Properties

Label 546.2.bi.f.17.4
Level $546$
Weight $2$
Character 546.17
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bi (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.4
Character \(\chi\) \(=\) 546.17
Dual form 546.2.bi.f.257.4

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-1.23948 + 1.20983i) q^{3} +1.00000 q^{4} +(1.58996 - 0.917964i) q^{5} +(-1.23948 + 1.20983i) q^{6} +(-0.364289 - 2.62055i) q^{7} +1.00000 q^{8} +(0.0726040 - 2.99912i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(-1.23948 + 1.20983i) q^{3} +1.00000 q^{4} +(1.58996 - 0.917964i) q^{5} +(-1.23948 + 1.20983i) q^{6} +(-0.364289 - 2.62055i) q^{7} +1.00000 q^{8} +(0.0726040 - 2.99912i) q^{9} +(1.58996 - 0.917964i) q^{10} +(-1.69625 - 2.93798i) q^{11} +(-1.23948 + 1.20983i) q^{12} +(3.07128 - 1.88872i) q^{13} +(-0.364289 - 2.62055i) q^{14} +(-0.860135 + 3.06138i) q^{15} +1.00000 q^{16} +3.18506 q^{17} +(0.0726040 - 2.99912i) q^{18} +(-1.01582 + 1.75945i) q^{19} +(1.58996 - 0.917964i) q^{20} +(3.62196 + 2.80738i) q^{21} +(-1.69625 - 2.93798i) q^{22} -2.47560i q^{23} +(-1.23948 + 1.20983i) q^{24} +(-0.814684 + 1.41107i) q^{25} +(3.07128 - 1.88872i) q^{26} +(3.53845 + 3.80518i) q^{27} +(-0.364289 - 2.62055i) q^{28} +(1.81857 + 1.04995i) q^{29} +(-0.860135 + 3.06138i) q^{30} +(-3.14345 + 5.44461i) q^{31} +1.00000 q^{32} +(5.65693 + 1.58939i) q^{33} +3.18506 q^{34} +(-2.98478 - 3.83217i) q^{35} +(0.0726040 - 2.99912i) q^{36} -0.503913i q^{37} +(-1.01582 + 1.75945i) q^{38} +(-1.52175 + 6.05676i) q^{39} +(1.58996 - 0.917964i) q^{40} +(4.35184 + 2.51254i) q^{41} +(3.62196 + 2.80738i) q^{42} +(0.528972 + 0.916206i) q^{43} +(-1.69625 - 2.93798i) q^{44} +(-2.63765 - 4.83513i) q^{45} -2.47560i q^{46} +(10.0977 - 5.82991i) q^{47} +(-1.23948 + 1.20983i) q^{48} +(-6.73459 + 1.90927i) q^{49} +(-0.814684 + 1.41107i) q^{50} +(-3.94781 + 3.85339i) q^{51} +(3.07128 - 1.88872i) q^{52} +(-5.81668 - 3.35826i) q^{53} +(3.53845 + 3.80518i) q^{54} +(-5.39393 - 3.11418i) q^{55} +(-0.364289 - 2.62055i) q^{56} +(-0.869560 - 3.40977i) q^{57} +(1.81857 + 1.04995i) q^{58} -6.20893i q^{59} +(-0.860135 + 3.06138i) q^{60} +(10.1157 + 5.84028i) q^{61} +(-3.14345 + 5.44461i) q^{62} +(-7.88580 + 0.902283i) q^{63} +1.00000 q^{64} +(3.14944 - 5.82231i) q^{65} +(5.65693 + 1.58939i) q^{66} +(-8.59785 + 4.96397i) q^{67} +3.18506 q^{68} +(2.99507 + 3.06845i) q^{69} +(-2.98478 - 3.83217i) q^{70} +(-7.77030 - 13.4586i) q^{71} +(0.0726040 - 2.99912i) q^{72} +(-4.47574 + 7.75221i) q^{73} -0.503913i q^{74} +(-0.697383 - 2.73462i) q^{75} +(-1.01582 + 1.75945i) q^{76} +(-7.08122 + 5.51537i) q^{77} +(-1.52175 + 6.05676i) q^{78} +(3.92399 + 6.79656i) q^{79} +(1.58996 - 0.917964i) q^{80} +(-8.98946 - 0.435496i) q^{81} +(4.35184 + 2.51254i) q^{82} +13.0790i q^{83} +(3.62196 + 2.80738i) q^{84} +(5.06412 - 2.92377i) q^{85} +(0.528972 + 0.916206i) q^{86} +(-3.52435 + 0.898778i) q^{87} +(-1.69625 - 2.93798i) q^{88} -5.33363i q^{89} +(-2.63765 - 4.83513i) q^{90} +(-6.06831 - 7.36041i) q^{91} -2.47560i q^{92} +(-2.69085 - 10.5515i) q^{93} +(10.0977 - 5.82991i) q^{94} +3.72995i q^{95} +(-1.23948 + 1.20983i) q^{96} +(-4.79907 - 8.31223i) q^{97} +(-6.73459 + 1.90927i) q^{98} +(-8.93452 + 4.87394i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + O(q^{10}) \) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + 9q^{10} + 9q^{11} + 6q^{12} + 8q^{13} + 4q^{14} - 17q^{15} + 34q^{16} + 12q^{17} + 4q^{18} - 5q^{19} + 9q^{20} - 7q^{21} + 9q^{22} + 6q^{24} + 16q^{25} + 8q^{26} - 18q^{27} + 4q^{28} + 27q^{29} - 17q^{30} - q^{31} + 34q^{32} + 12q^{34} - 3q^{35} + 4q^{36} - 5q^{38} - 10q^{39} + 9q^{40} - 3q^{41} - 7q^{42} - 3q^{43} + 9q^{44} + 9q^{45} - 27q^{47} + 6q^{48} - 2q^{49} + 16q^{50} - 36q^{51} + 8q^{52} - 21q^{53} - 18q^{54} - 57q^{55} + 4q^{56} - 17q^{57} + 27q^{58} - 17q^{60} - 51q^{61} - q^{62} - 24q^{63} + 34q^{64} - 21q^{65} - 21q^{67} + 12q^{68} + 30q^{69} - 3q^{70} - 15q^{71} + 4q^{72} - 19q^{73} - 54q^{75} - 5q^{76} + 9q^{77} - 10q^{78} - 9q^{79} + 9q^{80} + 28q^{81} - 3q^{82} - 7q^{84} - 42q^{85} - 3q^{86} - 81q^{87} + 9q^{88} + 9q^{90} - 72q^{91} - 17q^{93} - 27q^{94} + 6q^{96} + 19q^{97} - 2q^{98} - 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.23948 + 1.20983i −0.715612 + 0.698498i
\(4\) 1.00000 0.500000
\(5\) 1.58996 0.917964i 0.711052 0.410526i −0.100398 0.994947i \(-0.532012\pi\)
0.811450 + 0.584421i \(0.198678\pi\)
\(6\) −1.23948 + 1.20983i −0.506014 + 0.493913i
\(7\) −0.364289 2.62055i −0.137688 0.990476i
\(8\) 1.00000 0.353553
\(9\) 0.0726040 2.99912i 0.0242013 0.999707i
\(10\) 1.58996 0.917964i 0.502790 0.290286i
\(11\) −1.69625 2.93798i −0.511437 0.885835i −0.999912 0.0132573i \(-0.995780\pi\)
0.488475 0.872578i \(-0.337553\pi\)
\(12\) −1.23948 + 1.20983i −0.357806 + 0.349249i
\(13\) 3.07128 1.88872i 0.851820 0.523835i
\(14\) −0.364289 2.62055i −0.0973602 0.700372i
\(15\) −0.860135 + 3.06138i −0.222086 + 0.790446i
\(16\) 1.00000 0.250000
\(17\) 3.18506 0.772490 0.386245 0.922396i \(-0.373772\pi\)
0.386245 + 0.922396i \(0.373772\pi\)
\(18\) 0.0726040 2.99912i 0.0171129 0.706900i
\(19\) −1.01582 + 1.75945i −0.233045 + 0.403646i −0.958703 0.284410i \(-0.908202\pi\)
0.725658 + 0.688056i \(0.241536\pi\)
\(20\) 1.58996 0.917964i 0.355526 0.205263i
\(21\) 3.62196 + 2.80738i 0.790376 + 0.612621i
\(22\) −1.69625 2.93798i −0.361641 0.626380i
\(23\) 2.47560i 0.516199i −0.966118 0.258099i \(-0.916904\pi\)
0.966118 0.258099i \(-0.0830962\pi\)
\(24\) −1.23948 + 1.20983i −0.253007 + 0.246956i
\(25\) −0.814684 + 1.41107i −0.162937 + 0.282215i
\(26\) 3.07128 1.88872i 0.602327 0.370407i
\(27\) 3.53845 + 3.80518i 0.680975 + 0.732307i
\(28\) −0.364289 2.62055i −0.0688441 0.495238i
\(29\) 1.81857 + 1.04995i 0.337701 + 0.194971i 0.659255 0.751920i \(-0.270872\pi\)
−0.321554 + 0.946891i \(0.604205\pi\)
\(30\) −0.860135 + 3.06138i −0.157038 + 0.558930i
\(31\) −3.14345 + 5.44461i −0.564580 + 0.977881i 0.432509 + 0.901630i \(0.357629\pi\)
−0.997089 + 0.0762515i \(0.975705\pi\)
\(32\) 1.00000 0.176777
\(33\) 5.65693 + 1.58939i 0.984745 + 0.276677i
