Properties

Label 546.2.bi.f.17.11
Level $546$
Weight $2$
Character 546.17
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bi (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.11
Character \(\chi\) \(=\) 546.17
Dual form 546.2.bi.f.257.11

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +(0.942850 - 1.45294i) q^{3} +1.00000 q^{4} +(1.98183 - 1.14421i) q^{5} +(0.942850 - 1.45294i) q^{6} +(-0.877809 + 2.49589i) q^{7} +1.00000 q^{8} +(-1.22207 - 2.73981i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(0.942850 - 1.45294i) q^{3} +1.00000 q^{4} +(1.98183 - 1.14421i) q^{5} +(0.942850 - 1.45294i) q^{6} +(-0.877809 + 2.49589i) q^{7} +1.00000 q^{8} +(-1.22207 - 2.73981i) q^{9} +(1.98183 - 1.14421i) q^{10} +(0.148570 + 0.257331i) q^{11} +(0.942850 - 1.45294i) q^{12} +(3.20028 - 1.66078i) q^{13} +(-0.877809 + 2.49589i) q^{14} +(0.206101 - 3.95830i) q^{15} +1.00000 q^{16} -0.893327 q^{17} +(-1.22207 - 2.73981i) q^{18} +(-3.94533 + 6.83352i) q^{19} +(1.98183 - 1.14421i) q^{20} +(2.79873 + 3.62865i) q^{21} +(0.148570 + 0.257331i) q^{22} -7.81240i q^{23} +(0.942850 - 1.45294i) q^{24} +(0.118437 - 0.205138i) q^{25} +(3.20028 - 1.66078i) q^{26} +(-5.13300 - 0.807639i) q^{27} +(-0.877809 + 2.49589i) q^{28} +(0.980947 + 0.566350i) q^{29} +(0.206101 - 3.95830i) q^{30} +(-0.839051 + 1.45328i) q^{31} +1.00000 q^{32} +(0.513966 + 0.0267612i) q^{33} -0.893327 q^{34} +(1.11615 + 5.95083i) q^{35} +(-1.22207 - 2.73981i) q^{36} +4.99903i q^{37} +(-3.94533 + 6.83352i) q^{38} +(0.604372 - 6.21568i) q^{39} +(1.98183 - 1.14421i) q^{40} +(-6.52086 - 3.76482i) q^{41} +(2.79873 + 3.62865i) q^{42} +(-1.94207 - 3.36377i) q^{43} +(0.148570 + 0.257331i) q^{44} +(-5.55685 - 4.03154i) q^{45} -7.81240i q^{46} +(-5.21062 + 3.00835i) q^{47} +(0.942850 - 1.45294i) q^{48} +(-5.45890 - 4.38183i) q^{49} +(0.118437 - 0.205138i) q^{50} +(-0.842274 + 1.29795i) q^{51} +(3.20028 - 1.66078i) q^{52} +(6.28351 + 3.62779i) q^{53} +(-5.13300 - 0.807639i) q^{54} +(0.588883 + 0.339992i) q^{55} +(-0.877809 + 2.49589i) q^{56} +(6.20883 + 12.1753i) q^{57} +(0.980947 + 0.566350i) q^{58} +6.02418i q^{59} +(0.206101 - 3.95830i) q^{60} +(7.31581 + 4.22379i) q^{61} +(-0.839051 + 1.45328i) q^{62} +(7.91099 - 0.645111i) q^{63} +1.00000 q^{64} +(4.44214 - 6.95319i) q^{65} +(0.513966 + 0.0267612i) q^{66} +(2.94347 - 1.69941i) q^{67} -0.893327 q^{68} +(-11.3509 - 7.36592i) q^{69} +(1.11615 + 5.95083i) q^{70} +(1.14995 + 1.99178i) q^{71} +(-1.22207 - 2.73981i) q^{72} +(6.16302 - 10.6747i) q^{73} +4.99903i q^{74} +(-0.186386 - 0.365496i) q^{75} +(-3.94533 + 6.83352i) q^{76} +(-0.772686 + 0.144927i) q^{77} +(0.604372 - 6.21568i) q^{78} +(4.46469 + 7.73307i) q^{79} +(1.98183 - 1.14421i) q^{80} +(-6.01310 + 6.69646i) q^{81} +(-6.52086 - 3.76482i) q^{82} +1.54870i q^{83} +(2.79873 + 3.62865i) q^{84} +(-1.77042 + 1.02215i) q^{85} +(-1.94207 - 3.36377i) q^{86} +(1.74776 - 0.891273i) q^{87} +(0.148570 + 0.257331i) q^{88} +14.3106i q^{89} +(-5.55685 - 4.03154i) q^{90} +(1.33588 + 9.44539i) q^{91} -7.81240i q^{92} +(1.32043 + 2.58932i) q^{93} +(-5.21062 + 3.00835i) q^{94} +18.0572i q^{95} +(0.942850 - 1.45294i) q^{96} +(-1.19346 - 2.06713i) q^{97} +(-5.45890 - 4.38183i) q^{98} +(0.523476 - 0.721530i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + O(q^{10}) \) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + 9q^{10} + 9q^{11} + 6q^{12} + 8q^{13} + 4q^{14} - 17q^{15} + 34q^{16} + 12q^{17} + 4q^{18} - 5q^{19} + 9q^{20} - 7q^{21} + 9q^{22} + 6q^{24} + 16q^{25} + 8q^{26} - 18q^{27} + 4q^{28} + 27q^{29} - 17q^{30} - q^{31} + 34q^{32} + 12q^{34} - 3q^{35} + 4q^{36} - 5q^{38} - 10q^{39} + 9q^{40} - 3q^{41} - 7q^{42} - 3q^{43} + 9q^{44} + 9q^{45} - 27q^{47} + 6q^{48} - 2q^{49} + 16q^{50} - 36q^{51} + 8q^{52} - 21q^{53} - 18q^{54} - 57q^{55} + 4q^{56} - 17q^{57} + 27q^{58} - 17q^{60} - 51q^{61} - q^{62} - 24q^{63} + 34q^{64} - 21q^{65} - 21q^{67} + 12q^{68} + 30q^{69} - 3q^{70} - 15q^{71} + 4q^{72} - 19q^{73} - 54q^{75} - 5q^{76} + 9q^{77} - 10q^{78} - 9q^{79} + 9q^{80} + 28q^{81} - 3q^{82} - 7q^{84} - 42q^{85} - 3q^{86} - 81q^{87} + 9q^{88} + 9q^{90} - 72q^{91} - 17q^{93} - 27q^{94} + 6q^{96} + 19q^{97} - 2q^{98} - 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.942850 1.45294i 0.544355 0.838855i
\(4\) 1.00000 0.500000
\(5\) 1.98183 1.14421i 0.886302 0.511707i 0.0135708 0.999908i \(-0.495680\pi\)
0.872731 + 0.488201i \(0.162347\pi\)
\(6\) 0.942850 1.45294i 0.384917 0.593160i
\(7\) −0.877809 + 2.49589i −0.331781 + 0.943357i
\(8\) 1.00000 0.353553
\(9\) −1.22207 2.73981i −0.407356 0.913270i
\(10\) 1.98183 1.14421i 0.626710 0.361831i
\(11\) 0.148570 + 0.257331i 0.0447956 + 0.0775883i 0.887554 0.460704i \(-0.152403\pi\)
−0.842758 + 0.538292i \(0.819070\pi\)
\(12\) 0.942850 1.45294i 0.272177 0.419428i
\(13\) 3.20028 1.66078i 0.887599 0.460618i
\(14\) −0.877809 + 2.49589i −0.234604 + 0.667054i
\(15\) 0.206101 3.95830i 0.0532150 1.02203i
\(16\) 1.00000 0.250000
\(17\) −0.893327 −0.216664 −0.108332 0.994115i \(-0.534551\pi\)
−0.108332 + 0.994115i \(0.534551\pi\)
\(18\) −1.22207 2.73981i −0.288044 0.645779i
\(19\) −3.94533 + 6.83352i −0.905122 + 1.56772i −0.0843680 + 0.996435i \(0.526887\pi\)
−0.820754 + 0.571282i \(0.806446\pi\)
\(20\) 1.98183 1.14421i 0.443151 0.255853i
\(21\) 2.79873 + 3.62865i 0.610733 + 0.791837i
\(22\) 0.148570 + 0.257331i 0.0316753 + 0.0548632i
\(23\) 7.81240i 1.62900i −0.580165 0.814499i \(-0.697012\pi\)
0.580165 0.814499i \(-0.302988\pi\)
\(24\) 0.942850 1.45294i 0.192458 0.296580i
