Properties

Label 546.2.bi.f.17.13
Level $546$
Weight $2$
Character 546.17
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bi (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.13
Character \(\chi\) \(=\) 546.17
Dual form 546.2.bi.f.257.13

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +(1.13542 + 1.30799i) q^{3} +1.00000 q^{4} +(-1.26448 + 0.730045i) q^{5} +(1.13542 + 1.30799i) q^{6} +(-1.08820 + 2.41160i) q^{7} +1.00000 q^{8} +(-0.421657 + 2.97022i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(1.13542 + 1.30799i) q^{3} +1.00000 q^{4} +(-1.26448 + 0.730045i) q^{5} +(1.13542 + 1.30799i) q^{6} +(-1.08820 + 2.41160i) q^{7} +1.00000 q^{8} +(-0.421657 + 2.97022i) q^{9} +(-1.26448 + 0.730045i) q^{10} +(-1.75974 - 3.04796i) q^{11} +(1.13542 + 1.30799i) q^{12} +(0.214878 + 3.59914i) q^{13} +(-1.08820 + 2.41160i) q^{14} +(-2.39060 - 0.825011i) q^{15} +1.00000 q^{16} +7.58718 q^{17} +(-0.421657 + 2.97022i) q^{18} +(-1.72681 + 2.99093i) q^{19} +(-1.26448 + 0.730045i) q^{20} +(-4.38990 + 1.31482i) q^{21} +(-1.75974 - 3.04796i) q^{22} -3.60696i q^{23} +(1.13542 + 1.30799i) q^{24} +(-1.43407 + 2.48388i) q^{25} +(0.214878 + 3.59914i) q^{26} +(-4.36376 + 2.82092i) q^{27} +(-1.08820 + 2.41160i) q^{28} +(0.170773 + 0.0985961i) q^{29} +(-2.39060 - 0.825011i) q^{30} +(5.34484 - 9.25753i) q^{31} +1.00000 q^{32} +(1.98865 - 5.76241i) q^{33} +7.58718 q^{34} +(-0.384576 - 3.84385i) q^{35} +(-0.421657 + 2.97022i) q^{36} -5.56471i q^{37} +(-1.72681 + 2.99093i) q^{38} +(-4.46365 + 4.36759i) q^{39} +(-1.26448 + 0.730045i) q^{40} +(-2.60543 - 1.50425i) q^{41} +(-4.38990 + 1.31482i) q^{42} +(5.61139 + 9.71922i) q^{43} +(-1.75974 - 3.04796i) q^{44} +(-1.63522 - 4.06360i) q^{45} -3.60696i q^{46} +(11.0787 - 6.39629i) q^{47} +(1.13542 + 1.30799i) q^{48} +(-4.63164 - 5.24861i) q^{49} +(-1.43407 + 2.48388i) q^{50} +(8.61461 + 9.92393i) q^{51} +(0.214878 + 3.59914i) q^{52} +(-4.21555 - 2.43385i) q^{53} +(-4.36376 + 2.82092i) q^{54} +(4.45029 + 2.56938i) q^{55} +(-1.08820 + 2.41160i) q^{56} +(-5.87274 + 1.13730i) q^{57} +(0.170773 + 0.0985961i) q^{58} -1.30815i q^{59} +(-2.39060 - 0.825011i) q^{60} +(0.865717 + 0.499822i) q^{61} +(5.34484 - 9.25753i) q^{62} +(-6.70414 - 4.24906i) q^{63} +1.00000 q^{64} +(-2.89925 - 4.39416i) q^{65} +(1.98865 - 5.76241i) q^{66} +(4.78794 - 2.76432i) q^{67} +7.58718 q^{68} +(4.71786 - 4.09541i) q^{69} +(-0.384576 - 3.84385i) q^{70} +(-5.33718 - 9.24427i) q^{71} +(-0.421657 + 2.97022i) q^{72} +(-2.94410 + 5.09933i) q^{73} -5.56471i q^{74} +(-4.87714 + 0.944496i) q^{75} +(-1.72681 + 2.99093i) q^{76} +(9.26540 - 0.927001i) q^{77} +(-4.46365 + 4.36759i) q^{78} +(0.174645 + 0.302494i) q^{79} +(-1.26448 + 0.730045i) q^{80} +(-8.64441 - 2.50483i) q^{81} +(-2.60543 - 1.50425i) q^{82} +3.72979i q^{83} +(-4.38990 + 1.31482i) q^{84} +(-9.59380 + 5.53898i) q^{85} +(5.61139 + 9.71922i) q^{86} +(0.0649367 + 0.335317i) q^{87} +(-1.75974 - 3.04796i) q^{88} +14.4601i q^{89} +(-1.63522 - 4.06360i) q^{90} +(-8.91353 - 3.39839i) q^{91} -3.60696i q^{92} +(18.1773 - 3.52018i) q^{93} +(11.0787 - 6.39629i) q^{94} -5.04260i q^{95} +(1.13542 + 1.30799i) q^{96} +(-1.72747 - 2.99206i) q^{97} +(-4.63164 - 5.24861i) q^{98} +(9.79510 - 3.94162i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + O(q^{10}) \) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + 9q^{10} + 9q^{11} + 6q^{12} + 8q^{13} + 4q^{14} - 17q^{15} + 34q^{16} + 12q^{17} + 4q^{18} - 5q^{19} + 9q^{20} - 7q^{21} + 9q^{22} + 6q^{24} + 16q^{25} + 8q^{26} - 18q^{27} + 4q^{28} + 27q^{29} - 17q^{30} - q^{31} + 34q^{32} + 12q^{34} - 3q^{35} + 4q^{36} - 5q^{38} - 10q^{39} + 9q^{40} - 3q^{41} - 7q^{42} - 3q^{43} + 9q^{44} + 9q^{45} - 27q^{47} + 6q^{48} - 2q^{49} + 16q^{50} - 36q^{51} + 8q^{52} - 21q^{53} - 18q^{54} - 57q^{55} + 4q^{56} - 17q^{57} + 27q^{58} - 17q^{60} - 51q^{61} - q^{62} - 24q^{63} + 34q^{64} - 21q^{65} - 21q^{67} + 12q^{68} + 30q^{69} - 3q^{70} - 15q^{71} + 4q^{72} - 19q^{73} - 54q^{75} - 5q^{76} + 9q^{77} - 10q^{78} - 9q^{79} + 9q^{80} + 28q^{81} - 3q^{82} - 7q^{84} - 42q^{85} - 3q^{86} - 81q^{87} + 9q^{88} + 9q^{90} - 72q^{91} - 17q^{93} - 27q^{94} + 6q^{96} + 19q^{97} - 2q^{98} - 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.13542 + 1.30799i 0.655533 + 0.755166i
\(4\) 1.00000 0.500000
\(5\) −1.26448 + 0.730045i −0.565491 + 0.326486i −0.755346 0.655326i \(-0.772531\pi\)
0.189856 + 0.981812i \(0.439198\pi\)
\(6\) 1.13542 + 1.30799i 0.463532 + 0.533983i
\(7\) −1.08820 + 2.41160i −0.411301 + 0.911500i
\(8\) 1.00000 0.353553
\(9\) −0.421657 + 2.97022i −0.140552 + 0.990073i
\(10\) −1.26448 + 0.730045i −0.399862 + 0.230861i
\(11\) −1.75974 3.04796i −0.530581 0.918993i −0.999363 0.0356795i \(-0.988640\pi\)
0.468782 0.883314i \(-0.344693\pi\)
\(12\) 1.13542 + 1.30799i 0.327767 + 0.377583i
\(13\) 0.214878 + 3.59914i 0.0595966 + 0.998223i
\(14\) −1.08820 + 2.41160i −0.290834 + 0.644528i
\(15\) −2.39060 0.825011i −0.617249 0.213017i
\(16\) 1.00000 0.250000
\(17\) 7.58718 1.84016 0.920080 0.391729i \(-0.128123\pi\)
0.920080 + 0.391729i \(0.128123\pi\)
\(18\) −0.421657 + 2.97022i −0.0993855 + 0.700088i
\(19\) −1.72681 + 2.99093i −0.396158 + 0.686165i −0.993248 0.116008i \(-0.962990\pi\)
0.597090 + 0.802174i \(0.296323\pi\)
\(20\) −1.26448 + 0.730045i −0.282745 + 0.163243i
\(21\) −4.38990 + 1.31482i −0.957955 + 0.286918i
\(22\) −1.75974 3.04796i −0.375177 0.649826i
\(23\) 3.60696i 0.752104i −0.926599 0.376052i \(-0.877281\pi\)
0.926599 0.376052i \(-0.122719\pi\)
\(24\) 1.13542 + 1.30799i 0.231766 + 0.266992i
\(25\) −1.43407 + 2.48388i −0.286814 + 0.496776i
\(26\) 0.214878 + 3.59914i 0.0421411 + 0.705850i
\(27\) −4.36376 + 2.82092i −0.839807 + 0.542885i
\(28\) −1.08820 + 2.41160i −0.205650 + 0.455750i
\(29\) 0.170773 + 0.0985961i 0.0317118 + 0.0183088i 0.515772 0.856726i \(-0.327505\pi\)
−0.484060 + 0.875035i \(0.660838\pi\)
\(30\) −2.39060 0.825011i −0.436461 0.150626i
\(31\) 5.34484 9.25753i 0.959961 1.66270i 0.237377 0.971418i \(-0.423712\pi\)
0.722584 0.691283i \(-0.242954\pi\)
\(32\) 1.00000 0.176777
