Properties

Label 546.2.bi.f.17.2
Level $546$
Weight $2$
Character 546.17
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bi (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.2
Character \(\chi\) \(=\) 546.17
Dual form 546.2.bi.f.257.2

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-1.66986 - 0.459961i) q^{3} +1.00000 q^{4} +(0.567570 - 0.327687i) q^{5} +(-1.66986 - 0.459961i) q^{6} +(-2.37289 + 1.17020i) q^{7} +1.00000 q^{8} +(2.57687 + 1.53614i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(-1.66986 - 0.459961i) q^{3} +1.00000 q^{4} +(0.567570 - 0.327687i) q^{5} +(-1.66986 - 0.459961i) q^{6} +(-2.37289 + 1.17020i) q^{7} +1.00000 q^{8} +(2.57687 + 1.53614i) q^{9} +(0.567570 - 0.327687i) q^{10} +(1.54655 + 2.67870i) q^{11} +(-1.66986 - 0.459961i) q^{12} +(3.50535 - 0.844105i) q^{13} +(-2.37289 + 1.17020i) q^{14} +(-1.09849 + 0.286132i) q^{15} +1.00000 q^{16} +7.02284 q^{17} +(2.57687 + 1.53614i) q^{18} +(3.25972 - 5.64600i) q^{19} +(0.567570 - 0.327687i) q^{20} +(4.50065 - 0.862636i) q^{21} +(1.54655 + 2.67870i) q^{22} +1.43530i q^{23} +(-1.66986 - 0.459961i) q^{24} +(-2.28524 + 3.95816i) q^{25} +(3.50535 - 0.844105i) q^{26} +(-3.59645 - 3.75040i) q^{27} +(-2.37289 + 1.17020i) q^{28} +(-3.89073 - 2.24631i) q^{29} +(-1.09849 + 0.286132i) q^{30} +(2.26475 - 3.92266i) q^{31} +1.00000 q^{32} +(-1.35042 - 5.18441i) q^{33} +7.02284 q^{34} +(-0.963325 + 1.44174i) q^{35} +(2.57687 + 1.53614i) q^{36} +2.96384i q^{37} +(3.25972 - 5.64600i) q^{38} +(-6.24170 - 0.202785i) q^{39} +(0.567570 - 0.327687i) q^{40} +(7.52039 + 4.34190i) q^{41} +(4.50065 - 0.862636i) q^{42} +(-0.0380219 - 0.0658559i) q^{43} +(1.54655 + 2.67870i) q^{44} +(1.96593 + 0.0274608i) q^{45} +1.43530i q^{46} +(-8.04448 + 4.64448i) q^{47} +(-1.66986 - 0.459961i) q^{48} +(4.26126 - 5.55353i) q^{49} +(-2.28524 + 3.95816i) q^{50} +(-11.7272 - 3.23023i) q^{51} +(3.50535 - 0.844105i) q^{52} +(9.68544 + 5.59189i) q^{53} +(-3.59645 - 3.75040i) q^{54} +(1.75555 + 1.01357i) q^{55} +(-2.37289 + 1.17020i) q^{56} +(-8.04022 + 7.92869i) q^{57} +(-3.89073 - 2.24631i) q^{58} +7.07861i q^{59} +(-1.09849 + 0.286132i) q^{60} +(-13.2960 - 7.67646i) q^{61} +(2.26475 - 3.92266i) q^{62} +(-7.91224 - 0.629640i) q^{63} +1.00000 q^{64} +(1.71293 - 1.62775i) q^{65} +(-1.35042 - 5.18441i) q^{66} +(3.46095 - 1.99818i) q^{67} +7.02284 q^{68} +(0.660182 - 2.39676i) q^{69} +(-0.963325 + 1.44174i) q^{70} +(0.469521 + 0.813235i) q^{71} +(2.57687 + 1.53614i) q^{72} +(-5.44642 + 9.43348i) q^{73} +2.96384i q^{74} +(5.63663 - 5.55845i) q^{75} +(3.25972 - 5.64600i) q^{76} +(-6.80442 - 4.54650i) q^{77} +(-6.24170 - 0.202785i) q^{78} +(-1.40194 - 2.42822i) q^{79} +(0.567570 - 0.327687i) q^{80} +(4.28054 + 7.91688i) q^{81} +(7.52039 + 4.34190i) q^{82} +7.24087i q^{83} +(4.50065 - 0.862636i) q^{84} +(3.98595 - 2.30129i) q^{85} +(-0.0380219 - 0.0658559i) q^{86} +(5.46376 + 5.54062i) q^{87} +(1.54655 + 2.67870i) q^{88} -10.9296i q^{89} +(1.96593 + 0.0274608i) q^{90} +(-7.33005 + 6.10494i) q^{91} +1.43530i q^{92} +(-5.58609 + 5.50861i) q^{93} +(-8.04448 + 4.64448i) q^{94} -4.27267i q^{95} +(-1.66986 - 0.459961i) q^{96} +(-8.57395 - 14.8505i) q^{97} +(4.26126 - 5.55353i) q^{98} +(-0.129604 + 9.27839i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + O(q^{10}) \) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + 9q^{10} + 9q^{11} + 6q^{12} + 8q^{13} + 4q^{14} - 17q^{15} + 34q^{16} + 12q^{17} + 4q^{18} - 5q^{19} + 9q^{20} - 7q^{21} + 9q^{22} + 6q^{24} + 16q^{25} + 8q^{26} - 18q^{27} + 4q^{28} + 27q^{29} - 17q^{30} - q^{31} + 34q^{32} + 12q^{34} - 3q^{35} + 4q^{36} - 5q^{38} - 10q^{39} + 9q^{40} - 3q^{41} - 7q^{42} - 3q^{43} + 9q^{44} + 9q^{45} - 27q^{47} + 6q^{48} - 2q^{49} + 16q^{50} - 36q^{51} + 8q^{52} - 21q^{53} - 18q^{54} - 57q^{55} + 4q^{56} - 17q^{57} + 27q^{58} - 17q^{60} - 51q^{61} - q^{62} - 24q^{63} + 34q^{64} - 21q^{65} - 21q^{67} + 12q^{68} + 30q^{69} - 3q^{70} - 15q^{71} + 4q^{72} - 19q^{73} - 54q^{75} - 5q^{76} + 9q^{77} - 10q^{78} - 9q^{79} + 9q^{80} + 28q^{81} - 3q^{82} - 7q^{84} - 42q^{85} - 3q^{86} - 81q^{87} + 9q^{88} + 9q^{90} - 72q^{91} - 17q^{93} - 27q^{94} + 6q^{96} + 19q^{97} - 2q^{98} - 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.66986 0.459961i −0.964095 0.265558i
\(4\) 1.00000 0.500000
\(5\) 0.567570 0.327687i 0.253825 0.146546i −0.367689 0.929949i \(-0.619851\pi\)
0.621515 + 0.783403i \(0.286518\pi\)
\(6\) −1.66986 0.459961i −0.681718 0.187778i
\(7\) −2.37289 + 1.17020i −0.896870 + 0.442295i
\(8\) 1.00000 0.353553
\(9\) 2.57687 + 1.53614i 0.858957 + 0.512047i
\(10\) 0.567570 0.327687i 0.179482 0.103624i
\(11\) 1.54655 + 2.67870i 0.466302 + 0.807659i 0.999259 0.0384835i \(-0.0122527\pi\)
−0.532957 + 0.846142i \(0.678919\pi\)
\(12\) −1.66986 0.459961i −0.482047 0.132779i
\(13\) 3.50535 0.844105i 0.972209 0.234113i
\(14\) −2.37289 + 1.17020i −0.634183 + 0.312750i
\(15\) −1.09849 + 0.286132i −0.283628 + 0.0738789i
\(16\) 1.00000 0.250000
\(17\) 7.02284 1.70329 0.851644 0.524121i \(-0.175606\pi\)
0.851644 + 0.524121i \(0.175606\pi\)
\(18\) 2.57687 + 1.53614i 0.607375 + 0.362072i
\(19\) 3.25972 5.64600i 0.747831 1.29528i −0.201029 0.979585i \(-0.564429\pi\)
0.948860 0.315696i \(-0.102238\pi\)
\(20\) 0.567570 0.327687i 0.126913 0.0732730i
\(21\) 4.50065 0.862636i 0.982123 0.188243i
\(22\) 1.54655 + 2.67870i 0.329725 + 0.571101i
\(23\) 1.43530i 0.299281i 0.988740 + 0.149641i \(0.0478117\pi\)
−0.988740 + 0.149641i \(0.952188\pi\)
\(24\) −1.66986 0.459961i −0.340859 0.0938891i
\(25\) −2.28524 + 3.95816i −0.457049 + 0.791631i
\(26\) 3.50535 0.844105i 0.687456 0.165543i
\(27\) −3.59645 3.75040i −0.692138 0.721765i
\(28\) −2.37289 + 1.17020i −0.448435 + 0.221147i
\(29\) −3.89073 2.24631i −0.722491 0.417130i 0.0931780 0.995649i \(-0.470297\pi\)
−0.815669 + 0.578519i \(0.803631\pi\)
\(30\) −1.09849 + 0.286132i −0.200555 + 0.0522402i
\(31\) 2.26475 3.92266i 0.406761 0.704531i −0.587763 0.809033i \(-0.699991\pi\)
0.994525 + 0.104502i \(0.0333248\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.35042 5.18441i −0.235079 0.902490i