\(25\) 0.118437 0.205138i 0.0236873 0.0410277i
\(26\) 3.20028 1.66078i 0.627627 0.325706i
\(27\) −5.13300 0.807639i −0.987847 0.155430i
\(28\) −0.877809 + 2.49589i −0.165890 + 0.471678i
\(29\) 0.980947 + 0.566350i 0.182157 + 0.105169i 0.588306 0.808639i \(-0.299795\pi\)
−0.406149 + 0.913807i \(0.633128\pi\)
\(30\) 0.206101 3.95830i 0.0376287 0.722683i
\(31\) −0.839051 + 1.45328i −0.150698 + 0.261017i −0.931484 0.363782i \(-0.881485\pi\)
0.780786 + 0.624798i \(0.214819\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.513966 + 0.0267612i 0.0894701 + 0.00465853i
\(34\) −0.893327 −0.153204
\(35\) 1.11615 + 5.95083i 0.188664 + 1.00587i
\(36\) −1.22207 2.73981i −0.203678 0.456635i
\(37\) 4.99903i 0.821835i 0.911673 + 0.410918i \(0.134792\pi\)
−0.911673 + 0.410918i \(0.865208\pi\)
\(38\) −3.94533 + 6.83352i −0.640018 + 1.10854i
\(39\) 0.604372 6.21568i 0.0967770 0.995306i
\(40\) 1.98183 1.14421i 0.313355 0.180916i
\(41\) −6.52086 3.76482i −1.01839 0.587966i −0.104751 0.994498i \(-0.533405\pi\)
−0.913636 + 0.406532i \(0.866738\pi\)
\(42\) 2.79873 + 3.62865i 0.431853 + 0.559913i
\(43\) −1.94207 3.36377i −0.296163 0.512970i 0.679092 0.734054i \(-0.262374\pi\)
−0.975255 + 0.221084i \(0.929041\pi\)
\(44\) 0.148570 + 0.257331i 0.0223978 + 0.0387942i
\(45\) −5.55685 4.03154i −0.828366 0.600986i
\(46\) 7.81240i 1.15188i
\(47\) −5.21062 + 3.00835i −0.760047 + 0.438813i −0.829313 0.558785i \(-0.811268\pi\)
0.0692655 + 0.997598i \(0.477934\pi\)
\(48\) 0.942850 1.45294i 0.136089 0.209714i
\(49\) −5.45890 4.38183i −0.779843 0.625975i
\(50\) 0.118437 0.205138i 0.0167495 0.0290109i
\(51\) −0.842274 + 1.29795i −0.117942 + 0.181749i
\(52\) 3.20028 1.66078i 0.443799 0.230309i
\(53\) 6.28351 + 3.62779i 0.863107 + 0.498315i 0.865051 0.501683i \(-0.167286\pi\)
−0.00194455 + 0.999998i \(0.500619\pi\)
\(54\) −5.13300 0.807639i −0.698513 0.109906i
\(55\) 0.588883 + 0.339992i 0.0794049 + 0.0458444i
\(56\) −0.877809 + 2.49589i −0.117302 + 0.333527i
\(57\) 6.20883 + 12.1753i 0.822380 + 1.61266i
\(58\) 0.980947 + 0.566350i 0.128805 + 0.0743654i
\(59\) 6.02418i 0.784281i 0.919905 + 0.392141i \(0.128265\pi\)
−0.919905 + 0.392141i \(0.871735\pi\)
\(60\) 0.206101 3.95830i 0.0266075 0.511014i
\(61\) 7.31581 + 4.22379i 0.936694 + 0.540800i 0.888922 0.458058i \(-0.151455\pi\)
0.0477714 + 0.998858i \(0.484788\pi\)
\(62\) −0.839051 + 1.45328i −0.106560 + 0.184567i
\(63\) 7.91099 0.645111i 0.996692 0.0812764i
\(64\) 1.00000 0.125000
\(65\) 4.44214 6.95319i 0.550979 0.862436i
\(66\) 0.513966 + 0.0267612i 0.0632649 + 0.00329408i
\(67\) 2.94347 1.69941i 0.359602 0.207617i −0.309304 0.950963i \(-0.600096\pi\)
0.668906 + 0.743347i \(0.266763\pi\)
\(68\) −0.893327 −0.108332
\(69\) −11.3509 7.36592i −1.36649 0.886752i
\(70\) 1.11615 + 5.95083i 0.133406 + 0.711260i
\(71\) 1.14995 + 1.99178i 0.136474 + 0.236381i 0.926160 0.377131i \(-0.123090\pi\)
−0.789685 + 0.613512i \(0.789756\pi\)
\(72\) −1.22207 2.73981i −0.144022 0.322890i
\(73\) 6.16302 10.6747i 0.721327 1.24937i −0.239141 0.970985i \(-0.576866\pi\)
0.960468 0.278390i \(-0.0898007\pi\)
\(74\) 4.99903i 0.581125i
\(75\) −0.186386 0.365496i −0.0215220 0.0422038i
\(76\) −3.94533 + 6.83352i −0.452561 + 0.783858i
\(77\) −0.772686 + 0.144927i −0.0880558 + 0.0165159i
\(78\) 0.604372 6.21568i 0.0684317 0.703788i
\(79\) 4.46469 + 7.73307i 0.502317 + 0.870039i 0.999996 + 0.00267764i \(0.000852321\pi\)
−0.497679 + 0.867361i \(0.665814\pi\)
\(80\) 1.98183 1.14421i 0.221575 0.127927i
\(81\) −6.01310 + 6.69646i −0.668123 + 0.744051i
\(82\) −6.52086 3.76482i −0.720109 0.415755i
\(83\) 1.54870i 0.169992i 0.996381 + 0.0849962i \(0.0270878\pi\)
−0.996381 + 0.0849962i \(0.972912\pi\)
\(84\) 2.79873 + 3.62865i 0.305366 + 0.395918i
\(85\) −1.77042 + 1.02215i −0.192029 + 0.110868i
\(86\) −1.94207 3.36377i −0.209419 0.362725i
\(87\) 1.74776 0.891273i 0.187379 0.0955545i
\(88\) 0.148570 + 0.257331i 0.0158376 + 0.0274316i
\(89\) 14.3106i 1.51692i 0.651720 + 0.758460i \(0.274048\pi\)
−0.651720 + 0.758460i \(0.725952\pi\)
\(90\) −5.55685 4.03154i −0.585743 0.424961i
\(91\) 1.33588 + 9.44539i 0.140039 + 0.990146i
\(92\) 7.81240i 0.814499i
\(93\) 1.32043 + 2.58932i 0.136922 + 0.268500i
\(94\) −5.21062 + 3.00835i −0.537435 + 0.310288i
\(95\) 18.0572i 1.85263i
\(96\) 0.942850 1.45294i 0.0962292 0.148290i
\(97\) −1.19346 2.06713i −0.121178 0.209886i 0.799055 0.601258i \(-0.205334\pi\)
−0.920232 + 0.391373i \(0.872000\pi\)
\(98\) −5.45890 4.38183i −0.551432 0.442631i
\(99\) 0.523476 0.721530i 0.0526113 0.0725165i
\(100\) 0.118437 0.205138i 0.0118437 0.0205138i
\(101\) −9.38860 16.2615i −0.934200 1.61808i −0.776054 0.630666i \(-0.782782\pi\)
−0.158146 0.987416i \(-0.550552\pi\)
\(102\) −0.842274 + 1.29795i −0.0833975 + 0.128516i
\(103\) −12.3898 + 7.15323i −1.22080 + 0.704828i −0.965088 0.261925i \(-0.915643\pi\)
−0.255710 + 0.966753i \(0.582309\pi\)
\(104\) 3.20028 1.66078i 0.313813 0.162853i
\(105\) 9.69855 + 3.98904i 0.946482 + 0.389290i
\(106\) 6.28351 + 3.62779i 0.610309 + 0.352362i
\(107\) 16.6853i 1.61303i 0.591212 + 0.806516i \(0.298650\pi\)
−0.591212 + 0.806516i \(0.701350\pi\)
\(108\) −5.13300 0.807639i −0.493923 0.0777151i
\(109\) −9.70354 5.60234i −0.929431 0.536607i −0.0427994 0.999084i \(-0.513628\pi\)
−0.886632 + 0.462476i \(0.846961\pi\)
\(110\) 0.588883 + 0.339992i 0.0561478 + 0.0324169i
\(111\) 7.26329 + 4.71333i 0.689401 + 0.447370i
\(112\) −0.877809 + 2.49589i −0.0829452 + 0.235839i
\(113\) 7.27033 4.19753i 0.683935 0.394870i −0.117401 0.993085i \(-0.537456\pi\)