\(33\) 1.98865 5.76241i 0.346179 1.00311i
\(34\) 7.58718 1.30119
\(35\) −0.384576 3.84385i −0.0650052 0.649729i
\(36\) −0.421657 + 2.97022i −0.0702762 + 0.495037i
\(37\) 5.56471i 0.914833i −0.889252 0.457417i \(-0.848775\pi\)
0.889252 0.457417i \(-0.151225\pi\)
\(38\) −1.72681 + 2.99093i −0.280126 + 0.485192i
\(39\) −4.46365 + 4.36759i −0.714757 + 0.699373i
\(40\) −1.26448 + 0.730045i −0.199931 + 0.115430i
\(41\) −2.60543 1.50425i −0.406900 0.234924i 0.282557 0.959250i \(-0.408817\pi\)
−0.689457 + 0.724327i \(0.742151\pi\)
\(42\) −4.38990 + 1.31482i −0.677377 + 0.202881i
\(43\) 5.61139 + 9.71922i 0.855730 + 1.48217i 0.875967 + 0.482372i \(0.160225\pi\)
−0.0202369 + 0.999795i \(0.506442\pi\)
\(44\) −1.75974 3.04796i −0.265291 0.459497i
\(45\) −1.63522 4.06360i −0.243764 0.605766i
\(46\) 3.60696i 0.531818i
\(47\) 11.0787 6.39629i 1.61599 0.932994i 0.628051 0.778172i \(-0.283853\pi\)
0.987942 0.154822i \(-0.0494803\pi\)
\(48\) 1.13542 + 1.30799i 0.163883 + 0.188792i
\(49\) −4.63164 5.24861i −0.661663 0.749801i
\(50\) −1.43407 + 2.48388i −0.202808 + 0.351273i
\(51\) 8.61461 + 9.92393i 1.20629 + 1.38963i
\(52\) 0.214878 + 3.59914i 0.0297983 + 0.499111i
\(53\) −4.21555 2.43385i −0.579051 0.334315i 0.181705 0.983353i \(-0.441838\pi\)
−0.760756 + 0.649038i \(0.775172\pi\)
\(54\) −4.36376 + 2.82092i −0.593833 + 0.383878i
\(55\) 4.45029 + 2.56938i 0.600077 + 0.346455i
\(56\) −1.08820 + 2.41160i −0.145417 + 0.322264i
\(57\) −5.87274 + 1.13730i −0.777864 + 0.150639i
\(58\) 0.170773 + 0.0985961i 0.0224236 + 0.0129463i
\(59\) 1.30815i 0.170306i −0.996368 0.0851532i \(-0.972862\pi\)
0.996368 0.0851532i \(-0.0271380\pi\)
\(60\) −2.39060 0.825011i −0.308625 0.106508i
\(61\) 0.865717 + 0.499822i 0.110844 + 0.0639956i 0.554397 0.832252i \(-0.312949\pi\)
−0.443553 + 0.896248i \(0.646282\pi\)
\(62\) 5.34484 9.25753i 0.678795 1.17571i
\(63\) −6.70414 4.24906i −0.844642 0.535331i
\(64\) 1.00000 0.125000
\(65\) −2.89925 4.39416i −0.359607 0.545028i
\(66\) 1.98865 5.76241i 0.244786 0.709304i
\(67\) 4.78794 2.76432i 0.584940 0.337715i −0.178154 0.984003i \(-0.557013\pi\)
0.763094 + 0.646287i \(0.223679\pi\)
\(68\) 7.58718 0.920080
\(69\) 4.71786 4.09541i 0.567964 0.493029i
\(70\) −0.384576 3.84385i −0.0459656 0.459427i
\(71\) −5.33718 9.24427i −0.633407 1.09709i −0.986850 0.161637i \(-0.948323\pi\)
0.353443 0.935456i \(-0.385011\pi\)
\(72\) −0.421657 + 2.97022i −0.0496928 + 0.350044i
\(73\) −2.94410 + 5.09933i −0.344581 + 0.596832i −0.985278 0.170963i \(-0.945312\pi\)
0.640697 + 0.767794i \(0.278646\pi\)
\(74\) 5.56471i 0.646885i
\(75\) −4.87714 + 0.944496i −0.563164 + 0.109061i
\(76\) −1.72681 + 2.99093i −0.198079 + 0.343083i
\(77\) 9.26540 0.927001i 1.05589 0.105642i
\(78\) −4.46365 + 4.36759i −0.505409 + 0.494532i
\(79\) 0.174645 + 0.302494i 0.0196491 + 0.0340332i 0.875683 0.482887i \(-0.160412\pi\)
−0.856034 + 0.516920i \(0.827078\pi\)
\(80\) −1.26448 + 0.730045i −0.141373 + 0.0816215i
\(81\) −8.64441 2.50483i −0.960490 0.278314i
\(82\) −2.60543 1.50425i −0.287722 0.166116i
\(83\) 3.72979i 0.409398i 0.978825 + 0.204699i \(0.0656215\pi\)
−0.978825 + 0.204699i \(0.934379\pi\)
\(84\) −4.38990 + 1.31482i −0.478978 + 0.143459i
\(85\) −9.59380 + 5.53898i −1.04059 + 0.600787i
\(86\) 5.61139 + 9.71922i 0.605092 + 1.04805i
\(87\) 0.0649367 + 0.335317i 0.00696194 + 0.0359498i
\(88\) −1.75974 3.04796i −0.187589 0.324913i
\(89\) 14.4601i 1.53276i 0.642385 + 0.766382i \(0.277945\pi\)
−0.642385 + 0.766382i \(0.722055\pi\)
\(90\) −1.63522 4.06360i −0.172367 0.428341i
\(91\) −8.91353 3.39839i −0.934392 0.356248i
\(92\) 3.60696i 0.376052i
\(93\) 18.1773 3.52018i 1.88490 0.365026i
\(94\) 11.0787 6.39629i 1.14268 0.659726i
\(95\) 5.04260i 0.517360i
\(96\) 1.13542 + 1.30799i 0.115883 + 0.133496i
\(97\) −1.72747 2.99206i −0.175398 0.303798i 0.764901 0.644148i \(-0.222788\pi\)
−0.940299 + 0.340350i \(0.889455\pi\)
\(98\) −4.63164 5.24861i −0.467866 0.530190i
\(99\) 9.79510 3.94162i 0.984445 0.396147i
\(100\) −1.43407 + 2.48388i −0.143407 + 0.248388i
\(101\) 5.80861 + 10.0608i 0.577979 + 1.00109i 0.995711 + 0.0925183i \(0.0294916\pi\)
−0.417732 + 0.908570i \(0.637175\pi\)
\(102\) 8.61461 + 9.92393i 0.852973 + 0.982615i
\(103\) 16.2249 9.36744i 1.59869 0.923001i 0.606944 0.794745i \(-0.292395\pi\)
0.991741 0.128257i \(-0.0409381\pi\)
\(104\) 0.214878 + 3.59914i 0.0210706 + 0.352925i
\(105\) 4.59104 4.86739i 0.448040 0.475008i
\(106\) −4.21555 2.43385i −0.409451 0.236397i
\(107\) 0.350806i 0.0339137i −0.999856 0.0169568i \(-0.994602\pi\)
0.999856 0.0169568i \(-0.00539779\pi\)
\(108\) −4.36376 + 2.82092i −0.419903 + 0.271443i
\(109\) −8.12542 4.69121i −0.778274 0.449337i 0.0575444 0.998343i \(-0.481673\pi\)
−0.835818 + 0.549006i \(0.815006\pi\)
\(110\) 4.45029 + 2.56938i 0.424319 + 0.244980i
\(111\) 7.27857 6.31827i 0.690851 0.599704i
\(112\) −1.08820 + 2.41160i −0.102825 + 0.227875i
\(113\) 5.03517 2.90706i 0.473669 0.273473i −0.244105 0.969749i \(-0.578494\pi\)
0.717774 + 0.696276i \(0.245161\pi\)
\(114\) −5.87274 + 1.13730i −0.550033 + 0.106518i
\(115\) 2.63325 + 4.56092i 0.245552 + 0.425308i
\(116\) 0.170773 + 0.0985961i 0.0158559 + 0.00915442i
\(117\) −10.7808 0.879368i −0.996690 0.0812976i
\(118\) 1.30815i 0.120425i
\(119\) −8.25637 + 18.2972i −0.756860 + 1.67731i
\(120\) −2.39060 0.825011i −0.218231 0.0753129i
\(121\) −0.693357 + 1.20093i −0.0630324 + 0.109175i
\(122\) 0.865717 + 0.499822i 0.0783783 + 0.0452518i
\(123\) −0.990716 5.11581i −0.0893298 0.461277i
\(124\) 5.34484 9.25753i 0.479980 0.831350i
\(125\) 11.4882i 1.02754i
\(126\) −6.70414 4.24906i −0.597252 0.378537i
\(127\) −7.87940 + 13.6475i −0.699183 + 1.21102i 0.269567 + 0.962982i \(0.413120\pi\)
−0.968750 + 0.248039i \(0.920214\pi\)
\(128\) 1.00000 0.0883883
\(129\) −6.34134 + 18.3750i −0.558324 + 1.61783i
\(130\) −2.89925 4.39416i −0.254281 0.385393i
\(131\) −6.32520 10.9556i −0.552635 0.957192i −0.998083 0.0618843i \(-0.980289\pi\)
0.445448 0.895308i \(-0.353044\pi\)
\(132\) 1.98865 5.76241i 0.173090 0.501554i
\(133\) −5.33380 7.41911i −0.462499 0.643318i
