18.3628i −1.37194 0.763131i
\(580\) −30.2777 −1.25721
\(581\) 1.86945 1.87183i 0.0775581 0.0776566i
\(582\) −5.41591 + 9.73662i −0.224497 + 0.403596i
\(583\) 12.0920i 0.500799i
\(584\) 0.878160 1.52102i 0.0363385 0.0629402i
\(585\) 5.94935 35.0599i 0.245975 1.44955i
\(586\) −7.37759 + 4.25945i −0.304765 + 0.175956i
\(587\) −39.5103 22.8113i −1.63077 0.941523i −0.983857 0.178954i \(-0.942729\pi\)
−0.646908 0.762568i \(-0.723938\pi\)
\(588\) 10.3939 6.24234i 0.428637 0.257430i
\(589\) −1.88693 3.26827i −0.0777498 0.134667i
\(590\) 16.1243 + 27.9281i 0.663827 + 1.14978i
\(591\) −12.1583 + 0.194257i −0.500126 + 0.00799068i
\(592\) 6.97226i 0.286558i
\(593\) −21.1653 + 12.2198i −0.869154 + 0.501807i −0.867067 0.498191i \(-0.833998\pi\)
−0.00208732 + 0.999998i \(0.500664\pi\)
\(594\) 5.81868 + 9.04752i 0.238744 + 0.371224i
\(595\) 9.44210 + 2.52358i 0.387088 + 0.103457i
\(596\) 6.62502 11.4749i 0.271371 0.470029i
\(597\) −22.4071 + 13.4185i −0.917062 + 0.549184i
\(598\) −2.50822 + 12.3708i −0.102569 + 0.505879i
\(599\) 11.4214 + 6.59416i 0.466667 + 0.269430i 0.714843 0.699285i \(-0.246498\pi\)
−0.248177 + 0.968715i \(0.579831\pi\)
\(600\) −10.0593 + 0.160721i −0.410669 + 0.00656140i
\(601\) 34.6176 + 19.9865i 1.41208 + 0.815266i 0.995584 0.0938714i \(-0.0299242\pi\)
0.416497 + 0.909137i \(0.363258\pi\)
\(602\) −4.58529 + 17.1561i −0.186883 + 0.699230i
\(603\) −1.13229 35.4252i −0.0461103 1.44262i
\(604\) −15.0137 8.66818i −0.610900 0.352703i
\(605\) 22.0740i 0.897436i
\(606\) 16.2699 29.2498i 0.660922 1.18819i
\(607\) −17.4747 10.0890i −0.709275 0.409500i 0.101518 0.994834i \(-0.467630\pi\)
−0.810793 + 0.585334i \(0.800964\pi\)
\(608\) −0.505430 + 0.875431i −0.0204979 + 0.0355034i
\(609\) 29.3427 30.3340i 1.18902 1.22920i
\(610\) 0.795576 0.0322119
\(611\) −4.16500 + 1.39670i −0.168498 + 0.0565044i
\(612\) 1.59131 2.97161i 0.0643249 0.120120i
\(613\) 21.6006 12.4711i 0.872440 0.503703i 0.00428146 0.999991i \(-0.498637\pi\)
0.868158 + 0.496288i \(0.165304\pi\)
\(614\) −21.3161 −0.860249
\(615\) −28.8012 48.0940i −1.16138 1.93934i
\(616\) −1.41426 + 5.29150i −0.0569820 + 0.213201i
\(617\) 1.22499 + 2.12175i 0.0493164 + 0.0854185i 0.889630 0.456682i \(-0.150962\pi\)
−0.840313 + 0.542101i \(0.817629\pi\)
\(618\) 13.7503 + 7.64851i 0.553119 + 0.307668i
\(619\) −11.9145 + 20.6365i −0.478883 + 0.829449i −0.999707 0.0242147i \(-0.992291\pi\)
0.520824 + 0.853664i \(0.325625\pi\)
\(620\) 12.2738i 0.492926i
\(621\) 0.871522 + 18.1701i 0.0349730 + 0.729140i
\(622\) 7.40693 12.8292i 0.296991 0.514403i
\(623\) −14.2444 + 14.2625i −0.570690 + 0.571415i
\(624\) −2.07988 5.88847i −0.0832617 0.235728i
\(625\) 10.1520 + 17.5837i 0.406079 + 0.703350i
\(626\) −22.7031 + 13.1077i −0.907399 + 0.523887i