\(34\) 7.02284 1.20441
\(35\) −0.963325 + 1.44174i −0.162832 + 0.243698i
\(36\) 2.57687 + 1.53614i 0.429479 + 0.256023i
\(37\) 2.96384i 0.487252i 0.969869 + 0.243626i \(0.0783369\pi\)
−0.969869 + 0.243626i \(0.921663\pi\)
\(38\) 3.25972 5.64600i 0.528796 0.915902i
\(39\) −6.24170 0.202785i −0.999473 0.0324716i
\(40\) 0.567570 0.327687i 0.0897408 0.0518119i
\(41\) 7.52039 + 4.34190i 1.17449 + 0.678091i 0.954733 0.297465i \(-0.0961410\pi\)
0.219755 + 0.975555i \(0.429474\pi\)
\(42\) 4.50065 0.862636i 0.694466 0.133108i
\(43\) −0.0380219 0.0658559i −0.00579829 0.0100429i 0.863112 0.505013i \(-0.168512\pi\)
−0.868910 + 0.494970i \(0.835179\pi\)
\(44\) 1.54655 + 2.67870i 0.233151 + 0.403829i
\(45\) 1.96593 + 0.0274608i 0.293064 + 0.00409361i
\(46\) 1.43530i 0.211624i
\(47\) −8.04448 + 4.64448i −1.17341 + 0.677468i −0.954480 0.298273i \(-0.903589\pi\)
−0.218928 + 0.975741i \(0.570256\pi\)
\(48\) −1.66986 0.459961i −0.241024 0.0663896i
\(49\) 4.26126 5.55353i 0.608751 0.793361i
\(50\) −2.28524 + 3.95816i −0.323182 + 0.559768i
\(51\) −11.7272 3.23023i −1.64213 0.452322i
\(52\) 3.50535 0.844105i 0.486105 0.117056i
\(53\) 9.68544 + 5.59189i 1.33040 + 0.768105i 0.985360 0.170484i \(-0.0545332\pi\)
0.345037 + 0.938589i \(0.387867\pi\)
\(54\) −3.59645 3.75040i −0.489415 0.510365i
\(55\) 1.75555 + 1.01357i 0.236718 + 0.136669i
\(56\) −2.37289 + 1.17020i −0.317091 + 0.156375i
\(57\) −8.04022 + 7.92869i −1.06495 + 1.05018i
\(58\) −3.89073 2.24631i −0.510878 0.294956i
\(59\) 7.07861i 0.921556i 0.887515 + 0.460778i \(0.152430\pi\)
−0.887515 + 0.460778i \(0.847570\pi\)
\(60\) −1.09849 + 0.286132i −0.141814 + 0.0369394i
\(61\) −13.2960 7.67646i −1.70238 0.982870i −0.943340 0.331828i \(-0.892335\pi\)
−0.759041 0.651043i \(-0.774332\pi\)
\(62\) 2.26475 3.92266i 0.287624 0.498179i
\(63\) −7.91224 0.629640i −0.996849 0.0793271i
\(64\) 1.00000 0.125000
\(65\) 1.71293 1.62775i 0.212463 0.201897i
\(66\) −1.35042 5.18441i −0.166226 0.638157i
\(67\) 3.46095 1.99818i 0.422822 0.244116i −0.273462 0.961883i \(-0.588169\pi\)
0.696284 + 0.717766i \(0.254835\pi\)
\(68\) 7.02284 0.851644
\(69\) 0.660182 2.39676i 0.0794766 0.288535i
\(70\) −0.963325 + 1.44174i −0.115139 + 0.172321i
\(71\) 0.469521 + 0.813235i 0.0557219 + 0.0965132i 0.892541 0.450967i \(-0.148921\pi\)
−0.836819 + 0.547480i \(0.815587\pi\)
\(72\) 2.57687 + 1.53614i 0.303687 + 0.181036i
\(73\) −5.44642 + 9.43348i −0.637456 + 1.10411i 0.348534 + 0.937296i \(0.386680\pi\)
−0.985989 + 0.166809i \(0.946654\pi\)
\(74\) 2.96384i 0.344539i
\(75\) 5.63663 5.55845i 0.650862 0.641834i
\(76\) 3.25972 5.64600i 0.373915 0.647641i
\(77\) −6.80442 4.54650i −0.775435 0.518122i
\(78\) −6.24170 0.202785i −0.706734 0.0229609i
\(79\) −1.40194 2.42822i −0.157730 0.273197i 0.776320 0.630339i \(-0.217084\pi\)
−0.934050 + 0.357143i \(0.883751\pi\)
\(80\) 0.567570 0.327687i 0.0634563 0.0366365i
\(81\) 4.28054 + 7.91688i 0.475616 + 0.879653i
\(82\) 7.52039 + 4.34190i 0.830488 + 0.479483i
\(83\) 7.24087i 0.794789i 0.917648 + 0.397394i \(0.130085\pi\)
−0.917648 + 0.397394i \(0.869915\pi\)
\(84\) 4.50065 0.862636i 0.491061 0.0941213i
\(85\) 3.98595 2.30129i 0.432337 0.249610i
\(86\) −0.0380219 0.0658559i −0.00410001 0.00710143i
\(87\) 5.46376 + 5.54062i 0.585777 + 0.594017i
\(88\) 1.54655 + 2.67870i 0.164863 + 0.285550i
\(89\) 10.9296i 1.15854i −0.815137 0.579268i \(-0.803338\pi\)
0.815137 0.579268i \(-0.196662\pi\)
\(90\) 1.96593 + 0.0274608i 0.207227 + 0.00289462i
\(91\) −7.33005 + 6.10494i −0.768399 + 0.639972i
\(92\) 1.43530i 0.149641i
\(93\) −5.58609 + 5.50861i −0.579251 + 0.571216i
\(94\) −8.04448 + 4.64448i −0.829725 + 0.479042i
\(95\) 4.27267i 0.438367i
\(96\) −1.66986 0.459961i −0.170429 0.0469445i
\(97\) −8.57395 14.8505i −0.870553 1.50784i −0.861426 0.507883i \(-0.830428\pi\)
−0.00912654 0.999958i \(-0.502905\pi\)
\(98\) 4.26126 5.55353i 0.430452 0.560991i
\(99\) −0.129604 + 9.27839i −0.0130256 + 0.932513i
\(100\) −2.28524 + 3.95816i −0.228524 + 0.395816i
\(101\) −3.72432 6.45070i −0.370583 0.641869i 0.619072 0.785334i \(-0.287509\pi\)
−0.989655 + 0.143465i \(0.954175\pi\)
\(102\) −11.7272 3.23023i −1.16116 0.319840i
\(103\) −15.3456 + 8.85976i −1.51204 + 0.872978i −0.512141 + 0.858901i \(0.671148\pi\)
−0.999901 + 0.0140769i \(0.995519\pi\)
\(104\) 3.50535 0.844105i 0.343728 0.0827713i
\(105\) 2.27176 1.96441i 0.221701 0.191707i
\(106\) 9.68544 + 5.59189i 0.940733 + 0.543132i
\(107\) 17.5930i 1.70078i −0.526155 0.850389i \(-0.676367\pi\)
0.526155 0.850389i \(-0.323633\pi\)
\(108\) −3.59645 3.75040i −0.346069 0.360883i
\(109\) −8.31249 4.79922i −0.796192 0.459682i 0.0459460 0.998944i \(-0.485370\pi\)
−0.842138 + 0.539262i \(0.818703\pi\)
\(110\) 1.75555 + 1.01357i 0.167385 + 0.0966399i
\(111\) 1.36325 4.94919i 0.129394 0.469757i
\(112\) −2.37289 + 1.17020i −0.224217 + 0.110574i
\(113\) −2.25506 + 1.30196i −0.212138 + 0.122478i −0.602305 0.798266i \(-0.705751\pi\)
0.390166 + 0.920744i \(0.372417\pi\)
\(114\) −8.04022 + 7.92869i −0.753035 + 0.742590i
\(115\) 0.470330 + 0.814635i 0.0438585 + 0.0759651i
\(116\) −3.89073 2.24631i −0.361245 0.208565i
\(117\) 10.3295 + 3.20956i 0.954963 + 0.296724i
\(118\) 7.07861i 0.651639i
\(119\) −16.6644 + 8.21813i −1.52763 + 0.753355i
\(120\) −1.09849 + 0.286132i −0.100278 + 0.0261201i
\(121\) 0.716375 1.24080i 0.0651250 0.112800i
\(122\) −13.2960 7.67646i −1.20377 0.694994i
\(123\) −10.5609 10.7095i −0.952245 0.965639i
\(124\) 2.26475 3.92266i 0.203381 0.352266i
\(125\) 6.27225i 0.561007i
\(126\) −7.91224 0.629640i −0.704878 0.0560928i
\(127\) −3.11947 + 5.40309i −0.276808 + 0.479446i −0.970590 0.240739i \(-0.922610\pi\)
0.693781 + 0.720186i \(0.255943\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0.0332002 + 0.127459i 0.00292312 + 0.0112221i
\(130\) 1.71293 1.62775i 0.150234 0.142763i
\(131\) −1.86046 3.22241i −0.162549 0.281543i 0.773233 0.634122i \(-0.218638\pi\)
−0.935782 + 0.352579i \(0.885305\pi\)
\(132\) −1.35042 5.18441i −0.117539 0.451245i
\(133\) −1.12801 + 17.2119i −0.0978110 + 1.49246i
