Properties

Label 546.2.bi.f.17.14
Level $546$
Weight $2$
Character 546.17
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bi (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.14
Character \(\chi\) \(=\) 546.17
Dual form 546.2.bi.f.257.14

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +(1.48743 + 0.887438i) q^{3} +1.00000 q^{4} +(0.511132 - 0.295102i) q^{5} +(1.48743 + 0.887438i) q^{6} +(2.62812 - 0.304939i) q^{7} +1.00000 q^{8} +(1.42491 + 2.64001i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(1.48743 + 0.887438i) q^{3} +1.00000 q^{4} +(0.511132 - 0.295102i) q^{5} +(1.48743 + 0.887438i) q^{6} +(2.62812 - 0.304939i) q^{7} +1.00000 q^{8} +(1.42491 + 2.64001i) q^{9} +(0.511132 - 0.295102i) q^{10} +(-3.05521 - 5.29178i) q^{11} +(1.48743 + 0.887438i) q^{12} +(1.86885 - 3.08341i) q^{13} +(2.62812 - 0.304939i) q^{14} +(1.02216 + 0.0146533i) q^{15} +1.00000 q^{16} -7.64672 q^{17} +(1.42491 + 2.64001i) q^{18} +(-1.97552 + 3.42169i) q^{19} +(0.511132 - 0.295102i) q^{20} +(4.17976 + 1.87872i) q^{21} +(-3.05521 - 5.29178i) q^{22} +8.38604i q^{23} +(1.48743 + 0.887438i) q^{24} +(-2.32583 + 4.02845i) q^{25} +(1.86885 - 3.08341i) q^{26} +(-0.223387 + 5.19135i) q^{27} +(2.62812 - 0.304939i) q^{28} +(1.39183 + 0.803572i) q^{29} +(1.02216 + 0.0146533i) q^{30} +(1.38966 - 2.40696i) q^{31} +1.00000 q^{32} +(0.151707 - 10.5825i) q^{33} -7.64672 q^{34} +(1.25333 - 0.931429i) q^{35} +(1.42491 + 2.64001i) q^{36} -2.22904i q^{37} +(-1.97552 + 3.42169i) q^{38} +(5.51612 - 2.92787i) q^{39} +(0.511132 - 0.295102i) q^{40} +(-1.36416 - 0.787598i) q^{41} +(4.17976 + 1.87872i) q^{42} +(-2.90674 - 5.03462i) q^{43} +(-3.05521 - 5.29178i) q^{44} +(1.50739 + 0.928899i) q^{45} +8.38604i q^{46} +(-4.94554 + 2.85531i) q^{47} +(1.48743 + 0.887438i) q^{48} +(6.81402 - 1.60283i) q^{49} +(-2.32583 + 4.02845i) q^{50} +(-11.3740 - 6.78599i) q^{51} +(1.86885 - 3.08341i) q^{52} +(3.30431 + 1.90774i) q^{53} +(-0.223387 + 5.19135i) q^{54} +(-3.12323 - 1.80320i) q^{55} +(2.62812 - 0.304939i) q^{56} +(-5.97499 + 3.33639i) q^{57} +(1.39183 + 0.803572i) q^{58} +4.48228i q^{59} +(1.02216 + 0.0146533i) q^{60} +(0.0871190 + 0.0502982i) q^{61} +(1.38966 - 2.40696i) q^{62} +(4.54987 + 6.50374i) q^{63} +1.00000 q^{64} +(0.0453104 - 2.12753i) q^{65} +(0.151707 - 10.5825i) q^{66} +(8.95985 - 5.17297i) q^{67} -7.64672 q^{68} +(-7.44209 + 12.4737i) q^{69} +(1.25333 - 0.931429i) q^{70} +(-0.875991 - 1.51726i) q^{71} +(1.42491 + 2.64001i) q^{72} +(-5.41081 + 9.37179i) q^{73} -2.22904i q^{74} +(-7.03452 + 3.92802i) q^{75} +(-1.97552 + 3.42169i) q^{76} +(-9.64312 - 12.9758i) q^{77} +(5.51612 - 2.92787i) q^{78} +(-3.17751 - 5.50361i) q^{79} +(0.511132 - 0.295102i) q^{80} +(-4.93927 + 7.52354i) q^{81} +(-1.36416 - 0.787598i) q^{82} -9.07449i q^{83} +(4.17976 + 1.87872i) q^{84} +(-3.90849 + 2.25657i) q^{85} +(-2.90674 - 5.03462i) q^{86} +(1.35713 + 2.43042i) q^{87} +(-3.05521 - 5.29178i) q^{88} +4.11835i q^{89} +(1.50739 + 0.928899i) q^{90} +(3.97132 - 8.67345i) q^{91} +8.38604i q^{92} +(4.20305 - 2.34696i) q^{93} +(-4.94554 + 2.85531i) q^{94} +2.33192i q^{95} +(1.48743 + 0.887438i) q^{96} +(-2.82580 - 4.89442i) q^{97} +(6.81402 - 1.60283i) q^{98} +(9.61693 - 15.6061i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + O(q^{10}) \) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + 9q^{10} + 9q^{11} + 6q^{12} + 8q^{13} + 4q^{14} - 17q^{15} + 34q^{16} + 12q^{17} + 4q^{18} - 5q^{19} + 9q^{20} - 7q^{21} + 9q^{22} + 6q^{24} + 16q^{25} + 8q^{26} - 18q^{27} + 4q^{28} + 27q^{29} - 17q^{30} - q^{31} + 34q^{32} + 12q^{34} - 3q^{35} + 4q^{36} - 5q^{38} - 10q^{39} + 9q^{40} - 3q^{41} - 7q^{42} - 3q^{43} + 9q^{44} + 9q^{45} - 27q^{47} + 6q^{48} - 2q^{49} + 16q^{50} - 36q^{51} + 8q^{52} - 21q^{53} - 18q^{54} - 57q^{55} + 4q^{56} - 17q^{57} + 27q^{58} - 17q^{60} - 51q^{61} - q^{62} - 24q^{63} + 34q^{64} - 21q^{65} - 21q^{67} + 12q^{68} + 30q^{69} - 3q^{70} - 15q^{71} + 4q^{72} - 19q^{73} - 54q^{75} - 5q^{76} + 9q^{77} - 10q^{78} - 9q^{79} + 9q^{80} + 28q^{81} - 3q^{82} - 7q^{84} - 42q^{85} - 3q^{86} - 81q^{87} + 9q^{88} + 9q^{90} - 72q^{91} - 17q^{93} - 27q^{94} + 6q^{96} + 19q^{97} - 2q^{98} - 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.48743 + 0.887438i 0.858769 + 0.512362i
\(4\) 1.00000 0.500000
\(5\) 0.511132 0.295102i 0.228585 0.131974i −0.381334 0.924437i \(-0.624535\pi\)
0.609919 + 0.792464i \(0.291202\pi\)
\(6\) 1.48743 + 0.887438i 0.607242 + 0.362295i
\(7\) 2.62812 0.304939i 0.993336 0.115256i
\(8\) 1.00000 0.353553
\(9\) 1.42491 + 2.64001i 0.474970 + 0.880002i
\(10\) 0.511132 0.295102i 0.161634 0.0933196i
\(11\) −3.05521 5.29178i −0.921180 1.59553i −0.797592 0.603197i \(-0.793893\pi\)
−0.123588 0.992334i \(-0.539440\pi\)
\(12\) 1.48743 + 0.887438i 0.429385 + 0.256181i
\(13\) 1.86885 3.08341i 0.518326 0.855183i
\(14\) 2.62812 0.304939i 0.702394 0.0814984i
\(15\) 1.02216 + 0.0146533i 0.263920 + 0.00378347i
\(16\) 1.00000 0.250000
\(17\) −7.64672 −1.85460 −0.927301 0.374316i \(-0.877877\pi\)
−0.927301 + 0.374316i \(0.877877\pi\)
\(18\) 1.42491 + 2.64001i 0.335854 + 0.622256i
\(19\) −1.97552 + 3.42169i −0.453214 + 0.784991i −0.998584 0.0532055i \(-0.983056\pi\)
0.545369 + 0.838196i \(0.316390\pi\)
\(20\) 0.511132 0.295102i 0.114293 0.0659869i
\(21\) 4.17976 + 1.87872i 0.912099 + 0.409969i
\(22\) −3.05521 5.29178i −0.651373 1.12821i
\(23\) 8.38604i 1.74861i 0.485377 + 0.874305i \(0.338682\pi\)
−0.485377 + 0.874305i \(0.661318\pi\)
\(24\) 1.48743 + 0.887438i 0.303621 + 0.181147i
\(25\) −2.32583 + 4.02845i −0.465166 + 0.805691i
\(26\) 1.86885 3.08341i 0.366512 0.604706i
\(27\) −0.223387 + 5.19135i −0.0429908 + 0.999075i
\(28\) 2.62812 0.304939i 0.496668 0.0576281i
\(29\) 1.39183 + 0.803572i 0.258456 + 0.149220i 0.623630 0.781720i \(-0.285657\pi\)
−0.365174 + 0.930939i \(0.618991\pi\)
\(30\) 1.02216 + 0.0146533i 0.186620 + 0.00267532i
\(31\) 1.38966 2.40696i 0.249590 0.432303i −0.713822 0.700327i \(-0.753037\pi\)
0.963412 + 0.268024i \(0.0863707\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.151707 10.5825i 0.0264087 1.84217i