\(34\) 3.18506 0.546233
\(35\) −2.98478 3.83217i −0.504519 0.647755i
\(36\) 0.0726040 2.99912i 0.0121007 0.499854i
\(37\) 0.503913i 0.0828428i −0.999142 0.0414214i \(-0.986811\pi\)
0.999142 0.0414214i \(-0.0131886\pi\)
\(38\) −1.01582 + 1.75945i −0.164788 + 0.285421i
\(39\) −1.52175 + 6.05676i −0.243675 + 0.969857i
\(40\) 1.58996 0.917964i 0.251395 0.145143i
\(41\) 4.35184 + 2.51254i 0.679643 + 0.392392i 0.799721 0.600372i \(-0.204981\pi\)
−0.120077 + 0.992765i \(0.538314\pi\)
\(42\) 3.62196 + 2.80738i 0.558881 + 0.433189i
\(43\) 0.528972 + 0.916206i 0.0806674 + 0.139720i 0.903537 0.428511i \(-0.140962\pi\)
−0.822869 + 0.568231i \(0.807628\pi\)
\(44\) −1.69625 2.93798i −0.255719 0.442918i
\(45\) −2.63765 4.83513i −0.393197 0.720779i
\(46\) 2.47560i 0.365008i
\(47\) 10.0977 5.82991i 1.47290 0.850380i 0.473367 0.880865i \(-0.343038\pi\)
0.999535 + 0.0304848i \(0.00970512\pi\)
\(48\) −1.23948 + 1.20983i −0.178903 + 0.174624i
\(49\) −6.73459 + 1.90927i −0.962084 + 0.272754i
\(50\) −0.814684 + 1.41107i −0.115214 + 0.199556i
\(51\) −3.94781 + 3.85339i −0.552803 + 0.539583i
\(52\) 3.07128 1.88872i 0.425910 0.261918i
\(53\) −5.81668 3.35826i −0.798983 0.461293i 0.0441326 0.999026i \(-0.485948\pi\)
−0.843115 + 0.537733i \(0.819281\pi\)
\(54\) 3.53845 + 3.80518i 0.481522 + 0.517819i
\(55\) −5.39393 3.11418i −0.727317 0.419917i
\(56\) −0.364289 2.62055i −0.0486801 0.350186i
\(57\) −0.869560 3.40977i −0.115176 0.451636i
\(58\) 1.81857 + 1.04995i 0.238790 + 0.137866i
\(59\) 6.20893i 0.808333i −0.914685 0.404167i \(-0.867562\pi\)
0.914685 0.404167i \(-0.132438\pi\)
\(60\) −0.860135 + 3.06138i −0.111043 + 0.395223i
\(61\) 10.1157 + 5.84028i 1.29518 + 0.747771i 0.979567 0.201118i \(-0.0644575\pi\)
0.315610 + 0.948889i \(0.397791\pi\)
\(62\) −3.14345 + 5.44461i −0.399218 + 0.691467i
\(63\) −7.88580 + 0.902283i −0.993518 + 0.113677i
\(64\) 1.00000 0.125000
\(65\) 3.14944 5.82231i 0.390640 0.722168i
\(66\) 5.65693 + 1.58939i 0.696320 + 0.195640i
\(67\) −8.59785 + 4.96397i −1.05039 + 0.606445i −0.922760 0.385376i \(-0.874072\pi\)
−0.127634 + 0.991821i \(0.540738\pi\)
\(68\) 3.18506 0.386245
\(69\) 2.99507 + 3.06845i 0.360564 + 0.369398i
\(70\) −2.98478 3.83217i −0.356749 0.458032i
\(71\) −7.77030 13.4586i −0.922165 1.59724i −0.796058 0.605221i \(-0.793085\pi\)
−0.126108 0.992017i \(-0.540248\pi\)
\(72\) 0.0726040 2.99912i 0.00855646 0.353450i
\(73\) −4.47574 + 7.75221i −0.523846 + 0.907327i 0.475769 + 0.879570i \(0.342170\pi\)
−0.999615 + 0.0277570i \(0.991164\pi\)
\(74\) 0.503913i 0.0585787i
\(75\) −0.697383 2.73462i −0.0805269 0.315767i
\(76\) −1.01582 + 1.75945i −0.116523 + 0.201823i
\(77\) −7.08122 + 5.51537i −0.806979 + 0.628535i
\(78\) −1.52175 + 6.05676i −0.172304 + 0.685793i
\(79\) 3.92399 + 6.79656i 0.441484 + 0.764672i 0.997800 0.0662985i \(-0.0211189\pi\)
−0.556316 + 0.830971i \(0.687786\pi\)
\(80\) 1.58996 0.917964i 0.177763 0.102632i
\(81\) −8.98946 0.435496i −0.998829 0.0483885i
\(82\) 4.35184 + 2.51254i 0.480580 + 0.277463i
\(83\) 13.0790i 1.43561i 0.696246 + 0.717803i \(0.254852\pi\)
−0.696246 + 0.717803i \(0.745148\pi\)
\(84\) 3.62196 + 2.80738i 0.395188 + 0.306311i
\(85\) 5.06412 2.92377i 0.549281 0.317127i
\(86\) 0.528972 + 0.916206i 0.0570405 + 0.0987970i
\(87\) −3.52435 + 0.898778i −0.377850 + 0.0963592i
\(88\) −1.69625 2.93798i −0.180820 0.313190i
\(89\) 5.33363i 0.565364i −0.959214 0.282682i \(-0.908776\pi\)
0.959214 0.282682i \(-0.0912240\pi\)
\(90\) −2.63765 4.83513i −0.278033 0.509668i
\(91\) −6.06831 7.36041i −0.636132 0.771581i
\(92\) 2.47560i 0.258099i
\(93\) −2.69085 10.5515i −0.279028 1.09414i
\(94\) 10.0977 5.82991i 1.04150 0.601310i
\(95\) 3.72995i 0.382684i
\(96\) −1.23948 + 1.20983i −0.126504 + 0.123478i
\(97\) −4.79907 8.31223i −0.487272 0.843979i 0.512621 0.858615i \(-0.328674\pi\)
−0.999893 + 0.0146357i \(0.995341\pi\)
\(98\) −6.73459 + 1.90927i −0.680296 + 0.192866i
\(99\) −8.93452 + 4.87394i −0.897953 + 0.489849i
\(100\) −0.814684 + 1.41107i −0.0814684 + 0.141107i
\(101\) 4.69535 + 8.13258i 0.467204 + 0.809222i 0.999298 0.0374637i \(-0.0119279\pi\)
−0.532094 + 0.846686i \(0.678595\pi\)
\(102\) −3.94781 + 3.85339i −0.390891 + 0.381543i
\(103\) −11.5646 + 6.67680i −1.13949 + 0.657884i −0.946304 0.323278i \(-0.895215\pi\)
−0.193185 + 0.981162i \(0.561882\pi\)
\(104\) 3.07128 1.88872i 0.301164 0.185204i
\(105\) 8.33585 + 1.13880i 0.813496 + 0.111136i
\(106\) −5.81668 3.35826i −0.564966 0.326183i
\(107\) 13.3709i 1.29262i 0.763076 + 0.646309i \(0.223688\pi\)
−0.763076 + 0.646309i \(0.776312\pi\)
\(108\) 3.53845 + 3.80518i 0.340487 + 0.366154i
\(109\) 3.82963 + 2.21104i 0.366812 + 0.211779i 0.672065 0.740492i \(-0.265408\pi\)
−0.305253 + 0.952271i \(0.598741\pi\)
\(110\) −5.39393 3.11418i −0.514291 0.296926i
\(111\) 0.609651 + 0.624589i 0.0578655 + 0.0592833i
\(112\) −0.364289 2.62055i −0.0344220 0.247619i
\(113\) −13.8390 + 7.98994i −1.30186 + 0.751631i −0.980723 0.195402i \(-0.937399\pi\)
−0.321139 + 0.947032i \(0.604066\pi\)
\(114\) −0.869560 3.40977i −0.0814417 0.319355i
\(115\) −2.27251 3.93611i −0.211913 0.367044i
\(116\) 1.81857 + 1.04995i 0.168850 + 0.0974857i
\(117\) −5.44150 9.34827i −0.503067 0.864248i
\(118\) 6.20893i 0.571578i
\(119\) −1.16028 8.34661i −0.106363 0.765133i
\(120\) −0.860135 + 3.06138i −0.0785192 + 0.279465i
\(121\) −0.254496 + 0.440801i −0.0231360 + 0.0400728i
\(122\) 10.1157 + 5.84028i 0.915829 + 0.528754i
\(123\) −8.43375 + 2.15077i −0.760446 + 0.193929i
\(124\) −3.14345 + 5.44461i −0.282290 + 0.488941i
\(125\) 12.1710i 1.08861i
\(126\) −7.88580 + 0.902283i −0.702523 + 0.0803818i
\(127\) −0.475986 + 0.824432i −0.0422370 + 0.0731566i −0.886371 0.462976i \(-0.846782\pi\)
0.844134 + 0.536132i \(0.180115\pi\)
\(128\) 1.00000 0.0883883
\(129\) −1.76410 0.495648i −0.155321 0.0436393i
\(130\) 3.14944 5.82231i 0.276224 0.510650i
\(131\) −4.95760 8.58681i −0.433147 0.750233i 0.563995 0.825778i \(-0.309264\pi\)
−0.997142 + 0.0755449i \(0.975930\pi\)
\(132\) 5.65693 + 1.58939i 0.492372 + 0.138338i
\(133\) 4.98079 + 2.02106i 0.431889 + 0.175248i