0.801336 + 0.598214i \(0.204123\pi\)
\(114\) 6.20883 + 12.1753i 0.581510 + 1.14032i
\(115\) −8.93903 15.4829i −0.833569 1.44378i
\(116\) 0.980947 + 0.566350i 0.0910786 + 0.0525843i
\(117\) −8.46118 6.73858i −0.782237 0.622982i
\(118\) 6.02418i 0.554571i
\(119\) 0.784171 2.22964i 0.0718849 0.204391i
\(120\) 0.206101 3.95830i 0.0188143 0.361342i
\(121\) 5.45585 9.44982i 0.495987 0.859074i
\(122\) 7.31581 + 4.22379i 0.662343 + 0.382404i
\(123\) −11.6183 + 5.92475i −1.04758 + 0.534217i
\(124\) −0.839051 + 1.45328i −0.0753490 + 0.130508i
\(125\) 10.9000i 0.974929i
\(126\) 7.91099 0.645111i 0.704767 0.0574711i
\(127\) 2.63228 4.55924i 0.233577 0.404567i −0.725281 0.688453i \(-0.758290\pi\)
0.958858 + 0.283886i \(0.0916236\pi\)
\(128\) 1.00000 0.0883883
\(129\) −6.71844 0.349815i −0.591525 0.0307995i
\(130\) 4.44214 6.95319i 0.389601 0.609835i
\(131\) −0.386257 0.669016i −0.0337474 0.0584522i 0.848658 0.528941i \(-0.177411\pi\)
−0.882406 + 0.470489i \(0.844078\pi\)
\(132\) 0.513966 + 0.0267612i 0.0447350 + 0.00232926i
\(133\) −13.5924 15.8456i −1.17861 1.37399i
\(134\) 2.94347 1.69941i 0.254277 0.146807i
\(135\) −11.0969 + 4.27263i −0.955065 + 0.367730i
\(136\) −0.893327 −0.0766022
\(137\) −2.58684 −0.221009 −0.110505 0.993876i \(-0.535247\pi\)
−0.110505 + 0.993876i \(0.535247\pi\)
\(138\) −11.3509 7.36592i −0.966256 0.627029i
\(139\) 10.2034 5.89092i 0.865438 0.499661i −0.000391380 1.00000i \(-0.500125\pi\)
0.865830 + 0.500339i \(0.166791\pi\)
\(140\) 1.11615 + 5.95083i 0.0943319 + 0.502937i
\(141\) −0.541879 + 10.4071i −0.0456345 + 0.876440i
\(142\) 1.14995 + 1.99178i 0.0965020 + 0.167146i
\(143\) 0.902838 + 0.576790i 0.0754991 + 0.0482336i
\(144\) −1.22207 2.73981i −0.101839 0.228317i
\(145\) 2.59209 0.215262
\(146\) 6.16302 10.6747i 0.510055 0.883441i
\(147\) −11.5135 + 3.80005i −0.949614 + 0.313423i
\(148\) 4.99903i 0.410918i
\(149\) −1.64375 + 2.84705i −0.134661 + 0.233240i −0.925468 0.378826i \(-0.876328\pi\)
0.790807 + 0.612066i \(0.209661\pi\)
\(150\) −0.186386 0.365496i −0.0152183 0.0298426i
\(151\) 10.5899 + 6.11409i 0.861795 + 0.497557i 0.864613 0.502439i \(-0.167564\pi\)
−0.00281814 + 0.999996i \(0.500897\pi\)
\(152\) −3.94533 + 6.83352i −0.320009 + 0.554272i
\(153\) 1.09171 + 2.44755i 0.0882592 + 0.197872i
\(154\) −0.772686 + 0.144927i −0.0622648 + 0.0116785i
\(155\) 3.84021i 0.308453i
\(156\) 0.604372 6.21568i 0.0483885 0.497653i
\(157\) −15.4715 8.93248i −1.23476 0.712889i −0.266742 0.963768i \(-0.585947\pi\)
−0.968019 + 0.250879i \(0.919280\pi\)
\(158\) 4.46469 + 7.73307i 0.355192 + 0.615210i
\(159\) 11.1954 5.70910i 0.887851 0.452761i
\(160\) 1.98183 1.14421i 0.156678 0.0904578i
\(161\) 19.4989 + 6.85779i 1.53673 + 0.540470i
\(162\) −6.01310 + 6.69646i −0.472434 + 0.526124i
\(163\) −2.00708 1.15879i −0.157207 0.0907632i 0.419333 0.907833i \(-0.362264\pi\)
−0.576540 + 0.817069i \(0.695597\pi\)
\(164\) −6.52086 3.76482i −0.509194 0.293983i
\(165\) 1.04922 0.535050i 0.0816813 0.0416536i
\(166\) 1.54870i 0.120203i
\(167\) −11.5588 6.67349i −0.894449 0.516410i −0.0190536 0.999818i \(-0.506065\pi\)
−0.875395 + 0.483408i \(0.839399\pi\)
\(168\) 2.79873 + 3.62865i 0.215927 + 0.279957i
\(169\) 7.48361 10.6299i 0.575662 0.817687i
\(170\) −1.77042 + 1.02215i −0.135785 + 0.0783957i
\(171\) 23.5440 + 2.45844i 1.80045 + 0.188002i
\(172\) −1.94207 3.36377i −0.148082 0.256485i
\(173\) −9.18090 + 15.9018i −0.698011 + 1.20899i 0.271144 + 0.962539i \(0.412598\pi\)
−0.969155 + 0.246452i \(0.920735\pi\)
\(174\) 1.74776 0.891273i 0.132497 0.0675673i
\(175\) 0.408037 + 0.475677i 0.0308447 + 0.0359578i
\(176\) 0.148570 + 0.257331i 0.0111989 + 0.0193971i
\(177\) 8.75277 + 5.67990i 0.657898 + 0.426927i
\(178\) 14.3106i 1.07262i
\(179\) 8.93640 5.15943i 0.667938 0.385634i −0.127357 0.991857i \(-0.540649\pi\)
0.795295 + 0.606223i \(0.207316\pi\)
\(180\) −5.55685 4.03154i −0.414183 0.300493i
\(181\) 5.21743i 0.387809i −0.981020 0.193904i \(-0.937885\pi\)
0.981020 0.193904i \(-0.0621151\pi\)
\(182\) 1.33588 + 9.44539i 0.0990223 + 0.700139i
\(183\) 13.0346 6.64704i 0.963547 0.491363i
\(184\) 7.81240i 0.575938i
\(185\) 5.71994 + 9.90723i 0.420538 + 0.728394i
\(186\) 1.32043 + 2.58932i 0.0968185 + 0.189858i
\(187\) −0.132722 0.229881i −0.00970559 0.0168106i
\(188\) −5.21062 + 3.00835i −0.380024 + 0.219407i
\(189\) 6.52157 12.1024i 0.474375 0.880323i
\(190\) 18.0572i 1.31001i
\(191\) −22.8395 13.1864i −1.65261 0.954135i −0.975994 0.217799i \(-0.930112\pi\)
−0.676616 0.736336i \(-0.736554\pi\)
\(192\) 0.942850 1.45294i 0.0680444 0.104857i
\(193\) 2.77543 1.60239i 0.199780 0.115343i −0.396773 0.917917i \(-0.629870\pi\)
0.596553 + 0.802574i \(0.296537\pi\)
\(194\) −1.19346 2.06713i −0.0856855 0.148412i
\(195\) −5.91429 13.0100i −0.423531 0.931663i
\(196\) −5.45890 4.38183i −0.389922 0.312988i
\(197\) 12.9869 22.4940i 0.925278 1.60263i 0.134165 0.990959i \(-0.457165\pi\)
0.791113 0.611670i \(-0.209502\pi\)
\(198\) 0.523476 0.721530i 0.0372018 0.0512769i
\(199\) 5.54735i 0.393241i 0.980480 + 0.196621i \(0.0629967\pi\)
−0.980480 + 0.196621i \(0.937003\pi\)
\(200\) 0.118437 0.205138i 0.00837474 0.0145055i
\(201\) 0.306107 5.87898i 0.0215911 0.414671i
\(202\) −9.38860 16.2615i −0.660579 1.14416i
\(203\) −2.27463 + 1.95118i −0.159648 + 0.136946i
\(204\) −0.842274 + 1.29795i −0.0589710 + 0.0908747i
\(205\) −17.2310 −1.20346
\(206\) −12.3898 + 7.15323i −0.863235 + 0.498389i
\(207\) −21.4045 + 9.54727i −1.48771 + 0.663581i