\(34\) −7.64672 −1.31140
\(35\) 1.25333 0.931429i 0.211851 0.157440i
\(36\) 1.42491 + 2.64001i 0.237485 + 0.440001i
\(37\) 2.22904i 0.366451i −0.983071 0.183226i \(-0.941346\pi\)
0.983071 0.183226i \(-0.0586539\pi\)
\(38\) −1.97552 + 3.42169i −0.320471 + 0.555072i
\(39\) 5.51612 2.92787i 0.883286 0.468834i
\(40\) 0.511132 0.295102i 0.0808171 0.0466598i
\(41\) −1.36416 0.787598i −0.213046 0.123002i 0.389680 0.920950i \(-0.372586\pi\)
−0.602726 + 0.797948i \(0.705919\pi\)
\(42\) 4.17976 + 1.87872i 0.644952 + 0.289892i
\(43\) −2.90674 5.03462i −0.443274 0.767773i 0.554656 0.832080i \(-0.312850\pi\)
−0.997930 + 0.0643067i \(0.979516\pi\)
\(44\) −3.05521 5.29178i −0.460590 0.797765i
\(45\) 1.50739 + 0.928899i 0.224708 + 0.138472i
\(46\) 8.38604i 1.23645i
\(47\) −4.94554 + 2.85531i −0.721381 + 0.416489i −0.815261 0.579094i \(-0.803406\pi\)
0.0938798 + 0.995584i \(0.470073\pi\)
\(48\) 1.48743 + 0.887438i 0.214692 + 0.128091i
\(49\) 6.81402 1.60283i 0.973432 0.228976i
\(50\) −2.32583 + 4.02845i −0.328922 + 0.569709i
\(51\) −11.3740 6.78599i −1.59268 0.950228i
\(52\) 1.86885 3.08341i 0.259163 0.427591i
\(53\) 3.30431 + 1.90774i 0.453881 + 0.262049i 0.709468 0.704738i \(-0.248935\pi\)
−0.255587 + 0.966786i \(0.582269\pi\)
\(54\) −0.223387 + 5.19135i −0.0303991 + 0.706453i
\(55\) −3.12323 1.80320i −0.421136 0.243143i
\(56\) 2.62812 0.304939i 0.351197 0.0407492i
\(57\) −5.97499 + 3.33639i −0.791406 + 0.441916i
\(58\) 1.39183 + 0.803572i 0.182756 + 0.105514i
\(59\) 4.48228i 0.583543i 0.956488 + 0.291772i \(0.0942447\pi\)
−0.956488 + 0.291772i \(0.905755\pi\)
\(60\) 1.02216 + 0.0146533i 0.131960 + 0.00189174i
\(61\) 0.0871190 + 0.0502982i 0.0111544 + 0.00644002i 0.505567 0.862787i \(-0.331283\pi\)
−0.494412 + 0.869227i \(0.664617\pi\)
\(62\) 1.38966 2.40696i 0.176487 0.305684i
\(63\) 4.54987 + 6.50374i 0.573230 + 0.819395i
\(64\) 1.00000 0.125000
\(65\) 0.0453104 2.12753i 0.00562006 0.263888i
\(66\) 0.151707 10.5825i 0.0186738 1.30261i
\(67\) 8.95985 5.17297i 1.09462 0.631979i 0.159817 0.987147i \(-0.448910\pi\)
0.934803 + 0.355168i \(0.115576\pi\)
\(68\) −7.64672 −0.927301
\(69\) −7.44209 + 12.4737i −0.895922 + 1.50165i
\(70\) 1.25333 0.931429i 0.149801 0.111327i
\(71\) −0.875991 1.51726i −0.103961 0.180066i 0.809352 0.587324i \(-0.199818\pi\)
−0.913313 + 0.407258i \(0.866485\pi\)
\(72\) 1.42491 + 2.64001i 0.167927 + 0.311128i
\(73\) −5.41081 + 9.37179i −0.633287 + 1.09689i 0.353588 + 0.935401i \(0.384961\pi\)
−0.986875 + 0.161484i \(0.948372\pi\)
\(74\) 2.22904i 0.259120i
\(75\) −7.03452 + 3.92802i −0.812276 + 0.453569i
\(76\) −1.97552 + 3.42169i −0.226607 + 0.392495i
\(77\) −9.64312 12.9758i −1.09894 1.47873i
\(78\) 5.51612 2.92787i 0.624578 0.331516i
\(79\) −3.17751 5.50361i −0.357498 0.619205i 0.630044 0.776559i \(-0.283037\pi\)
−0.987542 + 0.157355i \(0.949703\pi\)
\(80\) 0.511132 0.295102i 0.0571463 0.0329934i
\(81\) −4.93927 + 7.52354i −0.548808 + 0.835949i
\(82\) −1.36416 0.787598i −0.150646 0.0869756i
\(83\) 9.07449i 0.996055i −0.867161 0.498027i \(-0.834058\pi\)
0.867161 0.498027i \(-0.165942\pi\)
\(84\) 4.17976 + 1.87872i 0.456050 + 0.204985i
\(85\) −3.90849 + 2.25657i −0.423935 + 0.244759i
\(86\) −2.90674 5.03462i −0.313442 0.542897i
\(87\) 1.35713 + 2.43042i 0.145499 + 0.260568i
\(88\) −3.05521 5.29178i −0.325686 0.564105i
\(89\) 4.11835i 0.436544i 0.975888 + 0.218272i \(0.0700421\pi\)
−0.975888 + 0.218272i \(0.929958\pi\)
\(90\) 1.50739 + 0.928899i 0.158893 + 0.0979145i
\(91\) 3.97132 8.67345i 0.416307 0.909224i
\(92\) 8.38604i 0.874305i
\(93\) 4.20305 2.34696i 0.435836 0.243368i
\(94\) −4.94554 + 2.85531i −0.510093 + 0.294503i
\(95\) 2.33192i 0.239250i
\(96\) 1.48743 + 0.887438i 0.151810 + 0.0905737i
\(97\) −2.82580 4.89442i −0.286916 0.496953i 0.686156 0.727455i \(-0.259297\pi\)
−0.973072 + 0.230501i \(0.925963\pi\)
\(98\) 6.81402 1.60283i 0.688320 0.161911i
\(99\) 9.61693 15.6061i 0.966538 1.56847i
\(100\) −2.32583 + 4.02845i −0.232583 + 0.402845i
\(101\) −5.91078 10.2378i −0.588144 1.01870i −0.994475 0.104970i \(-0.966525\pi\)
0.406331 0.913726i \(-0.366808\pi\)
\(102\) −11.3740 6.78599i −1.12619 0.671913i
\(103\) −3.76608 + 2.17435i −0.371083 + 0.214245i −0.673932 0.738794i \(-0.735396\pi\)
0.302848 + 0.953039i \(0.402062\pi\)
\(104\) 1.86885 3.08341i 0.183256 0.302353i
\(105\) 2.69083 0.273186i 0.262598 0.0266602i
\(106\) 3.30431 + 1.90774i 0.320943 + 0.185296i
\(107\) 8.84064i 0.854657i −0.904097 0.427328i \(-0.859455\pi\)
0.904097 0.427328i \(-0.140545\pi\)
\(108\) −0.223387 + 5.19135i −0.0214954 + 0.499538i
\(109\) 14.8949 + 8.59957i 1.42667 + 0.823690i 0.996857 0.0792270i \(-0.0252452\pi\)
0.429816 + 0.902917i \(0.358579\pi\)
\(110\) −3.12323 1.80320i −0.297788 0.171928i
\(111\) 1.97813 3.31554i 0.187756 0.314697i
\(112\) 2.62812 0.304939i 0.248334 0.0288141i
\(113\) 13.5393 7.81690i 1.27367 0.735353i 0.297992 0.954568i \(-0.403683\pi\)
0.975676 + 0.219216i \(0.0703499\pi\)
\(114\) −5.97499 + 3.33639i −0.559609 + 0.312482i
\(115\) 2.47474 + 4.28638i 0.230771 + 0.399707i
\(116\) 1.39183 + 0.803572i 0.129228 + 0.0746098i
\(117\) 10.8032 + 0.540211i 0.998752 + 0.0499425i
\(118\) 4.48228i 0.412627i
\(119\) −20.0965 + 2.33179i −1.84224 + 0.213754i
\(120\) 1.02216 + 0.0146533i 0.0933100 + 0.00133766i
\(121\) −13.1686 + 22.8087i −1.19715 + 2.07352i
\(122\) 0.0871190 + 0.0502982i 0.00788738 + 0.00455378i
\(123\) −1.33015 2.38210i −0.119936 0.214787i
\(124\) 1.38966 2.40696i 0.124795 0.216152i
\(125\) 5.69645i 0.509506i
\(126\) 4.54987 + 6.50374i 0.405335 + 0.579399i
\(127\) 2.99064 5.17994i 0.265377 0.459646i −0.702286 0.711895i \(-0.747837\pi\)
0.967662 + 0.252250i \(0.0811704\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0.144334 10.0682i 0.0127079 0.886457i
\(130\) 0.0453104 2.12753i 0.00397398 0.186597i
\(131\) 2.79856 + 4.84725i 0.244511 + 0.423506i 0.961994 0.273070i \(-0.0880392\pi\)
−0.717483 + 0.696576i \(0.754706\pi\)
\(132\) 0.151707 10.5825i 0.0132044 0.921085i
\(133\) −4.14848 + 9.59503i −0.359719 + 0.831995i