\(134\) 4.78794 2.76432i 0.413615 0.238801i
\(135\) 3.45848 6.75272i 0.297658 0.581182i
\(136\) 7.58718 0.650595
\(137\) −1.25158 −0.106930 −0.0534648 0.998570i \(-0.517026\pi\)
−0.0534648 + 0.998570i \(0.517026\pi\)
\(138\) 4.71786 4.09541i 0.401611 0.348624i
\(139\) 8.68419 5.01382i 0.736583 0.425267i −0.0842424 0.996445i \(-0.526847\pi\)
0.820826 + 0.571179i \(0.193514\pi\)
\(140\) −0.384576 3.84385i −0.0325026 0.324864i
\(141\) 20.9452 + 7.22833i 1.76390 + 0.608735i
\(142\) −5.33718 9.24427i −0.447886 0.775762i
\(143\) 10.5919 6.98849i 0.885739 0.584407i
\(144\) −0.421657 + 2.97022i −0.0351381 + 0.247518i
\(145\) −0.287918 −0.0239103
\(146\) −2.94410 + 5.09933i −0.243655 + 0.422024i
\(147\) 1.60627 12.0175i 0.132483 0.991185i
\(148\) 5.56471i 0.457417i
\(149\) 1.62311 2.81131i 0.132970 0.230311i −0.791850 0.610716i \(-0.790882\pi\)
0.924820 + 0.380404i \(0.124215\pi\)
\(150\) −4.87714 + 0.944496i −0.398217 + 0.0771178i
\(151\) −8.04225 4.64320i −0.654469 0.377858i 0.135697 0.990750i \(-0.456673\pi\)
−0.790166 + 0.612892i \(0.790006\pi\)
\(152\) −1.72681 + 2.99093i −0.140063 + 0.242596i
\(153\) −3.19919 + 22.5356i −0.258639 + 1.82189i
\(154\) 9.26540 0.927001i 0.746627 0.0746999i
\(155\) 15.6079i 1.25366i
\(156\) −4.46365 + 4.36759i −0.357378 + 0.349687i
\(157\) −16.2305 9.37071i −1.29534 0.747864i −0.315743 0.948845i \(-0.602254\pi\)
−0.979595 + 0.200981i \(0.935587\pi\)
\(158\) 0.174645 + 0.302494i 0.0138940 + 0.0240651i
\(159\) −1.60297 8.27732i −0.127124 0.656434i
\(160\) −1.26448 + 0.730045i −0.0999656 + 0.0577151i
\(161\) 8.69856 + 3.92510i 0.685542 + 0.309341i
\(162\) −8.64441 2.50483i −0.679169 0.196798i
\(163\) 0.787553 + 0.454694i 0.0616859 + 0.0356144i 0.530526 0.847669i \(-0.321995\pi\)
−0.468840 + 0.883283i \(0.655328\pi\)
\(164\) −2.60543 1.50425i −0.203450 0.117462i
\(165\) 1.69223 + 8.73824i 0.131740 + 0.680271i
\(166\) 3.72979i 0.289488i
\(167\) −11.6602 6.73204i −0.902297 0.520941i −0.0243520 0.999703i \(-0.507752\pi\)
−0.877945 + 0.478762i \(0.841086\pi\)
\(168\) −4.38990 + 1.31482i −0.338688 + 0.101441i
\(169\) −12.9077 + 1.54676i −0.992896 + 0.118981i
\(170\) −9.59380 + 5.53898i −0.735811 + 0.424821i
\(171\) −8.15558 6.39016i −0.623673 0.488667i
\(172\) 5.61139 + 9.71922i 0.427865 + 0.741084i
\(173\) 5.08435 8.80635i 0.386556 0.669534i −0.605428 0.795900i \(-0.706998\pi\)
0.991984 + 0.126366i \(0.0403314\pi\)
\(174\) 0.0649367 + 0.335317i 0.00492284 + 0.0254203i
\(175\) −4.42957 6.16136i −0.334844 0.465755i
\(176\) −1.75974 3.04796i −0.132645 0.229748i
\(177\) 1.71104 1.48529i 0.128610 0.111641i
\(178\) 14.4601i 1.08383i
\(179\) 7.39608 4.27013i 0.552809 0.319164i −0.197445 0.980314i \(-0.563264\pi\)
0.750254 + 0.661150i \(0.229931\pi\)
\(180\) −1.63522 4.06360i −0.121882 0.302883i
\(181\) 25.4759i 1.89361i 0.321810 + 0.946804i \(0.395709\pi\)
−0.321810 + 0.946804i \(0.604291\pi\)
\(182\) −8.91353 3.39839i −0.660715 0.251905i
\(183\) 0.329189 + 1.69985i 0.0243344 + 0.125657i
\(184\) 3.60696i 0.265909i
\(185\) 4.06249 + 7.03645i 0.298680 + 0.517330i
\(186\) 18.1773 3.52018i 1.33283 0.258112i
\(187\) −13.3514 23.1254i −0.976354 1.69110i
\(188\) 11.0787 6.39629i 0.807997 0.466497i
\(189\) −2.05428 13.5934i −0.149427 0.988773i
\(190\) 5.04260i 0.365829i
\(191\) −17.9487 10.3627i −1.29873 0.749819i −0.318541 0.947909i \(-0.603193\pi\)
−0.980184 + 0.198089i \(0.936526\pi\)
\(192\) 1.13542 + 1.30799i 0.0819417 + 0.0943958i
\(193\) −8.21554 + 4.74324i −0.591367 + 0.341426i −0.765638 0.643272i \(-0.777577\pi\)
0.174271 + 0.984698i \(0.444243\pi\)
\(194\) −1.72747 2.99206i −0.124025 0.214818i
\(195\) 2.45565 8.78137i 0.175852 0.628847i
\(196\) −4.63164 5.24861i −0.330832 0.374901i
\(197\) −3.21420 + 5.56716i −0.229002 + 0.396644i −0.957513 0.288391i \(-0.906880\pi\)
0.728510 + 0.685035i \(0.240213\pi\)
\(198\) 9.79510 3.94162i 0.696108 0.280118i
\(199\) 1.26513i 0.0896830i 0.998994 + 0.0448415i \(0.0142783\pi\)
−0.998994 + 0.0448415i \(0.985722\pi\)
\(200\) −1.43407 + 2.48388i −0.101404 + 0.175637i
\(201\) 9.05200 + 3.12391i 0.638479 + 0.220343i
\(202\) 5.80861 + 10.0608i 0.408693 + 0.707876i
\(203\) −0.423610 + 0.304545i −0.0297316 + 0.0213749i
\(204\) 8.61461 + 9.92393i 0.603143 + 0.694814i
\(205\) 4.39267 0.306797
\(206\) 16.2249 9.36744i 1.13044 0.652660i
\(207\) 10.7135 + 1.52090i 0.744638 + 0.105710i
\(208\) 0.214878 + 3.59914i 0.0148991 + 0.249556i
\(209\) 12.1549 0.840775
\(210\) 4.59104 4.86739i 0.316812 0.335882i
\(211\) −6.24577 + 10.8180i −0.429977 + 0.744742i −0.996871 0.0790492i \(-0.974812\pi\)
0.566894 + 0.823791i \(0.308145\pi\)
\(212\) −4.21555 2.43385i −0.289525 0.167158i
\(213\) 6.03145 17.4771i 0.413268 1.19751i
\(214\) 0.350806i 0.0239806i
\(215\) −14.1909 8.19314i −0.967814 0.558768i
\(216\) −4.36376 + 2.82092i −0.296917 + 0.191939i
\(217\) 16.5092 + 22.9637i 1.12072 + 1.55887i
\(218\) −8.12542 4.69121i −0.550323 0.317729i
\(219\) −10.0126 + 1.93902i −0.676591 + 0.131027i
\(220\) 4.45029 + 2.56938i 0.300039 + 0.173227i
\(221\) 1.63032 + 27.3073i 0.109667 + 1.83689i
\(222\) 7.27857 6.31827i 0.488506 0.424055i
\(223\) −3.78556 + 6.55677i −0.253500 + 0.439074i −0.964487 0.264131i \(-0.914915\pi\)
0.710987 + 0.703205i \(0.248248\pi\)
\(224\) −1.08820 + 2.41160i −0.0727084 + 0.161132i
\(225\) −6.77298 5.30684i −0.451532 0.353789i
\(226\) 5.03517 2.90706i 0.334935 0.193375i
\(227\) 25.4572i 1.68965i 0.535042 + 0.844826i \(0.320296\pi\)
−0.535042 + 0.844826i \(0.679704\pi\)
\(228\) −5.87274 + 1.13730i −0.388932 + 0.0753196i
\(229\) 5.51406 + 9.55063i 0.364379 + 0.631124i 0.988676 0.150063i \(-0.0479478\pi\)
−0.624297 + 0.781187i \(0.714614\pi\)
\(230\) 2.63325 + 4.56092i 0.173631 + 0.300738i
\(231\) 11.7326 + 11.0665i 0.771948 + 0.728121i
\(232\) 0.170773 + 0.0985961i 0.0112118 + 0.00647315i
\(233\) 6.18721 3.57219i 0.405338 0.234022i −0.283447 0.958988i \(-0.591478\pi\)
0.688785 + 0.724966i \(0.258145\pi\)
\(234\) −10.7808 0.879368i −0.704766 0.0574861i
\(235\) −9.33916 + 16.1759i −0.609219 + 1.05520i
\(236\) 1.30815i 0.0851532i
\(237\) −0.197363 + 0.571890i −0.0128201 + 0.0371482i