\(208\) 3.20028 1.66078i 0.221900 0.115154i
\(209\) −2.34464 −0.162182
\(210\) 9.69855 + 3.98904i 0.669264 + 0.275270i
\(211\) 1.17040 2.02719i 0.0805736 0.139558i −0.822923 0.568153i \(-0.807658\pi\)
0.903496 + 0.428596i \(0.140991\pi\)
\(212\) 6.28351 + 3.62779i 0.431553 + 0.249158i
\(213\) 3.97817 + 0.207135i 0.272580 + 0.0141927i
\(214\) 16.6853i 1.14059i
\(215\) −7.69772 4.44428i −0.524980 0.303097i
\(216\) −5.13300 0.807639i −0.349257 0.0549529i
\(217\) −2.89069 3.36988i −0.196233 0.228762i
\(218\) −9.70354 5.60234i −0.657207 0.379439i
\(219\) −9.69883 19.0191i −0.655387 1.28519i
\(220\) 0.588883 + 0.339992i 0.0397025 + 0.0229222i
\(221\) −2.85890 + 1.48362i −0.192310 + 0.0997992i
\(222\) 7.26329 + 4.71333i 0.487480 + 0.316338i
\(223\) 0.746837 1.29356i 0.0500119 0.0866232i −0.839936 0.542686i \(-0.817407\pi\)
0.889948 + 0.456063i \(0.150741\pi\)
\(224\) −0.877809 + 2.49589i −0.0586511 + 0.166763i
\(225\) −0.706777 0.0738010i −0.0471185 0.00492007i
\(226\) 7.27033 4.19753i 0.483615 0.279215i
\(227\) 6.37084i 0.422848i −0.977394 0.211424i \(-0.932190\pi\)
0.977394 0.211424i \(-0.0678100\pi\)
\(228\) 6.20883 + 12.1753i 0.411190 + 0.806330i
\(229\) −3.93382 6.81358i −0.259954 0.450254i 0.706275 0.707937i \(-0.250374\pi\)
−0.966229 + 0.257684i \(0.917041\pi\)
\(230\) −8.93903 15.4829i −0.589422 1.02091i
\(231\) −0.517957 + 1.25931i −0.0340791 + 0.0828566i
\(232\) 0.980947 + 0.566350i 0.0644023 + 0.0371827i
\(233\) 8.04627 4.64552i 0.527129 0.304338i −0.212718 0.977114i \(-0.568231\pi\)
0.739847 + 0.672776i \(0.234898\pi\)
\(234\) −8.46118 6.73858i −0.553125 0.440514i
\(235\) −6.88438 + 11.9241i −0.449088 + 0.777842i
\(236\) 6.02418i 0.392141i
\(237\) 15.4452 + 0.804202i 1.00328 + 0.0522385i
\(238\) 0.784171 2.22964i 0.0508303 0.144526i
\(239\) 22.6067 1.46230 0.731152 0.682215i \(-0.238983\pi\)
0.731152 + 0.682215i \(0.238983\pi\)
\(240\) 0.206101 3.95830i 0.0133037 0.255507i
\(241\) 29.0874 1.87368 0.936842 0.349753i \(-0.113734\pi\)
0.936842 + 0.349753i \(0.113734\pi\)
\(242\) 5.45585 9.44982i 0.350716 0.607457i
\(243\) 4.06010 + 15.0504i 0.260455 + 0.965486i
\(244\) 7.31581 + 4.22379i 0.468347 + 0.270400i
\(245\) −15.8324 2.43790i −1.01149 0.155752i
\(246\) −11.6183 + 5.92475i −0.740753 + 0.377749i
\(247\) −1.27720 + 28.4215i −0.0812665 + 1.80842i
\(248\) −0.839051 + 1.45328i −0.0532798 + 0.0922834i
\(249\) 2.25017 + 1.46020i 0.142599 + 0.0925362i
\(250\) 10.9000i 0.689379i
\(251\) −6.89055 11.9348i −0.434928 0.753317i 0.562362 0.826891i \(-0.309893\pi\)
−0.997290 + 0.0735742i \(0.976559\pi\)
\(252\) 7.91099 0.645111i 0.498346 0.0406382i
\(253\) 2.01037 1.16069i 0.126391 0.0729720i
\(254\) 2.63228 4.55924i 0.165164 0.286072i
\(255\) −0.184115 + 3.53606i −0.0115298 + 0.221437i
\(256\) 1.00000 0.0625000
\(257\) 5.62443 0.350843 0.175421 0.984493i \(-0.443871\pi\)
0.175421 + 0.984493i \(0.443871\pi\)
\(258\) −6.71844 0.349815i −0.418272 0.0217786i
\(259\) −12.4770 4.38819i −0.775284 0.272669i
\(260\) 4.44214 6.95319i 0.275490 0.431218i
\(261\) 0.352908 3.37972i 0.0218444 0.209200i
\(262\) −0.386257 0.669016i −0.0238630 0.0413320i
\(263\) 16.7851 9.69087i 1.03501 0.597564i 0.116595 0.993179i \(-0.462802\pi\)
0.918416 + 0.395615i \(0.129469\pi\)
\(264\) 0.513966 + 0.0267612i 0.0316324 + 0.00164704i
\(265\) 16.6038 1.01996
\(266\) −13.5924 15.8456i −0.833406 0.971558i
\(267\) 20.7924 + 13.4927i 1.27248 + 0.825743i
\(268\) 2.94347 1.69941i 0.179801 0.103808i
\(269\) −27.9546 −1.70442 −0.852211 0.523199i \(-0.824739\pi\)
−0.852211 + 0.523199i \(0.824739\pi\)
\(270\) −11.0969 + 4.27263i −0.675333 + 0.260024i
\(271\) −20.4588 −1.24279 −0.621393 0.783499i \(-0.713433\pi\)
−0.621393 + 0.783499i \(0.713433\pi\)
\(272\) −0.893327 −0.0541659
\(273\) 14.9831 + 6.96463i 0.906820 + 0.421519i
\(274\) −2.58684 −0.156277
\(275\) 0.0703847 0.00424436
\(276\) −11.3509 7.36592i −0.683246 0.443376i
\(277\) 6.51069 0.391190 0.195595 0.980685i \(-0.437336\pi\)
0.195595 + 0.980685i \(0.437336\pi\)
\(278\) 10.2034 5.89092i 0.611957 0.353314i
\(279\) 5.00709 + 0.522835i 0.299766 + 0.0313013i
\(280\) 1.11615 + 5.95083i 0.0667028 + 0.355630i
\(281\) 10.0287 0.598262 0.299131 0.954212i \(-0.403303\pi\)
0.299131 + 0.954212i \(0.403303\pi\)
\(282\) −0.541879 + 10.4071i −0.0322684 + 0.619736i
\(283\) 19.8164 11.4410i 1.17796 0.680097i 0.222420 0.974951i \(-0.428605\pi\)
0.955542 + 0.294854i \(0.0952712\pi\)
\(284\) 1.14995 + 1.99178i 0.0682372 + 0.118190i
\(285\) 26.2360 + 17.0252i 1.55409 + 1.00849i
\(286\) 0.902838 + 0.576790i 0.0533859 + 0.0341063i
\(287\) 15.1206 12.9705i 0.892543 0.765626i
\(288\) −1.22207 2.73981i −0.0720110 0.161445i
\(289\) −16.2020 −0.953057
\(290\) 2.59209 0.152213
\(291\) −4.12868 0.214972i −0.242027 0.0126019i
\(292\) 6.16302 10.6747i 0.360663 0.624687i
\(293\) 17.4353 10.0663i 1.01858 0.588080i 0.104890 0.994484i \(-0.466551\pi\)
0.913693 + 0.406404i \(0.133217\pi\)
\(294\) −11.5135 + 3.80005i −0.671478 + 0.221623i
\(295\) 6.89293 + 11.9389i 0.401322 + 0.695110i
\(296\) 4.99903i 0.290563i
\(297\) −0.554781 1.44087i −0.0321917 0.0836080i
\(298\) −1.64375 + 2.84705i −0.0952198 + 0.164925i
\(299\) −12.9747 25.0019i −0.750345 1.44590i
\(300\) −0.186386 0.365496i −0.0107610 0.0211019i
\(301\) 10.1004 1.89445i 0.582175 0.109194i
\(302\) 10.5899 + 6.11409i 0.609381 + 0.351826i
\(303\) −32.4791 1.69112i −1.86587 0.0971522i
\(304\) −3.94533 + 6.83352i −0.226280 + 0.391929i
\(305\) 19.3316 1.10692
\(306\) 1.09171 + 2.44755i 0.0624087 + 0.139917i