\(627\) 1.86223 + 3.10967i 0.0743704 + 0.124188i
\(628\) 12.2223 + 7.05652i 0.487721 + 0.281586i
\(629\) 7.83418i 0.312369i
\(630\) 17.8408 19.0431i 0.710794 0.758696i
\(631\) −17.5516 + 10.1334i −0.698718 + 0.403405i −0.806870 0.590729i \(-0.798840\pi\)
0.108152 + 0.994134i \(0.465507\pi\)
\(632\) −2.48977 4.31240i −0.0990376 0.171538i
\(633\) 35.3645 0.565030i 1.40561 0.0224579i
\(634\) −9.80532 16.9833i −0.389419 0.674494i
\(635\) 61.8129i 2.45297i
\(636\) −0.161620 10.1156i −0.00640865 0.401109i
\(637\) −4.98382 + 24.7419i −0.197466 + 0.980310i
\(638\) 19.0657i 0.754818i
\(639\) 23.6630 0.756337i 0.936095 0.0299202i
\(640\) −2.84717 + 1.64381i −0.112544 + 0.0649774i
\(641\) 33.2647i 1.31388i −0.753945 0.656938i \(-0.771851\pi\)
0.753945 0.656938i \(-0.228149\pi\)
\(642\) −5.59247 + 3.34906i −0.220717 + 0.132177i
\(643\) −3.65734 6.33469i −0.144231 0.249816i 0.784855 0.619680i \(-0.212738\pi\)
−0.929086 + 0.369864i \(0.879404\pi\)
\(644\) −6.54534 + 6.55365i −0.257923 + 0.258250i
\(645\) 0.610581 + 38.2155i 0.0240416 + 1.50473i
\(646\) 0.567912 0.983652i 0.0223442 0.0387013i
\(647\) 16.0186 + 27.7451i 0.629757 + 1.09077i 0.987600 + 0.156990i \(0.0501789\pi\)
−0.357843 + 0.933782i \(0.616488\pi\)
\(648\) −4.98856 7.49095i −0.195969 0.294272i
\(649\) 17.5862 10.1534i 0.690319 0.398556i
\(650\) 13.8666 15.6945i 0.543892 0.615590i
\(651\) 12.2966 + 11.8947i 0.481942 + 0.466192i
\(652\) −8.93321 5.15759i −0.349851 0.201987i
\(653\) 33.6453i 1.31664i −0.752737 0.658321i \(-0.771267\pi\)
0.752737 0.658321i \(-0.228733\pi\)
\(654\) 0.0779417 + 4.87827i 0.00304776 + 0.190755i
\(655\) −8.26839 4.77376i −0.323073 0.186526i
\(656\) −8.52566 4.92229i −0.332871 0.192183i
\(657\) 2.77891 + 4.47656i 0.108416 + 0.174647i
\(658\) −3.11423 0.832338i −0.121405 0.0324479i
\(659\) 21.1966 12.2379i 0.825704 0.476720i −0.0266755 0.999644i \(-0.508492\pi\)
0.852379 + 0.522924i \(0.175159\pi\)
\(660\) 0.188323 + 11.7869i 0.00733048 + 0.458805i
\(661\) 2.77785 + 4.81137i 0.108046 + 0.187141i 0.914979 0.403503i \(-0.132207\pi\)
−0.806933 + 0.590643i \(0.798874\pi\)
\(662\) 22.5837 + 13.0387i 0.877739 + 0.506763i
\(663\) 2.33699 + 6.61641i 0.0907613 + 0.256960i
\(664\) 0.999900i 0.0388037i
\(665\) 6.21343 6.22133i 0.240947 0.241253i
\(666\) 18.4393 + 9.87436i 0.714510 + 0.382624i
\(667\) −16.1207 + 27.9219i −0.624196 + 1.08114i
\(668\) 12.1099 + 6.99167i 0.468547 + 0.270516i
\(669\) −4.75650 + 0.0759962i −0.183897 + 0.00293818i
\(670\) 19.4207 33.6376i 0.750287 1.29953i
\(671\) 0.500970i 0.0193397i
\(672\) 1.11237 4.44552i 0.0429107 0.171490i
\(673\) 9.31475 16.1336i 0.359057 0.621905i −0.628746 0.777610i \(-0.716432\pi\)
0.987804 + 0.155705i \(0.0497649\pi\)
\(674\) −13.5184 −0.520709
\(675\) 13.8213 26.8311i 0.531981 1.03273i