\(238\) −8.25637 + 18.2972i −0.535181 + 1.18603i
\(239\) −7.32463 −0.473791 −0.236896 0.971535i \(-0.576130\pi\)
−0.236896 + 0.971535i \(0.576130\pi\)
\(240\) −2.39060 0.825011i −0.154312 0.0532542i
\(241\) 17.4268 1.12256 0.561280 0.827626i \(-0.310309\pi\)
0.561280 + 0.827626i \(0.310309\pi\)
\(242\) −0.693357 + 1.20093i −0.0445707 + 0.0771986i
\(243\) −6.53873 14.1508i −0.419460 0.907774i
\(244\) 0.865717 + 0.499822i 0.0554219 + 0.0319978i
\(245\) 9.68832 + 3.25543i 0.618964 + 0.207982i
\(246\) −0.990716 5.11581i −0.0631657 0.326172i
\(247\) −11.1358 5.57236i −0.708555 0.354561i
\(248\) 5.34484 9.25753i 0.339397 0.587854i
\(249\) −4.87851 + 4.23487i −0.309163 + 0.268374i
\(250\) 11.4882i 0.726577i
\(251\) 6.39321 + 11.0734i 0.403536 + 0.698944i 0.994150 0.108010i \(-0.0344478\pi\)
−0.590614 + 0.806954i \(0.701114\pi\)
\(252\) −6.70414 4.24906i −0.422321 0.267666i
\(253\) −10.9939 + 6.34731i −0.691178 + 0.399052i
\(254\) −7.87940 + 13.6475i −0.494397 + 0.856321i
\(255\) −18.1379 6.25951i −1.13584 0.391986i
\(256\) 1.00000 0.0625000
\(257\) −21.3460 −1.33153 −0.665764 0.746163i \(-0.731894\pi\)
−0.665764 + 0.746163i \(0.731894\pi\)
\(258\) −6.34134 + 18.3750i −0.394794 + 1.14398i
\(259\) 13.4199 + 6.05552i 0.833870 + 0.376272i
\(260\) −2.89925 4.39416i −0.179804 0.272514i
\(261\) −0.364860 + 0.465661i −0.0225843 + 0.0288237i
\(262\) −6.32520 10.9556i −0.390772 0.676837i
\(263\) 13.7817 7.95686i 0.849816 0.490641i −0.0107730 0.999942i \(-0.503429\pi\)
0.860589 + 0.509301i \(0.170096\pi\)
\(264\) 1.98865 5.76241i 0.122393 0.354652i
\(265\) 7.10729 0.436597
\(266\) −5.33380 7.41911i −0.327037 0.454895i
\(267\) −18.9136 + 16.4182i −1.15749 + 1.00478i
\(268\) 4.78794 2.76432i 0.292470 0.168858i
\(269\) −15.4992 −0.945002 −0.472501 0.881330i \(-0.656649\pi\)
−0.472501 + 0.881330i \(0.656649\pi\)
\(270\) 3.45848 6.75272i 0.210476 0.410958i
\(271\) 14.9966 0.910977 0.455489 0.890242i \(-0.349465\pi\)
0.455489 + 0.890242i \(0.349465\pi\)
\(272\) 7.58718 0.460040
\(273\) −5.67553 15.5174i −0.343499 0.939153i
\(274\) −1.25158 −0.0756107
\(275\) 10.0943 0.608711
\(276\) 4.71786 4.09541i 0.283982 0.246515i
\(277\) −0.719351 −0.0432216 −0.0216108 0.999766i \(-0.506879\pi\)
−0.0216108 + 0.999766i \(0.506879\pi\)
\(278\) 8.68419 5.01382i 0.520843 0.300709i
\(279\) 25.2432 + 19.7788i 1.51127 + 1.18413i
\(280\) −0.384576 3.84385i −0.0229828 0.229714i
\(281\) −7.30448 −0.435749 −0.217874 0.975977i \(-0.569912\pi\)
−0.217874 + 0.975977i \(0.569912\pi\)
\(282\) 20.9452 + 7.22833i 1.24727 + 0.430441i
\(283\) 12.9252 7.46234i 0.768320 0.443590i −0.0639547 0.997953i \(-0.520371\pi\)
0.832275 + 0.554363i \(0.187038\pi\)
\(284\) −5.33718 9.24427i −0.316703 0.548546i
\(285\) 6.59566 5.72546i 0.390693 0.339147i
\(286\) 10.5919 6.98849i 0.626312 0.413238i
\(287\) 6.46287 4.64634i 0.381491 0.274265i
\(288\) −0.421657 + 2.97022i −0.0248464 + 0.175022i
\(289\) 40.5653 2.38619
\(290\) −0.287918 −0.0169072
\(291\) 1.95218 5.65675i 0.114439 0.331604i
\(292\) −2.94410 + 5.09933i −0.172290 + 0.298416i
\(293\) −13.1158 + 7.57239i −0.766231 + 0.442384i −0.831529 0.555482i \(-0.812534\pi\)
0.0652973 + 0.997866i \(0.479200\pi\)
\(294\) 1.60627 12.0175i 0.0936793 0.700874i
\(295\) 0.955007 + 1.65412i 0.0556027 + 0.0963066i
\(296\) 5.56471i 0.323442i
\(297\) 16.2771 + 8.33649i 0.944494 + 0.483732i
\(298\) 1.62311 2.81131i 0.0940242 0.162855i
\(299\) 12.9820 0.775059i 0.750767 0.0448228i
\(300\) −4.87714 + 0.944496i −0.281582 + 0.0545305i
\(301\) −29.5452 + 2.95599i −1.70296 + 0.170380i
\(302\) −8.04225 4.64320i −0.462780 0.267186i
\(303\) −6.56421 + 19.0208i −0.377104 + 1.09272i
\(304\) −1.72681 + 2.99093i −0.0990395 + 0.171541i
\(305\) −1.45957 −0.0835748
\(306\) −3.19919 + 22.5356i −0.182885 + 1.28827i
\(307\) 0.289284 0.0165103 0.00825515 0.999966i \(-0.497372\pi\)
0.00825515 + 0.999966i \(0.497372\pi\)
\(308\) 9.26540 0.927001i 0.527945 0.0528208i
\(309\) 30.6745 + 10.5860i 1.74501 + 0.602215i
\(310\) 15.6079i 0.886468i
\(311\) 5.96970 10.3398i 0.338511 0.586318i −0.645642 0.763640i \(-0.723410\pi\)
0.984153 + 0.177322i \(0.0567435\pi\)
\(312\) −4.46365 + 4.36759i −0.252705 + 0.247266i
\(313\) −7.95301 + 4.59167i −0.449530 + 0.259537i −0.707632 0.706581i \(-0.750236\pi\)
0.258101 + 0.966118i \(0.416903\pi\)
\(314\) −16.2305 9.37071i −0.915942 0.528820i
\(315\) 11.5792 + 0.478510i 0.652416 + 0.0269610i
\(316\) 0.174645 + 0.302494i 0.00982454 + 0.0170166i
\(317\) 11.5121 + 19.9395i 0.646582 + 1.11991i 0.983934 + 0.178534i \(0.0571356\pi\)
−0.337352 + 0.941379i \(0.609531\pi\)
\(318\) −1.60297 8.27732i −0.0898899 0.464169i
\(319\) 0.694013i 0.0388573i
\(320\) −1.26448 + 0.730045i −0.0706863 + 0.0408108i
\(321\) 0.458849 0.398311i 0.0256105 0.0222315i
\(322\) 8.69856 + 3.92510i 0.484752 + 0.218737i
\(323\) −13.1016 + 22.6927i −0.728994 + 1.26265i
\(324\) −8.64441 2.50483i −0.480245 0.139157i
\(325\) −9.24798 4.62768i −0.512986 0.256698i
\(326\) 0.787553 + 0.454694i 0.0436185 + 0.0251832i
\(327\) −3.08969 15.9544i −0.170860 0.882281i
\(328\) −2.60543 1.50425i −0.143861 0.0830581i
\(329\) 3.36946 + 33.6778i 0.185764 + 1.85672i
\(330\) 1.69223 + 8.73824i 0.0931540 + 0.481024i
\(331\) −20.4980 11.8345i −1.12667 0.650483i −0.183575 0.983006i \(-0.558767\pi\)
−0.943095 + 0.332522i \(0.892100\pi\)
\(332\) 3.72979i 0.204699i
\(333\) 16.5284 + 2.34640i 0.905752 + 0.128582i
\(334\) −11.6602 6.73204i −0.638020 0.368361i
\(335\) −4.03616 + 6.99083i −0.220519 + 0.381950i
\(336\) −4.38990 + 1.31482i −0.239489 + 0.0717294i
\(337\) 19.1537 1.04337 0.521684 0.853139i \(-0.325304\pi\)
0.521684 + 0.853139i \(0.325304\pi\)
\(338\) −12.9077 + 1.54676i −0.702084 + 0.0841325i
\(339\) 9.51941 + 3.28521i 0.517023 + 0.178428i
\(340\) −9.59380 + 5.53898i −0.520297 + 0.300394i
\(341\) −37.6220 −2.03735
\(342\) −8.15558 6.39016i −0.441004 0.345540i
\(343\) 17.6977 5.45814i 0.955586 0.294712i
\(344\) 5.61139 + 9.71922i 0.302546 + 0.524025i
\(345\) −2.97579 + 8.62279i −0.160211 + 0.464236i
\(346\) 5.08435 8.80635i 0.273336 0.473432i