\(134\) 3.46095 1.99818i 0.298980 0.172616i
\(135\) −3.27020 0.950106i −0.281454 0.0817721i
\(136\) 7.02284 0.602203
\(137\) 6.92624 0.591748 0.295874 0.955227i \(-0.404389\pi\)
0.295874 + 0.955227i \(0.404389\pi\)
\(138\) 0.660182 2.39676i 0.0561985 0.204025i
\(139\) −2.27775 + 1.31506i −0.193196 + 0.111542i −0.593478 0.804850i \(-0.702246\pi\)
0.400282 + 0.916392i \(0.368912\pi\)
\(140\) −0.963325 + 1.44174i −0.0814158 + 0.121849i
\(141\) 15.5694 4.05550i 1.31118 0.341535i
\(142\) 0.469521 + 0.813235i 0.0394014 + 0.0682451i
\(143\) 7.68230 + 8.08434i 0.642426 + 0.676046i
\(144\) 2.57687 + 1.53614i 0.214739 + 0.128012i
\(145\) −2.94435 −0.244515
\(146\) −5.44642 + 9.43348i −0.450749 + 0.780720i
\(147\) −9.67011 + 7.31361i −0.797577 + 0.603217i
\(148\) 2.96384i 0.243626i
\(149\) 3.03198 5.25155i 0.248390 0.430224i −0.714689 0.699442i \(-0.753432\pi\)
0.963079 + 0.269218i \(0.0867653\pi\)
\(150\) 5.63663 5.55845i 0.460229 0.453845i
\(151\) −0.715824 0.413281i −0.0582530 0.0336324i 0.470591 0.882352i \(-0.344041\pi\)
−0.528844 + 0.848719i \(0.677374\pi\)
\(152\) 3.25972 5.64600i 0.264398 0.457951i
\(153\) 18.0969 + 10.7881i 1.46305 + 0.872163i
\(154\) −6.80442 4.54650i −0.548316 0.366367i
\(155\) 2.96852i 0.238437i
\(156\) −6.24170 0.202785i −0.499736 0.0162358i
\(157\) 5.69728 + 3.28932i 0.454692 + 0.262517i 0.709810 0.704393i \(-0.248781\pi\)
−0.255118 + 0.966910i \(0.582114\pi\)
\(158\) −1.40194 2.42822i −0.111532 0.193179i
\(159\) −13.6013 13.7926i −1.07865 1.09382i
\(160\) 0.567570 0.327687i 0.0448704 0.0259059i
\(161\) −1.67959 3.40582i −0.132370 0.268416i
\(162\) 4.28054 + 7.91688i 0.336311 + 0.622009i
\(163\) 3.86463 + 2.23125i 0.302701 + 0.174765i 0.643656 0.765315i \(-0.277417\pi\)
−0.340955 + 0.940080i \(0.610750\pi\)
\(164\) 7.52039 + 4.34190i 0.587244 + 0.339045i
\(165\) −2.46532 2.50000i −0.191925 0.194625i
\(166\) 7.24087i 0.562000i
\(167\) −1.12359 0.648707i −0.0869463 0.0501985i 0.455896 0.890033i \(-0.349319\pi\)
−0.542843 + 0.839834i \(0.682652\pi\)
\(168\) 4.50065 0.862636i 0.347233 0.0665538i
\(169\) 11.5750 5.91777i 0.890383 0.455213i
\(170\) 3.98595 2.30129i 0.305709 0.176501i
\(171\) 17.0729 9.54163i 1.30560 0.729667i
\(172\) −0.0380219 0.0658559i −0.00289915 0.00502147i
\(173\) 6.33267 10.9685i 0.481464 0.833919i −0.518310 0.855193i \(-0.673439\pi\)
0.999774 + 0.0212733i \(0.00677201\pi\)
\(174\) 5.46376 + 5.54062i 0.414207 + 0.420033i
\(175\) 0.790798 12.0665i 0.0597787 0.912140i
\(176\) 1.54655 + 2.67870i 0.116575 + 0.201915i
\(177\) 3.25588 11.8203i 0.244727 0.888468i
\(178\) 10.9296i 0.819209i
\(179\) 12.5760 7.26077i 0.939976 0.542696i 0.0500235 0.998748i \(-0.484070\pi\)
0.889953 + 0.456052i \(0.150737\pi\)
\(180\) 1.96593 + 0.0274608i 0.146532 + 0.00204680i
\(181\) 3.57257i 0.265547i −0.991146 0.132773i \(-0.957612\pi\)
0.991146 0.132773i \(-0.0423883\pi\)
\(182\) −7.33005 + 6.10494i −0.543340 + 0.452528i
\(183\) 18.6716 + 18.9343i 1.38025 + 1.39966i
\(184\) 1.43530i 0.105812i
\(185\) 0.971210 + 1.68219i 0.0714048 + 0.123677i
\(186\) −5.58609 + 5.50861i −0.409592 + 0.403911i
\(187\) 10.8612 + 18.8121i 0.794246 + 1.37568i
\(188\) −8.04448 + 4.64448i −0.586704 + 0.338734i
\(189\) 12.9227 + 4.69073i 0.939991 + 0.341200i
\(190\) 4.27267i 0.309972i
\(191\) 5.22709 + 3.01786i 0.378219 + 0.218365i 0.677043 0.735943i \(-0.263261\pi\)
−0.298824 + 0.954308i \(0.596594\pi\)
\(192\) −1.66986 0.459961i −0.120512 0.0331948i
\(193\) −20.2555 + 11.6945i −1.45802 + 0.841791i −0.998914 0.0465881i \(-0.985165\pi\)
−0.459111 + 0.888379i \(0.651832\pi\)
\(194\) −8.57395 14.8505i −0.615574 1.06620i
\(195\) −3.60906 + 1.93023i −0.258450 + 0.138227i
\(196\) 4.26126 5.55353i 0.304375 0.396681i
\(197\) −7.90007 + 13.6833i −0.562857 + 0.974896i 0.434389 + 0.900725i \(0.356964\pi\)
−0.997246 + 0.0741708i \(0.976369\pi\)
\(198\) −0.129604 + 9.27839i −0.00921052 + 0.659386i
\(199\) 24.5006i 1.73680i −0.495863 0.868401i \(-0.665148\pi\)
0.495863 0.868401i \(-0.334852\pi\)
\(200\) −2.28524 + 3.95816i −0.161591 + 0.279884i
\(201\) −6.69838 + 1.74478i −0.472468 + 0.123067i
\(202\) −3.72432 6.45070i −0.262042 0.453870i
\(203\) 11.8609 + 0.777327i 0.832475 + 0.0545577i
\(204\) −11.7272 3.23023i −0.821065 0.226161i
\(205\) 5.69113 0.397486
\(206\) −15.3456 + 8.85976i −1.06918 + 0.617289i
\(207\) −2.20483 + 3.69859i −0.153246 + 0.257070i
\(208\) 3.50535 0.844105i 0.243052 0.0585282i
\(209\) 20.1653 1.39486
\(210\) 2.27176 1.96441i 0.156766 0.135557i
\(211\) −5.93332 + 10.2768i −0.408467 + 0.707485i −0.994718 0.102644i \(-0.967270\pi\)
0.586251 + 0.810129i \(0.300603\pi\)
\(212\) 9.68544 + 5.59189i 0.665198 + 0.384053i
\(213\) −0.409979 1.57395i −0.0280913 0.107845i
\(214\) 17.5930i 1.20263i
\(215\) −0.0431603 0.0249186i −0.00294351 0.00169943i
\(216\) −3.59645 3.75040i −0.244708 0.255183i
\(217\) −0.783707 + 11.9583i −0.0532015 + 0.811781i
\(218\) −8.31249 4.79922i −0.562993 0.325044i
\(219\) 13.4338 13.2475i 0.907772 0.895181i
\(220\) 1.75555 + 1.01357i 0.118359 + 0.0683347i
\(221\) 24.6175 5.92801i 1.65595 0.398761i
\(222\) 1.36325 4.94919i 0.0914952 0.332168i
\(223\) 11.4114 19.7652i 0.764166 1.32358i −0.176520 0.984297i \(-0.556484\pi\)
0.940686 0.339278i \(-0.110183\pi\)
\(224\) −2.37289 + 1.17020i −0.158546 + 0.0781874i
\(225\) −11.9691 + 6.68921i −0.797938 + 0.445947i
\(226\) −2.25506 + 1.30196i −0.150005 + 0.0866052i
\(227\) 10.6843i 0.709140i 0.935029 + 0.354570i \(0.115373\pi\)
−0.935029 + 0.354570i \(0.884627\pi\)
\(228\) −8.04022 + 7.92869i −0.532476 + 0.525091i
\(229\) 1.86852 + 3.23637i 0.123475 + 0.213865i 0.921136 0.389241i \(-0.127263\pi\)
−0.797661 + 0.603106i \(0.793929\pi\)
\(230\) 0.470330 + 0.814635i 0.0310126 + 0.0537154i
\(231\) 9.27122 + 10.7218i 0.610001 + 0.705442i
\(232\) −3.89073 2.24631i −0.255439 0.147478i
\(233\) −7.73067 + 4.46331i −0.506453 + 0.292401i −0.731375 0.681976i \(-0.761121\pi\)
0.224921 + 0.974377i \(0.427788\pi\)
\(234\) 10.3295 + 3.20956i 0.675261 + 0.209816i
\(235\) −3.04387 + 5.27214i −0.198560 + 0.343917i
\(236\) 7.07861i 0.460778i