\(134\) 8.95985 5.17297i 0.774013 0.446877i
\(135\) 1.41780 + 2.71939i 0.122025 + 0.234048i
\(136\) −7.64672 −0.655701
\(137\) 21.1472 1.80673 0.903363 0.428876i \(-0.141090\pi\)
0.903363 + 0.428876i \(0.141090\pi\)
\(138\) −7.44209 + 12.4737i −0.633513 + 1.06183i
\(139\) −9.34314 + 5.39426i −0.792475 + 0.457535i −0.840833 0.541295i \(-0.817934\pi\)
0.0483583 + 0.998830i \(0.484601\pi\)
\(140\) 1.25333 0.931429i 0.105926 0.0787201i
\(141\) −9.89006 0.141781i −0.832893 0.0119401i
\(142\) −0.875991 1.51726i −0.0735115 0.127326i
\(143\) −22.0264 0.469101i −1.84194 0.0392282i
\(144\) 1.42491 + 2.64001i 0.118742 + 0.220001i
\(145\) 0.948544 0.0787723
\(146\) −5.41081 + 9.37179i −0.447801 + 0.775615i
\(147\) 11.5578 + 3.66292i 0.953272 + 0.302112i
\(148\) 2.22904i 0.183226i
\(149\) 4.01109 6.94741i 0.328601 0.569154i −0.653633 0.756811i \(-0.726756\pi\)
0.982235 + 0.187657i \(0.0600894\pi\)
\(150\) −7.03452 + 3.92802i −0.574366 + 0.320722i
\(151\) −7.60834 4.39268i −0.619158 0.357471i 0.157383 0.987538i \(-0.449694\pi\)
−0.776541 + 0.630066i \(0.783028\pi\)
\(152\) −1.97552 + 3.42169i −0.160236 + 0.277536i
\(153\) −10.8959 20.1874i −0.880880 1.63205i
\(154\) −9.64312 12.9758i −0.777065 1.04562i
\(155\) 1.64037i 0.131758i
\(156\) 5.51612 2.92787i 0.441643 0.234417i
\(157\) 2.49489 + 1.44042i 0.199114 + 0.114958i 0.596242 0.802805i \(-0.296660\pi\)
−0.397128 + 0.917763i \(0.629993\pi\)
\(158\) −3.17751 5.50361i −0.252789 0.437844i
\(159\) 3.22193 + 5.77000i 0.255516 + 0.457591i
\(160\) 0.511132 0.295102i 0.0404086 0.0233299i
\(161\) 2.55723 + 22.0395i 0.201538 + 1.73696i
\(162\) −4.93927 + 7.52354i −0.388066 + 0.591105i
\(163\) −4.65862 2.68966i −0.364891 0.210670i 0.306333 0.951924i \(-0.400898\pi\)
−0.671224 + 0.741254i \(0.734231\pi\)
\(164\) −1.36416 0.787598i −0.106523 0.0615011i
\(165\) −3.04537 5.45381i −0.237082 0.424578i
\(166\) 9.07449i 0.704317i
\(167\) −14.1115 8.14728i −1.09198 0.630455i −0.157878 0.987459i \(-0.550465\pi\)
−0.934103 + 0.357003i \(0.883798\pi\)
\(168\) 4.17976 + 1.87872i 0.322476 + 0.144946i
\(169\) −6.01478 11.5249i −0.462676 0.886528i
\(170\) −3.90849 + 2.25657i −0.299767 + 0.173071i
\(171\) −11.8482 0.339774i −0.906056 0.0259832i
\(172\) −2.90674 5.03462i −0.221637 0.383886i
\(173\) 7.20003 12.4708i 0.547408 0.948138i −0.451043 0.892502i \(-0.648948\pi\)
0.998451 0.0556362i \(-0.0177187\pi\)
\(174\) 1.35713 + 2.43042i 0.102884 + 0.184250i
\(175\) −4.88412 + 11.2965i −0.369205 + 0.853935i
\(176\) −3.05521 5.29178i −0.230295 0.398883i
\(177\) −3.97774 + 6.66709i −0.298986 + 0.501129i
\(178\) 4.11835i 0.308683i
\(179\) 9.93300 5.73482i 0.742427 0.428641i −0.0805240 0.996753i \(-0.525659\pi\)
0.822951 + 0.568112i \(0.192326\pi\)
\(180\) 1.50739 + 0.928899i 0.112354 + 0.0692360i
\(181\) 14.7039i 1.09293i 0.837482 + 0.546465i \(0.184027\pi\)
−0.837482 + 0.546465i \(0.815973\pi\)
\(182\) 3.97132 8.67345i 0.294373 0.642919i
\(183\) 0.0849471 + 0.152128i 0.00627947 + 0.0112456i
\(184\) 8.38604i 0.618227i
\(185\) −0.657794 1.13933i −0.0483619 0.0837654i
\(186\) 4.20305 2.34696i 0.308183 0.172087i
\(187\) 23.3623 + 40.4647i 1.70842 + 2.95907i
\(188\) −4.94554 + 2.85531i −0.360690 + 0.208245i
\(189\) 0.995959 + 13.7116i 0.0724454 + 0.997372i
\(190\) 2.33192i 0.169175i
\(191\) 9.40428 + 5.42957i 0.680470 + 0.392870i 0.800032 0.599957i \(-0.204816\pi\)
−0.119562 + 0.992827i \(0.538149\pi\)
\(192\) 1.48743 + 0.887438i 0.107346 + 0.0640453i
\(193\) 16.6658 9.62200i 1.19963 0.692607i 0.239158 0.970981i \(-0.423129\pi\)
0.960473 + 0.278374i \(0.0897954\pi\)
\(194\) −2.82580 4.89442i −0.202880 0.351399i
\(195\) 1.95545 3.12435i 0.140032 0.223739i
\(196\) 6.81402 1.60283i 0.486716 0.114488i
\(197\) 3.97307 6.88156i 0.283070 0.490291i −0.689070 0.724695i \(-0.741981\pi\)
0.972139 + 0.234404i \(0.0753139\pi\)
\(198\) 9.61693 15.6061i 0.683446 1.10908i
\(199\) 18.8182i 1.33399i −0.745064 0.666993i \(-0.767581\pi\)
0.745064 0.666993i \(-0.232419\pi\)
\(200\) −2.32583 + 4.02845i −0.164461 + 0.284855i
\(201\) 17.9179 + 0.256864i 1.26383 + 0.0181178i
\(202\) −5.91078 10.2378i −0.415881 0.720327i
\(203\) 3.90293 + 1.68746i 0.273932 + 0.118436i
\(204\) −11.3740 6.78599i −0.796338 0.475114i
\(205\) −0.929688 −0.0649322
\(206\) −3.76608 + 2.17435i −0.262395 + 0.151494i
\(207\) −22.1392 + 11.9493i −1.53878 + 0.830537i
\(208\) 1.86885 3.08341i 0.129582 0.213796i
\(209\) 24.1425 1.66997
\(210\) 2.69083 0.273186i 0.185685 0.0188516i
\(211\) 1.28361 2.22329i 0.0883677 0.153057i −0.818454 0.574573i \(-0.805168\pi\)
0.906821 + 0.421515i \(0.138502\pi\)
\(212\) 3.30431 + 1.90774i 0.226941 + 0.131024i
\(213\) 0.0434974 3.03421i 0.00298039 0.207901i
\(214\) 8.84064i 0.604333i
\(215\) −2.97146 1.71557i −0.202652 0.117001i
\(216\) −0.223387 + 5.19135i −0.0151995 + 0.353227i
\(217\) 2.91822 6.74955i 0.198101 0.458189i
\(218\) 14.8949 + 8.59957i 1.00881 + 0.582437i
\(219\) −16.3651 + 9.13815i −1.10585 + 0.617499i
\(220\) −3.12323 1.80320i −0.210568 0.121572i
\(221\) −14.2906 + 23.5779i −0.961289 + 1.58602i
\(222\) 1.97813 3.31554i 0.132763 0.222524i
\(223\) 1.78923 3.09905i 0.119816 0.207527i −0.799879 0.600162i \(-0.795103\pi\)
0.919695 + 0.392634i \(0.128436\pi\)
\(224\) 2.62812 0.304939i 0.175599 0.0203746i
\(225\) −13.9492 0.400025i −0.929949 0.0266684i
\(226\) 13.5393 7.81690i 0.900619 0.519973i
\(227\) 11.9739i 0.794736i 0.917659 + 0.397368i \(0.130076\pi\)
−0.917659 + 0.397368i \(0.869924\pi\)
\(228\) −5.97499 + 3.33639i −0.395703 + 0.220958i
\(229\) 5.57509 + 9.65634i 0.368412 + 0.638109i 0.989318 0.145777i \(-0.0465681\pi\)
−0.620905 + 0.783886i \(0.713235\pi\)
\(230\) 2.47474 + 4.28638i 0.163180 + 0.282635i
\(231\) −2.82831 27.8582i −0.186089 1.83294i
\(232\) 1.39183 + 0.803572i 0.0913779 + 0.0527571i
\(233\) −13.8355 + 7.98795i −0.906396 + 0.523308i −0.879270 0.476324i \(-0.841969\pi\)
−0.0271263 + 0.999632i \(0.508636\pi\)
\(234\) 10.8032 + 0.540211i 0.706224 + 0.0353147i
\(235\) −1.68522 + 2.91888i −0.109931 + 0.190407i
\(236\) 4.48228i 0.291772i
\(237\) 0.157780 11.0061i 0.0102489 0.714923i