\(347\) 31.7120i 1.70239i −0.524852 0.851194i \(-0.675879\pi\)
0.524852 0.851194i \(-0.324121\pi\)
\(348\) 0.0649367 + 0.335317i 0.00348097 + 0.0179749i
\(349\) −3.87835 + 6.71749i −0.207603 + 0.359579i −0.950959 0.309317i \(-0.899900\pi\)
0.743356 + 0.668896i \(0.233233\pi\)
\(350\) −4.42957 6.16136i −0.236771 0.329338i
\(351\) −11.0906 15.0997i −0.591970 0.805960i
\(352\) −1.75974 3.04796i −0.0937944 0.162457i
\(353\) −0.491689 + 0.283877i −0.0261700 + 0.0151092i −0.513028 0.858372i \(-0.671476\pi\)
0.486858 + 0.873481i \(0.338143\pi\)
\(354\) 1.71104 1.48529i 0.0909407 0.0789424i
\(355\) 13.4975 + 7.79277i 0.716371 + 0.413597i
\(356\) 14.4601i 0.766382i
\(357\) −33.3070 + 9.97579i −1.76279 + 0.527975i
\(358\) 7.39608 4.27013i 0.390895 0.225683i
\(359\) −3.12906 5.41969i −0.165145 0.286040i 0.771562 0.636155i \(-0.219476\pi\)
−0.936707 + 0.350115i \(0.886143\pi\)
\(360\) −1.63522 4.06360i −0.0861837 0.214170i
\(361\) 3.53624 + 6.12495i 0.186118 + 0.322366i
\(362\) 25.4759i 1.33898i
\(363\) −2.35805 + 0.456654i −0.123765 + 0.0239681i
\(364\) −8.91353 3.39839i −0.467196 0.178124i
\(365\) 8.59731i 0.450004i
\(366\) 0.329189 + 1.69985i 0.0172070 + 0.0888527i
\(367\) −18.6936 + 10.7928i −0.975800 + 0.563378i −0.900999 0.433820i \(-0.857165\pi\)
−0.0748003 + 0.997199i \(0.523832\pi\)
\(368\) 3.60696i 0.188026i
\(369\) 5.56654 7.10442i 0.289782 0.369841i
\(370\) 4.06249 + 7.03645i 0.211199 + 0.365807i
\(371\) 10.4568 7.51772i 0.542892 0.390300i
\(372\) 18.1773 3.52018i 0.942451 0.182513i
\(373\) 0.378056 0.654812i 0.0195750 0.0339049i −0.856072 0.516857i \(-0.827102\pi\)
0.875647 + 0.482952i \(0.160435\pi\)
\(374\) −13.3514 23.1254i −0.690387 1.19579i
\(375\) 15.0264 13.0439i 0.775960 0.673583i
\(376\) 11.0787 6.39629i 0.571340 0.329863i
\(377\) −0.318166 + 0.635824i −0.0163864 + 0.0327466i
\(378\) −2.05428 13.5934i −0.105661 0.699168i
\(379\) 6.26101 + 3.61480i 0.321607 + 0.185680i 0.652108 0.758126i \(-0.273885\pi\)
−0.330502 + 0.943805i \(0.607218\pi\)
\(380\) 5.04260i 0.258680i
\(381\) −26.7972 + 5.18947i −1.37286 + 0.265865i
\(382\) −17.9487 10.3627i −0.918338 0.530202i
\(383\) −1.16788 0.674277i −0.0596760 0.0344540i 0.469865 0.882738i \(-0.344303\pi\)
−0.529541 + 0.848284i \(0.677636\pi\)
\(384\) 1.13542 + 1.30799i 0.0579415 + 0.0667479i
\(385\) −11.0391 + 7.93633i −0.562606 + 0.404473i
\(386\) −8.21554 + 4.74324i −0.418160 + 0.241425i
\(387\) −31.2343 + 12.5689i −1.58773 + 0.638913i
\(388\) −1.72747 2.99206i −0.0876989 0.151899i
\(389\) −3.70239 2.13758i −0.187719 0.108379i 0.403196 0.915114i \(-0.367899\pi\)
−0.590914 + 0.806734i \(0.701233\pi\)
\(390\) 2.45565 8.78137i 0.124346 0.444662i
\(391\) 27.3667i 1.38399i
\(392\) −4.63164 5.24861i −0.233933 0.265095i
\(393\) 7.14799 20.7124i 0.360569 1.04480i
\(394\) −3.21420 + 5.56716i −0.161929 + 0.280470i
\(395\) −0.441668 0.254997i −0.0222228 0.0128303i
\(396\) 9.79510 3.94162i 0.492223 0.198074i
\(397\) −2.86479 + 4.96196i −0.143780 + 0.249034i −0.928917 0.370288i \(-0.879259\pi\)
0.785137 + 0.619322i \(0.212592\pi\)
\(398\) 1.26513i 0.0634155i
\(399\) 3.64800 15.4003i 0.182628 0.770980i
\(400\) −1.43407 + 2.48388i −0.0717034 + 0.124194i
\(401\) −21.9761 −1.09743 −0.548717 0.836008i \(-0.684883\pi\)
−0.548717 + 0.836008i \(0.684883\pi\)
\(402\) 9.05200 + 3.12391i 0.451473 + 0.155806i
\(403\) 34.4676 + 17.2476i 1.71696 + 0.859163i
\(404\) 5.80861 + 10.0608i 0.288989 + 0.500544i
\(405\) 12.7593 3.14352i 0.634014 0.156203i
\(406\) −0.423610 + 0.304545i −0.0210234 + 0.0151143i
\(407\) −16.9610 + 9.79244i −0.840726 + 0.485393i
\(408\) 8.61461 + 9.92393i 0.426487 + 0.491308i
\(409\) −8.43899 −0.417281 −0.208641 0.977992i \(-0.566904\pi\)
−0.208641 + 0.977992i \(0.566904\pi\)
\(410\) 4.39267 0.216938
\(411\) −1.42106 1.63705i −0.0700959 0.0807497i
\(412\) 16.2249 9.36744i 0.799343 0.461501i
\(413\) 3.15473 + 1.42353i 0.155234 + 0.0700471i
\(414\) 10.7135 + 1.52090i 0.526539 + 0.0747483i
\(415\) −2.72292 4.71623i −0.133663 0.231511i
\(416\) 0.214878 + 3.59914i 0.0105353 + 0.176462i
\(417\) 16.4182 + 5.66603i 0.804002 + 0.277467i
\(418\) 12.1549 0.594518
\(419\) −12.4744 + 21.6063i −0.609413 + 1.05553i 0.381924 + 0.924194i \(0.375262\pi\)
−0.991337 + 0.131341i \(0.958072\pi\)
\(420\) 4.59104 4.86739i 0.224020 0.237504i
\(421\) 23.2628i 1.13376i −0.823800 0.566881i \(-0.808150\pi\)
0.823800 0.566881i \(-0.191850\pi\)
\(422\) −6.24577 + 10.8180i −0.304040 + 0.526612i
\(423\) 14.3270 + 35.6032i 0.696601 + 1.73109i
\(424\) −4.21555 2.43385i −0.204725 0.118198i
\(425\) −10.8805 + 18.8456i −0.527783 + 0.914147i
\(426\) 6.03145 17.4771i 0.292225 0.846766i
\(427\) −2.14744 + 1.54386i −0.103922 + 0.0747125i
\(428\) 0.350806i 0.0169568i
\(429\) 21.1671 + 5.91921i 1.02196 + 0.285782i
\(430\) −14.1909 8.19314i −0.684348 0.395108i
\(431\) −11.3685 19.6908i −0.547602 0.948474i −0.998438 0.0558673i \(-0.982208\pi\)
0.450837 0.892606i \(-0.351126\pi\)
\(432\) −4.36376 + 2.82092i −0.209952 + 0.135721i
\(433\) 11.9025 6.87194i 0.572000 0.330244i −0.185948 0.982560i \(-0.559536\pi\)
0.757948 + 0.652315i \(0.226202\pi\)
\(434\) 16.5092 + 22.9637i 0.792468 + 1.10229i
\(435\) −0.326907 0.376593i −0.0156740 0.0180563i
\(436\) −8.12542 4.69121i −0.389137 0.224668i
\(437\) 10.7882 + 6.22855i 0.516068 + 0.297952i
\(438\) −10.0126 + 1.93902i −0.478422 + 0.0926501i
\(439\) 12.1761i 0.581134i −0.956855 0.290567i \(-0.906156\pi\)
0.956855 0.290567i \(-0.0938439\pi\)
\(440\) 4.45029 + 2.56938i 0.212159 + 0.122490i
\(441\) 17.5425 11.5439i 0.835356 0.549709i
\(442\) 1.63032 + 27.3073i 0.0775465 + 1.29888i
\(443\) −1.94173 + 1.12106i −0.0922543 + 0.0532630i −0.545417 0.838165i \(-0.683629\pi\)
0.453163 + 0.891428i \(0.350296\pi\)
\(444\) 7.27857 6.31827i 0.345426 0.299852i
\(445\) −10.5565 18.2844i −0.500426 0.866763i
\(446\) −3.78556 + 6.55677i −0.179251 + 0.310472i
\(447\) 5.52006 1.06900i 0.261090 0.0505620i
\(448\) −1.08820 + 2.41160i −0.0514126 + 0.113937i
\(449\) 3.91929 + 6.78842i 0.184963 + 0.320365i 0.943564 0.331190i \(-0.107450\pi\)