\(237\) 1.22415 + 4.69963i 0.0795171 + 0.305274i
\(238\) −16.6644 + 8.21813i −1.08020 + 0.532702i
\(239\) 2.27619 0.147234 0.0736172 0.997287i \(-0.476546\pi\)
0.0736172 + 0.997287i \(0.476546\pi\)
\(240\) −1.09849 + 0.286132i −0.0709070 + 0.0184697i
\(241\) −4.13240 −0.266191 −0.133096 0.991103i \(-0.542492\pi\)
−0.133096 + 0.991103i \(0.542492\pi\)
\(242\) 0.716375 1.24080i 0.0460503 0.0797615i
\(243\) −3.50646 15.1890i −0.224939 0.974373i
\(244\) −13.2960 7.67646i −0.851191 0.491435i
\(245\) 0.598743 4.54838i 0.0382523 0.290585i
\(246\) −10.5609 10.7095i −0.673339 0.682810i
\(247\) 6.66064 22.5428i 0.423807 1.43436i
\(248\) 2.26475 3.92266i 0.143812 0.249089i
\(249\) 3.33051 12.0912i 0.211063 0.766251i
\(250\) 6.27225i 0.396692i
\(251\) 3.75716 + 6.50759i 0.237150 + 0.410756i 0.959895 0.280359i \(-0.0904534\pi\)
−0.722745 + 0.691114i \(0.757120\pi\)
\(252\) −7.91224 0.629640i −0.498424 0.0396636i
\(253\) −3.84474 + 2.21976i −0.241717 + 0.139555i
\(254\) −3.11947 + 5.40309i −0.195733 + 0.339020i
\(255\) −7.71449 + 2.00946i −0.483100 + 0.125837i
\(256\) 1.00000 0.0625000
\(257\) −25.2022 −1.57207 −0.786034 0.618184i \(-0.787869\pi\)
−0.786034 + 0.618184i \(0.787869\pi\)
\(258\) 0.0332002 + 0.127459i 0.00206696 + 0.00793524i
\(259\) −3.46829 7.03287i −0.215509 0.437001i
\(260\) 1.71293 1.62775i 0.106231 0.100949i
\(261\) −6.57526 11.7652i −0.406999 0.728246i
\(262\) −1.86046 3.22241i −0.114940 0.199081i
\(263\) −17.2636 + 9.96713i −1.06452 + 0.614600i −0.926679 0.375855i \(-0.877349\pi\)
−0.137839 + 0.990455i \(0.544016\pi\)
\(264\) −1.35042 5.18441i −0.0831129 0.319078i
\(265\) 7.32956 0.450251
\(266\) −1.12801 + 17.2119i −0.0691628 + 1.05533i
\(267\) −5.02719 + 18.2509i −0.307659 + 1.11694i
\(268\) 3.46095 1.99818i 0.211411 0.122058i
\(269\) 20.2140 1.23247 0.616235 0.787562i \(-0.288657\pi\)
0.616235 + 0.787562i \(0.288657\pi\)
\(270\) −3.27020 0.950106i −0.199018 0.0578216i
\(271\) −26.4526 −1.60688 −0.803442 0.595383i \(-0.797000\pi\)
−0.803442 + 0.595383i \(0.797000\pi\)
\(272\) 7.02284 0.425822
\(273\) 15.0482 6.82287i 0.910759 0.412939i
\(274\) 6.92624 0.418429
\(275\) −14.1370 −0.852490
\(276\) 0.660182 2.39676i 0.0397383 0.144268i
\(277\) 3.36980 0.202472 0.101236 0.994862i \(-0.467720\pi\)
0.101236 + 0.994862i \(0.467720\pi\)
\(278\) −2.27775 + 1.31506i −0.136610 + 0.0788719i
\(279\) 11.8617 6.62923i 0.710144 0.396881i
\(280\) −0.963325 + 1.44174i −0.0575697 + 0.0861604i
\(281\) −20.1579 −1.20252 −0.601259 0.799055i \(-0.705334\pi\)
−0.601259 + 0.799055i \(0.705334\pi\)
\(282\) 15.5694 4.05550i 0.927147 0.241501i
\(283\) 5.52469 3.18968i 0.328409 0.189607i −0.326726 0.945119i \(-0.605945\pi\)
0.655134 + 0.755512i \(0.272612\pi\)
\(284\) 0.469521 + 0.813235i 0.0278610 + 0.0482566i
\(285\) −1.96526 + 7.13477i −0.116412 + 0.422627i
\(286\) 7.68230 + 8.08434i 0.454264 + 0.478037i
\(287\) −22.9260 1.50249i −1.35328 0.0886895i
\(288\) 2.57687 + 1.53614i 0.151844 + 0.0905180i
\(289\) 32.3202 1.90119
\(290\) −2.94435 −0.172898
\(291\) 7.48665 + 28.7420i 0.438875 + 1.68488i
\(292\) −5.44642 + 9.43348i −0.318728 + 0.552053i
\(293\) −5.30689 + 3.06394i −0.310032 + 0.178997i −0.646941 0.762540i \(-0.723952\pi\)
0.336909 + 0.941537i \(0.390619\pi\)
\(294\) −9.67011 + 7.31361i −0.563972 + 0.426539i
\(295\) 2.31957 + 4.01761i 0.135050 + 0.233914i
\(296\) 2.96384i 0.172269i
\(297\) 4.48411 15.4340i 0.260195 0.895572i
\(298\) 3.03198 5.25155i 0.175638 0.304214i
\(299\) 1.21155 + 5.03124i 0.0700655 + 0.290964i
\(300\) 5.63663 5.55845i 0.325431 0.320917i
\(301\) 0.167287 + 0.111776i 0.00964225 + 0.00644265i
\(302\) −0.715824 0.413281i −0.0411911 0.0237817i
\(303\) 3.25202 + 12.4848i 0.186824 + 0.717234i
\(304\) 3.25972 5.64600i 0.186958 0.323820i
\(305\) −10.0619 −0.576143
\(306\) 18.0969 + 10.7881i 1.03453 + 0.616713i
\(307\) 5.38161 0.307145 0.153572 0.988137i \(-0.450922\pi\)
0.153572 + 0.988137i \(0.450922\pi\)
\(308\) −6.80442 4.54650i −0.387718 0.259061i
\(309\) 29.7001 7.73622i 1.68958 0.440098i
\(310\) 2.96852i 0.168600i
\(311\) −3.15077 + 5.45729i −0.178664 + 0.309454i −0.941423 0.337228i \(-0.890511\pi\)
0.762759 + 0.646682i \(0.223844\pi\)
\(312\) −6.24170 0.202785i −0.353367 0.0114805i
\(313\) −9.08951 + 5.24783i −0.513770 + 0.296625i −0.734382 0.678737i \(-0.762528\pi\)
0.220612 + 0.975362i \(0.429194\pi\)
\(314\) 5.69728 + 3.28932i 0.321516 + 0.185627i
\(315\) −4.69708 + 2.23537i −0.264650 + 0.125949i
\(316\) −1.40194 2.42822i −0.0788651 0.136598i
\(317\) −0.443737 0.768575i −0.0249227 0.0431674i 0.853295 0.521428i \(-0.174601\pi\)
−0.878218 + 0.478261i \(0.841267\pi\)
\(318\) −13.6013 13.7926i −0.762722 0.773451i
\(319\) 13.8961i 0.778035i
\(320\) 0.567570 0.327687i 0.0317282 0.0183183i
\(321\) −8.09208 + 29.3778i −0.451656 + 1.63971i
\(322\) −1.67959 3.40582i −0.0936001 0.189799i
\(323\) 22.8925 39.6509i 1.27377 2.20624i
\(324\) 4.28054 + 7.91688i 0.237808 + 0.439827i
\(325\) −4.66948 + 15.8037i −0.259016 + 0.876632i
\(326\) 3.86463 + 2.23125i 0.214042 + 0.123577i
\(327\) 11.6732 + 11.8374i 0.645532 + 0.654612i
\(328\) 7.52039 + 4.34190i 0.415244 + 0.239741i
\(329\) 13.6537 20.4345i 0.752754 1.12659i
\(330\) −2.46532 2.50000i −0.135712 0.137621i
\(331\) 16.7252 + 9.65631i 0.919301 + 0.530759i 0.883412 0.468597i \(-0.155240\pi\)
0.0358889 + 0.999356i \(0.488574\pi\)
\(332\) 7.24087i 0.397394i
\(333\) −4.55287 + 7.63743i −0.249496 + 0.418528i
\(334\) −1.12359 0.648707i −0.0614803 0.0354957i
\(335\) 1.30955 2.26821i 0.0715486 0.123926i
\(336\) 4.50065 0.862636i 0.245531 0.0470607i
\(337\) −1.76473 −0.0961307 −0.0480654 0.998844i \(-0.515306\pi\)
−0.0480654 + 0.998844i \(0.515306\pi\)
\(338\) 11.5750 5.91777i 0.629596 0.321884i
\(339\) 4.36449 1.13685i 0.237047 0.0617454i
\(340\) 3.98595 2.30129i 0.216169 0.124805i
\(341\) 14.0102 0.758694
\(342\) 17.0729 9.54163i 0.923198 0.515952i
\(343\) −3.61276 + 18.1645i −0.195071 + 0.980789i
\(344\) −0.0380219 0.0658559i −0.00205001 0.00355071i
\(345\) −0.410685 1.57666i −0.0221106 0.0848845i
\(346\) 6.33267 10.9685i 0.340446 0.589670i