\(134\) −8.59785 + 4.96397i −0.742741 + 0.428822i
\(135\) 9.11901 + 2.80192i 0.784839 + 0.241151i
\(136\) 3.18506 0.273117
\(137\) 3.18307 0.271948 0.135974 0.990712i \(-0.456584\pi\)
0.135974 + 0.990712i \(0.456584\pi\)
\(138\) 2.99507 + 3.06845i 0.254957 + 0.261204i
\(139\) 0.0981681 0.0566774i 0.00832651 0.00480731i −0.495831 0.868419i \(-0.665136\pi\)
0.504157 + 0.863612i \(0.331803\pi\)
\(140\) −2.98478 3.83217i −0.252260 0.323878i
\(141\) −5.46264 + 19.4426i −0.460038 + 1.63736i
\(142\) −7.77030 13.4586i −0.652069 1.12942i
\(143\) −10.7587 5.81964i −0.899684 0.486663i
\(144\) 0.0726040 2.99912i 0.00605033 0.249927i
\(145\) 3.85528 0.320164
\(146\) −4.47574 + 7.75221i −0.370415 + 0.641577i
\(147\) 6.03746 10.5142i 0.497961 0.867199i
\(148\) 0.503913i 0.0414214i
\(149\) 10.8563 18.8036i 0.889382 1.54045i 0.0487739 0.998810i \(-0.484469\pi\)
0.840608 0.541644i \(-0.182198\pi\)
\(150\) −0.697383 2.73462i −0.0569411 0.223281i
\(151\) −4.69698 2.71180i −0.382235 0.220684i 0.296555 0.955016i \(-0.404162\pi\)
−0.678790 + 0.734332i \(0.737495\pi\)
\(152\) −1.01582 + 1.75945i −0.0823939 + 0.142710i
\(153\) 0.231248 9.55238i 0.0186953 0.772264i
\(154\) −7.08122 + 5.51537i −0.570621 + 0.444441i
\(155\) 11.5423i 0.927099i
\(156\) −1.52175 + 6.05676i −0.121837 + 0.484929i
\(157\) 18.4221 + 10.6360i 1.47025 + 0.848848i 0.999442 0.0333895i \(-0.0106302\pi\)
0.470805 + 0.882237i \(0.343964\pi\)
\(158\) 3.92399 + 6.79656i 0.312176 + 0.540705i
\(159\) 11.2726 2.87473i 0.893974 0.227981i
\(160\) 1.58996 0.917964i 0.125697 0.0725714i
\(161\) −6.48744 + 0.901834i −0.511282 + 0.0710744i
\(162\) −8.98946 0.435496i −0.706278 0.0342158i
\(163\) 8.67648 + 5.00937i 0.679594 + 0.392364i 0.799702 0.600397i \(-0.204991\pi\)
−0.120108 + 0.992761i \(0.538324\pi\)
\(164\) 4.35184 + 2.51254i 0.339822 + 0.196196i
\(165\) 10.4533 2.66580i 0.813788 0.207532i
\(166\) 13.0790i 1.01513i
\(167\) 3.11618 + 1.79913i 0.241137 + 0.139221i 0.615699 0.787981i \(-0.288874\pi\)
−0.374562 + 0.927202i \(0.622207\pi\)
\(168\) 3.62196 + 2.80738i 0.279440 + 0.216594i
\(169\) 5.86551 11.6015i 0.451193 0.892426i
\(170\) 5.06412 2.92377i 0.388400 0.224243i
\(171\) 5.20306 + 3.17431i 0.397888 + 0.242746i
\(172\) 0.528972 + 0.916206i 0.0403337 + 0.0698600i
\(173\) −0.476807 + 0.825853i −0.0362509 + 0.0627885i −0.883582 0.468277i \(-0.844875\pi\)
0.847331 + 0.531066i \(0.178208\pi\)
\(174\) −3.52435 + 0.898778i −0.267180 + 0.0681362i
\(175\) 3.99457 + 1.62088i 0.301961 + 0.122527i
\(176\) −1.69625 2.93798i −0.127859 0.221459i
\(177\) 7.51177 + 7.69582i 0.564619 + 0.578453i
\(178\) 5.33363i 0.399772i
\(179\) 15.3789 8.87903i 1.14948 0.663650i 0.200716 0.979649i \(-0.435673\pi\)
0.948759 + 0.316000i \(0.102340\pi\)
\(180\) −2.63765 4.83513i −0.196599 0.360389i
\(181\) 5.51564i 0.409975i 0.978765 + 0.204987i \(0.0657153\pi\)
−0.978765 + 0.204987i \(0.934285\pi\)
\(182\) −6.06831 7.36041i −0.449813 0.545590i
\(183\) −19.6039 + 4.99938i −1.44916 + 0.369565i
\(184\) 2.47560i 0.182504i
\(185\) −0.462574 0.801202i −0.0340091 0.0589056i
\(186\) −2.69085 10.5515i −0.197302 0.773675i
\(187\) −5.40264 9.35765i −0.395080 0.684299i
\(188\) 10.0977 5.82991i 0.736451 0.425190i
\(189\) 8.68265 10.6589i 0.631570 0.775319i
\(190\) 3.72995i 0.270599i
\(191\) 17.4751 + 10.0893i 1.26446 + 0.730034i 0.973933 0.226834i \(-0.0728374\pi\)
0.290523 + 0.956868i \(0.406171\pi\)
\(192\) −1.23948 + 1.20983i −0.0894515 + 0.0873122i
\(193\) 3.93413 2.27137i 0.283185 0.163497i −0.351679 0.936121i \(-0.614389\pi\)
0.634864 + 0.772624i \(0.281056\pi\)
\(194\) −4.79907 8.31223i −0.344553 0.596783i
\(195\) 3.14037 + 11.0269i 0.224886 + 0.789654i
\(196\) −6.73459 + 1.90927i −0.481042 + 0.136377i
\(197\) 5.74363 9.94826i 0.409217 0.708784i −0.585585 0.810611i \(-0.699135\pi\)
0.994802 + 0.101826i \(0.0324687\pi\)
\(198\) −8.93452 + 4.87394i −0.634949 + 0.346376i
\(199\) 6.86468i 0.486624i 0.969948 + 0.243312i \(0.0782339\pi\)
−0.969948 + 0.243312i \(0.921766\pi\)
\(200\) −0.814684 + 1.41107i −0.0576068 + 0.0997780i
\(201\) 4.65125 16.5547i 0.328074 1.16768i
\(202\) 4.69535 + 8.13258i 0.330363 + 0.572206i
\(203\) 2.08897 5.14815i 0.146617 0.361329i
\(204\) −3.94781 + 3.85339i −0.276402 + 0.269791i
\(205\) 9.22567 0.644349
\(206\) −11.5646 + 6.67680i −0.805741 + 0.465195i
\(207\) −7.42463 0.179738i −0.516047 0.0124927i
\(208\) 3.07128 1.88872i 0.212955 0.130959i
\(209\) 6.89232 0.476752
\(210\) 8.33585 + 1.13880i 0.575228 + 0.0785847i
\(211\) −2.63957 + 4.57187i −0.181715 + 0.314740i −0.942465 0.334305i \(-0.891498\pi\)
0.760749 + 0.649046i \(0.224832\pi\)
\(212\) −5.81668 3.35826i −0.399491 0.230646i
\(213\) 25.9137 + 7.28079i 1.77558 + 0.498872i
\(214\) 13.3709i 0.914019i
\(215\) 1.68209 + 0.971154i 0.114717 + 0.0662321i
\(216\) 3.53845 + 3.80518i 0.240761 + 0.258910i
\(217\) 15.4130 + 6.25416i 1.04630 + 0.424560i
\(218\) 3.82963 + 2.21104i 0.259375 + 0.149750i
\(219\) −3.83131 15.0236i −0.258896 1.01520i
\(220\) −5.39393 3.11418i −0.363658 0.209958i
\(221\) 9.78221 6.01567i 0.658022 0.404658i
\(222\) 0.609651 + 0.624589i 0.0409171 + 0.0419196i
\(223\) −14.2982 + 24.7653i −0.957481 + 1.65841i −0.228896 + 0.973451i \(0.573512\pi\)
−0.728585 + 0.684955i \(0.759822\pi\)
\(224\) −0.364289 2.62055i −0.0243401 0.175093i
\(225\) 4.17283 + 2.54578i 0.278189 + 0.169719i
\(226\) −13.8390 + 7.98994i −0.920556 + 0.531483i
\(227\) 6.00983i 0.398886i 0.979909 + 0.199443i \(0.0639133\pi\)
−0.979909 + 0.199443i \(0.936087\pi\)
\(228\) −0.869560 3.40977i −0.0575880 0.225818i
\(229\) −7.02836 12.1735i −0.464447 0.804446i 0.534729 0.845023i \(-0.320414\pi\)
−0.999176 + 0.0405773i \(0.987080\pi\)
\(230\) −2.27251 3.93611i −0.149845 0.259539i
\(231\) 2.10431 15.4033i 0.138454 1.01346i
\(232\) 1.81857 + 1.04995i 0.119395 + 0.0689328i
\(233\) −24.0450 + 13.8824i −1.57524 + 0.909465i −0.579729 + 0.814809i \(0.696842\pi\)
−0.995510 + 0.0946555i \(0.969825\pi\)
\(234\) −5.44150 9.34827i −0.355722 0.611115i
\(235\) 10.7033 18.5387i 0.698207 1.20933i
\(236\) 6.20893i 0.404167i