\(307\) 3.07801 0.175672 0.0878358 0.996135i \(-0.472005\pi\)
0.0878358 + 0.996135i \(0.472005\pi\)
\(308\) −0.772686 + 0.144927i −0.0440279 + 0.00825797i
\(309\) −1.28847 + 24.7460i −0.0732987 + 1.40775i
\(310\) 3.84021i 0.218109i
\(311\) −7.75963 + 13.4401i −0.440008 + 0.762117i −0.997690 0.0679384i \(-0.978358\pi\)
0.557681 + 0.830055i \(0.311691\pi\)
\(312\) 0.604372 6.21568i 0.0342158 0.351894i
\(313\) 13.7068 7.91361i 0.774752 0.447303i −0.0598149 0.998209i \(-0.519051\pi\)
0.834567 + 0.550906i \(0.185718\pi\)
\(314\) −15.4715 8.93248i −0.873108 0.504089i
\(315\) 14.9401 10.3303i 0.841780 0.582049i
\(316\) 4.46469 + 7.73307i 0.251159 + 0.435019i
\(317\) 6.47213 + 11.2101i 0.363511 + 0.629619i 0.988536 0.150985i \(-0.0482446\pi\)
−0.625025 + 0.780605i \(0.714911\pi\)
\(318\) 11.1954 5.70910i 0.627805 0.320151i
\(319\) 0.336571i 0.0188444i
\(320\) 1.98183 1.14421i 0.110788 0.0639633i
\(321\) 24.2428 + 15.7318i 1.35310 + 0.878062i
\(322\) 19.4989 + 6.85779i 1.08663 + 0.382170i
\(323\) 3.52448 6.10457i 0.196107 0.339667i
\(324\) −6.01310 + 6.69646i −0.334061 + 0.372026i
\(325\) 0.0383409 0.853198i 0.00212677 0.0473269i
\(326\) −2.00708 1.15879i −0.111162 0.0641793i
\(327\) −17.2889 + 8.81649i −0.956076 + 0.487553i
\(328\) −6.52086 3.76482i −0.360054 0.207877i
\(329\) −2.93458 15.6459i −0.161789 0.862585i
\(330\) 1.04922 0.535050i 0.0577574 0.0294535i
\(331\) 7.76227 + 4.48155i 0.426653 + 0.246328i 0.697920 0.716176i \(-0.254109\pi\)
−0.271267 + 0.962504i \(0.587443\pi\)
\(332\) 1.54870i 0.0849962i
\(333\) 13.6964 6.10915i 0.750557 0.334779i
\(334\) −11.5588 6.67349i −0.632471 0.365157i
\(335\) 3.88898 6.73591i 0.212477 0.368022i
\(336\) 2.79873 + 3.62865i 0.152683 + 0.197959i
\(337\) −7.76837 −0.423170 −0.211585 0.977360i \(-0.567863\pi\)
−0.211585 + 0.977360i \(0.567863\pi\)
\(338\) 7.48361 10.6299i 0.407055 0.578192i
\(339\) 0.756079 14.5210i 0.0410646 0.788672i
\(340\) −1.77042 + 1.02215i −0.0960147 + 0.0554341i
\(341\) −0.498633 −0.0270025
\(342\) 23.5440 + 2.45844i 1.27311 + 0.132937i
\(343\) 15.7284 9.77839i 0.849255 0.527984i
\(344\) −1.94207 3.36377i −0.104710 0.181362i
\(345\) −30.9238 1.61014i −1.66488 0.0866871i
\(346\) −9.18090 + 15.9018i −0.493568 + 0.854886i
\(347\) 9.70091i 0.520772i −0.965505 0.260386i \(-0.916150\pi\)
0.965505 0.260386i \(-0.0838498\pi\)
\(348\) 1.74776 0.891273i 0.0936897 0.0477773i
\(349\) 13.2526 22.9542i 0.709396 1.22871i −0.255686 0.966760i \(-0.582301\pi\)
0.965081 0.261950i \(-0.0843655\pi\)
\(350\) 0.408037 + 0.475677i 0.0218105 + 0.0254260i
\(351\) −17.7684 + 5.94012i −0.948405 + 0.317060i
\(352\) 0.148570 + 0.257331i 0.00791882 + 0.0137158i
\(353\) −22.1838 + 12.8078i −1.18073 + 0.681693i −0.956183 0.292771i \(-0.905423\pi\)
−0.224544 + 0.974464i \(0.572089\pi\)
\(354\) 8.75277 + 5.67990i 0.465204 + 0.301883i
\(355\) 4.55803 + 2.63158i 0.241915 + 0.139670i
\(356\) 14.3106i 0.758460i
\(357\) −2.50018 3.24157i −0.132324 0.171562i
\(358\) 8.93640 5.15943i 0.472303 0.272684i
\(359\) −6.41408 11.1095i −0.338522 0.586338i 0.645633 0.763648i \(-0.276594\pi\)
−0.984155 + 0.177310i \(0.943260\pi\)
\(360\) −5.55685 4.03154i −0.292872 0.212481i
\(361\) −21.6313 37.4666i −1.13849 1.97192i
\(362\) 5.21743i 0.274222i
\(363\) −8.58596 16.8368i −0.450646 0.883702i
\(364\) 1.33588 + 9.44539i 0.0700193 + 0.495073i
\(365\) 28.2072i 1.47643i
\(366\) 13.0346 6.64704i 0.681331 0.347446i
\(367\) −21.2692 + 12.2798i −1.11024 + 0.641000i −0.938893 0.344210i \(-0.888147\pi\)
−0.171352 + 0.985210i \(0.554813\pi\)
\(368\) 7.81240i 0.407249i
\(369\) −2.34596 + 22.4668i −0.122126 + 1.16957i
\(370\) 5.71994 + 9.90723i 0.297366 + 0.515052i
\(371\) −14.5703 + 12.4984i −0.756451 + 0.648886i
\(372\) 1.32043 + 2.58932i 0.0684610 + 0.134250i
\(373\) 10.7383 18.5993i 0.556009 0.963036i −0.441815 0.897106i \(-0.645665\pi\)
0.997824 0.0659297i \(-0.0210013\pi\)
\(374\) −0.132722 0.229881i −0.00686289 0.0118869i
\(375\) 15.8371 + 10.2771i 0.817824 + 0.530707i
\(376\) −5.21062 + 3.00835i −0.268717 + 0.155144i
\(377\) 4.07989 + 0.183342i 0.210125 + 0.00944257i
\(378\) 6.52157 12.1024i 0.335434 0.622482i
\(379\) −13.9171 8.03505i −0.714874 0.412733i 0.0979889 0.995188i \(-0.468759\pi\)
−0.812863 + 0.582455i \(0.802092\pi\)
\(380\) 18.0572i 0.926314i
\(381\) −4.14246 8.12322i −0.212224 0.416165i
\(382\) −22.8395 13.1864i −1.16857 0.674675i
\(383\) −23.1968 13.3927i −1.18530 0.684335i −0.228068 0.973645i \(-0.573241\pi\)
−0.957235 + 0.289310i \(0.906574\pi\)
\(384\) 0.942850 1.45294i 0.0481146 0.0741450i
\(385\) −1.36551 + 1.17134i −0.0695927 + 0.0596968i
\(386\) 2.77543 1.60239i 0.141266 0.0815597i
\(387\) −6.84274 + 9.43166i −0.347836 + 0.479438i
\(388\) −1.19346 2.06713i −0.0605888 0.104943i
\(389\) 3.67405 + 2.12122i 0.186282 + 0.107550i 0.590241 0.807227i \(-0.299033\pi\)
−0.403959 + 0.914777i \(0.632366\pi\)
\(390\) −5.91429 13.0100i −0.299482 0.658785i
\(391\) 6.97903i 0.352945i
\(392\) −5.45890 4.38183i −0.275716 0.221316i
\(393\) −1.33622 0.0695744i −0.0674035 0.00350956i
\(394\) 12.9869 22.4940i 0.654270 1.13323i
\(395\) 17.6965 + 10.2171i 0.890409 + 0.514078i
\(396\) 0.523476 0.721530i 0.0263056 0.0362583i
\(397\) −0.355073 + 0.615005i −0.0178206 + 0.0308662i −0.874798 0.484488i \(-0.839006\pi\)
0.856978 + 0.515354i \(0.172339\pi\)
\(398\) 5.54735i 0.278063i
\(399\) −35.8384 + 4.80893i −1.79416 + 0.240748i
\(400\) 0.118437 0.205138i 0.00592183 0.0102569i
\(401\) 15.2330 0.760701 0.380351 0.924842i \(-0.375803\pi\)
0.380351 + 0.924842i \(0.375803\pi\)