\(347\) 22.7100i 1.21914i −0.792733 0.609569i \(-0.791343\pi\)
0.792733 0.609569i \(-0.208657\pi\)
\(348\) 5.46376 + 5.54062i 0.292889 + 0.297008i
\(349\) −0.756268 + 1.30990i −0.0404821 + 0.0701171i −0.885557 0.464532i \(-0.846223\pi\)
0.845074 + 0.534649i \(0.179556\pi\)
\(350\) 0.790798 12.0665i 0.0422699 0.644981i
\(351\) −15.7726 10.1107i −0.841877 0.539669i
\(352\) 1.54655 + 2.67870i 0.0824313 + 0.142775i
\(353\) −28.2367 + 16.3025i −1.50289 + 0.867692i −0.502892 + 0.864349i \(0.667731\pi\)
−0.999994 + 0.00334317i \(0.998936\pi\)
\(354\) 3.25588 11.8203i 0.173048 0.628241i
\(355\) 0.532973 + 0.307712i 0.0282873 + 0.0163317i
\(356\) 10.9296i 0.579268i
\(357\) 31.6073 6.05815i 1.67284 0.320631i
\(358\) 12.5760 7.26077i 0.664664 0.383744i
\(359\) 3.19150 + 5.52784i 0.168441 + 0.291748i 0.937872 0.346982i \(-0.112793\pi\)
−0.769431 + 0.638730i \(0.779460\pi\)
\(360\) 1.96593 + 0.0274608i 0.103614 + 0.00144731i
\(361\) −11.7515 20.3543i −0.618502 1.07128i
\(362\) 3.57257i 0.187770i
\(363\) −1.76696 + 1.74246i −0.0927416 + 0.0914552i
\(364\) −7.33005 + 6.10494i −0.384199 + 0.319986i
\(365\) 7.13889i 0.373666i
\(366\) 18.6716 + 18.9343i 0.975982 + 0.989710i
\(367\) −10.4124 + 6.01163i −0.543525 + 0.313804i −0.746506 0.665378i \(-0.768270\pi\)
0.202981 + 0.979183i \(0.434937\pi\)
\(368\) 1.43530i 0.0748203i
\(369\) 12.7093 + 22.7409i 0.661620 + 1.18384i
\(370\) 0.971210 + 1.68219i 0.0504908 + 0.0874527i
\(371\) −29.5262 1.93505i −1.53292 0.100463i
\(372\) −5.58609 + 5.50861i −0.289625 + 0.285608i
\(373\) 10.8556 18.8024i 0.562081 0.973553i −0.435234 0.900317i \(-0.643334\pi\)
0.997315 0.0732353i \(-0.0233324\pi\)
\(374\) 10.8612 + 18.8121i 0.561617 + 0.972749i
\(375\) 2.88499 10.4738i 0.148980 0.540864i
\(376\) −8.04448 + 4.64448i −0.414863 + 0.239521i
\(377\) −15.5345 4.58994i −0.800068 0.236394i
\(378\) 12.9227 + 4.69073i 0.664674 + 0.241265i
\(379\) −2.54234 1.46782i −0.130591 0.0753970i 0.433281 0.901259i \(-0.357356\pi\)
−0.563873 + 0.825862i \(0.690689\pi\)
\(380\) 4.27267i 0.219183i
\(381\) 7.69429 7.58757i 0.394191 0.388723i
\(382\) 5.22709 + 3.01786i 0.267441 + 0.154407i
\(383\) 26.1275 + 15.0847i 1.33505 + 0.770793i 0.986069 0.166335i \(-0.0531934\pi\)
0.348984 + 0.937129i \(0.386527\pi\)
\(384\) −1.66986 0.459961i −0.0852147 0.0234723i
\(385\) −5.35181 0.350741i −0.272754 0.0178754i
\(386\) −20.2555 + 11.6945i −1.03098 + 0.595236i
\(387\) 0.00318631 0.228109i 0.000161969 0.0115955i
\(388\) −8.57395 14.8505i −0.435276 0.753921i
\(389\) −19.1621 11.0633i −0.971559 0.560930i −0.0718481 0.997416i \(-0.522890\pi\)
−0.899711 + 0.436485i \(0.856223\pi\)
\(390\) −3.60906 + 1.93023i −0.182752 + 0.0977410i
\(391\) 10.0799i 0.509762i
\(392\) 4.26126 5.55353i 0.215226 0.280496i
\(393\) 1.62453 + 6.23671i 0.0819465 + 0.314601i
\(394\) −7.90007 + 13.6833i −0.398000 + 0.689356i
\(395\) −1.59139 0.918792i −0.0800718 0.0462295i
\(396\) −0.129604 + 9.27839i −0.00651282 + 0.466256i
\(397\) 6.54053 11.3285i 0.328260 0.568562i −0.653907 0.756575i \(-0.726871\pi\)
0.982167 + 0.188013i \(0.0602046\pi\)
\(398\) 24.5006i 1.22810i
\(399\) 9.80042 28.2226i 0.490634 1.41290i
\(400\) −2.28524 + 3.95816i −0.114262 + 0.197908i
\(401\) −6.92658 −0.345897 −0.172948 0.984931i \(-0.555329\pi\)
−0.172948 + 0.984931i \(0.555329\pi\)
\(402\) −6.69838 + 1.74478i −0.334085 + 0.0870218i
\(403\) 4.62761 15.6620i 0.230517 0.780180i
\(404\) −3.72432 6.45070i −0.185292 0.320934i
\(405\) 5.02377 + 3.09071i 0.249633 + 0.153579i
\(406\) 11.8609 + 0.777327i 0.588648 + 0.0385781i
\(407\) −7.93923 + 4.58372i −0.393533 + 0.227206i
\(408\) −11.7272 3.23023i −0.580581 0.159920i
\(409\) 32.6793 1.61589 0.807944 0.589260i \(-0.200580\pi\)
0.807944 + 0.589260i \(0.200580\pi\)
\(410\) 5.69113 0.281065
\(411\) −11.5659 3.18580i −0.570501 0.157144i
\(412\) −15.3456 + 8.85976i −0.756021 + 0.436489i
\(413\) −8.28340 16.7968i −0.407599 0.826516i
\(414\) −2.20483 + 3.69859i −0.108361 + 0.181776i
\(415\) 2.37274 + 4.10970i 0.116473 + 0.201737i
\(416\) 3.50535 0.844105i 0.171864 0.0413857i
\(417\) 4.40839 1.14829i 0.215880 0.0562319i
\(418\) 20.1653 0.986315
\(419\) −3.98319 + 6.89908i −0.194591 + 0.337042i −0.946766 0.321921i \(-0.895671\pi\)
0.752175 + 0.658963i \(0.229005\pi\)
\(420\) 2.27176 1.96441i 0.110851 0.0958535i
\(421\) 14.1689i 0.690552i 0.938501 + 0.345276i \(0.112215\pi\)
−0.938501 + 0.345276i \(0.887785\pi\)
\(422\) −5.93332 + 10.2768i −0.288830 + 0.500268i
\(423\) −27.8642 0.389216i −1.35480 0.0189243i
\(424\) 9.68544 + 5.59189i 0.470366 + 0.271566i
\(425\) −16.0489 + 27.7975i −0.778485 + 1.34838i
\(426\) −0.409979 1.57395i −0.0198636 0.0762582i
\(427\) 40.5331 + 2.65641i 1.96153 + 0.128552i
\(428\) 17.5930i 0.850389i
\(429\) −9.10990 17.0333i −0.439830 0.822374i
\(430\) −0.0431603 0.0249186i −0.00208137 0.00120168i
\(431\) 12.9721 + 22.4684i 0.624845 + 1.08226i 0.988571 + 0.150758i \(0.0481713\pi\)
−0.363725 + 0.931506i \(0.618495\pi\)
\(432\) −3.59645 3.75040i −0.173034 0.180441i
\(433\) −14.7383 + 8.50919i −0.708280 + 0.408925i −0.810424 0.585844i \(-0.800763\pi\)
0.102144 + 0.994770i \(0.467430\pi\)
\(434\) −0.783707 + 11.9583i −0.0376191 + 0.574016i
\(435\) 4.91666 + 1.35429i 0.235736 + 0.0649331i
\(436\) −8.31249 4.79922i −0.398096 0.229841i
\(437\) 8.10372 + 4.67868i 0.387653 + 0.223812i
\(438\) 13.4338 13.2475i 0.641892 0.632988i
\(439\) 29.6229i 1.41382i −0.707301 0.706912i \(-0.750087\pi\)
0.707301 0.706912i \(-0.249913\pi\)
\(440\) 1.75555 + 1.01357i 0.0836926 + 0.0483199i
\(441\) 19.5117 7.76485i 0.929129 0.369755i
\(442\) 24.6175 5.92801i 1.17094 0.281967i
\(443\) 15.3962 8.88898i 0.731494 0.422328i −0.0874748 0.996167i \(-0.527880\pi\)
0.818968 + 0.573839i \(0.194546\pi\)
\(444\) 1.36325 4.94919i 0.0646969 0.234878i
\(445\) −3.58149 6.20333i −0.169779 0.294066i
\(446\) 11.4114 19.7652i 0.540347 0.935909i
\(447\) −7.47850 + 7.37476i −0.353721 + 0.348814i
\(448\) −2.37289 + 1.17020i −0.112109 + 0.0552868i
\(449\) −11.2383 19.4653i −0.530369 0.918626i −0.999372 0.0354297i \(-0.988720\pi\)
0.469003 0.883197i \(-0.344613\pi\)