−0.758601 + 0.651555i \(0.774117\pi\)
\(450\) −6.77298 5.30684i −0.319281 0.250167i
\(451\) 10.5883i 0.498584i
\(452\) 5.03517 2.90706i 0.236834 0.136736i
\(453\) −3.05807 15.7911i −0.143681 0.741932i
\(454\) 25.4572i 1.19476i
\(455\) 13.7519 2.21010i 0.644700 0.103611i
\(456\) −5.87274 + 1.13730i −0.275016 + 0.0532590i
\(457\) 6.54295i 0.306066i −0.988221 0.153033i \(-0.951096\pi\)
0.988221 0.153033i \(-0.0489041\pi\)
\(458\) 5.51406 + 9.55063i 0.257655 + 0.446272i
\(459\) −33.1087 + 21.4028i −1.54538 + 0.998997i
\(460\) 2.63325 + 4.56092i 0.122776 + 0.212654i
\(461\) −20.3030 + 11.7219i −0.945606 + 0.545946i −0.891713 0.452601i \(-0.850496\pi\)
−0.0538925 + 0.998547i \(0.517163\pi\)
\(462\) 11.7326 + 11.0665i 0.545850 + 0.514860i
\(463\) 37.3356i 1.73513i −0.497321 0.867567i \(-0.665683\pi\)
0.497321 0.867567i \(-0.334317\pi\)
\(464\) 0.170773 + 0.0985961i 0.00792796 + 0.00457721i
\(465\) −20.4149 + 17.7215i −0.946719 + 0.821813i
\(466\) 6.18721 3.57219i 0.286617 0.165479i
\(467\) 3.36611 + 5.83027i 0.155765 + 0.269792i 0.933337 0.359001i \(-0.116882\pi\)
−0.777572 + 0.628793i \(0.783549\pi\)
\(468\) −10.7808 0.879368i −0.498345 0.0406488i
\(469\) 1.45620 + 14.5547i 0.0672410 + 0.672075i
\(470\) −9.33916 + 16.1759i −0.430783 + 0.746138i
\(471\) −6.17167 31.8690i −0.284376 1.46845i
\(472\) 1.30815i 0.0602124i
\(473\) 19.7492 34.2066i 0.908068 1.57282i
\(474\) −0.197363 + 0.571890i −0.00906519 + 0.0262678i
\(475\) −4.95273 8.57838i −0.227247 0.393603i
\(476\) −8.25637 + 18.2972i −0.378430 + 0.838653i
\(477\) 9.00659 11.4949i 0.412383 0.526314i
\(478\) −7.32463 −0.335021
\(479\) 11.2141 6.47445i 0.512384 0.295825i −0.221429 0.975176i \(-0.571072\pi\)
0.733813 + 0.679351i \(0.237739\pi\)
\(480\) −2.39060 0.825011i −0.109115 0.0376564i
\(481\) 20.0282 1.19574i 0.913207 0.0545209i
\(482\) 17.4268 0.793769
\(483\) 4.74252 + 15.8342i 0.215792 + 0.720482i
\(484\) −0.693357 + 1.20093i −0.0315162 + 0.0545877i
\(485\) 4.36868 + 2.52226i 0.198372 + 0.114530i
\(486\) −6.53873 14.1508i −0.296603 0.641893i
\(487\) 8.67630i 0.393161i −0.980488 0.196580i \(-0.937016\pi\)
0.980488 0.196580i \(-0.0629837\pi\)
\(488\) 0.865717 + 0.499822i 0.0391892 + 0.0226259i
\(489\) 0.299467 + 1.54638i 0.0135424 + 0.0699295i
\(490\) 9.68832 + 3.25543i 0.437674 + 0.147065i
\(491\) −14.7725 8.52893i −0.666676 0.384905i 0.128140 0.991756i \(-0.459099\pi\)
−0.794816 + 0.606851i \(0.792433\pi\)
\(492\) −0.990716 5.11581i −0.0446649 0.230639i
\(493\) 1.29569 + 0.748066i 0.0583549 + 0.0336912i
\(494\) −11.1358 5.57236i −0.501024 0.250712i
\(495\) −9.50811 + 12.1349i −0.427358 + 0.545425i
\(496\) 5.34484 9.25753i 0.239990 0.415675i
\(497\) 28.1014 2.81154i 1.26052 0.126115i
\(498\) −4.87851 + 4.23487i −0.218611 + 0.189769i
\(499\) 20.1546 11.6362i 0.902243 0.520910i 0.0243156 0.999704i \(-0.492259\pi\)
0.877927 + 0.478794i \(0.158926\pi\)
\(500\) 11.4882i 0.513768i
\(501\) −4.43381 22.8951i −0.198088 1.02288i
\(502\) 6.39321 + 11.0734i 0.285343 + 0.494228i
\(503\) 4.33129 + 7.50201i 0.193122 + 0.334498i 0.946283 0.323338i \(-0.104805\pi\)
−0.753161 + 0.657836i \(0.771472\pi\)
\(504\) −6.70414 4.24906i −0.298626 0.189268i
\(505\) −14.6897 8.48110i −0.653683 0.377404i
\(506\) −10.9939 + 6.34731i −0.488737 + 0.282172i
\(507\) −16.6787 15.1268i −0.740727 0.671806i
\(508\) −7.87940 + 13.6475i −0.349592 + 0.605511i
\(509\) 5.78402i 0.256372i −0.991750 0.128186i \(-0.959085\pi\)
0.991750 0.128186i \(-0.0409155\pi\)
\(510\) −18.1379 6.25951i −0.803159 0.277176i
\(511\) −9.09378 12.6491i −0.402285 0.559563i
\(512\) 1.00000 0.0441942
\(513\) −0.901751 17.9229i −0.0398133 0.791315i
\(514\) −21.3460 −0.941532
\(515\) −13.6773 + 23.6898i −0.602694 + 1.04390i
\(516\) −6.34134 + 18.3750i −0.279162 + 0.808914i
\(517\) −38.9912 22.5116i −1.71483 0.990058i
\(518\) 13.4199 + 6.05552i 0.589635 + 0.266064i
\(519\) 17.2914 3.34862i 0.759010 0.146988i
\(520\) −2.89925 4.39416i −0.127140 0.192697i
\(521\) 5.46547 9.46647i 0.239447 0.414734i −0.721109 0.692822i \(-0.756367\pi\)
0.960556 + 0.278088i \(0.0897007\pi\)
\(522\) −0.364860 + 0.465661i −0.0159695 + 0.0203814i
\(523\) 13.6134i 0.595270i −0.954680 0.297635i \(-0.903802\pi\)
0.954680 0.297635i \(-0.0961979\pi\)
\(524\) −6.32520 10.9556i −0.276318 0.478596i
\(525\) 3.02956 12.7895i 0.132221 0.558181i
\(526\) 13.7817 7.95686i 0.600910 0.346936i
\(527\) 40.5522 70.2385i 1.76648 3.05964i
\(528\) 1.98865 5.76241i 0.0865448 0.250777i
\(529\) 9.98981 0.434340
\(530\) 7.10729 0.308721
\(531\) 3.88549 + 0.551590i 0.168616 + 0.0239370i
\(532\) −5.33380 7.41911i −0.231250 0.321659i
\(533\) 4.85414 9.70054i 0.210256 0.420177i
\(534\) −18.9136 + 16.4182i −0.818470 + 0.710485i
\(535\) 0.256104 + 0.443585i 0.0110723 + 0.0191779i
\(536\) 4.78794 2.76432i 0.206808 0.119400i
\(537\) 13.9829 + 4.82560i 0.603407 + 0.208240i
\(538\) −15.4992 −0.668218
\(539\) −7.84705 + 23.3532i −0.337996 + 1.00589i
\(540\) 3.45848 6.75272i 0.148829 0.290591i
\(541\) −3.38852 + 1.95636i −0.145684 + 0.0841105i −0.571070 0.820901i \(-0.693472\pi\)
0.425386 + 0.905012i \(0.360138\pi\)
\(542\) 14.9966 0.644158
\(543\) −33.3221 + 28.9258i −1.42999 + 1.24132i
\(544\) 7.58718 0.325298
\(545\) 13.6992 0.586809
\(546\) −5.67553 15.5174i −0.242890 0.664082i
\(547\) −10.8125 −0.462308 −0.231154 0.972917i \(-0.574250\pi\)
−0.231154 + 0.972917i \(0.574250\pi\)
\(548\) −1.25158 −0.0534648
\(549\) −1.84962 + 2.36062i −0.0789397 + 0.100749i
\(550\) 10.0943 0.430424
\(551\) −0.589787 + 0.340514i −0.0251258 + 0.0145064i
\(552\) 4.71786 4.09541i 0.200805 0.174312i
\(553\) −0.919543 + 0.0920001i −0.0391030 + 0.00391224i
\(554\) −0.719351 −0.0305623
\(555\) −4.59095 + 13.3030i −0.194875 + 0.564680i
\(556\) 8.68419 5.01382i 0.368292 0.212633i
\(557\) −11.6199 20.1263i −0.492351 0.852778i 0.507610 0.861587i \(-0.330529\pi\)
−0.999961 + 0.00880939i \(0.997196\pi\)
\(558\) 25.2432 + 19.7788i 1.06863 + 0.837305i
\(559\) −33.7751 + 22.2847i −1.42853 + 0.942541i
\(560\) −0.384576 3.84385i −0.0162513 0.162432i
\(561\) 15.0882 43.7205i 0.637026 1.84588i
\(562\) −7.30448 −0.308121