\(402\) 0.306107 5.87898i 0.0152672 0.293217i
\(403\) −0.271622 + 6.04439i −0.0135305 + 0.301092i
\(404\) −9.38860 16.2615i −0.467100 0.809041i
\(405\) −4.25480 + 20.1515i −0.211422 + 1.00134i
\(406\) −2.27463 + 1.95118i −0.112888 + 0.0968357i
\(407\) −1.28641 + 0.742707i −0.0637648 + 0.0368146i
\(408\) −0.842274 + 1.29795i −0.0416988 + 0.0642581i
\(409\) 26.0063 1.28593 0.642964 0.765896i \(-0.277704\pi\)
0.642964 + 0.765896i \(0.277704\pi\)
\(410\) −17.2310 −0.850978
\(411\) −2.43901 + 3.75853i −0.120307 + 0.185395i
\(412\) −12.3898 + 7.15323i −0.610399 + 0.352414i
\(413\) −15.0357 5.28808i −0.739857 0.260209i
\(414\) −21.4045 + 9.54727i −1.05197 + 0.469223i
\(415\) 1.77204 + 3.06927i 0.0869863 + 0.150665i
\(416\) 3.20028 1.66078i 0.156907 0.0814265i
\(417\) 1.06110 20.3791i 0.0519623 0.997970i
\(418\) −2.34464 −0.114680
\(419\) 4.44170 7.69326i 0.216991 0.375840i −0.736895 0.676007i \(-0.763709\pi\)
0.953887 + 0.300167i \(0.0970423\pi\)
\(420\) 9.69855 + 3.98904i 0.473241 + 0.194645i
\(421\) 11.9274i 0.581308i 0.956828 + 0.290654i \(0.0938729\pi\)
−0.956828 + 0.290654i \(0.906127\pi\)
\(422\) 1.17040 2.02719i 0.0569742 0.0986822i
\(423\) 14.6100 + 10.5997i 0.710365 + 0.515375i
\(424\) 6.28351 + 3.62779i 0.305154 + 0.176181i
\(425\) −0.105803 + 0.183256i −0.00513219 + 0.00888921i
\(426\) 3.97817 + 0.207135i 0.192743 + 0.0100357i
\(427\) −16.9640 + 14.5518i −0.820945 + 0.704209i
\(428\) 16.6853i 0.806516i
\(429\) 1.68928 0.767942i 0.0815593 0.0370766i
\(430\) −7.69772 4.44428i −0.371217 0.214322i
\(431\) −9.74149 16.8728i −0.469231 0.812732i 0.530150 0.847904i \(-0.322136\pi\)
−0.999381 + 0.0351717i \(0.988802\pi\)
\(432\) −5.13300 0.807639i −0.246962 0.0388576i
\(433\) −15.8703 + 9.16273i −0.762679 + 0.440333i −0.830257 0.557381i \(-0.811806\pi\)
0.0675780 + 0.997714i \(0.478473\pi\)
\(434\) −2.89069 3.36988i −0.138758 0.161759i
\(435\) 2.44396 3.76616i 0.117179 0.180573i
\(436\) −9.70354 5.60234i −0.464715 0.268304i
\(437\) 53.3862 + 30.8225i 2.55381 + 1.47444i
\(438\) −9.69883 19.0191i −0.463428 0.908768i
\(439\) 2.49215i 0.118944i 0.998230 + 0.0594720i \(0.0189417\pi\)
−0.998230 + 0.0594720i \(0.981058\pi\)
\(440\) 0.588883 + 0.339992i 0.0280739 + 0.0162085i
\(441\) −5.33422 + 20.3112i −0.254011 + 0.967201i
\(442\) −2.85890 + 1.48362i −0.135984 + 0.0705687i
\(443\) 14.4424 8.33832i 0.686179 0.396166i −0.116000 0.993249i \(-0.537007\pi\)
0.802179 + 0.597083i \(0.203674\pi\)
\(444\) 7.26329 + 4.71333i 0.344700 + 0.223685i
\(445\) 16.3743 + 28.3612i 0.776218 + 1.34445i
\(446\) 0.746837 1.29356i 0.0353638 0.0612519i
\(447\) 2.58679 + 5.07261i 0.122351 + 0.239926i
\(448\) −0.877809 + 2.49589i −0.0414726 + 0.117920i
\(449\) −18.5701 32.1643i −0.876375 1.51793i −0.855290 0.518149i \(-0.826621\pi\)
−0.0210850 0.999778i \(-0.506712\pi\)
\(450\) −0.706777 0.0738010i −0.0333178 0.00347901i
\(451\) 2.23736i 0.105353i
\(452\) 7.27033 4.19753i 0.341968 0.197435i
\(453\) 18.8681 9.62183i 0.886501 0.452073i
\(454\) 6.37084i 0.298998i
\(455\) 13.4550 + 17.1906i 0.630781 + 0.805910i
\(456\) 6.20883 + 12.1753i 0.290755 + 0.570161i
\(457\) 16.1075i 0.753476i 0.926320 + 0.376738i \(0.122954\pi\)
−0.926320 + 0.376738i \(0.877046\pi\)
\(458\) −3.93382 6.81358i −0.183815 0.318378i
\(459\) 4.58545 + 0.721486i 0.214031 + 0.0336761i
\(460\) −8.93903 15.4829i −0.416784 0.721892i
\(461\) −12.1978 + 7.04240i −0.568108 + 0.327997i −0.756393 0.654117i \(-0.773040\pi\)
0.188285 + 0.982114i \(0.439707\pi\)
\(462\) −0.517957 + 1.25931i −0.0240976 + 0.0585884i
\(463\) 20.5027i 0.952843i 0.879217 + 0.476421i \(0.158066\pi\)
−0.879217 + 0.476421i \(0.841934\pi\)
\(464\) 0.980947 + 0.566350i 0.0455393 + 0.0262921i
\(465\) 5.57959 + 3.62074i 0.258747 + 0.167908i
\(466\) 8.04627 4.64552i 0.372736 0.215199i
\(467\) 2.86923 + 4.96965i 0.132772 + 0.229968i 0.924744 0.380589i \(-0.124279\pi\)
−0.791972 + 0.610557i \(0.790946\pi\)
\(468\) −8.46118 6.73858i −0.391118 0.311491i
\(469\) 1.65774 + 8.83834i 0.0765473 + 0.408116i
\(470\) −6.88438 + 11.9241i −0.317553 + 0.550018i
\(471\) −27.5657 + 14.0572i −1.27016 + 0.647720i
\(472\) 6.02418i 0.277285i
\(473\) 0.577069 0.999512i 0.0265336 0.0459576i
\(474\) 15.4452 + 0.804202i 0.709423 + 0.0369382i
\(475\) 0.934544 + 1.61868i 0.0428798 + 0.0742701i
\(476\) 0.784171 2.22964i 0.0359424 0.102196i
\(477\) 2.26057 21.6490i 0.103504 0.991241i
\(478\) 22.6067 1.03401
\(479\) −24.3944 + 14.0841i −1.11461 + 0.643519i −0.940019 0.341122i \(-0.889193\pi\)
−0.174589 + 0.984641i \(0.555860\pi\)
\(480\) 0.206101 3.95830i 0.00940717 0.180671i
\(481\) 8.30229 + 15.9983i 0.378552 + 0.729460i
\(482\) 29.0874 1.32489
\(483\) 28.3485 21.8648i 1.28990 0.994882i
\(484\) 5.45585 9.44982i 0.247993 0.429537i
\(485\) −4.73047 2.73114i −0.214800 0.124015i
\(486\) 4.06010 + 15.0504i 0.184170 + 0.682702i
\(487\) 29.7095i 1.34627i −0.739521 0.673133i \(-0.764948\pi\)
0.739521 0.673133i \(-0.235052\pi\)
\(488\) 7.31581 + 4.22379i 0.331171 + 0.191202i
\(489\) −3.57602 + 1.82360i −0.161713 + 0.0824661i
\(490\) −15.8324 2.43790i −0.715233 0.110133i
\(491\) −35.4120 20.4451i −1.59812 0.922676i −0.991849 0.127418i \(-0.959331\pi\)
−0.606272 0.795258i \(-0.707336\pi\)
\(492\) −11.6183 + 5.92475i −0.523791 + 0.267109i
\(493\) −0.876307 0.505936i −0.0394669 0.0227862i
\(494\) −1.27720 + 28.4215i −0.0574641 + 1.27874i
\(495\) 0.211858 2.02892i 0.00952230 0.0911931i
\(496\) −0.839051 + 1.45328i −0.0376745 + 0.0652542i
\(497\) −5.98070 + 1.12175i −0.268271 + 0.0503175i