\(238\) −20.0965 + 2.33179i −1.30266 + 0.151147i
\(239\) −17.6869 −1.14407 −0.572034 0.820230i \(-0.693846\pi\)
−0.572034 + 0.820230i \(0.693846\pi\)
\(240\) 1.02216 + 0.0146533i 0.0659801 + 0.000945869i
\(241\) 24.1671 1.55674 0.778370 0.627805i \(-0.216047\pi\)
0.778370 + 0.627805i \(0.216047\pi\)
\(242\) −13.1686 + 22.8087i −0.846510 + 1.46620i
\(243\) −14.0235 + 6.80745i −0.899608 + 0.436698i
\(244\) 0.0871190 + 0.0502982i 0.00557722 + 0.00322001i
\(245\) 3.00987 2.83009i 0.192293 0.180808i
\(246\) −1.33015 2.38210i −0.0848073 0.151877i
\(247\) 6.85852 + 12.4860i 0.436397 + 0.794463i
\(248\) 1.38966 2.40696i 0.0882435 0.152842i
\(249\) 8.05305 13.4977i 0.510341 0.855381i
\(250\) 5.69645i 0.360275i
\(251\) −1.60381 2.77787i −0.101231 0.175338i 0.810961 0.585100i \(-0.198945\pi\)
−0.912192 + 0.409763i \(0.865612\pi\)
\(252\) 4.54987 + 6.50374i 0.286615 + 0.409697i
\(253\) 44.3770 25.6211i 2.78996 1.61078i
\(254\) 2.99064 5.17994i 0.187650 0.325019i
\(255\) −7.81617 0.112050i −0.489467 0.00701684i
\(256\) 1.00000 0.0625000
\(257\) −1.18333 −0.0738138 −0.0369069 0.999319i \(-0.511751\pi\)
−0.0369069 + 0.999319i \(0.511751\pi\)
\(258\) 0.144334 10.0682i 0.00898587 0.626819i
\(259\) −0.679720 5.85817i −0.0422358 0.364009i
\(260\) 0.0453104 2.12753i 0.00281003 0.131944i
\(261\) −0.138208 + 4.81945i −0.00855489 + 0.298316i
\(262\) 2.79856 + 4.84725i 0.172896 + 0.299464i
\(263\) 1.16231 0.671062i 0.0716713 0.0413794i −0.463736 0.885973i \(-0.653491\pi\)
0.535407 + 0.844594i \(0.320158\pi\)
\(264\) 0.151707 10.5825i 0.00933690 0.651306i
\(265\) 2.25192 0.138334
\(266\) −4.14848 + 9.59503i −0.254360 + 0.588309i
\(267\) −3.65478 + 6.12577i −0.223669 + 0.374891i
\(268\) 8.95985 5.17297i 0.547310 0.315990i
\(269\) 6.46592 0.394234 0.197117 0.980380i \(-0.436842\pi\)
0.197117 + 0.980380i \(0.436842\pi\)
\(270\) 1.41780 + 2.71939i 0.0862845 + 0.165497i
\(271\) −19.2359 −1.16850 −0.584249 0.811575i \(-0.698611\pi\)
−0.584249 + 0.811575i \(0.698611\pi\)
\(272\) −7.64672 −0.463651
\(273\) 13.6042 9.37687i 0.823364 0.567514i
\(274\) 21.1472 1.27755
\(275\) 28.4236 1.71401
\(276\) −7.44209 + 12.4737i −0.447961 + 0.750826i
\(277\) −11.7622 −0.706725 −0.353362 0.935487i \(-0.614962\pi\)
−0.353362 + 0.935487i \(0.614962\pi\)
\(278\) −9.34314 + 5.39426i −0.560364 + 0.323526i
\(279\) 8.33453 + 0.239011i 0.498976 + 0.0143092i
\(280\) 1.25333 0.931429i 0.0749007 0.0556635i
\(281\) 21.9950 1.31211 0.656057 0.754711i \(-0.272223\pi\)
0.656057 + 0.754711i \(0.272223\pi\)
\(282\) −9.89006 0.141781i −0.588945 0.00844291i
\(283\) −11.1271 + 6.42423i −0.661437 + 0.381881i −0.792824 0.609450i \(-0.791390\pi\)
0.131387 + 0.991331i \(0.458057\pi\)
\(284\) −0.875991 1.51726i −0.0519805 0.0900329i
\(285\) −2.06943 + 3.46857i −0.122583 + 0.205460i
\(286\) −22.0264 0.469101i −1.30245 0.0277385i
\(287\) −3.82534 1.65392i −0.225803 0.0976275i
\(288\) 1.42491 + 2.64001i 0.0839635 + 0.155564i
\(289\) 41.4723 2.43955
\(290\) 0.948544 0.0557004
\(291\) 0.140315 9.78784i 0.00822542 0.573773i
\(292\) −5.41081 + 9.37179i −0.316643 + 0.548443i
\(293\) −0.344829 + 0.199087i −0.0201451 + 0.0116308i −0.510039 0.860151i \(-0.670369\pi\)
0.489894 + 0.871782i \(0.337036\pi\)
\(294\) 11.5578 + 3.66292i 0.674065 + 0.213626i
\(295\) 1.32273 + 2.29104i 0.0770124 + 0.133389i
\(296\) 2.22904i 0.129560i
\(297\) 28.1539 14.6785i 1.63366 0.851735i
\(298\) 4.01109 6.94741i 0.232356 0.402453i
\(299\) 25.8576 + 15.6723i 1.49538 + 0.906351i
\(300\) −7.03452 + 3.92802i −0.406138 + 0.226785i
\(301\) −9.17452 12.3452i −0.528810 0.711566i
\(302\) −7.60834 4.39268i −0.437811 0.252770i
\(303\) 0.293500 20.4734i 0.0168611 1.17617i
\(304\) −1.97552 + 3.42169i −0.113304 + 0.196248i
\(305\) 0.0593724 0.00339966
\(306\) −10.8959 20.1874i −0.622876 1.15404i
\(307\) 10.2738 0.586356 0.293178 0.956058i \(-0.405287\pi\)
0.293178 + 0.956058i \(0.405287\pi\)
\(308\) −9.64312 12.9758i −0.549468 0.739363i
\(309\) −7.53139 0.107968i −0.428446 0.00614206i
\(310\) 1.64037i 0.0931666i
\(311\) −1.05163 + 1.82148i −0.0596325 + 0.103287i −0.894300 0.447467i \(-0.852326\pi\)
0.834668 + 0.550754i \(0.185660\pi\)
\(312\) 5.51612 2.92787i 0.312289 0.165758i
\(313\) −9.44084 + 5.45067i −0.533628 + 0.308090i −0.742492 0.669854i \(-0.766356\pi\)
0.208865 + 0.977945i \(0.433023\pi\)
\(314\) 2.49489 + 1.44042i 0.140795 + 0.0812878i
\(315\) 4.24486 + 1.98159i 0.239171 + 0.111650i
\(316\) −3.17751 5.50361i −0.178749 0.309602i
\(317\) 5.27267 + 9.13253i 0.296143 + 0.512934i 0.975250 0.221105i \(-0.0709663\pi\)
−0.679107 + 0.734039i \(0.737633\pi\)
\(318\) 3.22193 + 5.77000i 0.180677 + 0.323566i
\(319\) 9.82032i 0.549832i
\(320\) 0.511132 0.295102i 0.0285732 0.0164967i
\(321\) 7.84551 13.1498i 0.437894 0.733953i
\(322\) 2.55723 + 22.0395i 0.142509 + 1.22821i
\(323\) 15.1062 26.1647i 0.840533 1.45585i
\(324\) −4.93927 + 7.52354i −0.274404 + 0.417974i
\(325\) 8.07473 + 14.7001i 0.447905 + 0.815413i
\(326\) −4.65862 2.68966i −0.258017 0.148966i
\(327\) 14.5236 + 26.0096i 0.803155 + 1.43833i
\(328\) −1.36416 0.787598i −0.0753231 0.0434878i
\(329\) −12.1268 + 9.01218i −0.668570 + 0.496858i
\(330\) −3.04537 5.45381i −0.167642 0.300222i
\(331\) −12.6163 7.28403i −0.693455 0.400366i 0.111450 0.993770i \(-0.464450\pi\)
−0.804905 + 0.593404i \(0.797784\pi\)
\(332\) 9.07449i 0.498027i
\(333\) 5.88467 3.17617i 0.322478 0.174053i
\(334\) −14.1115 8.14728i −0.772147 0.445799i
\(335\) 3.05311 5.28815i 0.166809 0.288922i
\(336\) 4.17976 + 1.87872i 0.228025 + 0.102492i
\(337\) −31.0830 −1.69320 −0.846599 0.532231i \(-0.821354\pi\)
−0.846599 + 0.532231i \(0.821354\pi\)
\(338\) −6.01478 11.5249i −0.327161 0.626870i
\(339\) 27.0758 + 0.388149i 1.47055 + 0.0210814i
\(340\) −3.90849 + 2.25657i −0.211967 + 0.122379i
\(341\) −16.9828 −0.919671
\(342\) −11.8482 0.339774i −0.640679 0.0183729i
\(343\) 17.4193 6.29030i 0.940554 0.339644i
\(344\) −2.90674 5.03462i −0.156721 0.271449i
\(345\) −0.122883 + 8.57187i −0.00661582 + 0.461494i
\(346\) 7.20003 12.4708i 0.387076 0.670435i