\(563\) 11.8776 0.500580 0.250290 0.968171i \(-0.419474\pi\)
0.250290 + 0.968171i \(0.419474\pi\)
\(564\) 20.9452 + 7.22833i 0.881951 + 0.304368i
\(565\) −4.24457 + 7.35181i −0.178570 + 0.309293i
\(566\) 12.9252 7.46234i 0.543285 0.313666i
\(567\) 15.4475 18.1211i 0.648734 0.761015i
\(568\) −5.33718 9.24427i −0.223943 0.387881i
\(569\) 1.93128i 0.0809635i 0.999180 + 0.0404817i \(0.0128893\pi\)
−0.999180 + 0.0404817i \(0.987111\pi\)
\(570\) 6.59566 5.72546i 0.276262 0.239813i
\(571\) 6.46083 11.1905i 0.270377 0.468307i −0.698581 0.715531i \(-0.746185\pi\)
0.968958 + 0.247224i \(0.0795182\pi\)
\(572\) 10.5919 6.98849i 0.442869 0.292203i
\(573\) −6.82502 35.2427i −0.285119 1.47229i
\(574\) 6.46287 4.64634i 0.269755 0.193934i
\(575\) 8.95926 + 5.17263i 0.373627 + 0.215714i
\(576\) −0.421657 + 2.97022i −0.0175690 + 0.123759i
\(577\) 18.9813 32.8766i 0.790203 1.36867i −0.135638 0.990758i \(-0.543308\pi\)
0.925841 0.377913i \(-0.123358\pi\)
\(578\) 40.5653 1.68729
\(579\) −15.5322 5.36025i −0.645494 0.222765i
\(580\) −0.287918 −0.0119552
\(581\) −8.99477 4.05876i −0.373166 0.168386i
\(582\) 1.95218 5.65675i 0.0809205 0.234480i
\(583\) 17.1318i 0.709525i
\(584\) −2.94410 + 5.09933i −0.121828 + 0.211012i
\(585\) 14.2741 6.75857i 0.590161 0.279432i
\(586\) −13.1158 + 7.57239i −0.541807 + 0.312813i
\(587\) −3.62595 2.09345i −0.149659 0.0864058i 0.423300 0.905989i \(-0.360871\pi\)
−0.572960 + 0.819584i \(0.694205\pi\)
\(588\) 1.60627 12.0175i 0.0662413 0.495593i
\(589\) 18.4591 + 31.9720i 0.760592 + 1.31738i
\(590\) 0.955007 + 1.65412i 0.0393170 + 0.0680991i
\(591\) −10.9312 + 2.11692i −0.449651 + 0.0870783i
\(592\) 5.56471i 0.228708i
\(593\) −25.7814 + 14.8849i −1.05872 + 0.611250i −0.925077 0.379780i \(-0.876000\pi\)
−0.133639 + 0.991030i \(0.542666\pi\)
\(594\) 16.2771 + 8.33649i 0.667858 + 0.342050i
\(595\) −2.91785 29.1639i −0.119620 1.19561i
\(596\) 1.62311 2.81131i 0.0664852 0.115156i
\(597\) −1.65478 + 1.43645i −0.0677256 + 0.0587902i
\(598\) 12.9820 0.775059i 0.530873 0.0316945i
\(599\) 14.8413 + 8.56865i 0.606401 + 0.350106i 0.771556 0.636162i \(-0.219479\pi\)
−0.165155 + 0.986268i \(0.552812\pi\)
\(600\) −4.87714 + 0.944496i −0.199109 + 0.0385589i
\(601\) −17.6704 10.2020i −0.720790 0.416149i 0.0942531 0.995548i \(-0.469954\pi\)
−0.815044 + 0.579400i \(0.803287\pi\)
\(602\) −29.5452 + 2.95599i −1.20417 + 0.120477i
\(603\) 6.19177 + 15.3868i 0.252148 + 0.626600i
\(604\) −8.04225 4.64320i −0.327235 0.188929i
\(605\) 2.02473i 0.0823169i
\(606\) −6.56421 + 19.0208i −0.266653 + 0.772667i
\(607\) −9.18240 5.30146i −0.372702 0.215180i 0.301936 0.953328i \(-0.402367\pi\)
−0.674638 + 0.738149i \(0.735700\pi\)
\(608\) −1.72681 + 2.99093i −0.0700315 + 0.121298i
\(609\) −0.879315 0.208291i −0.0356316 0.00844036i
\(610\) −1.45957 −0.0590963
\(611\) 25.4017 + 38.4994i 1.02764 + 1.55752i
\(612\) −3.19919 + 22.5356i −0.129320 + 0.910947i
\(613\) 19.7900 11.4258i 0.799310 0.461482i −0.0439195 0.999035i \(-0.513985\pi\)
0.843230 + 0.537553i \(0.180651\pi\)
\(614\) 0.289284 0.0116745
\(615\) 4.98751 + 5.74555i 0.201116 + 0.231683i
\(616\) 9.26540 0.927001i 0.373314 0.0373500i
\(617\) −2.03229 3.52003i −0.0818170 0.141711i 0.822213 0.569179i \(-0.192739\pi\)
−0.904030 + 0.427468i \(0.859406\pi\)
\(618\) 30.6745 + 10.5860i 1.23391 + 0.425830i
\(619\) 5.71042 9.89074i 0.229521 0.397542i −0.728145 0.685423i \(-0.759617\pi\)
0.957666 + 0.287881i \(0.0929506\pi\)
\(620\) 15.6079i 0.626828i
\(621\) 10.1749 + 15.7399i 0.408306 + 0.631622i
\(622\) 5.96970 10.3398i 0.239363 0.414589i
\(623\) −34.8719 15.7354i −1.39711 0.630427i
\(624\) −4.46365 + 4.36759i −0.178689 + 0.174843i
\(625\) 1.21656 + 2.10715i 0.0486624 + 0.0842858i
\(626\) −7.95301 + 4.59167i −0.317866 + 0.183520i
\(627\) 13.8009 + 15.8985i 0.551156 + 0.634925i
\(628\) −16.2305 9.37071i −0.647669 0.373932i
\(629\) 42.2205i 1.68344i
\(630\) 11.5792 + 0.478510i 0.461327 + 0.0190643i
\(631\) −2.43600 + 1.40642i −0.0969755 + 0.0559888i −0.547703 0.836673i \(-0.684498\pi\)
0.450728 + 0.892661i \(0.351164\pi\)
\(632\) 0.174645 + 0.302494i 0.00694700 + 0.0120326i
\(633\) −21.2414 + 4.11355i −0.844268 + 0.163499i
\(634\) 11.5121 + 19.9395i 0.457203 + 0.791898i
\(635\) 23.0093i 0.913095i
\(636\) −1.60297 8.27732i −0.0635618 0.328217i
\(637\) 17.8953 17.7978i 0.709036 0.705173i
\(638\) 0.694013i 0.0274762i
\(639\) 29.7080 11.9547i 1.17523 0.472920i
\(640\) −1.26448 + 0.730045i −0.0499828 + 0.0288576i
\(641\) 22.9946i 0.908232i −0.890943 0.454116i \(-0.849955\pi\)
0.890943 0.454116i \(-0.150045\pi\)
\(642\) 0.458849 0.398311i 0.0181093 0.0157201i
\(643\) −5.08228 8.80277i −0.200426 0.347147i 0.748240 0.663428i \(-0.230899\pi\)
−0.948666 + 0.316281i \(0.897566\pi\)
\(644\) 8.69856 + 3.92510i 0.342771 + 0.154671i
\(645\) −5.39611 27.8642i −0.212472 1.09715i
\(646\) −13.1016 + 22.6927i −0.515477 + 0.892832i
\(647\) −21.2471 36.8010i −0.835309 1.44680i −0.893778 0.448509i \(-0.851955\pi\)
0.0584688 0.998289i \(-0.481378\pi\)
\(648\) −8.64441 2.50483i −0.339585 0.0983990i
\(649\) −3.98718 + 2.30200i −0.156510 + 0.0903613i
\(650\) −9.24798 4.62768i −0.362736 0.181513i
\(651\) −11.2913 + 47.6671i −0.442541 + 1.86822i
\(652\) 0.787553 + 0.454694i 0.0308430 + 0.0178072i
\(653\) 21.6406i 0.846862i −0.905928 0.423431i \(-0.860826\pi\)
0.905928 0.423431i \(-0.139174\pi\)
\(654\) −3.08969 15.9544i −0.120817 0.623867i
\(655\) 15.9961 + 9.23536i 0.625020 + 0.360855i
\(656\) −2.60543 1.50425i −0.101725 0.0587309i
\(657\) −13.9047 10.8948i −0.542475 0.425046i
\(658\) 3.36946 + 33.6778i 0.131355 + 1.31290i
\(659\) −4.44211 + 2.56466i −0.173040 + 0.0999048i −0.584019 0.811740i \(-0.698520\pi\)
0.410978 + 0.911645i \(0.365187\pi\)
\(660\) 1.69223 + 8.73824i 0.0658698 + 0.340135i
\(661\) 11.9740 + 20.7396i 0.465736 + 0.806678i 0.999234 0.0391228i \(-0.0124563\pi\)
−0.533499 + 0.845801i \(0.679123\pi\)
\(662\) −20.4980 11.8345i −0.796676 0.459961i
\(663\) −33.8665 + 33.1376i −1.31527 + 1.28696i
\(664\) 3.72979i 0.144744i
\(665\) 12.1607 + 5.48736i 0.471574 + 0.212791i