\(498\) 2.25017 + 1.46020i 0.100833 + 0.0654330i
\(499\) 11.0351 6.37111i 0.493998 0.285210i −0.232233 0.972660i \(-0.574603\pi\)
0.726232 + 0.687450i \(0.241270\pi\)
\(500\) 10.9000i 0.487465i
\(501\) −20.5944 + 10.5022i −0.920091 + 0.469202i
\(502\) −6.89055 11.9348i −0.307540 0.532675i
\(503\) 20.5763 + 35.6392i 0.917453 + 1.58908i 0.803270 + 0.595615i \(0.203092\pi\)
0.114183 + 0.993460i \(0.463575\pi\)
\(504\) 7.91099 0.645111i 0.352384 0.0287355i
\(505\) −37.2132 21.4851i −1.65597 0.956073i
\(506\) 2.01037 1.16069i 0.0893720 0.0515990i
\(507\) −8.38873 20.8957i −0.372557 0.928009i
\(508\) 2.63228 4.55924i 0.116788 0.202284i
\(509\) 17.9868i 0.797250i 0.917114 + 0.398625i \(0.130512\pi\)
−0.917114 + 0.398625i \(0.869488\pi\)
\(510\) −0.184115 + 3.53606i −0.00815277 + 0.156579i
\(511\) 21.2328 + 24.7525i 0.939283 + 1.09499i
\(512\) 1.00000 0.0441942
\(513\) 25.7704 31.8901i 1.13779 1.40798i
\(514\) 5.62443 0.248083
\(515\) −16.3696 + 28.3530i −0.721331 + 1.24938i
\(516\) −6.71844 0.349815i −0.295763 0.0153998i
\(517\) −1.54829 0.893904i −0.0680936 0.0393139i
\(518\) −12.4770 4.38819i −0.548208 0.192806i
\(519\) 14.4481 + 28.3323i 0.634202 + 1.24365i
\(520\) 4.44214 6.95319i 0.194801 0.304917i
\(521\) −12.5794 + 21.7881i −0.551113 + 0.954555i 0.447082 + 0.894493i \(0.352463\pi\)
−0.998195 + 0.0600622i \(0.980870\pi\)
\(522\) 0.352908 3.37972i 0.0154463 0.147927i
\(523\) 42.1093i 1.84131i 0.390375 + 0.920656i \(0.372345\pi\)
−0.390375 + 0.920656i \(0.627655\pi\)
\(524\) −0.386257 0.669016i −0.0168737 0.0292261i
\(525\) 1.07585 0.144361i 0.0469538 0.00630045i
\(526\) 16.7851 9.69087i 0.731864 0.422542i
\(527\) 0.749548 1.29825i 0.0326508 0.0565529i
\(528\) 0.513966 + 0.0267612i 0.0223675 + 0.00116463i
\(529\) −38.0335 −1.65363
\(530\) 16.6038 0.721224
\(531\) 16.5051 7.36195i 0.716260 0.319481i
\(532\) −13.5924 15.8456i −0.589307 0.686995i
\(533\) −27.1211 1.21877i −1.17475 0.0527906i
\(534\) 20.7924 + 13.4927i 0.899776 + 0.583888i
\(535\) 19.0915 + 33.0675i 0.825399 + 1.42963i
\(536\) 2.94347 1.69941i 0.127139 0.0734035i
\(537\) 0.929341 17.8486i 0.0401040 0.770225i
\(538\) −27.9546 −1.20521
\(539\) 0.316550 2.05576i 0.0136348 0.0885477i
\(540\) −11.0969 + 4.27263i −0.477533 + 0.183865i
\(541\) −15.7491 + 9.09276i −0.677107 + 0.390928i −0.798764 0.601644i \(-0.794513\pi\)
0.121657 + 0.992572i \(0.461179\pi\)
\(542\) −20.4588 −0.878782
\(543\) −7.58061 4.91926i −0.325315 0.211106i
\(544\) −0.893327 −0.0383011
\(545\) −25.6410 −1.09834
\(546\) 14.9831 + 6.96463i 0.641218 + 0.298059i
\(547\) 7.61792 0.325719 0.162859 0.986649i \(-0.447928\pi\)
0.162859 + 0.986649i \(0.447928\pi\)
\(548\) −2.58684 −0.110505
\(549\) 2.63195 25.2057i 0.112329 1.07575i
\(550\) 0.0703847 0.00300121
\(551\) −7.74033 + 4.46888i −0.329749 + 0.190381i
\(552\) −11.3509 7.36592i −0.483128 0.313514i
\(553\) −23.2200 + 4.35520i −0.987416 + 0.185202i
\(554\) 6.51069 0.276613
\(555\) 19.7877 + 1.03030i 0.839939 + 0.0437339i
\(556\) 10.2034 5.89092i 0.432719 0.249831i
\(557\) 15.8600 + 27.4704i 0.672011 + 1.16396i 0.977333 + 0.211708i \(0.0679027\pi\)
−0.305322 + 0.952249i \(0.598764\pi\)
\(558\) 5.00709 + 0.522835i 0.211967 + 0.0221334i
\(559\) −11.8017 7.53965i −0.499157 0.318893i
\(560\) 1.11615 + 5.95083i 0.0471660 + 0.251468i
\(561\) −0.459140 0.0239065i −0.0193849 0.00100933i
\(562\) 10.0287 0.423035
\(563\) −2.89827 −0.122147 −0.0610737 0.998133i \(-0.519452\pi\)
−0.0610737 + 0.998133i \(0.519452\pi\)
\(564\) −0.541879 + 10.4071i −0.0228172 + 0.438220i
\(565\) 9.60572 16.6376i 0.404115 0.699949i
\(566\) 19.8164 11.4410i 0.832945 0.480901i
\(567\) −11.4352 20.8862i −0.480235 0.877140i
\(568\) 1.14995 + 1.99178i 0.0482510 + 0.0835732i
\(569\) 37.8812i 1.58806i −0.607878 0.794030i \(-0.707979\pi\)
0.607878 0.794030i \(-0.292021\pi\)
\(570\) 26.2360 + 17.0252i 1.09890 + 0.713108i
\(571\) −13.5869 + 23.5332i −0.568594 + 0.984834i 0.428111 + 0.903726i \(0.359179\pi\)
−0.996705 + 0.0811082i \(0.974154\pi\)
\(572\) 0.902838 + 0.576790i 0.0377496 + 0.0241168i
\(573\) −40.6933 + 20.7516i −1.69999 + 0.866912i
\(574\) 15.1206 12.9705i 0.631123 0.541380i
\(575\) −1.60262 0.925274i −0.0668340 0.0385866i
\(576\) −1.22207 2.73981i −0.0509195 0.114159i
\(577\) −19.0478 + 32.9918i −0.792972 + 1.37347i 0.131147 + 0.991363i \(0.458134\pi\)
−0.924119 + 0.382105i \(0.875199\pi\)
\(578\) −16.2020 −0.673913
\(579\) 0.288631 5.54335i 0.0119951 0.230374i
\(580\) 2.59209 0.107631
\(581\) −3.86539 1.35947i −0.160363 0.0564002i
\(582\) −4.12868 0.214972i −0.171139 0.00891087i
\(583\) 2.15593i 0.0892894i
\(584\) 6.16302 10.6747i 0.255028 0.441721i
\(585\) −24.4790 3.67334i −1.01208 0.151874i
\(586\) 17.4353 10.0663i 0.720248 0.415835i
\(587\) 19.1503 + 11.0565i 0.790419 + 0.456349i 0.840110 0.542416i \(-0.182490\pi\)
−0.0496910 + 0.998765i \(0.515824\pi\)
\(588\) −11.5135 + 3.80005i −0.474807 + 0.156711i
\(589\) −6.62068 11.4673i −0.272800 0.472504i
\(590\) 6.89293 + 11.9389i 0.283777 + 0.491517i
\(591\) −20.4377 40.0776i −0.840694 1.64857i
\(592\) 4.99903i 0.205459i
\(593\) 22.7957 13.1611i 0.936109 0.540463i 0.0473705 0.998877i \(-0.484916\pi\)
0.888738 + 0.458415i \(0.151583\pi\)
\(594\) −0.554781 1.44087i −0.0227629 0.0591198i
\(595\) −0.997088 5.31604i −0.0408766 0.217936i
\(596\) −1.64375 + 2.84705i −0.0673305 + 0.116620i
\(597\) 8.05996 + 5.23032i 0.329872 + 0.214063i
\(598\) −12.9747 25.0019i −0.530574 1.02240i
\(599\) −5.69118 3.28581i −0.232536 0.134254i 0.379206 0.925312i \(-0.376197\pi\)