\(237\) −13.0864 3.67679i −0.850053 0.238833i
\(238\) −1.16028 8.34661i −0.0752098 0.541031i
\(239\) 5.31347 0.343700 0.171850 0.985123i \(-0.445026\pi\)
0.171850 + 0.985123i \(0.445026\pi\)
\(240\) −0.860135 + 3.06138i −0.0555214 + 0.197611i
\(241\) −19.2577 −1.24050 −0.620249 0.784405i \(-0.712968\pi\)
−0.620249 + 0.784405i \(0.712968\pi\)
\(242\) −0.254496 + 0.440801i −0.0163596 + 0.0283357i
\(243\) 11.6691 10.3360i 0.748573 0.663052i
\(244\) 10.1157 + 5.84028i 0.647589 + 0.373885i
\(245\) −8.95508 + 9.21778i −0.572119 + 0.588902i
\(246\) −8.43375 + 2.15077i −0.537716 + 0.137128i
\(247\) 0.203236 + 7.32236i 0.0129316 + 0.465911i
\(248\) −3.14345 + 5.44461i −0.199609 + 0.345733i
\(249\) −15.8234 16.2111i −1.00277 1.02734i
\(250\) 12.1710i 0.769764i
\(251\) −4.75595 8.23755i −0.300193 0.519950i 0.675986 0.736914i \(-0.263718\pi\)
−0.976180 + 0.216964i \(0.930384\pi\)
\(252\) −7.88580 + 0.902283i −0.496759 + 0.0568385i
\(253\) −7.27328 + 4.19923i −0.457267 + 0.264003i
\(254\) −0.475986 + 0.824432i −0.0298660 + 0.0517295i
\(255\) −2.73958 + 9.75069i −0.171559 + 0.610612i
\(256\) 1.00000 0.0625000
\(257\) −5.26373 −0.328343 −0.164171 0.986432i \(-0.552495\pi\)
−0.164171 + 0.986432i \(0.552495\pi\)
\(258\) −1.76410 0.495648i −0.109828 0.0308577i
\(259\) −1.32053 + 0.183570i −0.0820538 + 0.0114065i
\(260\) 3.14944 5.82231i 0.195320 0.361084i
\(261\) 3.28097 5.37789i 0.203087 0.332883i
\(262\) −4.95760 8.58681i −0.306281 0.530495i
\(263\) 9.39641 5.42502i 0.579408 0.334521i −0.181490 0.983393i \(-0.558092\pi\)
0.760898 + 0.648872i \(0.224759\pi\)
\(264\) 5.65693 + 1.58939i 0.348160 + 0.0978199i
\(265\) −12.3311 −0.757491
\(266\) 4.98079 + 2.02106i 0.305392 + 0.123919i
\(267\) 6.45280 + 6.61091i 0.394905 + 0.404581i
\(268\) −8.59785 + 4.96397i −0.525197 + 0.303223i
\(269\) −18.1117 −1.10429 −0.552146 0.833747i \(-0.686191\pi\)
−0.552146 + 0.833747i \(0.686191\pi\)
\(270\) 9.11901 + 2.80192i 0.554965 + 0.170519i
\(271\) 8.67329 0.526865 0.263432 0.964678i \(-0.415145\pi\)
0.263432 + 0.964678i \(0.415145\pi\)
\(272\) 3.18506 0.193123
\(273\) 16.4264 + 1.78141i 0.994171 + 0.107816i
\(274\) 3.18307 0.192296
\(275\) 5.52761 0.333328
\(276\) 2.99507 + 3.06845i 0.180282 + 0.184699i
\(277\) −18.2835 −1.09855 −0.549275 0.835642i \(-0.685096\pi\)
−0.549275 + 0.835642i \(0.685096\pi\)
\(278\) 0.0981681 0.0566774i 0.00588773 0.00339928i
\(279\) 16.1008 + 9.82288i 0.963931 + 0.588081i
\(280\) −2.98478 3.83217i −0.178375 0.229016i
\(281\) −2.73779 −0.163323 −0.0816614 0.996660i \(-0.526023\pi\)
−0.0816614 + 0.996660i \(0.526023\pi\)
\(282\) −5.46264 + 19.4426i −0.325296 + 1.15779i
\(283\) 4.60044 2.65607i 0.273468 0.157887i −0.356995 0.934106i \(-0.616199\pi\)
0.630463 + 0.776220i \(0.282865\pi\)
\(284\) −7.77030 13.4586i −0.461083 0.798619i
\(285\) −4.51262 4.62318i −0.267304 0.273854i
\(286\) −10.7587 5.81964i −0.636173 0.344123i
\(287\) 4.99890 12.3195i 0.295076 0.727198i
\(288\) 0.0726040 2.99912i 0.00427823 0.176725i
\(289\) −6.85540 −0.403259
\(290\) 3.85528 0.226390
\(291\) 16.0047 + 4.49674i 0.938215 + 0.263603i
\(292\) −4.47574 + 7.75221i −0.261923 + 0.453664i
\(293\) −2.86877 + 1.65628i −0.167595 + 0.0967612i −0.581451 0.813581i \(-0.697515\pi\)
0.413856 + 0.910342i \(0.364182\pi\)
\(294\) 6.03746 10.5142i 0.352112 0.613203i
\(295\) −5.69957 9.87195i −0.331842 0.574767i
\(296\) 0.503913i 0.0292894i
\(297\) 5.17748 16.8504i 0.300428 0.977760i
\(298\) 10.8563 18.8036i 0.628888 1.08927i
\(299\) −4.67571 7.60326i −0.270403 0.439708i
\(300\) −0.697383 2.73462i −0.0402634 0.157884i
\(301\) 2.20827 1.71996i 0.127282 0.0991369i
\(302\) −4.69698 2.71180i −0.270281 0.156047i
\(303\) −15.6588 4.39955i −0.899577 0.252748i
\(304\) −1.01582 + 1.75945i −0.0582613 + 0.100912i
\(305\) 21.4447 1.22792
\(306\) 0.231248 9.55238i 0.0132196 0.546073i
\(307\) 23.8813 1.36298 0.681490 0.731827i \(-0.261332\pi\)
0.681490 + 0.731827i \(0.261332\pi\)
\(308\) −7.08122 + 5.51537i −0.403490 + 0.314268i
\(309\) 6.25617 22.2669i 0.355901 1.26672i
\(310\) 11.5423i 0.655558i
\(311\) −15.8352 + 27.4274i −0.897934 + 1.55527i −0.0678034 + 0.997699i \(0.521599\pi\)
−0.830131 + 0.557569i \(0.811734\pi\)
\(312\) −1.52175 + 6.05676i −0.0861520 + 0.342896i
\(313\) 12.5081 7.22158i 0.707002 0.408188i −0.102948 0.994687i \(-0.532828\pi\)
0.809950 + 0.586499i \(0.199494\pi\)
\(314\) 18.4221 + 10.6360i 1.03962 + 0.600226i
\(315\) −11.7099 + 8.67348i −0.659775 + 0.488695i
\(316\) 3.92399 + 6.79656i 0.220742 + 0.382336i
\(317\) 12.7938 + 22.1596i 0.718573 + 1.24461i 0.961565 + 0.274577i \(0.0885379\pi\)
−0.242992 + 0.970028i \(0.578129\pi\)
\(318\) 11.2726 2.87473i 0.632135 0.161207i
\(319\) 7.12392i 0.398863i
\(320\) 1.58996 0.917964i 0.0888815 0.0513158i
\(321\) −16.1766 16.5730i −0.902891 0.925013i
\(322\) −6.48744 + 0.901834i −0.361531 + 0.0502572i
\(323\) −3.23545 + 5.60396i −0.180025 + 0.311813i
\(324\) −8.98946 0.435496i −0.499414 0.0241942i
\(325\) 0.162995 + 5.87251i 0.00904132 + 0.325748i
\(326\) 8.67648 + 5.00937i 0.480546 + 0.277443i
\(327\) −7.42172 + 1.89269i −0.410422 + 0.104666i
\(328\) 4.35184 + 2.51254i 0.240290 + 0.138732i
\(329\) −18.9561 24.3378i −1.04508 1.34179i
\(330\) 10.4533 2.66580i 0.575435 0.146747i
\(331\) 7.25351 + 4.18782i 0.398689 + 0.230183i 0.685918 0.727679i \(-0.259401\pi\)
−0.287229 + 0.957862i \(0.592734\pi\)
\(332\) 13.0790i 0.717803i
\(333\) −1.51130 0.0365861i −0.0828186 0.00200491i
\(334\) 3.11618 + 1.79913i 0.170510 + 0.0984438i
\(335\) −9.11349 + 15.7850i −0.497923 + 0.862428i
\(336\) 3.62196 + 2.80738i 0.197594 + 0.153155i
\(337\) −9.14343 −0.498074 −0.249037 0.968494i \(-0.580114\pi\)
−0.249037 + 0.968494i \(0.580114\pi\)
\(338\) 5.86551 11.6015i 0.319042 0.631041i
\(339\) 7.48659 26.6462i 0.406616 1.44722i
\(340\) 5.06412 2.92377i 0.274640 0.158564i
\(341\) 21.3282 1.15499
\(342\) 5.20306 + 3.17431i 0.281349 + 0.171647i
\(343\) 7.45669 + 16.9528i 0.402623 + 0.915366i
\(344\) 0.528972 + 0.916206i 0.0285202 + 0.0493985i
\(345\) 7.57877 + 2.12935i 0.408027 + 0.114640i
\(346\) −0.476807 + 0.825853i −0.0256333 + 0.0443982i