\(450\) −11.9691 + 6.68921i −0.564227 + 0.315332i
\(451\) 26.8598i 1.26478i
\(452\) −2.25506 + 1.30196i −0.106069 + 0.0612391i
\(453\) 1.00523 + 1.01937i 0.0472300 + 0.0478943i
\(454\) 10.6843i 0.501438i
\(455\) −2.15981 + 5.86695i −0.101254 + 0.275047i
\(456\) −8.04022 + 7.92869i −0.376518 + 0.371295i
\(457\) 26.4676i 1.23810i 0.785350 + 0.619051i \(0.212483\pi\)
−0.785350 + 0.619051i \(0.787517\pi\)
\(458\) 1.86852 + 3.23637i 0.0873101 + 0.151226i
\(459\) −25.2573 26.3385i −1.17891 1.22937i
\(460\) 0.470330 + 0.814635i 0.0219292 + 0.0379826i
\(461\) 6.02929 3.48101i 0.280812 0.162127i −0.352979 0.935631i \(-0.614831\pi\)
0.633791 + 0.773504i \(0.281498\pi\)
\(462\) 9.27122 + 10.7218i 0.431336 + 0.498823i
\(463\) 10.3837i 0.482572i −0.970454 0.241286i \(-0.922431\pi\)
0.970454 0.241286i \(-0.0775692\pi\)
\(464\) −3.89073 2.24631i −0.180623 0.104283i
\(465\) −1.36540 + 4.95701i −0.0633190 + 0.229876i
\(466\) −7.73067 + 4.46331i −0.358117 + 0.206759i
\(467\) −11.7463 20.3453i −0.543556 0.941467i −0.998696 0.0510470i \(-0.983744\pi\)
0.455140 0.890420i \(-0.349589\pi\)
\(468\) 10.3295 + 3.20956i 0.477482 + 0.148362i
\(469\) −5.87419 + 8.79147i −0.271245 + 0.405953i
\(470\) −3.04387 + 5.27214i −0.140403 + 0.243186i
\(471\) −8.00070 8.11324i −0.368653 0.373838i
\(472\) 7.07861i 0.325819i
\(473\) 0.117606 0.203699i 0.00540751 0.00936608i
\(474\) 1.22415 + 4.69963i 0.0562271 + 0.215861i
\(475\) 14.8985 + 25.8050i 0.683590 + 1.18401i
\(476\) −16.6644 + 8.21813i −0.763814 + 0.376678i
\(477\) 16.3682 + 29.2878i 0.749449 + 1.34100i
\(478\) 2.27619 0.104110
\(479\) −7.41327 + 4.28005i −0.338721 + 0.195561i −0.659706 0.751524i \(-0.729319\pi\)
0.320985 + 0.947084i \(0.395986\pi\)
\(480\) −1.09849 + 0.286132i −0.0501388 + 0.0130601i
\(481\) 2.50179 + 10.3893i 0.114072 + 0.473711i
\(482\) −4.13240 −0.188226
\(483\) 1.23814 + 6.45979i 0.0563375 + 0.293931i
\(484\) 0.716375 1.24080i 0.0325625 0.0563999i
\(485\) −9.73264 5.61914i −0.441936 0.255152i
\(486\) −3.50646 15.1890i −0.159056 0.688986i
\(487\) 17.5739i 0.796348i 0.917310 + 0.398174i \(0.130356\pi\)
−0.917310 + 0.398174i \(0.869644\pi\)
\(488\) −13.2960 7.67646i −0.601883 0.347497i
\(489\) −5.42711 5.50345i −0.245422 0.248875i
\(490\) 0.598743 4.54838i 0.0270485 0.205475i
\(491\) 7.73222 + 4.46420i 0.348950 + 0.201467i 0.664223 0.747535i \(-0.268763\pi\)
−0.315273 + 0.949001i \(0.602096\pi\)
\(492\) −10.5609 10.7095i −0.476122 0.482819i
\(493\) −27.3240 15.7755i −1.23061 0.710493i
\(494\) 6.66064 22.5428i 0.299677 1.01425i
\(495\) 2.96685 + 5.30861i 0.133350 + 0.238604i
\(496\) 2.26475 3.92266i 0.101690 0.176133i
\(497\) −2.06577 1.38029i −0.0926626 0.0619143i
\(498\) 3.33051 12.0912i 0.149244 0.541822i
\(499\) −8.26926 + 4.77426i −0.370183 + 0.213725i −0.673538 0.739152i \(-0.735226\pi\)
0.303355 + 0.952877i \(0.401893\pi\)
\(500\) 6.27225i 0.280503i
\(501\) 1.57787 + 1.60006i 0.0704938 + 0.0714854i
\(502\) 3.75716 + 6.50759i 0.167690 + 0.290448i
\(503\) −12.4146 21.5027i −0.553539 0.958757i −0.998016 0.0629667i \(-0.979944\pi\)
0.444477 0.895790i \(-0.353390\pi\)
\(504\) −7.91224 0.629640i −0.352439 0.0280464i
\(505\) −4.22762 2.44082i −0.188127 0.108615i
\(506\) −3.84474 + 2.21976i −0.170920 + 0.0986806i
\(507\) −22.0505 + 4.55782i −0.979299 + 0.202420i
\(508\) −3.11947 + 5.40309i −0.138404 + 0.239723i
\(509\) 14.4428i 0.640168i −0.947389 0.320084i \(-0.896289\pi\)
0.947389 0.320084i \(-0.103711\pi\)
\(510\) −7.71449 + 2.00946i −0.341603 + 0.0889802i
\(511\) 1.88471 28.7581i 0.0833747 1.27218i
\(512\) 1.00000 0.0441942
\(513\) −32.8982 + 8.08032i −1.45249 + 0.356755i
\(514\) −25.2022 −1.11162
\(515\) −5.80646 + 10.0571i −0.255863 + 0.443168i
\(516\) 0.0332002 + 0.127459i 0.00146156 + 0.00561106i
\(517\) −24.8824 14.3658i −1.09433 0.631809i
\(518\) −3.46829 7.03287i −0.152388 0.309007i
\(519\) −15.6197 + 15.4031i −0.685631 + 0.676121i
\(520\) 1.71293 1.62775i 0.0751170 0.0713814i
\(521\) −15.0954 + 26.1460i −0.661341 + 1.14548i 0.318923 + 0.947781i \(0.396679\pi\)
−0.980264 + 0.197695i \(0.936654\pi\)
\(522\) −6.57526 11.7652i −0.287791 0.514948i
\(523\) 15.5942i 0.681887i −0.940084 0.340944i \(-0.889253\pi\)
0.940084 0.340944i \(-0.110747\pi\)
\(524\) −1.86046 3.22241i −0.0812745 0.140772i
\(525\) −6.87063 + 19.7856i −0.299859 + 0.863515i
\(526\) −17.2636 + 9.96713i −0.752728 + 0.434588i
\(527\) 15.9050 27.5482i 0.692831 1.20002i
\(528\) −1.35042 5.18441i −0.0587697 0.225622i
\(529\) 20.9399 0.910431
\(530\) 7.32956 0.318376
\(531\) −10.8737 + 18.2407i −0.471880 + 0.791578i
\(532\) −1.12801 + 17.2119i −0.0489055 + 0.746230i
\(533\) 30.0266 + 8.87188i 1.30060 + 0.384284i
\(534\) −5.02719 + 18.2509i −0.217548 + 0.789795i
\(535\) −5.76499 9.98526i −0.249242 0.431700i
\(536\) 3.46095 1.99818i 0.149490 0.0863082i
\(537\) −24.3399 + 6.34000i −1.05034 + 0.273591i
\(538\) 20.2140 0.871488
\(539\) 21.4665 + 2.82582i 0.924627 + 0.121717i
\(540\) −3.27020 0.950106i −0.140727 0.0408861i
\(541\) −36.0971 + 20.8407i −1.55194 + 0.896011i −0.553953 + 0.832548i \(0.686881\pi\)
−0.997984 + 0.0634632i \(0.979785\pi\)
\(542\) −26.4526 −1.13624
\(543\) −1.64324 + 5.96569i −0.0705182 + 0.256012i
\(544\) 7.02284 0.301102
\(545\) −6.29056 −0.269458
\(546\) 15.0482 6.82287i 0.644004 0.291992i
\(547\) −0.933149 −0.0398986 −0.0199493 0.999801i \(-0.506350\pi\)
−0.0199493 + 0.999801i \(0.506350\pi\)
\(548\) 6.92624 0.295874
\(549\) −22.4700 40.2058i −0.958997 1.71594i
\(550\) −14.1370 −0.602802
\(551\) −25.3654 + 14.6447i −1.08060 + 0.623886i
\(552\) 0.660182 2.39676i 0.0280992 0.102013i
\(553\) 6.16816 + 4.12137i 0.262297 + 0.175259i
\(554\) 3.36980 0.143169
\(555\) −0.848047 3.25574i −0.0359976 0.138198i
\(556\) −2.27775 + 1.31506i −0.0965979 + 0.0557708i
\(557\) 16.7603 + 29.0296i 0.710155 + 1.23002i 0.964799 + 0.262990i \(0.0847085\pi\)
−0.254644 + 0.967035i \(0.581958\pi\)
\(558\) 11.8617 6.62923i 0.502147 0.280638i
\(559\) −0.188870 0.198754i −0.00798833 0.00840638i
\(560\) −0.963325 + 1.44174i −0.0407079 + 0.0609246i
\(561\) −9.48381 36.4093i −0.400407 1.53720i