\(666\) 16.5284 + 2.34640i 0.640463 + 0.0909212i
\(667\) 0.355633 0.615974i 0.0137701 0.0238506i
\(668\) −11.6602 6.73204i −0.451148 0.260471i
\(669\) −12.8744 + 2.49322i −0.497751 + 0.0963933i
\(670\) −4.03616 + 6.99083i −0.155930 + 0.270079i
\(671\) 3.51822i 0.135819i
\(672\) −4.38990 + 1.31482i −0.169344 + 0.0507204i
\(673\) −8.33251 + 14.4323i −0.321195 + 0.556326i −0.980735 0.195344i \(-0.937418\pi\)
0.659540 + 0.751669i \(0.270751\pi\)
\(674\) 19.1537 0.737772
\(675\) −0.748878 14.8844i −0.0288243 0.572902i
\(676\) −12.9077 + 1.54676i −0.496448 + 0.0594906i
\(677\) 18.1468 + 31.4312i 0.697439 + 1.20800i 0.969352 + 0.245678i \(0.0790105\pi\)
−0.271913 + 0.962322i \(0.587656\pi\)
\(678\) 9.51941 + 3.28521i 0.365591 + 0.126168i
\(679\) 9.09550 0.910002i 0.349053 0.0349227i
\(680\) −9.59380 + 5.53898i −0.367905 + 0.212410i
\(681\) −33.2976 + 28.9045i −1.27597 + 1.10762i
\(682\) −37.6220 −1.44062
\(683\) −36.5747 −1.39949 −0.699747 0.714391i \(-0.746704\pi\)
−0.699747 + 0.714391i \(0.746704\pi\)
\(684\) −8.15558 6.39016i −0.311837 0.244334i
\(685\) 1.58259 0.913710i 0.0604677 0.0349110i
\(686\) 17.6977 5.45814i 0.675701 0.208393i
\(687\) −6.23134 + 18.0563i −0.237741 + 0.688890i
\(688\) 5.61139 + 9.71922i 0.213932 + 0.370542i
\(689\) 7.85394 15.6954i 0.299211 0.597946i
\(690\) −2.97579 + 8.62279i −0.113286 + 0.328264i
\(691\) 17.4627 0.664312 0.332156 0.943225i \(-0.392224\pi\)
0.332156 + 0.943225i \(0.392224\pi\)
\(692\) 5.08435 8.80635i 0.193278 0.334767i
\(693\) −1.15342 + 27.9112i −0.0438150 + 1.06026i
\(694\) 31.7120i 1.20377i
\(695\) −7.32063 + 12.6797i −0.277687 + 0.480969i
\(696\) 0.0649367 + 0.335317i 0.00246142 + 0.0127102i
\(697\) −19.7679 11.4130i −0.748761 0.432297i
\(698\) −3.87835 + 6.71749i −0.146798 + 0.254261i
\(699\) 11.6974 + 4.03687i 0.442438 + 0.152688i
\(700\) −4.42957 6.16136i −0.167422 0.232877i
\(701\) 42.7684i 1.61534i −0.589635 0.807670i \(-0.700728\pi\)
0.589635 0.807670i \(-0.299272\pi\)
\(702\) −11.0906 15.0997i −0.418586 0.569900i
\(703\) 16.6436 + 9.60922i 0.627727 + 0.362418i
\(704\) −1.75974 3.04796i −0.0663226 0.114874i
\(705\) −31.7617 + 6.15089i −1.19621 + 0.231656i
\(706\) −0.491689 + 0.283877i −0.0185050 + 0.0106838i
\(707\) −30.5836 + 3.05988i −1.15021 + 0.115079i
\(708\) 1.71104 1.48529i 0.0643048 0.0558207i
\(709\) 31.6856 + 18.2937i 1.18998 + 0.687033i 0.958301 0.285760i \(-0.0922459\pi\)
0.231675 + 0.972793i \(0.425579\pi\)
\(710\) 13.4975 + 7.79277i 0.506551 + 0.292457i
\(711\) −0.972114 + 0.391185i −0.0364571 + 0.0146706i
\(712\) 14.4601i 0.541914i
\(713\) −33.3916 19.2786i −1.25052 0.721990i
\(714\) −33.3070 + 9.97579i −1.24648 + 0.373334i
\(715\) −8.29128 + 16.5693i −0.310076 + 0.619658i
\(716\) 7.39608 4.27013i 0.276404 0.159582i
\(717\) −8.31651 9.58052i −0.310586 0.357791i
\(718\) −3.12906 5.41969i −0.116775 0.202261i
\(719\) 9.53832 16.5209i 0.355719 0.616124i −0.631521 0.775358i \(-0.717569\pi\)
0.987241 + 0.159234i \(0.0509025\pi\)
\(720\) −1.63522 4.06360i −0.0609410 0.151441i
\(721\) 4.93461 + 49.3216i 0.183775 + 1.83683i
\(722\) 3.53624 + 6.12495i 0.131605 + 0.227947i
\(723\) 19.7867 + 22.7940i 0.735875 + 0.847719i
\(724\) 25.4759i 0.946804i
\(725\) −0.489801 + 0.282787i −0.0181908 + 0.0105024i
\(726\) −2.35805 + 0.456654i −0.0875154 + 0.0169480i
\(727\) 9.70964i 0.360111i 0.983656 + 0.180055i \(0.0576277\pi\)
−0.983656 + 0.180055i \(0.942372\pi\)
\(728\) −8.91353 3.39839i −0.330357 0.125953i
\(729\) 11.0849 24.6196i 0.410551 0.911838i
\(730\) 8.59731i 0.318201i
\(731\) 42.5746 + 73.7414i 1.57468 + 2.72743i
\(732\) 0.329189 + 1.69985i 0.0121672 + 0.0628284i
\(733\) 16.1353 + 27.9472i 0.595972 + 1.03225i 0.993409 + 0.114624i \(0.0365664\pi\)
−0.397437 + 0.917629i \(0.630100\pi\)
\(734\) −18.6936 + 10.7928i −0.689995 + 0.398369i
\(735\) 6.74222 + 16.3685i 0.248691 + 0.603760i
\(736\) 3.60696i 0.132954i
\(737\) −16.8510 9.72896i −0.620716 0.358371i
\(738\) 5.56654 7.10442i 0.204907 0.261517i
\(739\) 19.4708 11.2415i 0.716246 0.413525i −0.0971231 0.995272i \(-0.530964\pi\)
0.813370 + 0.581747i \(0.197631\pi\)
\(740\) 4.06249 + 7.03645i 0.149340 + 0.258665i
\(741\) −5.35523 20.8925i −0.196729 0.767503i
\(742\) 10.4568 7.51772i 0.383883 0.275984i
\(743\) −19.9808 + 34.6077i −0.733023 + 1.26963i 0.222562 + 0.974919i \(0.428558\pi\)
−0.955585 + 0.294715i \(0.904775\pi\)
\(744\) 18.1773 3.52018i 0.666413 0.129056i
\(745\) 4.73977i 0.173652i
\(746\) 0.378056 0.654812i 0.0138416 0.0239744i
\(747\) −11.0783 1.57269i −0.405334 0.0575418i
\(748\) −13.3514 23.1254i −0.488177 0.845548i
\(749\) 0.846003 + 0.381747i 0.0309123 + 0.0139487i
\(750\) 15.0264 13.0439i 0.548686 0.476295i
\(751\) 31.2080 1.13880 0.569399 0.822061i \(-0.307176\pi\)
0.569399 + 0.822061i \(0.307176\pi\)
\(752\) 11.0787 6.39629i 0.403998 0.233249i
\(753\) −7.22485 + 20.9351i −0.263288 + 0.762918i
\(754\) −0.318166 + 0.635824i −0.0115869 + 0.0231553i
\(755\) 13.5590 0.493462
\(756\) −2.05428 13.5934i −0.0747133 0.494386i
\(757\) −0.452106 + 0.783071i −0.0164321 + 0.0284612i −0.874125 0.485702i \(-0.838564\pi\)
0.857692 + 0.514163i \(0.171897\pi\)
\(758\) 6.26101 + 3.61480i 0.227410 + 0.131295i
\(759\) −20.7848 7.17298i −0.754441 0.260363i
\(760\) 5.04260i 0.182914i
\(761\) 36.2071 + 20.9042i 1.31251 + 0.757776i 0.982511 0.186206i \(-0.0596193\pi\)
0.329996 + 0.943982i \(0.392953\pi\)
\(762\) −26.7972 + 5.18947i −0.970759 + 0.187995i
\(763\) 20.1554 14.4903i 0.729675 0.524584i
\(764\) −17.9487 10.3627i −0.649363 0.374910i
\(765\) −12.4067 30.8312i −0.448565 1.11471i
\(766\) −1.16788 0.674277i −0.0421973 0.0243626i
\(767\) 4.70821 0.281093i 0.170004 0.0101497i
\(768\) 1.13542 + 1.30799i 0.0409708 + 0.0471979i
\(769\) −10.4819 + 18.1551i −0.377986 + 0.654691i −0.990769 0.135560i \(-0.956717\pi\)
0.612783 + 0.790251i \(0.290050\pi\)
\(770\) −11.0391 + 7.93633i −0.397822 + 0.286006i
\(771\) −24.2366 27.9203i −0.872861 1.00552i
\(772\) −8.21554 + 4.74324i −0.295684 + 0.170713i
\(773\) 23.1443i 0.832442i 0.909263 + 0.416221i \(0.136646\pi\)
−0.909263 + 0.416221i \(0.863354\pi\)