\(347\) 31.0967i 1.66936i 0.550736 + 0.834679i \(0.314347\pi\)
−0.550736 + 0.834679i \(0.685653\pi\)
\(348\) −3.52435 + 0.898778i −0.188925 + 0.0481796i
\(349\) 14.0331 24.3060i 0.751175 1.30107i −0.196079 0.980588i \(-0.562821\pi\)
0.947254 0.320485i \(-0.103846\pi\)
\(350\) 3.99457 + 1.62088i 0.213519 + 0.0866398i
\(351\) 18.0545 + 5.00365i 0.963676 + 0.267075i
\(352\) −1.69625 2.93798i −0.0904102 0.156595i
\(353\) 24.5364 14.1661i 1.30594 0.753984i 0.324523 0.945878i \(-0.394796\pi\)
0.981416 + 0.191894i \(0.0614629\pi\)
\(354\) 7.51177 + 7.69582i 0.399246 + 0.409028i
\(355\) −24.7090 14.2657i −1.31142 0.757146i
\(356\) 5.33363i 0.282682i
\(357\) 11.5362 + 8.94169i 0.610558 + 0.473244i
\(358\) 15.3789 8.87903i 0.812802 0.469271i
\(359\) −10.8679 18.8238i −0.573588 0.993483i −0.996193 0.0871698i \(-0.972218\pi\)
0.422606 0.906314i \(-0.361116\pi\)
\(360\) −2.63765 4.83513i −0.139016 0.254834i
\(361\) 7.43622 + 12.8799i 0.391380 + 0.677890i
\(362\) 5.51564i 0.289896i
\(363\) −0.217853 0.854260i −0.0114343 0.0448370i
\(364\) −6.06831 7.36041i −0.318066 0.385790i
\(365\) 16.4343i 0.860209i
\(366\) −19.6039 + 4.99938i −1.02471 + 0.261322i
\(367\) 13.6561 7.88437i 0.712844 0.411561i −0.0992693 0.995061i \(-0.531651\pi\)
0.812113 + 0.583500i \(0.198317\pi\)
\(368\) 2.47560i 0.129050i
\(369\) 7.85136 12.8693i 0.408725 0.669948i
\(370\) −0.462574 0.801202i −0.0240481 0.0416525i
\(371\) −6.68155 + 16.4663i −0.346889 + 0.854887i
\(372\) −2.69085 10.5515i −0.139514 0.547071i
\(373\) 3.62253 6.27441i 0.187568 0.324877i −0.756871 0.653564i \(-0.773273\pi\)
0.944439 + 0.328687i \(0.106606\pi\)
\(374\) −5.40264 9.35765i −0.279364 0.483873i
\(375\) −14.7249 15.0857i −0.760393 0.779023i
\(376\) 10.0977 5.82991i 0.520750 0.300655i
\(377\) 7.56841 0.210065i 0.389793 0.0108189i
\(378\) 8.68265 10.6589i 0.446588 0.548233i
\(379\) 4.24213 + 2.44920i 0.217904 + 0.125807i 0.604979 0.796241i \(-0.293181\pi\)
−0.387076 + 0.922048i \(0.626515\pi\)
\(380\) 3.72995i 0.191342i
\(381\) −0.407452 1.59773i −0.0208744 0.0818541i
\(382\) 17.4751 + 10.0893i 0.894106 + 0.516212i
\(383\) −6.85462 3.95752i −0.350255 0.202220i 0.314543 0.949243i \(-0.398149\pi\)
−0.664797 + 0.747024i \(0.731482\pi\)
\(384\) −1.23948 + 1.20983i −0.0632518 + 0.0617391i
\(385\) −6.19594 + 15.2695i −0.315774 + 0.778207i
\(386\) 3.93413 2.27137i 0.200242 0.115610i
\(387\) 2.78622 1.51993i 0.141631 0.0772624i
\(388\) −4.79907 8.31223i −0.243636 0.421990i
\(389\) 2.27718 + 1.31473i 0.115458 + 0.0666595i 0.556617 0.830769i \(-0.312099\pi\)
−0.441159 + 0.897429i \(0.645433\pi\)
\(390\) 3.14037 + 11.0269i 0.159019 + 0.558369i
\(391\) 7.88494i 0.398758i
\(392\) −6.73459 + 1.90927i −0.340148 + 0.0964329i
\(393\) 16.5334 + 4.64528i 0.834002 + 0.234323i
\(394\) 5.74363 9.94826i 0.289360 0.501186i
\(395\) 12.4780 + 7.20417i 0.627836 + 0.362481i
\(396\) −8.93452 + 4.87394i −0.448977 + 0.244925i
\(397\) −16.5529 + 28.6705i −0.830766 + 1.43893i 0.0666658 + 0.997775i \(0.478764\pi\)
−0.897432 + 0.441153i \(0.854569\pi\)
\(398\) 6.86468i 0.344095i
\(399\) −8.61872 + 3.52087i −0.431476 + 0.176264i
\(400\) −0.814684 + 1.41107i −0.0407342 + 0.0705537i
\(401\) 6.99738 0.349433 0.174716 0.984619i \(-0.444099\pi\)
0.174716 + 0.984619i \(0.444099\pi\)
\(402\) 4.65125 16.5547i 0.231983 0.825673i
\(403\) 0.628914 + 22.6590i 0.0313284 + 1.12873i
\(404\) 4.69535 + 8.13258i 0.233602 + 0.404611i
\(405\) −14.6927 + 7.55958i −0.730084 + 0.375638i
\(406\) 2.08897 5.14815i 0.103674 0.255498i
\(407\) −1.48049 + 0.854760i −0.0733851 + 0.0423689i
\(408\) −3.94781 + 3.85339i −0.195446 + 0.190771i
\(409\) −31.8405 −1.57441 −0.787206 0.616691i \(-0.788473\pi\)
−0.787206 + 0.616691i \(0.788473\pi\)
\(410\) 9.22567 0.455623
\(411\) −3.94534 + 3.85099i −0.194609 + 0.189955i
\(412\) −11.5646 + 6.67680i −0.569745 + 0.328942i
\(413\) −16.2708 + 2.26184i −0.800634 + 0.111298i
\(414\) −7.42463 0.179738i −0.364901 0.00883366i
\(415\) 12.0061 + 20.7951i 0.589354 + 1.02079i
\(416\) 3.07128 1.88872i 0.150582 0.0926019i
\(417\) −0.0531068 + 0.189017i −0.00260065 + 0.00925622i
\(418\) 6.89232 0.337114
\(419\) 5.19733 9.00204i 0.253906 0.439778i −0.710692 0.703504i \(-0.751618\pi\)
0.964598 + 0.263725i \(0.0849512\pi\)
\(420\) 8.33585 + 1.13880i 0.406748 + 0.0555678i
\(421\) 0.111490i 0.00543368i −0.999996 0.00271684i \(-0.999135\pi\)
0.999996 0.00271684i \(-0.000864798\pi\)
\(422\) −2.63957 + 4.57187i −0.128492 + 0.222555i
\(423\) −16.7515 30.7075i −0.814485 1.49305i
\(424\) −5.81668 3.35826i −0.282483 0.163092i
\(425\) −2.59482 + 4.49435i −0.125867 + 0.218008i
\(426\) 25.9137 + 7.28079i 1.25552 + 0.352756i
\(427\) 11.6197 28.6362i 0.562318 1.38580i
\(428\) 13.3709i 0.646309i
\(429\) 20.3759 5.80288i 0.983758 0.280166i
\(430\) 1.68209 + 0.971154i 0.0811175 + 0.0468332i
\(431\) 19.3138 + 33.4525i 0.930313 + 1.61135i 0.782786 + 0.622291i \(0.213798\pi\)
0.147527 + 0.989058i \(0.452869\pi\)
\(432\) 3.53845 + 3.80518i 0.170244 + 0.183077i
\(433\) −5.30602 + 3.06343i −0.254991 + 0.147219i −0.622047 0.782980i \(-0.713699\pi\)
0.367056 + 0.930199i \(0.380366\pi\)
\(434\) 15.4130 + 6.25416i 0.739848 + 0.300209i
\(435\) −4.77853 + 4.66425i −0.229113 + 0.223634i
\(436\) 3.82963 + 2.21104i 0.183406 + 0.105890i
\(437\) 4.35570 + 2.51477i 0.208362 + 0.120298i
\(438\) −3.83131 15.0236i −0.183067 0.717854i
\(439\) 34.9618i 1.66864i −0.551284 0.834318i \(-0.685862\pi\)
0.551284 0.834318i \(-0.314138\pi\)
\(440\) −5.39393 3.11418i −0.257145 0.148463i
\(441\) 5.23719 + 20.3365i 0.249390 + 0.968403i
\(442\) 9.78221 6.01567i 0.465292 0.286136i
\(443\) 7.76750 4.48457i 0.369045 0.213068i −0.303996 0.952673i \(-0.598321\pi\)
0.673041 + 0.739605i \(0.264988\pi\)
\(444\) 0.609651 + 0.624589i 0.0289328 + 0.0296417i
\(445\) −4.89608 8.48026i −0.232096 0.402003i
\(446\) −14.2982 + 24.7653i −0.677042 + 1.17267i
\(447\) 9.29317 + 36.4410i 0.439552 + 1.72360i
\(448\) −0.364289 2.62055i −0.0172110 0.123809i
\(449\) −9.32220 16.1465i −0.439942 0.762002i 0.557742 0.830014i \(-0.311668\pi\)