\(676\) 11.9734 + 5.06344i 0.460514 + 0.194748i
\(677\) 13.4512 + 23.2982i 0.516972 + 0.895422i 0.999806 + 0.0197102i \(0.00627434\pi\)
−0.482833 + 0.875712i \(0.660392\pi\)
\(678\) 8.00099 + 4.45049i 0.307276 + 0.170920i
\(679\) 4.39440 16.4419i 0.168642 0.630981i
\(680\) 3.19914 1.84702i 0.122681 0.0708301i
\(681\) −13.3440 + 7.99111i −0.511345 + 0.306220i
\(682\) −7.72873 −0.295948
\(683\) 40.7673 1.55992 0.779958 0.625831i \(-0.215240\pi\)
0.779958 + 0.625831i \(0.215240\pi\)
\(684\) −1.59942 2.57651i −0.0611553 0.0985154i
\(685\) −60.3003 + 34.8144i −2.30395 + 1.33019i
\(686\) −13.0708 + 13.1207i −0.499047 + 0.500951i
\(687\) 13.8669 24.9297i 0.529057 0.951127i
\(688\) 3.35600 + 5.81276i 0.127946 + 0.221609i
\(689\) 15.7823 + 13.9441i 0.601258 + 0.531230i
\(690\) −9.69044 + 17.4213i −0.368909 + 0.663217i
\(691\) 13.7971 0.524865 0.262432 0.964950i \(-0.415475\pi\)
0.262432 + 0.964950i \(0.415475\pi\)
\(692\) 2.53897 4.39763i 0.0965173 0.167173i
\(693\) −11.9914 11.2342i −0.455514 0.426754i
\(694\) 33.5765i 1.27454i
\(695\) −33.4456 + 57.9295i −1.26866 + 2.19739i
\(696\) −0.254829 15.9494i −0.00965928 0.604562i
\(697\) 9.57961 + 5.53079i 0.362854 + 0.209494i
\(698\) 11.8845 20.5845i 0.449833 0.779134i
\(699\) 8.37538 + 4.65874i 0.316786 + 0.176210i
\(700\) 14.8416 3.98690i 0.560961 0.150691i
\(701\) 9.30649i 0.351501i −0.984435 0.175751i \(-0.943765\pi\)
0.984435 0.175751i \(-0.0562352\pi\)
\(702\) 18.5187 + 2.83887i 0.698942 + 0.107146i
\(703\) 6.10373 + 3.52399i 0.230207 + 0.132910i
\(704\) 1.03510 + 1.79285i 0.0390118 + 0.0675704i
\(705\) −6.93701 + 0.110835i −0.261263 + 0.00417428i
\(706\) −9.28444 + 5.36037i −0.349425 + 0.201740i
\(707\) −13.2012 + 49.3930i −0.496483 + 1.85762i
\(708\) −14.5760 + 8.72889i −0.547801 + 0.328052i
\(709\) −2.68396 1.54958i −0.100798 0.0581958i 0.448754 0.893656i \(-0.351868\pi\)
−0.549552 + 0.835460i \(0.685201\pi\)
\(710\) 22.4690 + 12.9725i 0.843246 + 0.486848i
\(711\) 14.9310 0.477236i 0.559955 0.0178978i
\(712\) 7.61879i 0.285526i
\(713\) −11.3188 6.53491i −0.423892 0.244734i
\(714\) −1.24988 + 4.99508i −0.0467757 + 0.186936i
\(715\) −18.3899 16.2481i −0.687745 0.607643i
\(716\) 10.1439 5.85660i 0.379097 0.218871i
\(717\) −3.85760 6.44166i −0.144065 0.240568i
\(718\) −7.26878 12.5899i −0.271268 0.469851i
\(719\) 5.88702 10.1966i 0.219549 0.380270i −0.735121 0.677936i \(-0.762875\pi\)
0.954670 + 0.297666i \(0.0962082\pi\)
\(720\) −0.315084 9.85784i −0.0117425 0.367380i
\(721\) −23.2197 6.20590i −0.864746 0.231120i
\(722\) 8.98908 + 15.5695i 0.334539 + 0.579438i
\(723\) −3.74370 6.25146i −0.139230 0.232494i
\(724\) 22.6731i 0.842638i
\(725\) 46.3269 26.7468i 1.72054 0.993353i
\(726\) −11.6280 + 0.185784i −0.431554 + 0.00689509i