\(562\) −20.1579 −0.850308
\(563\) −3.86351 −0.162828 −0.0814138 0.996680i \(-0.525944\pi\)
−0.0814138 + 0.996680i \(0.525944\pi\)
\(564\) 15.5694 4.05550i 0.655592 0.170767i
\(565\) −0.853271 + 1.47791i −0.0358974 + 0.0621761i
\(566\) 5.52469 3.18968i 0.232220 0.134072i
\(567\) −19.4216 13.7768i −0.815631 0.578572i
\(568\) 0.469521 + 0.813235i 0.0197007 + 0.0341226i
\(569\) 26.9233i 1.12868i −0.825541 0.564342i \(-0.809130\pi\)
0.825541 0.564342i \(-0.190870\pi\)
\(570\) −1.96526 + 7.13477i −0.0823157 + 0.298842i
\(571\) 5.20460 9.01463i 0.217806 0.377250i −0.736331 0.676621i \(-0.763443\pi\)
0.954137 + 0.299371i \(0.0967768\pi\)
\(572\) 7.68230 + 8.08434i 0.321213 + 0.338023i
\(573\) −7.34042 7.44367i −0.306651 0.310964i
\(574\) −22.9260 1.50249i −0.956912 0.0627129i
\(575\) −5.68115 3.28001i −0.236920 0.136786i
\(576\) 2.57687 + 1.53614i 0.107370 + 0.0640059i
\(577\) −10.2980 + 17.8366i −0.428711 + 0.742549i −0.996759 0.0804462i \(-0.974365\pi\)
0.568048 + 0.822995i \(0.307699\pi\)
\(578\) 32.3202 1.34434
\(579\) 39.2029 10.2115i 1.62922 0.424376i
\(580\) −2.94435 −0.122258
\(581\) −8.47328 17.1818i −0.351531 0.712822i
\(582\) 7.48665 + 28.7420i 0.310332 + 1.19139i
\(583\) 34.5925i 1.43268i
\(584\) −5.44642 + 9.43348i −0.225375 + 0.390360i
\(585\) 6.91445 1.56319i 0.285878 0.0646300i
\(586\) −5.30689 + 3.06394i −0.219226 + 0.126570i
\(587\) 23.7246 + 13.6974i 0.979217 + 0.565351i 0.902034 0.431666i \(-0.142074\pi\)
0.0771834 + 0.997017i \(0.475407\pi\)
\(588\) −9.67011 + 7.31361i −0.398789 + 0.301608i
\(589\) −14.7649 25.5736i −0.608377 1.05374i
\(590\) 2.31957 + 4.01761i 0.0954951 + 0.165402i
\(591\) 19.4858 19.2155i 0.801539 0.790421i
\(592\) 2.96384i 0.121813i
\(593\) 11.0590 6.38494i 0.454141 0.262198i −0.255437 0.966826i \(-0.582219\pi\)
0.709577 + 0.704628i \(0.248886\pi\)
\(594\) 4.48411 15.4340i 0.183985 0.633265i
\(595\) −6.76527 + 10.1251i −0.277349 + 0.415088i
\(596\) 3.03198 5.25155i 0.124195 0.215112i
\(597\) −11.2693 + 40.9126i −0.461222 + 1.67444i
\(598\) 1.21155 + 5.03124i 0.0495438 + 0.205743i
\(599\) −29.5140 17.0399i −1.20591 0.696231i −0.244045 0.969764i \(-0.578475\pi\)
−0.961863 + 0.273533i \(0.911808\pi\)
\(600\) 5.63663 5.55845i 0.230115 0.226923i
\(601\) −33.7422 19.4811i −1.37637 0.794649i −0.384652 0.923062i \(-0.625678\pi\)
−0.991721 + 0.128413i \(0.959012\pi\)
\(602\) 0.167287 + 0.111776i 0.00681810 + 0.00455564i
\(603\) 11.9879 + 0.167451i 0.488185 + 0.00681913i
\(604\) −0.715824 0.413281i −0.0291265 0.0168162i
\(605\) 0.938987i 0.0381752i
\(606\) 3.25202 + 12.4848i 0.132104 + 0.507161i
\(607\) −0.845852 0.488353i −0.0343321 0.0198216i 0.482736 0.875766i \(-0.339643\pi\)
−0.517068 + 0.855944i \(0.672976\pi\)
\(608\) 3.25972 5.64600i 0.132199 0.228976i
\(609\) −19.4486 6.75359i −0.788096 0.273669i
\(610\) −10.0619 −0.407395
\(611\) −24.2783 + 23.0709i −0.982195 + 0.933350i
\(612\) 18.0969 + 10.7881i 0.731526 + 0.436082i
\(613\) 5.04618 2.91341i 0.203813 0.117672i −0.394620 0.918845i \(-0.629124\pi\)
0.598433 + 0.801173i \(0.295790\pi\)
\(614\) 5.38161 0.217184
\(615\) −9.50340 2.61770i −0.383214 0.105556i
\(616\) −6.80442 4.54650i −0.274158 0.183184i
\(617\) −10.4203 18.0485i −0.419506 0.726606i 0.576384 0.817179i \(-0.304463\pi\)
−0.995890 + 0.0905731i \(0.971130\pi\)
\(618\) 29.7001 7.73622i 1.19471 0.311196i
\(619\) −3.21016 + 5.56015i −0.129027 + 0.223481i −0.923300 0.384080i \(-0.874519\pi\)
0.794273 + 0.607561i \(0.207852\pi\)
\(620\) 2.96852i 0.119219i
\(621\) 5.38296 5.16200i 0.216011 0.207144i
\(622\) −3.15077 + 5.45729i −0.126334 + 0.218817i
\(623\) 12.7899 + 25.9348i 0.512415 + 1.03906i
\(624\) −6.24170 0.202785i −0.249868 0.00811791i
\(625\) −9.37088 16.2308i −0.374835 0.649234i
\(626\) −9.08951 + 5.24783i −0.363290 + 0.209746i
\(627\) −33.6732 9.27523i −1.34478 0.370417i
\(628\) 5.69728 + 3.28932i 0.227346 + 0.131258i
\(629\) 20.8145i 0.829930i
\(630\) −4.69708 + 2.23537i −0.187136 + 0.0890594i
\(631\) −14.8774 + 8.58945i −0.592258 + 0.341941i −0.765990 0.642852i \(-0.777751\pi\)
0.173732 + 0.984793i \(0.444418\pi\)
\(632\) −1.40194 2.42822i −0.0557660 0.0965896i
\(633\) 14.6348 14.4318i 0.581679 0.573611i
\(634\) −0.443737 0.768575i −0.0176230 0.0305240i
\(635\) 4.08884i 0.162261i
\(636\) −13.6013 13.7926i −0.539326 0.546912i
\(637\) 10.2494 23.0640i 0.406097 0.913830i
\(638\) 13.8961i 0.550153i
\(639\) −0.0393467 + 2.81685i −0.00155653 + 0.111433i
\(640\) 0.567570 0.327687i 0.0224352 0.0129530i
\(641\) 21.8700i 0.863814i 0.901918 + 0.431907i \(0.142159\pi\)
−0.901918 + 0.431907i \(0.857841\pi\)
\(642\) −8.09208 + 29.3778i −0.319369 + 1.15945i
\(643\) 4.78089 + 8.28074i 0.188540 + 0.326561i 0.944764 0.327753i \(-0.106291\pi\)
−0.756224 + 0.654313i \(0.772958\pi\)
\(644\) −1.67959 3.40582i −0.0661852 0.134208i
\(645\) 0.0606101 + 0.0614626i 0.00238652 + 0.00242009i
\(646\) 22.8925 39.6509i 0.900692 1.56004i
\(647\) −16.3263 28.2780i −0.641854 1.11172i −0.985018 0.172449i \(-0.944832\pi\)
0.343164 0.939275i \(-0.388501\pi\)
\(648\) 4.28054 + 7.91688i 0.168156 + 0.311004i
\(649\) −18.9615 + 10.9474i −0.744303 + 0.429724i
\(650\) −4.66948 + 15.8037i −0.183152 + 0.619873i
\(651\) 6.80902 19.6082i 0.266867 0.768506i
\(652\) 3.86463 + 2.23125i 0.151351 + 0.0873823i
\(653\) 38.2820i 1.49809i 0.662519 + 0.749045i \(0.269487\pi\)
−0.662519 + 0.749045i \(0.730513\pi\)
\(654\) 11.6732 + 11.8374i 0.456460 + 0.462881i
\(655\) −2.11188 1.21930i −0.0825181 0.0476418i
\(656\) 7.52039 + 4.34190i 0.293622 + 0.169523i
\(657\) −28.5259 + 15.9424i −1.11290 + 0.621972i
\(658\) 13.6537 20.4345i 0.532278 0.796621i
\(659\) −4.16940 + 2.40720i −0.162417 + 0.0937713i −0.579005 0.815324i \(-0.696559\pi\)
0.416589 + 0.909095i \(0.363226\pi\)
\(660\) −2.46532 2.50000i −0.0959626 0.0973124i
\(661\) 6.39508 + 11.0766i 0.248740 + 0.430830i 0.963176 0.268870i \(-0.0866502\pi\)
−0.714437 + 0.699700i \(0.753317\pi\)
\(662\) 16.7252 + 9.65631i 0.650044 + 0.375303i
\(663\) −43.8345 1.42413i −1.70239 0.0553085i
\(664\) 7.24087i 0.281000i