−0.997684 + 0.0680121i \(0.978334\pi\)
\(450\) 4.17283 + 2.54578i 0.196709 + 0.120009i
\(451\) 17.0475i 0.802736i
\(452\) −13.8390 + 7.98994i −0.650931 + 0.375815i
\(453\) 9.10263 2.32135i 0.427679 0.109067i
\(454\) 6.00983i 0.282055i
\(455\) −16.4050 6.13227i −0.769077 0.287485i
\(456\) −0.869560 3.40977i −0.0407209 0.159677i
\(457\) 28.4939i 1.33289i −0.745554 0.666445i \(-0.767815\pi\)
0.745554 0.666445i \(-0.232185\pi\)
\(458\) −7.02836 12.1735i −0.328414 0.568829i
\(459\) 11.2702 + 12.1197i 0.526046 + 0.565700i
\(460\) −2.27251 3.93611i −0.105956 0.183522i
\(461\) 10.2455 5.91523i 0.477180 0.275500i −0.242061 0.970261i \(-0.577823\pi\)
0.719240 + 0.694761i \(0.244490\pi\)
\(462\) 2.10431 15.4033i 0.0979016 0.716625i
\(463\) 10.9649i 0.509582i 0.966996 + 0.254791i \(0.0820067\pi\)
−0.966996 + 0.254791i \(0.917993\pi\)
\(464\) 1.81857 + 1.04995i 0.0844251 + 0.0487429i
\(465\) −13.9643 14.3064i −0.647577 0.663443i
\(466\) −24.0450 + 13.8824i −1.11386 + 0.643089i
\(467\) −10.0288 17.3705i −0.464080 0.803810i 0.535080 0.844802i \(-0.320282\pi\)
−0.999159 + 0.0409918i \(0.986948\pi\)
\(468\) −5.44150 9.34827i −0.251533 0.432124i
\(469\) 16.1404 + 20.7228i 0.745296 + 0.956889i
\(470\) 10.7033 18.5387i 0.493707 0.855125i
\(471\) −35.7017 + 9.10463i −1.64505 + 0.419519i
\(472\) 6.20893i 0.285789i
\(473\) 1.79453 3.10822i 0.0825126 0.142916i
\(474\) −13.0864 3.67679i −0.601078 0.168881i
\(475\) −1.65514 2.86679i −0.0759432 0.131538i
\(476\) −1.16028 8.34661i −0.0531814 0.382566i
\(477\) −10.4942 + 17.2011i −0.480494 + 0.787585i
\(478\) 5.31347 0.243033
\(479\) −26.6476 + 15.3850i −1.21756 + 0.702957i −0.964395 0.264466i \(-0.914804\pi\)
−0.253163 + 0.967424i \(0.581471\pi\)
\(480\) −0.860135 + 3.06138i −0.0392596 + 0.139732i
\(481\) −0.951748 1.54766i −0.0433960 0.0705671i
\(482\) −19.2577 −0.877164
\(483\) 6.94996 8.96653i 0.316234 0.407991i
\(484\) −0.254496 + 0.440801i −0.0115680 + 0.0200364i
\(485\) −15.2607 8.81074i −0.692951 0.400075i
\(486\) 11.6691 10.3360i 0.529321 0.468849i
\(487\) 35.8831i 1.62602i −0.582252 0.813009i \(-0.697828\pi\)
0.582252 0.813009i \(-0.302172\pi\)
\(488\) 10.1157 + 5.84028i 0.457914 + 0.264377i
\(489\) −16.8148 + 4.28811i −0.760391 + 0.193915i
\(490\) −8.95508 + 9.21778i −0.404549 + 0.416417i
\(491\) −32.3384 18.6706i −1.45941 0.842592i −0.460430 0.887696i \(-0.652305\pi\)
−0.998982 + 0.0451043i \(0.985638\pi\)
\(492\) −8.43375 + 2.15077i −0.380223 + 0.0969644i
\(493\) 5.79226 + 3.34416i 0.260870 + 0.150614i
\(494\) 0.203236 + 7.32236i 0.00914404 + 0.329449i
\(495\) −9.73144 + 15.9509i −0.437396 + 0.716941i
\(496\) −3.14345 + 5.44461i −0.141145 + 0.244470i
\(497\) −32.4382 + 25.2653i −1.45505 + 1.13330i
\(498\) −15.8234 16.2111i −0.709064 0.726437i
\(499\) 19.1199 11.0389i 0.855925 0.494169i −0.00672032 0.999977i \(-0.502139\pi\)
0.862646 + 0.505809i \(0.168806\pi\)
\(500\) 12.1710i 0.544306i
\(501\) −6.03907 + 1.54008i −0.269806 + 0.0688058i
\(502\) −4.75595 8.23755i −0.212269 0.367660i
\(503\) −18.0289 31.2270i −0.803870 1.39234i −0.917051 0.398769i \(-0.869437\pi\)
0.113181 0.993574i \(-0.463896\pi\)
\(504\) −7.88580 + 0.902283i −0.351262 + 0.0401909i
\(505\) 14.9308 + 8.62032i 0.664413 + 0.383599i
\(506\) −7.27328 + 4.19923i −0.323337 + 0.186678i
\(507\) 6.76578 + 21.4761i 0.300479 + 0.953789i
\(508\) −0.475986 + 0.824432i −0.0211185 + 0.0365783i
\(509\) 27.2107i 1.20609i 0.797705 + 0.603047i \(0.206047\pi\)
−0.797705 + 0.603047i \(0.793953\pi\)
\(510\) −2.73958 + 9.75069i −0.121311 + 0.431768i
\(511\) 21.9455 + 8.90487i 0.970813 + 0.393928i
\(512\) 1.00000 0.0441942
\(513\) −10.2895 + 2.36035i −0.454291 + 0.104212i
\(514\) −5.26373 −0.232173
\(515\) −12.2581 + 21.2317i −0.540157 + 0.935580i
\(516\) −1.76410 0.495648i −0.0776604 0.0218197i
\(517\) −34.2564 19.7779i −1.50659 0.869832i
\(518\) −1.32053 + 0.183570i −0.0580208 + 0.00806560i
\(519\) −0.408155 1.60048i −0.0179160 0.0702534i
\(520\) 3.14944 5.82231i 0.138112 0.255325i
\(521\) −7.90186 + 13.6864i −0.346187 + 0.599613i −0.985569 0.169276i \(-0.945857\pi\)
0.639382 + 0.768889i \(0.279190\pi\)
\(522\) 3.28097 5.37789i 0.143604 0.235384i
\(523\) 1.76412i 0.0771397i 0.999256 + 0.0385698i \(0.0122802\pi\)
−0.999256 + 0.0385698i \(0.987720\pi\)
\(524\) −4.95760 8.58681i −0.216574 0.375117i
\(525\) −6.91218 + 2.82372i −0.301672 + 0.123237i
\(526\) 9.39641 5.42502i 0.409703 0.236542i
\(527\) −10.0121 + 17.3414i −0.436133 + 0.755404i
\(528\) 5.65693 + 1.58939i 0.246186 + 0.0691691i
\(529\) 16.8714 0.733539
\(530\) −12.3311 −0.535627
\(531\) −18.6213 0.450793i −0.808097 0.0195627i
\(532\) 4.98079 + 2.02106i 0.215945 + 0.0876241i
\(533\) 18.1112 0.502686i 0.784482 0.0217737i
\(534\) 6.45280 + 6.61091i 0.279240 + 0.286082i
\(535\) 12.2740 + 21.2593i 0.530653 + 0.919118i
\(536\) −8.59785 + 4.96397i −0.371370 + 0.214411i
\(537\) −8.31967 + 29.6113i −0.359020 + 1.27782i
\(538\) −18.1117 −0.780853
\(539\) 17.0329 + 16.5475i 0.733660 + 0.712752i
\(540\) 9.11901 + 2.80192i 0.392420 + 0.120575i
\(541\) 18.1904 10.5022i 0.782066 0.451526i −0.0550960 0.998481i \(-0.517546\pi\)
0.837162 + 0.546955i \(0.184213\pi\)
\(542\) 8.67329 0.372550
\(543\) −6.67301 6.83651i −0.286366 0.293383i
\(544\) 3.18506 0.136558
\(545\) 8.11861 0.347763
\(546\) 16.4264 + 1.78141i 0.702985 + 0.0762373i
\(547\) −37.9155 −1.62115 −0.810575 0.585635i \(-0.800845\pi\)
−0.810575 + 0.585635i \(0.800845\pi\)
\(548\) 3.18307 0.135974
\(549\) 18.2501 29.9141i 0.778897 1.27670i
\(550\) 5.52761 0.235698
\(551\) −3.69469 + 2.13313i −0.157399 + 0.0908743i
\(552\) 2.99507 + 3.06845i 0.127479 + 0.130602i
\(553\) 16.3813 12.7589i 0.696602 0.542565i
\(554\) −18.2835 −0.776792
\(555\) 1.54267 + 0.433433i 0.0654828 + 0.0183982i
\(556\) 0.0981681 0.0566774i 0.00416326 0.00240366i
\(557\) −7.64230 13.2369i −0.323815 0.560864i 0.657457 0.753492i \(-0.271632\pi\)
−0.981272 + 0.192628i \(0.938299\pi\)
\(558\) 16.1008 + 9.82288i 0.681602 + 0.415836i
\(559\) 3.35507 + 1.81485i 0.141904 + 0.0767598i
\(560\) −2.98478 3.83217i −0.126130 0.161939i
\(561\) 18.0177 + 5.06229i 0.760706 + 0.213730i