\(347\) 24.6678i 1.32424i 0.749398 + 0.662119i \(0.230343\pi\)
−0.749398 + 0.662119i \(0.769657\pi\)
\(348\) 1.35713 + 2.43042i 0.0727497 + 0.130284i
\(349\) −16.5800 + 28.7175i −0.887509 + 1.53721i −0.0446981 + 0.999001i \(0.514233\pi\)
−0.842811 + 0.538210i \(0.819101\pi\)
\(350\) −4.88412 + 11.2965i −0.261067 + 0.603823i
\(351\) 15.5896 + 10.3907i 0.832109 + 0.554612i
\(352\) −3.05521 5.29178i −0.162843 0.282053i
\(353\) 12.5305 7.23450i 0.666933 0.385054i −0.127981 0.991777i \(-0.540850\pi\)
0.794913 + 0.606723i \(0.207516\pi\)
\(354\) −3.97774 + 6.66709i −0.211415 + 0.354352i
\(355\) −0.895494 0.517014i −0.0475279 0.0274403i
\(356\) 4.11835i 0.218272i
\(357\) −31.9615 14.3660i −1.69158 0.760330i
\(358\) 9.93300 5.73482i 0.524975 0.303095i
\(359\) 7.00098 + 12.1261i 0.369498 + 0.639989i 0.989487 0.144621i \(-0.0461964\pi\)
−0.619989 + 0.784610i \(0.712863\pi\)
\(360\) 1.50739 + 0.928899i 0.0794464 + 0.0489573i
\(361\) 1.69467 + 2.93526i 0.0891932 + 0.154487i
\(362\) 14.7039i 0.772819i
\(363\) −39.8287 + 22.2401i −2.09046 + 1.16730i
\(364\) 3.97132 8.67345i 0.208153 0.454612i
\(365\) 6.38697i 0.334309i
\(366\) 0.0849471 + 0.152128i 0.00444025 + 0.00795185i
\(367\) −12.7593 + 7.36659i −0.666030 + 0.384533i −0.794571 0.607172i \(-0.792304\pi\)
0.128541 + 0.991704i \(0.458971\pi\)
\(368\) 8.38604i 0.437153i
\(369\) 0.135461 4.72364i 0.00705182 0.245903i
\(370\) −0.657794 1.13933i −0.0341971 0.0592310i
\(371\) 9.26586 + 4.00616i 0.481059 + 0.207990i
\(372\) 4.20305 2.34696i 0.217918 0.121684i
\(373\) −7.91499 + 13.7092i −0.409822 + 0.709833i −0.994870 0.101166i \(-0.967743\pi\)
0.585047 + 0.810999i \(0.301076\pi\)
\(374\) 23.3623 + 40.4647i 1.20804 + 2.09238i
\(375\) −5.05525 + 8.47309i −0.261052 + 0.437548i
\(376\) −4.94554 + 2.85531i −0.255047 + 0.147251i
\(377\) 5.07886 2.78981i 0.261575 0.143683i
\(378\) 0.995959 + 13.7116i 0.0512266 + 0.705249i
\(379\) −11.2444 6.49193i −0.577584 0.333468i 0.182589 0.983189i \(-0.441552\pi\)
−0.760173 + 0.649721i \(0.774886\pi\)
\(380\) 2.33192i 0.119625i
\(381\) 9.04525 5.05081i 0.463402 0.258761i
\(382\) 9.40428 + 5.42957i 0.481165 + 0.277801i
\(383\) 3.62494 + 2.09286i 0.185226 + 0.106940i 0.589746 0.807589i \(-0.299228\pi\)
−0.404520 + 0.914529i \(0.632561\pi\)
\(384\) 1.48743 + 0.887438i 0.0759052 + 0.0452869i
\(385\) −8.75809 3.78663i −0.446354 0.192984i
\(386\) 16.6658 9.62200i 0.848267 0.489747i
\(387\) 9.14960 14.8477i 0.465100 0.754751i
\(388\) −2.82580 4.89442i −0.143458 0.248477i
\(389\) 19.0201 + 10.9812i 0.964356 + 0.556771i 0.897511 0.440992i \(-0.145373\pi\)
0.0668451 + 0.997763i \(0.478707\pi\)
\(390\) 1.95545 3.12435i 0.0990179 0.158207i
\(391\) 64.1257i 3.24298i
\(392\) 6.81402 1.60283i 0.344160 0.0809553i
\(393\) −0.138963 + 9.69349i −0.00700974 + 0.488972i
\(394\) 3.97307 6.88156i 0.200160 0.346688i
\(395\) −3.24826 1.87538i −0.163438 0.0943608i
\(396\) 9.61693 15.6061i 0.483269 0.784235i
\(397\) −16.5607 + 28.6839i −0.831156 + 1.43960i 0.0659662 + 0.997822i \(0.478987\pi\)
−0.897122 + 0.441783i \(0.854346\pi\)
\(398\) 18.8182i 0.943271i
\(399\) −14.6856 + 10.5904i −0.735199 + 0.530185i
\(400\) −2.32583 + 4.02845i −0.116291 + 0.201423i
\(401\) 6.94374 0.346754 0.173377 0.984856i \(-0.444532\pi\)
0.173377 + 0.984856i \(0.444532\pi\)
\(402\) 17.9179 + 0.256864i 0.893662 + 0.0128112i
\(403\) −4.82457 8.78314i −0.240329 0.437519i
\(404\) −5.91078 10.2378i −0.294072 0.509348i
\(405\) −0.304407 + 5.30311i −0.0151261 + 0.263514i
\(406\) 3.90293 + 1.68746i 0.193699 + 0.0837472i
\(407\) −11.7956 + 6.81017i −0.584684 + 0.337568i
\(408\) −11.3740 6.78599i −0.563096 0.335957i
\(409\) −0.303545 −0.0150093 −0.00750467 0.999972i \(-0.502389\pi\)
−0.00750467 + 0.999972i \(0.502389\pi\)
\(410\) −0.929688 −0.0459140
\(411\) 31.4550 + 18.7668i 1.55156 + 0.925699i
\(412\) −3.76608 + 2.17435i −0.185542 + 0.107123i
\(413\) 1.36682 + 11.7800i 0.0672570 + 0.579654i
\(414\) −22.1392 + 11.9493i −1.08808 + 0.587278i
\(415\) −2.67790 4.63827i −0.131453 0.227684i
\(416\) 1.86885 3.08341i 0.0916280 0.151176i
\(417\) −18.6844 0.267853i −0.914977 0.0131168i
\(418\) 24.1425 1.18085
\(419\) −2.85725 + 4.94891i −0.139586 + 0.241770i −0.927340 0.374220i \(-0.877911\pi\)
0.787754 + 0.615990i \(0.211244\pi\)
\(420\) 2.69083 0.273186i 0.131299 0.0133301i
\(421\) 9.25537i 0.451079i 0.974234 + 0.225540i \(0.0724145\pi\)
−0.974234 + 0.225540i \(0.927585\pi\)
\(422\) 1.28361 2.22329i 0.0624854 0.108228i
\(423\) −14.5850 8.98770i −0.709146 0.436997i
\(424\) 3.30431 + 1.90774i 0.160471 + 0.0926481i
\(425\) 17.7850 30.8045i 0.862698 1.49424i
\(426\) 0.0434974 3.03421i 0.00210746 0.147008i
\(427\) 0.244297 + 0.105624i 0.0118224 + 0.00511148i
\(428\) 8.84064i 0.427328i
\(429\) −32.3465 20.2448i −1.56170 0.977430i
\(430\) −2.97146 1.71557i −0.143296 0.0827322i
\(431\) 5.05283 + 8.75176i 0.243386 + 0.421557i 0.961677 0.274186i \(-0.0884084\pi\)
−0.718290 + 0.695743i \(0.755075\pi\)
\(432\) −0.223387 + 5.19135i −0.0107477 + 0.249769i
\(433\) 32.8655 18.9749i 1.57942 0.911877i 0.584476 0.811411i \(-0.301300\pi\)
0.994941 0.100466i \(-0.0320333\pi\)
\(434\) 2.91822 6.74955i 0.140079 0.323989i
\(435\) 1.41089 + 0.841774i 0.0676472 + 0.0403600i
\(436\) 14.8949 + 8.59957i 0.713336 + 0.411845i
\(437\) −28.6945 16.5668i −1.37264 0.792495i
\(438\) −16.3651 + 9.13815i −0.781954 + 0.436638i
\(439\) 28.4483i 1.35776i −0.734248 0.678881i \(-0.762465\pi\)
0.734248 0.678881i \(-0.237535\pi\)
\(440\) −3.12323 1.80320i −0.148894 0.0859641i
\(441\) 13.9409 + 15.7052i 0.663850 + 0.747866i
\(442\) −14.2906 + 23.5779i −0.679734 + 1.12149i
\(443\) −18.7651 + 10.8340i −0.891555 + 0.514740i −0.874451 0.485114i \(-0.838778\pi\)
−0.0171043 + 0.999854i \(0.505445\pi\)
\(444\) 1.97813 3.31554i 0.0938779 0.157349i
\(445\) 1.21534 + 2.10502i 0.0576124 + 0.0997876i
\(446\) 1.78923 3.09905i 0.0847227 0.146744i
\(447\) 12.1316 6.77421i 0.573806 0.320409i
\(448\) 2.62812 0.304939i 0.124167 0.0144070i
\(449\) 6.23704 + 10.8029i 0.294344 + 0.509819i 0.974832 0.222940i \(-0.0715656\pi\)
−0.680488 + 0.732759i \(0.738232\pi\)