\(727\) 13.8729i 0.514518i 0.966342 + 0.257259i \(0.0828194\pi\)
−0.966342 + 0.257259i \(0.917181\pi\)
\(728\) 5.27553 + 7.94788i 0.195524 + 0.294568i
\(729\) 26.8761 2.58415i 0.995409 0.0957091i
\(730\) 5.77412i 0.213710i
\(731\) −3.77087 6.53134i −0.139471 0.241570i
\(732\) 0.00669590 + 0.419088i 0.000247488 + 0.0154899i
\(733\) 21.6003 + 37.4129i 0.797827 + 1.38188i 0.921029 + 0.389495i \(0.127350\pi\)
−0.123202 + 0.992382i \(0.539316\pi\)
\(734\) −15.1524 + 8.74823i −0.559284 + 0.322903i
\(735\) −19.3319 + 34.8586i −0.713069 + 1.28578i
\(736\) 3.50085i 0.129043i
\(737\) −21.1814 12.2291i −0.780228 0.450465i
\(738\) 25.0922 15.5764i 0.923656 0.573377i
\(739\) −29.5969 + 17.0878i −1.08874 + 0.628585i −0.933241 0.359251i \(-0.883032\pi\)
−0.155500 + 0.987836i \(0.549699\pi\)
\(740\) 11.4611 + 19.8512i 0.421318 + 0.729744i
\(741\) 6.20618 + 1.15542i 0.227990 + 0.0424456i
\(742\) 4.00920 + 14.9247i 0.147182 + 0.547901i
\(743\) −15.6321 + 27.0755i −0.573484 + 0.993304i 0.422720 + 0.906260i \(0.361075\pi\)
−0.996204 + 0.0870439i \(0.972258\pi\)
\(744\) 6.46548 0.103301i 0.237036 0.00378720i
\(745\) 43.5611i 1.59596i
\(746\) 5.93324 10.2767i 0.217231 0.376256i
\(747\) 2.64441 + 1.41609i 0.0967538 + 0.0518122i
\(748\) −1.16306 2.01448i −0.0425257 0.0736567i
\(749\) 7.03641 7.04534i 0.257105 0.257431i
\(750\) 3.94968 2.36528i 0.144222 0.0863676i
\(751\) 2.10325 0.0767488 0.0383744 0.999263i \(-0.487782\pi\)
0.0383744 + 0.999263i \(0.487782\pi\)
\(752\) −1.05515 + 0.609193i −0.0384775 + 0.0222150i
\(753\) 16.4883 29.6422i 0.600865 1.08022i
\(754\) 24.8843 + 21.9860i 0.906233 + 0.800684i
\(755\) 56.9955 2.07428
\(756\) 10.1815 + 9.23775i 0.370299 + 0.335974i
\(757\) 16.8638 29.2089i 0.612924 1.06162i −0.377821 0.925879i \(-0.623326\pi\)
0.990745 0.135737i \(-0.0433402\pi\)
\(758\) 10.9141 + 6.30127i 0.396419 + 0.228872i
\(759\) 10.9701 + 6.10202i 0.398189 + 0.221489i
\(760\) 3.32333i 0.120550i
\(761\) −16.6410 9.60768i −0.603235 0.348278i 0.167078 0.985944i \(-0.446567\pi\)
−0.770313 + 0.637666i \(0.779900\pi\)
\(762\) −32.5613 + 0.520243i −1.17957 + 0.0188464i
\(763\) −1.93345 7.19746i −0.0699956 0.260566i
\(764\) −22.3913 12.9276i −0.810087 0.467704i
\(765\) 0.354035 + 11.0765i 0.0128002 + 0.400471i
\(766\) 0.920885 + 0.531673i 0.0332729 + 0.0192101i
\(767\) 7.02782 34.6619i 0.253760 1.25157i
\(768\) −0.889878 1.48597i −0.0321107 0.0536205i
\(769\) 19.1381 33.1482i 0.690139 1.19536i −0.281653 0.959516i \(-0.590883\pi\)
0.971792 0.235840i \(-0.0757840\pi\)
\(770\) −4.67162 17.3906i −0.168353 0.626712i
\(771\) −15.9731 26.6728i −0.575256 0.960598i
\(772\) 18.8878 10.9049i 0.679787 0.392475i
\(773\) 2.52422i 0.0907898i −0.998969 0.0453949i \(-0.985545\pi\)
0.998969 0.0453949i \(-0.0144546\pi\)
\(774\) −20.1257 +