\(562\) −2.73779 −0.115487
\(563\) −18.7941 −0.792079 −0.396039 0.918234i \(-0.629616\pi\)
−0.396039 + 0.918234i \(0.629616\pi\)
\(564\) −5.46264 + 19.4426i −0.230019 + 0.818681i
\(565\) −14.6690 + 25.4074i −0.617128 + 1.06890i
\(566\) 4.60044 2.65607i 0.193371 0.111643i
\(567\) 2.13352 + 23.7160i 0.0895993 + 0.995978i
\(568\) −7.77030 13.4586i −0.326035 0.564709i
\(569\) 21.5237i 0.902321i 0.892443 + 0.451160i \(0.148990\pi\)
−0.892443 + 0.451160i \(0.851010\pi\)
\(570\) −4.51262 4.62318i −0.189013 0.193644i
\(571\) 19.8438 34.3705i 0.830438 1.43836i −0.0672531 0.997736i \(-0.521424\pi\)
0.897691 0.440625i \(-0.145243\pi\)
\(572\) −10.7587 5.81964i −0.449842 0.243331i
\(573\) −33.8664 + 8.63659i −1.41479 + 0.360799i
\(574\) 4.99890 12.3195i 0.208650 0.514206i
\(575\) 3.49326 + 2.01683i 0.145679 + 0.0841077i
\(576\) 0.0726040 2.99912i 0.00302517 0.124963i
\(577\) −20.4728 + 35.4599i −0.852293 + 1.47621i 0.0268412 + 0.999640i \(0.491455\pi\)
−0.879134 + 0.476575i \(0.841878\pi\)
\(578\) −6.85540 −0.285147
\(579\) −2.12828 + 7.57496i −0.0884484 + 0.314805i
\(580\) 3.85528 0.160082
\(581\) 34.2742 4.76453i 1.42193 0.197666i
\(582\) 16.0047 + 4.49674i 0.663418 + 0.186396i
\(583\) 22.7857i 0.943689i
\(584\) −4.47574 + 7.75221i −0.185207 + 0.320789i
\(585\) −17.2331 9.86828i −0.712503 0.408003i
\(586\) −2.86877 + 1.65628i −0.118508 + 0.0684205i
\(587\) 32.8994 + 18.9945i 1.35790 + 0.783986i 0.989341 0.145616i \(-0.0465165\pi\)
0.368563 + 0.929603i \(0.379850\pi\)
\(588\) 6.03746 10.5142i 0.248981 0.433600i
\(589\) −6.38636 11.0615i −0.263145 0.455781i
\(590\) −5.69957 9.87195i −0.234648 0.406422i
\(591\) 4.91665 + 19.2795i 0.202244 + 0.793052i
\(592\) 0.503913i 0.0207107i
\(593\) −13.8054 + 7.97057i −0.566921 + 0.327312i −0.755919 0.654665i \(-0.772810\pi\)
0.188997 + 0.981978i \(0.439476\pi\)
\(594\) 5.17748 16.8504i 0.212434 0.691381i
\(595\) −9.50669 12.2057i −0.389736 0.500385i
\(596\) 10.8563 18.8036i 0.444691 0.770227i
\(597\) −8.30512 8.50860i −0.339906 0.348234i
\(598\) −4.67571 7.60326i −0.191204 0.310921i
\(599\) 3.66862 + 2.11808i 0.149896 + 0.0865423i 0.573072 0.819505i \(-0.305752\pi\)
−0.423176 + 0.906047i \(0.639085\pi\)
\(600\) −0.697383 2.73462i −0.0284706 0.111641i
\(601\) −2.17316 1.25468i −0.0886451 0.0511793i 0.455022 0.890480i \(-0.349631\pi\)
−0.543667 + 0.839301i \(0.682965\pi\)
\(602\) 2.20827 1.71996i 0.0900022 0.0701004i
\(603\) 14.2633 + 26.1464i 0.580847 + 1.06476i
\(604\) −4.69698 2.71180i −0.191118 0.110342i
\(605\) 0.934474i 0.0379918i
\(606\) −15.6588 4.39955i −0.636097 0.178720i
\(607\) −37.1080 21.4243i −1.50617 0.869586i −0.999974 0.00716623i \(-0.997719\pi\)
−0.506193 0.862420i \(-0.668948\pi\)
\(608\) −1.01582 + 1.75945i −0.0411970 + 0.0713552i
\(609\) 3.63918 + 8.90832i 0.147467 + 0.360983i
\(610\) 21.4447 0.868269
\(611\) 20.0018 36.9770i 0.809188 1.49593i
\(612\) 0.231248 9.55238i 0.00934764 0.386132i
\(613\) −18.3170 + 10.5753i −0.739816 + 0.427133i −0.822003 0.569484i \(-0.807143\pi\)
0.0821861 + 0.996617i \(0.473810\pi\)
\(614\) 23.8813 0.963773
\(615\) −11.4350 + 11.1615i −0.461104 + 0.450076i
\(616\) −7.08122 + 5.51537i −0.285310 + 0.222221i
\(617\) −17.5132 30.3337i −0.705053 1.22119i −0.966672 0.256017i \(-0.917590\pi\)
0.261619 0.965171i \(-0.415744\pi\)
\(618\) 6.25617 22.2669i 0.251660 0.895707i
\(619\) 15.4257 26.7180i 0.620010 1.07389i −0.369473 0.929241i \(-0.620462\pi\)
0.989483 0.144648i \(-0.0462048\pi\)
\(620\) 11.5423i 0.463550i
\(621\) 9.42011 8.75979i 0.378016 0.351518i
\(622\) −15.8352 + 27.4274i −0.634935 + 1.09974i
\(623\) −13.9771 + 1.94298i −0.559979 + 0.0778439i
\(624\) −1.52175 + 6.05676i −0.0609186 + 0.242464i
\(625\) 7.09916 + 12.2961i 0.283967 + 0.491844i
\(626\) 12.5081 7.22158i 0.499926 0.288632i
\(627\) −8.54287 + 8.33856i −0.341169 + 0.333010i
\(628\) 18.4221 + 10.6360i 0.735124 + 0.424424i
\(629\) 1.60499i 0.0639953i
\(630\) −11.7099 + 8.67348i −0.466532 + 0.345560i
\(631\) −13.3366 + 7.69988i −0.530921 + 0.306527i −0.741391 0.671073i \(-0.765834\pi\)
0.210470 + 0.977600i \(0.432500\pi\)
\(632\) 3.92399 + 6.79656i 0.156088 + 0.270352i
\(633\) −2.25952 8.86016i −0.0898077 0.352160i
\(634\) 12.7938 + 22.1596i 0.508108 + 0.880069i
\(635\) 1.74775i 0.0693575i
\(636\) 11.2726 2.87473i 0.446987 0.113990i
\(637\) −17.0777 + 18.5836i −0.676644 + 0.736310i
\(638\) 7.12392i 0.282039i
\(639\) −40.9280 + 22.3269i −1.61909 + 0.883240i
\(640\) 1.58996 0.917964i 0.0628487 0.0362857i
\(641\) 9.30710i 0.367608i 0.982963 + 0.183804i \(0.0588412\pi\)
−0.982963 + 0.183804i \(0.941159\pi\)
\(642\) −16.1766 16.5730i −0.638440 0.654083i
\(643\) −3.03048 5.24895i −0.119511 0.206998i 0.800063 0.599916i \(-0.204799\pi\)
−0.919574 + 0.392917i \(0.871466\pi\)
\(644\) −6.48744 + 0.901834i −0.255641 + 0.0355372i
\(645\) −3.25984 + 0.831325i −0.128356 + 0.0327334i
\(646\) −3.23545 + 5.60396i −0.127297 + 0.220485i
\(647\) 5.65052 + 9.78699i 0.222145 + 0.384766i 0.955459 0.295124i \(-0.0953608\pi\)
−0.733314 + 0.679890i \(0.762027\pi\)
\(648\) −8.98946 0.435496i −0.353139 0.0171079i
\(649\) −18.2417 + 10.5319i −0.716050 + 0.413412i
\(650\) 0.162995 + 5.87251i 0.00639318 + 0.230339i
\(651\) −26.6706 + 10.8953i −1.04530 + 0.427021i
\(652\) 8.67648 + 5.00937i 0.339797 + 0.196182i
\(653\) 35.9225i 1.40576i −0.711311 0.702878i \(-0.751898\pi\)
0.711311 0.702878i \(-0.248102\pi\)
\(654\) −7.42172 + 1.89269i −0.290212 + 0.0740099i
\(655\) −15.7648 9.10179i −0.615981 0.355637i
\(656\) 4.35184 + 2.51254i 0.169911 + 0.0980980i
\(657\) 22.9249 + 13.9861i 0.894384 + 0.545651i
\(658\) −18.9561 24.3378i −0.738985 0.948786i
\(659\) 14.9107 8.60870i 0.580839 0.335348i −0.180628 0.983552i \(-0.557813\pi\)
0.761467 + 0.648204i \(0.224480\pi\)
\(660\) 10.4533 2.66580i 0.406894 0.103766i
\(661\) 2.99584 + 5.18895i 0.116525 + 0.201827i 0.918388 0.395680i \(-0.129491\pi\)
−0.801863 + 0.597507i \(0.796158\pi\)
\(662\) 7.25351 + 4.18782i 0.281916 + 0.162764i
\(663\) −4.84685 + 19.2911i −0.188236 + 0.749205i
\(664\) 13.0790i 0.507564i