\(450\) −13.9492 0.400025i −0.657574 0.0188574i
\(451\) 9.62510i 0.453228i
\(452\) 13.5393 7.81690i 0.636834 0.367676i
\(453\) −7.41867 13.2857i −0.348559 0.624219i
\(454\) 11.9739i 0.561963i
\(455\) −0.529687 5.60522i −0.0248321 0.262777i
\(456\) −5.97499 + 3.33639i −0.279804 + 0.156241i
\(457\) 9.59213i 0.448701i 0.974509 + 0.224351i \(0.0720261\pi\)
−0.974509 + 0.224351i \(0.927974\pi\)
\(458\) 5.57509 + 9.65634i 0.260507 + 0.451211i
\(459\) 1.70818 39.6968i 0.0797308 1.85289i
\(460\) 2.47474 + 4.28638i 0.115385 + 0.199853i
\(461\) 4.17780 2.41206i 0.194580 0.112341i −0.399545 0.916714i \(-0.630832\pi\)
0.594125 + 0.804373i \(0.297499\pi\)
\(462\) −2.82831 27.8582i −0.131585 1.29608i
\(463\) 3.08747i 0.143487i 0.997423 + 0.0717434i \(0.0228563\pi\)
−0.997423 + 0.0717434i \(0.977144\pi\)
\(464\) 1.39183 + 0.803572i 0.0646140 + 0.0373049i
\(465\) 1.45572 2.43994i 0.0675076 0.113149i
\(466\) −13.8355 + 7.98795i −0.640919 + 0.370035i
\(467\) −4.16237 7.20943i −0.192611 0.333613i 0.753504 0.657444i \(-0.228362\pi\)
−0.946115 + 0.323831i \(0.895029\pi\)
\(468\) 10.8032 + 0.540211i 0.499376 + 0.0249713i
\(469\) 21.9701 16.3274i 1.01449 0.753929i
\(470\) −1.68522 + 2.91888i −0.0777332 + 0.134638i
\(471\) 2.43269 + 4.35659i 0.112092 + 0.200741i
\(472\) 4.48228i 0.206314i
\(473\) −17.7614 + 30.7636i −0.816670 + 1.41451i
\(474\) 0.157780 11.0061i 0.00724706 0.505527i
\(475\) −9.18943 15.9166i −0.421640 0.730302i
\(476\) −20.0965 + 2.33179i −0.921121 + 0.106877i
\(477\) −0.328118 + 11.4417i −0.0150235 + 0.523882i
\(478\) −17.6869 −0.808979
\(479\) 10.4595 6.03880i 0.477907 0.275920i −0.241637 0.970367i \(-0.577684\pi\)
0.719544 + 0.694447i \(0.244351\pi\)
\(480\) 1.02216 + 0.0146533i 0.0466550 + 0.000668830i
\(481\) −6.87302 4.16574i −0.313383 0.189941i
\(482\) 24.1671 1.10078
\(483\) −15.7550 + 35.0517i −0.716877 + 1.59491i
\(484\) −13.1686 + 22.8087i −0.598573 + 1.03676i
\(485\) −2.88871 1.66780i −0.131170 0.0757308i
\(486\) −14.0235 + 6.80745i −0.636119 + 0.308792i
\(487\) 5.59837i 0.253686i −0.991923 0.126843i \(-0.959516\pi\)
0.991923 0.126843i \(-0.0404845\pi\)
\(488\) 0.0871190 + 0.0502982i 0.00394369 + 0.00227689i
\(489\) −4.54248 8.13492i −0.205418 0.367874i
\(490\) 3.00987 2.83009i 0.135972 0.127851i
\(491\) 0.451495 + 0.260671i 0.0203757 + 0.0117639i 0.510153 0.860084i \(-0.329589\pi\)
−0.489778 + 0.871847i \(0.662922\pi\)
\(492\) −1.33015 2.38210i −0.0599678 0.107394i
\(493\) −10.6429 6.14469i −0.479333 0.276743i
\(494\) 6.85852 + 12.4860i 0.308580 + 0.561770i
\(495\) 0.310137 10.8147i 0.0139396 0.486087i
\(496\) 1.38966 2.40696i 0.0623976 0.108076i
\(497\) −2.76488 3.72042i −0.124022 0.166884i
\(498\) 8.05305 13.4977i 0.360866 0.604846i
\(499\) −28.9603 + 16.7202i −1.29644 + 0.748501i −0.979788 0.200041i \(-0.935893\pi\)
−0.316654 + 0.948541i \(0.602559\pi\)
\(500\) 5.69645i 0.254753i
\(501\) −13.7597 24.6416i −0.614738 1.10091i
\(502\) −1.60381 2.77787i −0.0715814 0.123983i
\(503\) 9.16509 + 15.8744i 0.408651 + 0.707805i 0.994739 0.102443i \(-0.0326659\pi\)
−0.586088 + 0.810248i \(0.699333\pi\)
\(504\) 4.54987 + 6.50374i 0.202667 + 0.289700i
\(505\) −6.04238 3.48857i −0.268882 0.155239i
\(506\) 44.3770 25.6211i 1.97280 1.13900i
\(507\) 1.28101 22.4802i 0.0568919 0.998380i
\(508\) 2.99064 5.17994i 0.132688 0.229823i
\(509\) 34.9103i 1.54737i −0.633569 0.773686i \(-0.718411\pi\)
0.633569 0.773686i \(-0.281589\pi\)
\(510\) −7.81617 0.112050i −0.346106 0.00496166i
\(511\) −11.3624 + 26.2802i −0.502644 + 1.16257i
\(512\) 1.00000 0.0441942
\(513\) −17.3219 11.0200i −0.764781 0.486543i
\(514\) −1.18333 −0.0521943
\(515\) −1.28331 + 2.22276i −0.0565495 + 0.0979465i
\(516\) 0.144334 10.0682i 0.00635397 0.443228i
\(517\) 30.2193 + 17.4471i 1.32904 + 0.767324i
\(518\) −0.679720 5.85817i −0.0298652 0.257393i
\(519\) 21.7766 12.1599i 0.955888 0.533761i
\(520\) 0.0453104 2.12753i 0.00198699 0.0932984i
\(521\) −15.3561 + 26.5976i −0.672763 + 1.16526i 0.304354 + 0.952559i \(0.401559\pi\)
−0.977117 + 0.212701i \(0.931774\pi\)
\(522\) −0.138208 + 4.81945i −0.00604922 + 0.210942i
\(523\) 31.3290i 1.36992i −0.728581 0.684960i \(-0.759820\pi\)
0.728581 0.684960i \(-0.240180\pi\)
\(524\) 2.79856 + 4.84725i 0.122256 + 0.211753i
\(525\) −17.2897 + 12.4684i −0.754586 + 0.544166i
\(526\) 1.16231 0.671062i 0.0506793 0.0292597i
\(527\) −10.6263 + 18.4054i −0.462891 + 0.801750i
\(528\) 0.151707 10.5825i 0.00660219 0.460543i
\(529\) −47.3257 −2.05764
\(530\) 2.25192 0.0978170
\(531\) −11.8332 + 6.38684i −0.513519 + 0.277165i
\(532\) −4.14848 + 9.59503i −0.179860 + 0.415997i
\(533\) −4.97790 + 2.73435i −0.215617 + 0.118438i
\(534\) −3.65478 + 6.12577i −0.158158 + 0.265088i
\(535\) −2.60889 4.51873i −0.112792 0.195362i
\(536\) 8.95985 5.17297i 0.387007 0.223438i
\(537\) 19.8640 + 0.284763i 0.857193 + 0.0122884i
\(538\) 6.46592 0.278765
\(539\) −29.3001 31.1613i −1.26204 1.34221i
\(540\) 1.41780 + 2.71939i 0.0610124 + 0.117024i
\(541\) −18.3221 + 10.5782i −0.787726 + 0.454794i −0.839162 0.543882i \(-0.816954\pi\)
0.0514351 + 0.998676i \(0.483620\pi\)
\(542\) −19.2359 −0.826252
\(543\) −13.0488 + 21.8710i −0.559977 + 0.938575i
\(544\) −7.64672 −0.327850
\(545\) 10.1510 0.434822
\(546\) 13.6042 9.37687i 0.582206 0.401293i
\(547\) −2.57133 −0.109942 −0.0549710 0.998488i \(-0.517507\pi\)
−0.0549710 + 0.998488i \(0.517507\pi\)
\(548\) 21.1472 0.903363
\(549\) −0.00865091 + 0.301665i −0.000369212 + 0.0128747i
\(550\) 28.4236 1.21199
\(551\) −5.49916 + 3.17494i −0.234272 + 0.135257i
\(552\) −7.44209 + 12.4737i −0.316756 + 0.530914i
\(553\) −10.0292 13.4952i −0.426483 0.573874i
\(554\) −11.7622 −0.499730
\(555\) 0.0326628 2.27843i 0.00138646 0.0967140i
\(556\) −9.34314 + 5.39426i −0.396237 + 0.228768i
\(557\) −7.56444 13.1020i −0.320515 0.555149i 0.660079 0.751196i \(-0.270523\pi\)
−0.980594 + 0.196047i \(0.937189\pi\)
\(558\) 8.33453 + 0.239011i 0.352829 + 0.0101182i
\(559\) −20.9561 0.446305i −0.886347 0.0188767i
\(560\) 1.25333 0.931429i 0.0529628 0.0393600i
\(561\) −1.16006 + 80.9212i −0.0489777 + 3.41649i