\(665\) 4.99989 + 10.1386i 0.193887 + 0.393158i
\(666\) −4.55287 + 7.63743i −0.176420 + 0.295944i
\(667\) 3.22414 5.58437i 0.124839 0.216228i
\(668\) −1.12359 0.648707i −0.0434732 0.0250992i
\(669\) −28.1467 + 27.7563i −1.08822 + 1.07312i
\(670\) 1.30955 2.26821i 0.0505925 0.0876288i
\(671\) 47.4881i 1.83326i
\(672\) 4.50065 0.862636i 0.173616 0.0332769i
\(673\) 20.4148 35.3595i 0.786934 1.36301i −0.140903 0.990023i \(-0.545000\pi\)
0.927837 0.372986i \(-0.121666\pi\)
\(674\) −1.76473 −0.0679747
\(675\) 23.0634 5.66475i 0.887713 0.218036i
\(676\) 11.5750 5.91777i 0.445191 0.227607i
\(677\) 1.70470 + 2.95263i 0.0655169 + 0.113479i 0.896923 0.442186i \(-0.145797\pi\)
−0.831406 + 0.555665i \(0.812464\pi\)
\(678\) 4.36449 1.13685i 0.167617 0.0436606i
\(679\) 37.7232 + 25.2055i 1.44768 + 0.967297i
\(680\) 3.98595 2.30129i 0.152854 0.0882505i
\(681\) 4.91435 17.8413i 0.188318 0.683678i
\(682\) 14.0102 0.536478
\(683\) 6.61788 0.253226 0.126613 0.991952i \(-0.459589\pi\)
0.126613 + 0.991952i \(0.459589\pi\)
\(684\) 17.0729 9.54163i 0.652800 0.364833i
\(685\) 3.93113 2.26964i 0.150201 0.0867184i
\(686\) −3.61276 + 18.1645i −0.137936 + 0.693523i
\(687\) −1.63156 6.26373i −0.0622480 0.238976i
\(688\) −0.0380219 0.0658559i −0.00144957 0.00251073i
\(689\) 38.6710 + 11.4260i 1.47325 + 0.435296i
\(690\) −0.410685 1.57666i −0.0156345 0.0600224i
\(691\) 48.1215 1.83063 0.915313 0.402742i \(-0.131943\pi\)
0.915313 + 0.402742i \(0.131943\pi\)
\(692\) 6.33267 10.9685i 0.240732 0.416960i
\(693\) −10.5500 22.1683i −0.400763 0.842104i
\(694\) 22.7100i 0.862061i
\(695\) −0.861854 + 1.49277i −0.0326920 + 0.0566242i
\(696\) 5.46376 + 5.54062i 0.207103 + 0.210017i
\(697\) 52.8145 + 30.4924i 2.00049 + 1.15498i
\(698\) −0.756268 + 1.30990i −0.0286252 + 0.0495803i
\(699\) 14.9621 3.89730i 0.565919 0.147409i
\(700\) 0.790798 12.0665i 0.0298894 0.456070i
\(701\) 37.9458i 1.43319i −0.697487 0.716597i \(-0.745699\pi\)
0.697487 0.716597i \(-0.254301\pi\)
\(702\) −15.7726 10.1107i −0.595297 0.381603i
\(703\) 16.7338 + 9.66127i 0.631128 + 0.364382i
\(704\) 1.54655 + 2.67870i 0.0582877 + 0.100957i
\(705\) 7.50783 7.40369i 0.282761 0.278839i
\(706\) −28.2367 + 16.3025i −1.06270 + 0.613551i
\(707\) 16.3860 + 10.9486i 0.616260 + 0.411766i
\(708\) 3.25588 11.8203i 0.122364 0.444234i
\(709\) −11.1532 6.43929i −0.418867 0.241833i 0.275726 0.961236i \(-0.411082\pi\)
−0.694592 + 0.719404i \(0.744415\pi\)
\(710\) 0.532973 + 0.307712i 0.0200021 + 0.0115482i
\(711\) 0.117485 8.41080i 0.00440602 0.315429i
\(712\) 10.9296i 0.409605i
\(713\) 5.63021 + 3.25060i 0.210853 + 0.121736i
\(714\) 31.6073 6.05815i 1.18287 0.226721i
\(715\) 7.00938 + 2.07104i 0.262136 + 0.0774525i
\(716\) 12.5760 7.26077i 0.469988 0.271348i
\(717\) −3.80092 1.04696i −0.141948 0.0390993i
\(718\) 3.19150 + 5.52784i 0.119106 + 0.206297i
\(719\) −16.6678 + 28.8694i −0.621603 + 1.07665i 0.367584 + 0.929990i \(0.380185\pi\)
−0.989187 + 0.146658i \(0.953148\pi\)
\(720\) 1.96593 + 0.0274608i 0.0732659 + 0.00102340i
\(721\) 26.0457 38.9807i 0.969992 1.45172i
\(722\) −11.7515 20.3543i −0.437347 0.757508i
\(723\) 6.90053 + 1.90074i 0.256633 + 0.0706893i
\(724\) 3.57257i 0.132773i
\(725\) 17.7825 10.2667i 0.660427 0.381297i
\(726\) −1.76696 + 1.74246i −0.0655782 + 0.0646686i
\(727\) 3.84364i 0.142553i −0.997457 0.0712764i \(-0.977293\pi\)
0.997457 0.0712764i \(-0.0227072\pi\)
\(728\) −7.33005 + 6.10494i −0.271670 + 0.226264i
\(729\) −1.13103 + 26.9763i −0.0418900 + 0.999122i
\(730\) 7.13889i 0.264222i
\(731\) −0.267022 0.462495i −0.00987616 0.0171060i
\(732\) 18.6716 + 18.9343i 0.690124 + 0.699831i
\(733\) −21.0661 36.4875i −0.778093 1.34770i −0.933040 0.359773i \(-0.882854\pi\)
0.154947 0.987923i \(-0.450479\pi\)
\(734\) −10.4124 + 6.01163i −0.384330 + 0.221893i
\(735\) −3.09189 + 7.31976i −0.114046 + 0.269993i
\(736\) 1.43530i 0.0529059i
\(737\) 10.7050 + 6.18056i 0.394325 + 0.227664i
\(738\) 12.7093 + 22.7409i 0.467836 + 0.837104i
\(739\) −15.5624 + 8.98495i −0.572471 + 0.330517i −0.758136 0.652097i \(-0.773890\pi\)
0.185664 + 0.982613i \(0.440556\pi\)
\(740\) 0.971210 + 1.68219i 0.0357024 + 0.0618384i
\(741\) −21.4911 + 34.5796i −0.789497 + 1.27031i
\(742\) −29.5262 1.93505i −1.08394 0.0710379i
\(743\) −3.17479 + 5.49889i −0.116472 + 0.201735i −0.918367 0.395730i \(-0.870492\pi\)
0.801895 + 0.597464i \(0.203825\pi\)
\(744\) −5.58609 + 5.50861i −0.204796 + 0.201955i
\(745\) 3.97416i 0.145602i
\(746\) 10.8556 18.8024i 0.397451 0.688406i
\(747\) −11.1230 + 18.6588i −0.406969 + 0.682690i
\(748\) 10.8612 + 18.8121i 0.397123 + 0.687838i
\(749\) 20.5873 + 41.7463i 0.752245 + 1.52538i
\(750\) 2.88499 10.4738i 0.105345 0.382448i
\(751\) 31.4707 1.14838 0.574191 0.818721i \(-0.305317\pi\)
0.574191 + 0.818721i \(0.305317\pi\)
\(752\) −8.04448 + 4.64448i −0.293352 + 0.169367i
\(753\) −3.28070 12.5949i −0.119555 0.458985i
\(754\) −15.5345 4.58994i −0.565733 0.167156i
\(755\) −0.541708 −0.0197148
\(756\) 12.9227 + 4.69073i 0.469995 + 0.170600i
\(757\) −2.57146 + 4.45391i −0.0934614 + 0.161880i −0.908965 0.416871i \(-0.863127\pi\)
0.815504 + 0.578751i \(0.196460\pi\)
\(758\) −2.54234 1.46782i −0.0923421 0.0533137i
\(759\) 7.44119 1.93827i 0.270098 0.0703546i
\(760\) 4.27267i 0.154986i
\(761\) 6.50298 + 3.75450i 0.235733 + 0.136100i 0.613214 0.789917i \(-0.289876\pi\)
−0.377481 + 0.926017i \(0.623210\pi\)
\(762\) 7.69429 7.58757i 0.278735 0.274869i
\(763\) 25.3407 + 1.66075i 0.917395 + 0.0601231i
\(764\) 5.22709 + 3.01786i 0.189110 + 0.109183i
\(765\) 13.8064 + 0.192852i 0.499171 + 0.00697259i
\(766\) 26.1275 + 15.0847i 0.944025 + 0.545033i
\(767\) 5.97509 + 24.8130i 0.215748 + 0.895946i
\(768\) −1.66986 0.459961i −0.0602559 0.0165974i
\(769\) 12.5070 21.6627i 0.451013 0.781177i −0.547437 0.836847i \(-0.684396\pi\)
0.998449 + 0.0556704i \(0.0177296\pi\)
\(770\) −5.35181 0.350741i −0.192866 0.0126398i
\(771\) 42.0841 + 11.5920i 1.51562 + 0.417476i
\(772\) −20.2555 + 11.6945i −0.729012 + 0.420896i
\(773\) 13.2394i 0.476187i 0.971242 + 0.238093i \(0.0765224\pi\)
−0.971242 + 0.238093i \(0.923478\pi\)