\(665\) 9.77452 1.35878i 0.379040 0.0526911i
\(666\) −1.51130 0.0365861i −0.0585616 0.00141768i
\(667\) 2.59927 4.50206i 0.100644 0.174321i
\(668\) 3.11618 + 1.79913i 0.120569 + 0.0696103i
\(669\) −12.2395 47.9945i −0.473208 1.85557i
\(670\) −9.11349 + 15.7850i −0.352085 + 0.609829i
\(671\) 39.6262i 1.52975i
\(672\) 3.62196 + 2.80738i 0.139720 + 0.108297i
\(673\) −16.9593 + 29.3743i −0.653732 + 1.13230i 0.328478 + 0.944512i \(0.393464\pi\)
−0.982210 + 0.187786i \(0.939869\pi\)
\(674\) −9.14343 −0.352192
\(675\) −8.25210 + 1.89299i −0.317624 + 0.0728613i
\(676\) 5.86551 11.6015i 0.225597 0.446213i
\(677\) −6.91552 11.9780i −0.265785 0.460353i 0.701984 0.712193i \(-0.252298\pi\)
−0.967769 + 0.251840i \(0.918964\pi\)
\(678\) 7.48659 26.6462i 0.287521 1.02334i
\(679\) −20.0344 + 15.6043i −0.768849 + 0.598836i
\(680\) 5.06412 2.92377i 0.194200 0.112121i
\(681\) −7.27089 7.44904i −0.278621 0.285448i
\(682\) 21.3282 0.816701
\(683\) 4.69607 0.179690 0.0898451 0.995956i \(-0.471363\pi\)
0.0898451 + 0.995956i \(0.471363\pi\)
\(684\) 5.20306 + 3.17431i 0.198944 + 0.121373i
\(685\) 5.06095 2.92194i 0.193369 0.111642i
\(686\) 7.45669 + 16.9528i 0.284698 + 0.647261i
\(687\) 23.4394 + 6.58559i 0.894268 + 0.251256i
\(688\) 0.528972 + 0.916206i 0.0201669 + 0.0349300i
\(689\) −24.2075 + 0.671892i −0.922231 + 0.0255970i
\(690\) 7.57877 + 2.12935i 0.288519 + 0.0810630i
\(691\) 23.8018 0.905465 0.452732 0.891646i \(-0.350449\pi\)
0.452732 + 0.891646i \(0.350449\pi\)
\(692\) −0.476807 + 0.825853i −0.0181255 + 0.0313942i
\(693\) 16.0271 + 21.6379i 0.608821 + 0.821954i
\(694\) 31.0967i 1.18042i
\(695\) 0.104056 0.180230i 0.00394705 0.00683650i
\(696\) −3.52435 + 0.898778i −0.133590 + 0.0340681i
\(697\) 13.8609 + 8.00258i 0.525018 + 0.303119i
\(698\) 14.0331 24.3060i 0.531161 0.919997i
\(699\) 13.0078 46.2973i 0.492001 1.75113i
\(700\) 3.99457 + 1.62088i 0.150981 + 0.0612636i
\(701\) 35.3397i 1.33476i −0.744716 0.667382i \(-0.767415\pi\)
0.744716 0.667382i \(-0.232585\pi\)
\(702\) 18.0545 + 5.00365i 0.681422 + 0.188851i
\(703\) 0.886611 + 0.511885i 0.0334392 + 0.0193061i
\(704\) −1.69625 2.93798i −0.0639297 0.110729i
\(705\) 9.16221 + 35.9275i 0.345069 + 1.35311i
\(706\) 24.5364 14.1661i 0.923438 0.533147i
\(707\) 19.6014 15.2670i 0.737186 0.574175i
\(708\) 7.51177 + 7.69582i 0.282310 + 0.289227i
\(709\) −10.6916 6.17279i −0.401531 0.231824i 0.285613 0.958345i \(-0.407803\pi\)
−0.687144 + 0.726521i \(0.741136\pi\)
\(710\) −24.7090 14.2657i −0.927310 0.535383i
\(711\) 20.6686 11.2751i 0.775133 0.422848i
\(712\) 5.33363i 0.199886i
\(713\) 13.4787 + 7.78193i 0.504781 + 0.291435i
\(714\) 11.5362 + 8.94169i 0.431730 + 0.334634i
\(715\) −22.4481 + 0.623059i −0.839510 + 0.0233011i
\(716\) 15.3789 8.87903i 0.574738 0.331825i
\(717\) −6.58592 + 6.42842i −0.245956 + 0.240074i
\(718\) −10.8679 18.8238i −0.405588 0.702499i
\(719\) 1.87992 3.25611i 0.0701091 0.121433i −0.828840 0.559486i \(-0.810999\pi\)
0.898949 + 0.438053i \(0.144332\pi\)
\(720\) −2.63765 4.83513i −0.0982994 0.180195i
\(721\) 21.7097 + 27.8732i 0.808513 + 1.03805i
\(722\) 7.43622 + 12.8799i 0.276747 + 0.479341i
\(723\) 23.8695 23.2986i 0.887715 0.866485i
\(724\) 5.51564i 0.204987i
\(725\) −2.96312 + 1.71076i −0.110048 + 0.0635360i
\(726\) −0.217853 0.854260i −0.00808529 0.0317046i
\(727\) 10.4236i 0.386592i 0.981141 + 0.193296i \(0.0619177\pi\)
−0.981141 + 0.193296i \(0.938082\pi\)
\(728\) −6.06831 7.36041i −0.224906 0.272795i
\(729\) −1.95878 + 26.9289i −0.0725473 + 0.997365i
\(730\) 16.4343i 0.608260i
\(731\) 1.68481 + 2.91817i 0.0623148 + 0.107932i
\(732\) −19.6039 + 4.99938i −0.724580 + 0.184782i
\(733\) 17.7435 + 30.7327i 0.655373 + 1.13514i 0.981800 + 0.189917i \(0.0608217\pi\)
−0.326428 + 0.945222i \(0.605845\pi\)
\(734\) 13.6561 7.88437i 0.504057 0.291017i
\(735\) −0.0523701 22.2594i −0.00193170 0.821050i
\(736\) 2.47560i 0.0912519i
\(737\) 29.1681 + 16.8402i 1.07442 + 0.620317i
\(738\) 7.85136 12.8693i 0.289013 0.473725i
\(739\) 5.40360 3.11977i 0.198775 0.114763i −0.397309 0.917685i \(-0.630056\pi\)
0.596084 + 0.802922i \(0.296723\pi\)
\(740\) −0.462574 0.801202i −0.0170046 0.0294528i
\(741\) −9.11075 8.83002i −0.334692 0.324379i
\(742\) −6.68155 + 16.4663i −0.245287 + 0.604497i
\(743\) 21.5450 37.3170i 0.790408 1.36903i −0.135306 0.990804i \(-0.543202\pi\)
0.925714 0.378223i \(-0.123465\pi\)
\(744\) −2.69085 10.5515i −0.0986512 0.386838i
\(745\) 39.8627i 1.46046i
\(746\) 3.62253 6.27441i 0.132630 0.229723i
\(747\) 39.2255 + 0.949587i 1.43519 + 0.0347436i
\(748\) −5.40264 9.35765i −0.197540 0.342150i
\(749\) 35.0393 4.87088i 1.28031 0.177978i
\(750\) −14.7249 15.0857i −0.537679 0.550853i
\(751\) −31.3887 −1.14539 −0.572695 0.819769i \(-0.694102\pi\)
−0.572695 + 0.819769i \(0.694102\pi\)
\(752\) 10.0977 5.82991i 0.368226 0.212595i
\(753\) 15.8610 + 4.45634i 0.578005 + 0.162398i
\(754\) 7.56841 0.210065i 0.275625 0.00765013i
\(755\) −9.95736 −0.362385
\(756\) 8.68265 10.6589i 0.315785 0.387659i
\(757\) 6.13845 10.6321i 0.223106 0.386430i −0.732644 0.680612i \(-0.761714\pi\)
0.955749 + 0.294182i \(0.0950472\pi\)
\(758\) 4.24213 + 2.44920i 0.154081 + 0.0889588i
\(759\) 3.93469 14.0043i 0.142820 0.508324i
\(760\) 3.72995i 0.135299i
\(761\) 14.6878 + 8.48003i 0.532434 + 0.307401i 0.742007 0.670392i \(-0.233874\pi\)
−0.209573 + 0.977793i \(0.567207\pi\)
\(762\) −0.407452 1.59773i −0.0147604 0.0578796i
\(763\) 4.39905 10.8412i 0.159256 0.392478i
\(764\) 17.4751 + 10.0893i 0.632228 + 0.365017i
\(765\) −8.40107 15.4002i −0.303741 0.556795i
\(766\) −6.85462 3.95752i −0.247668 0.142991i
\(767\) −11.7269 19.0693i −0.423433 0.688554i
\(768\) −1.23948 + 1.20983i −0.0447258 + 0.0436561i
\(769\) 18.2706 31.6457i 0.658856 1.14117i −0.322056 0.946720i \(-0.604374\pi\)
0.980912 0.194451i \(-0.0622926\pi\)
\(770\) −6.19594 + 15.2695i −0.223286 + 0.550276i
\(771\) 6.52427 6.36824i 0.234966 0.229347i
\(772\) 3.93413 2.27137i 0.141593 0.0817485i
\(773\) 0.970568i 0.0349089i 0.999848 + 0.0174545i \(0.00555621\pi\)
−0.999848 + 0.0174545i \(0.994444\pi\)
\(774\) 2.78622