\(562\) 21.9950 0.927805
\(563\) −5.82808 −0.245624 −0.122812 0.992430i \(-0.539191\pi\)
−0.122812 + 0.992430i \(0.539191\pi\)
\(564\) −9.89006 0.141781i −0.416447 0.00597004i
\(565\) 4.61357 7.99094i 0.194095 0.336182i
\(566\) −11.1271 + 6.42423i −0.467706 + 0.270030i
\(567\) −10.6868 + 21.2789i −0.448802 + 0.893631i
\(568\) −0.875991 1.51726i −0.0367558 0.0636628i
\(569\) 23.1239i 0.969405i −0.874679 0.484703i \(-0.838928\pi\)
0.874679 0.484703i \(-0.161072\pi\)
\(570\) −2.06943 + 3.46857i −0.0866790 + 0.145282i
\(571\) −17.1315 + 29.6727i −0.716933 + 1.24176i 0.245277 + 0.969453i \(0.421121\pi\)
−0.962209 + 0.272311i \(0.912212\pi\)
\(572\) −22.0264 0.469101i −0.920971 0.0196141i
\(573\) 9.16983 + 16.4218i 0.383075 + 0.686032i
\(574\) −3.82534 1.65392i −0.159667 0.0690331i
\(575\) −33.7828 19.5045i −1.40884 0.813394i
\(576\) 1.42491 + 2.64001i 0.0593712 + 0.110000i
\(577\) −7.81628 + 13.5382i −0.325396 + 0.563602i −0.981592 0.190988i \(-0.938831\pi\)
0.656196 + 0.754590i \(0.272164\pi\)
\(578\) 41.4723 1.72502
\(579\) 33.3282 + 0.477781i 1.38507 + 0.0198559i
\(580\) 0.948544 0.0393861
\(581\) −2.76717 23.8489i −0.114802 0.989417i
\(582\) 0.140315 9.78784i 0.00581625 0.405719i
\(583\) 23.3142i 0.965576i
\(584\) −5.41081 + 9.37179i −0.223901 + 0.387807i
\(585\) 5.68126 2.91192i 0.234891 0.120393i
\(586\) −0.344829 + 0.199087i −0.0142448 + 0.00822421i
\(587\) −25.9699 14.9937i −1.07189 0.618856i −0.143193 0.989695i \(-0.545737\pi\)
−0.928697 + 0.370838i \(0.879070\pi\)
\(588\) 11.5578 + 3.66292i 0.476636 + 0.151056i
\(589\) 5.49059 + 9.50998i 0.226236 + 0.391852i
\(590\) 1.32273 + 2.29104i 0.0544560 + 0.0943205i
\(591\) 12.0166 6.71000i 0.494298 0.276013i
\(592\) 2.22904i 0.0916128i
\(593\) 12.0409 6.95181i 0.494460 0.285477i −0.231963 0.972725i \(-0.574515\pi\)
0.726423 + 0.687248i \(0.241181\pi\)
\(594\) 28.1539 14.6785i 1.15517 0.602268i
\(595\) −9.58385 + 7.12237i −0.392900 + 0.291989i
\(596\) 4.01109 6.94741i 0.164301 0.284577i
\(597\) 16.7000 27.9908i 0.683484 1.14559i
\(598\) 25.8576 + 15.6723i 1.05739 + 0.640887i
\(599\) −5.85303 3.37925i −0.239148 0.138072i 0.375637 0.926767i \(-0.377424\pi\)
−0.614785 + 0.788695i \(0.710757\pi\)
\(600\) −7.03452 + 3.92802i −0.287183 + 0.160361i
\(601\) 11.3845 + 6.57283i 0.464382 + 0.268111i 0.713885 0.700263i \(-0.246934\pi\)
−0.249503 + 0.968374i \(0.580267\pi\)
\(602\) −9.17452 12.3452i −0.373925 0.503153i
\(603\) 26.4236 + 16.2831i 1.07605 + 0.663097i
\(604\) −7.60834 4.39268i −0.309579 0.178736i
\(605\) 15.5443i 0.631967i
\(606\) 0.293500 20.4734i 0.0119226 0.831676i
\(607\) −26.4291 15.2588i −1.07272 0.619337i −0.143799 0.989607i \(-0.545932\pi\)
−0.928924 + 0.370270i \(0.879265\pi\)
\(608\) −1.97552 + 3.42169i −0.0801178 + 0.138768i
\(609\) 4.30783 + 5.97359i 0.174562 + 0.242062i
\(610\) 0.0593724 0.00240392
\(611\) −0.438408 + 20.5853i −0.0177361 + 0.832790i
\(612\) −10.8959 20.1874i −0.440440 0.816027i
\(613\) 3.14710 1.81698i 0.127110 0.0733872i −0.435097 0.900384i \(-0.643286\pi\)
0.562207 + 0.826997i \(0.309952\pi\)
\(614\) 10.2738 0.414616
\(615\) −1.38285 0.825040i −0.0557618 0.0332688i
\(616\) −9.64312 12.9758i −0.388533 0.522809i
\(617\) −17.7255 30.7015i −0.713603 1.23600i −0.963496 0.267723i \(-0.913729\pi\)
0.249893 0.968273i \(-0.419605\pi\)
\(618\) −7.53139 0.107968i −0.302957 0.00434309i
\(619\) 21.7709 37.7083i 0.875046 1.51562i 0.0183329 0.999832i \(-0.494164\pi\)
0.856713 0.515793i \(-0.172503\pi\)
\(620\) 1.64037i 0.0658788i
\(621\) −43.5349 1.87333i −1.74699 0.0751741i
\(622\) −1.05163 + 1.82148i −0.0421666 + 0.0730347i
\(623\) 1.25585 + 10.8235i 0.0503144 + 0.433635i
\(624\) 5.51612 2.92787i 0.220822 0.117208i
\(625\) −9.94811 17.2306i −0.397924 0.689225i
\(626\) −9.44084 + 5.45067i −0.377332 + 0.217853i
\(627\) 35.9103 + 21.4249i 1.43412 + 0.855629i
\(628\) 2.49489 + 1.44042i 0.0995568 + 0.0574791i
\(629\) 17.0448i 0.679621i
\(630\) 4.24486 + 1.98159i 0.169119 + 0.0789486i
\(631\) −21.1471 + 12.2093i −0.841854 + 0.486045i −0.857894 0.513827i \(-0.828227\pi\)
0.0160399 + 0.999871i \(0.494894\pi\)
\(632\) −3.17751 5.50361i −0.126395 0.218922i
\(633\) 3.88232 2.16786i 0.154308 0.0861646i
\(634\) 5.27267 + 9.13253i 0.209404 + 0.362699i
\(635\) 3.53018i 0.140091i
\(636\) 3.22193 + 5.77000i 0.127758 + 0.228795i
\(637\) 7.79222 24.0059i 0.308739 0.951147i
\(638\) 9.82032i 0.388790i
\(639\) 2.75737 4.47458i 0.109080 0.177012i
\(640\) 0.511132 0.295102i 0.0202043 0.0116649i
\(641\) 19.2703i 0.761132i −0.924754 0.380566i \(-0.875729\pi\)
0.924754 0.380566i \(-0.124271\pi\)
\(642\) 7.84551 13.1498i 0.309638 0.518983i
\(643\) 15.0498 + 26.0670i 0.593505 + 1.02798i 0.993756 + 0.111575i \(0.0355895\pi\)
−0.400251 + 0.916405i \(0.631077\pi\)
\(644\) 2.55723 + 22.0395i 0.100769 + 0.868478i
\(645\) −2.89738 5.18878i −0.114084 0.204308i
\(646\) 15.1062 26.1647i 0.594346 1.02944i
\(647\) −14.3354 24.8296i −0.563582 0.976153i −0.997180 0.0750466i \(-0.976089\pi\)
0.433598 0.901107i \(-0.357244\pi\)
\(648\) −4.93927 + 7.52354i −0.194033 + 0.295552i
\(649\) 23.7192 13.6943i 0.931061 0.537548i
\(650\) 8.07473 + 14.7001i 0.316717 + 0.576584i
\(651\) 10.3304 7.44976i 0.404882 0.291979i
\(652\) −4.65862 2.68966i −0.182446 0.105335i
\(653\) 27.6088i 1.08041i 0.841532 + 0.540207i \(0.181654\pi\)
−0.841532 + 0.540207i \(0.818346\pi\)
\(654\) 14.5236 + 26.0096i 0.567916 + 1.01705i
\(655\) 2.86087 + 1.65172i 0.111783 + 0.0645381i
\(656\) −1.36416 0.787598i −0.0532615 0.0307505i
\(657\) −32.4515 0.930619i −1.26605 0.0363069i
\(658\) −12.1268 + 9.01218i −0.472751 + 0.351331i
\(659\) 28.9405 16.7088i 1.12736 0.650884i 0.184093 0.982909i \(-0.441065\pi\)
0.943270 + 0.332025i \(0.107732\pi\)
\(660\) −3.04537 5.45381i −0.118541 0.212289i
\(661\) 5.20701 + 9.01881i 0.202529 + 0.350791i 0.949343 0.314243i \(-0.101751\pi\)
−0.746813 + 0.665034i \(0.768417\pi\)
\(662\) −12.6163 7.28403i −0.490347 0.283102i
\(663\) −42.1802 + 22.3886i −1.63814 + 0.869500i
\(664\) 9.07449i 0.352159i
\(665\) 0.711093 + 6.12856i 0.0275750 + 0.237655i
\(666\) 5.88467 3.17617i 0.228026 0.123074i
\(667\) −6.73879 + 11.6719i −0.260927 + 0.451939i
\(668\) −14.1115 8.14728i −0.545990 0.315228i
\(669\) 5.41157 3.02179i 0.209224 0.116829i
\(670\) 3.05311 5.28815i 0.117952 0.204299i
\(671\) 0.614686i 0.0237297i
\(672\) 4.17976 + 1.87872i 0.161238 + 0.0724730i
\(673\) −0.105584 + 0.182877i −0.00406998 + 0.00704941i −0.868053 0.496471i \(-0.834629\pi\)
0.863983 + 0.503521i \(0.167962\pi\)
\(674\) −31.0830 −1.19727
\(675\) −20.3936 12.9741i −0.784948 0.499373i
\(676\) −6.01478 11.5249i −0.231338 0.443264i
\(677\) 11.7820 + 20.4071i 0.452820 + 0.784307i 0.998560 0.0536474i \(-0.0170847\pi\)
−0.545740 + 0.837955i \(0.683751\pi\)
\(678\) 27.0758 + 0.388149i 1.03984 + 0.0149068i
\(679\) −8.91903 12.0014i −0.342281 0.460573i
\(680\) −3.90849 + 2.25657i −0.149884 + 0.0865353i
\(681\) −10.6261 + 17.8104i −0.407193 + 0.682495i
\(682\) −16.9828 −0.650305
\(683\) 1.38840 0.0531255 0.0265627 0.999647i \(-0.491544\pi\)
0.0265627 + 0.999647i \(0.491544\pi\)
\(684\) −11.8482 0.339774i −0.453028 0.0129916i
\(685\) 10.8090 6.24059i 0.412991 0.238441i
\(686\) 17.4193 6.29030i 0.665072 0.240165i
\(687\) −0.276832 + 19.3107i −0.0105618 + 0.736749i
\(688\) −2.90674 5.03462i −0.110818 0.191943i
\(689\) 12.0576 6.62323i 0.459358 0.252325i
\(690\) −0.122883 + 8.57187i −0.00467809 + 0.326326i
\(691\) 26.2488 0.998552 0.499276 0.866443i \(-0.333599\pi\)
0.499276 + 0.866443i \(0.333599\pi\)
\(692\) 7.20003 12.4708i 0.273704 0.474069i
\(693\) 20.5155 43.9472i 0.779321 1.66942i
\(694\) 24.6678i 0.936378i
\(695\) −3.18372 + 5.51436i −0.120765 + 0.209172i
\(696\) 1.35713 + 2.43042i 0.0514418 + 0.0921248i
\(697\) 10.4313 + 6.02254i 0.395115 + 0.228120i
\(698\) −16.5800 + 28.7175i −0.627564 + 1.08697i
\(699\) −27.6682 0.396642i −1.04651 0.0150024i
\(700\) −4.88412 + 11.2965i −0.184603 + 0.426967i
\(701\) 35.5148i 1.34137i 0.741740 + 0.670687i \(0.234001\pi\)
−0.741740 + 0.670687i \(0.765999\pi\)
\(702\) 15.5896 + 10.3907i 0.588390 + 0.392170i
\(703\) 7.62708 + 4.40350i 0.287661 + 0.166081i
\(704\) −3.05521 5.29178i −0.115148 0.199441i
\(705\) −5.09697 + 2.84611i −0.191963 + 0.107191i
\(706\) 12.5305 7.23450i 0.471593 0.272274i
\(707\) −18.6561 25.1036i −0.701636 0.944120i
\(708\) −3.97774 + 6.66709i −0.149493 + 0.250564i
\(709\) 18.7918 + 10.8494i 0.705739 + 0.407459i 0.809482 0.587145i \(-0.199748\pi\)
−0.103742 + 0.994604i \(0.533082\pi\)
\(710\) −0.895494 0.517014i −0.0336073 0.0194032i
\(711\) 10.0019 16.2308i 0.375101 0.608703i
\(712\) 4.11835i 0.154342i
\(713\) 20.1849 + 11.6537i 0.755930 + 0.436436i
\(714\) −31.9615 14.3660i −1.19613 0.537635i
\(715\) −11.3969 + 6.26028i −0.426218 + 0.234121i
\(716\) 9.93300 5.73482i 0.371214 0.214320i
\(717\) −26.3080 15.6960i −0.982491 0.586178i
\(718\) 7.00098 + 12.1261i 0.261274 + 0.452541i
\(719\) −14.7420 + 25.5339i −0.549785 + 0.952255i 0.448504 + 0.893781i \(0.351957\pi\)
−0.998289 + 0.0584744i \(0.981376\pi\)
\(720\) 1.50739 + 0.928899i 0.0561771 + 0.0346180i
\(721\) −9.23467 + 6.86288i −0.343917 + 0.255587i
\(722\) 1.69467 + 2.93526i 0.0630691 + 0.109239i
\(723\) 35.9469 + 21.4468i 1.33688 + 0.797615i
\(724\) 14.7039i 0.546465i
\(725\) −6.47431 + 3.73794i −0.240450 + 0.138824i
\(726\) −39.8287 + 22.2401i −1.47818 + 0.825406i
\(727\) 7.96128i 0.295268i 0.989042 + 0.147634i \(0.0471657\pi\)
−0.989042 + 0.147634i \(0.952834\pi\)
\(728\) 3.97132 8.67345i 0.147187 0.321459i
\(729\) −26.9002 2.31936i −0.996304 0.0859021i
\(730\) 6.38697i 0.236392i
\(731\) 22.2270 + 38.4984i 0.822097 + 1.42391i
\(732\) 0.0849471 + 0.152128i 0.00313973 + 0.00562280i
\(733\) −23.6265 40.9223i −0.872665 1.51150i −0.859230 0.511590i \(-0.829057\pi\)
−0.0134348 0.999910i \(-0.504277\pi\)
\(734\) −12.7593 + 7.36659i −0.470954 + 0.271906i
\(735\) 6.98851 1.53850i 0.257775 0.0567486i
\(736\) 8.38604i 0.309114i
\(737\) −54.7484 31.6090i −2.01668 1.16433i
\(738\) 0.135461 4.72364i 0.00498639 0.173880i
\(739\) 18.9360 10.9327i 0.696572 0.402166i −0.109498 0.993987i \(-0.534924\pi\)
0.806069 + 0.591821i \(0.201591\pi\)
\(740\) −0.657794 1.13933i −0.0241810 0.0418827i
\(741\) −0.878922 + 24.6585i −0.0322880 + 0.905854i
\(742\) 9.26586 + 4.00616i 0.340160 + 0.147071i
\(743\) 5.23639 9.06969i 0.192104 0.332735i −0.753843 0.657055i \(-0.771802\pi\)
0.945947 + 0.324320i \(0.105135\pi\)
\(744\) 4.20305 2.34696i 0.154091 0.0860436i
\(745\) 4.73473i 0.173467i
\(746\) −7.91499 + 13.7092i −0.289788 + 0.501928i
\(747\) 23.9567 12.9303i 0.876531 0.473096i
\(748\) 23.3623 + 40.4647i 0.854211 + 1.47954i
\(749\) −2.69586 23.2342i −0.0985045 0.848961i
\(750\) −5.05525 + 8.47309i −0.184592 + 0.309393i
\(751\) 34.6538 1.26454 0.632268 0.774750i \(-0.282124\pi\)
0.632268 + 0.774750i \(0.282124\pi\)
\(752\) −4.94554 + 2.85531i −0.180345 + 0.104122i
\(753\) 0.0796371 5.55518i 0.00290214 0.202442i
\(754\) 5.07886 2.78981i 0.184961 0.101599i
\(755\) −5.18516 −0.188707
\(756\) 0.995959 + 13.7116i 0.0362227 + 0.498686i
\(757\) −12.1846 + 21.1043i −0.442856 + 0.767050i −0.997900 0.0647715i \(-0.979368\pi\)
0.555044 + 0.831821i \(0.312701\pi\)
\(758\) −11.2444 6.49193i −0.408414 0.235798i
\(759\) 88.7450 + 1.27222i 3.22124 + 0.0461786i
\(760\) 2.33192i 0.0845876i
\(761\) −5.80180 3.34967i −0.210315 0.121426i 0.391143 0.920330i \(-0.372080\pi\)
−0.601458 + 0.798905i \(0.705413\pi\)
\(762\) 9.04525 5.05081i 0.327675 0.182971i
\(763\) 41.7679 + 18.0587i 1.51210 + 0.653768i
\(764\) 9.40428 + 5.42957i 0.340235 + 0.196435i
\(765\) −11.5266 7.10303i −0.416744 0.256811i
\(766\) 3.62494 + 2.09286i 0.130975 + 0.0756182i
\(767\) 13.8207 + 8.37672i 0.499036 + 0.302466i
\(768\) 1.48743 + 0.887438i 0.0536731 + 0.0320227i
\(769\) −3.97005 + 6.87633i −0.143164 + 0.247967i −0.928686 0.370866i \(-0.879061\pi\)
0.785523 + 0.618833i \(0.212394\pi\)
\(770\) −8.75809 3.78663i −0.315620 0.136461i
\(771\) −1.76012 1.05013i −0.0633890 0.0378194i
\(772\) 16.6658 9.62200i 0.599815 0.346304i
\(773\) 14.9695i 0.538417i −0.963082 0.269208i \(-0.913238\pi\)
0.963082 0.269208i \(-0.0867621\pi\)
\(774\) 9.14960