−0.611741 + 0.791058i \(0.709531\pi\)
\(600\) −0.186386 0.365496i −0.00760916 0.0149213i
\(601\) 22.1774 + 12.8041i 0.904634 + 0.522291i 0.878701 0.477373i \(-0.158411\pi\)
0.0259335 + 0.999664i \(0.491744\pi\)
\(602\) 10.1004 1.89445i 0.411660 0.0772119i
\(603\) −8.25319 5.98775i −0.336096 0.243840i
\(604\) 10.5899 + 6.11409i 0.430897 + 0.248779i
\(605\) 24.9706i 1.01520i
\(606\) −32.4791 1.69112i −1.31937 0.0686970i
\(607\) 36.9259 + 21.3192i 1.49878 + 0.865320i 0.999999 0.00140959i \(-0.000448687\pi\)
0.498779 + 0.866729i \(0.333782\pi\)
\(608\) −3.94533 + 6.83352i −0.160004 + 0.277136i
\(609\) 0.690319 + 5.14457i 0.0279731 + 0.208469i
\(610\) 19.3316 0.782714
\(611\) −11.6792 + 18.2813i −0.472492 + 0.739582i
\(612\) 1.09171 + 2.44755i 0.0441296 + 0.0989362i
\(613\) −3.48038 + 2.00940i −0.140571 + 0.0811588i −0.568636 0.822589i \(-0.692529\pi\)
0.428065 + 0.903748i \(0.359195\pi\)
\(614\) 3.07801 0.124219
\(615\) −16.2462 + 25.0356i −0.655112 + 1.00953i
\(616\) −0.772686 + 0.144927i −0.0311324 + 0.00583927i
\(617\) 12.9809 + 22.4837i 0.522593 + 0.905158i 0.999654 + 0.0262879i \(0.00836868\pi\)
−0.477061 + 0.878870i \(0.658298\pi\)
\(618\) −1.28847 + 24.7460i −0.0518300 + 0.995429i
\(619\) 2.84282 4.92392i 0.114263 0.197909i −0.803222 0.595680i \(-0.796883\pi\)
0.917485 + 0.397771i \(0.130216\pi\)
\(620\) 3.84021i 0.154226i
\(621\) −6.30960 + 40.1011i −0.253196 + 1.60920i
\(622\) −7.75963 + 13.4401i −0.311133 + 0.538898i
\(623\) −35.7176 12.5620i −1.43100 0.503285i
\(624\) 0.604372 6.21568i 0.0241942 0.248827i
\(625\) 13.0641 + 22.6277i 0.522565 + 0.905109i
\(626\) 13.7068 7.91361i 0.547833 0.316291i
\(627\) −2.21064 + 3.40662i −0.0882846 + 0.136047i
\(628\) −15.4715 8.93248i −0.617380 0.356445i
\(629\) 4.46577i 0.178062i
\(630\) 14.9401 10.3303i 0.595228 0.411571i
\(631\) 11.9099 6.87621i 0.474128 0.273738i −0.243838 0.969816i \(-0.578407\pi\)
0.717966 + 0.696078i \(0.245073\pi\)
\(632\) 4.46469 + 7.73307i 0.177596 + 0.307605i
\(633\) −1.84188 3.61186i −0.0732080 0.143558i
\(634\) 6.47213 + 11.2101i 0.257041 + 0.445208i
\(635\) 12.0475i 0.478092i
\(636\) 11.1954 5.70910i 0.443925 0.226381i
\(637\) −24.7473 4.95704i −0.980523 0.196405i
\(638\) 0.336571i 0.0133250i
\(639\) 4.05177 5.58474i 0.160286 0.220929i
\(640\) 1.98183 1.14421i 0.0783388 0.0452289i
\(641\) 6.28822i 0.248370i −0.992259 0.124185i \(-0.960368\pi\)
0.992259 0.124185i \(-0.0396316\pi\)
\(642\) 24.2428 + 15.7318i 0.956787 + 0.620884i
\(643\) −17.3160 29.9922i −0.682877 1.18278i −0.974099 0.226122i \(-0.927395\pi\)
0.291222 0.956656i \(-0.405938\pi\)
\(644\) 19.4989 + 6.85779i 0.768363 + 0.270235i
\(645\) −13.7151 + 6.99403i −0.540030 + 0.275390i
\(646\) 3.52448 6.10457i 0.138669 0.240181i
\(647\) 9.06347 + 15.6984i 0.356322 + 0.617167i 0.987343 0.158598i \(-0.0506974\pi\)
−0.631022 + 0.775765i \(0.717364\pi\)
\(648\) −6.01310 + 6.69646i −0.236217 + 0.263062i
\(649\) −1.55021 + 0.895014i −0.0608511 + 0.0351324i
\(650\) 0.0383409 0.853198i 0.00150385 0.0334652i
\(651\) −7.62172 + 1.02271i −0.298719 + 0.0400833i
\(652\) −2.00708 1.15879i −0.0786033 0.0453816i
\(653\) 40.1546i 1.57137i 0.618627 + 0.785685i \(0.287689\pi\)
−0.618627 + 0.785685i \(0.712311\pi\)
\(654\) −17.2889 + 8.81649i −0.676048 + 0.344752i
\(655\) −1.53099 0.883918i −0.0598208 0.0345375i
\(656\) −6.52086 3.76482i −0.254597 0.146992i
\(657\) −36.7782 3.84034i −1.43485 0.149826i
\(658\) −2.93458 15.6459i −0.114402 0.609940i
\(659\) −15.7627 + 9.10062i −0.614029 + 0.354510i −0.774541 0.632524i \(-0.782019\pi\)
0.160512 + 0.987034i \(0.448686\pi\)
\(660\) 1.04922 0.535050i 0.0408406 0.0208268i
\(661\) 11.5569 + 20.0171i 0.449510 + 0.778575i 0.998354 0.0573503i \(-0.0182652\pi\)
−0.548844 + 0.835925i \(0.684932\pi\)
\(662\) 7.76227 + 4.48155i 0.301689 + 0.174180i
\(663\) −0.539902 + 5.55264i −0.0209681 + 0.215647i
\(664\) 1.54870i 0.0601014i
\(665\) −45.0687 15.8508i −1.74769 0.614666i
\(666\) 13.6964 6.10915i 0.530724 0.236725i
\(667\) 4.42455 7.66355i 0.171319 0.296734i
\(668\) −11.5588 6.67349i −0.447224 0.258205i
\(669\) −1.17531 2.30474i −0.0454401 0.0891065i
\(670\) 3.88898 6.73591i 0.150244 0.260231i
\(671\) 2.51012i 0.0969020i
\(672\) 2.79873 + 3.62865i 0.107963 + 0.139978i
\(673\) −18.1450 + 31.4281i −0.699438 + 1.21146i 0.269223 + 0.963078i \(0.413233\pi\)
−0.968661 + 0.248385i \(0.920100\pi\)
\(674\) −7.76837 −0.299226
\(675\) −0.773614 + 0.957321i −0.0297764 + 0.0368473i
\(676\) 7.48361 10.6299i 0.287831 0.408844i
\(677\) 2.13681 + 3.70106i 0.0821243 + 0.142243i 0.904162 0.427189i \(-0.140496\pi\)
−0.822038 + 0.569433i \(0.807163\pi\)
\(678\) 0.756079 14.5210i 0.0290370 0.557675i
\(679\) 6.20696 1.16419i 0.238201 0.0446776i
\(680\) −1.77042 + 1.02215i −0.0678927 + 0.0391978i
\(681\) −9.25645 6.00675i −0.354708 0.230179i
\(682\) −0.498633 −0.0190936
\(683\) 30.0773 1.15088 0.575438 0.817846i \(-0.304832\pi\)
0.575438 + 0.817846i \(0.304832\pi\)
\(684\) 23.5440 + 2.45844i 0.900227 + 0.0940009i
\(685\) −5.12669 + 2.95989i −0.195881 + 0.113092i
\(686\) 15.7284 9.77839i 0.600514 0.373341i
\(687\) −13.6087 0.708579i −0.519205 0.0270340i
\(688\) −1.94207 3.36377i −0.0740408 0.128242i
\(689\) 26.1340 + 1.17441i 0.995625 + 0.0447413i
\(690\) −30.9238 1.61014i −1.17725 0.0612970i
\(691\) −17.1832 −0.653679 −0.326840 0.945080i \(-0.605984\pi\)
−0.326840 + 0.945080i \(0.605984\pi\)
\(692\) −9.18090 + 15.9018i −0.349006 + 0.604495i
\(693\) 1.34135 + 1.93990i 0.0509535 + 0.0736908i
\(694\) 9.70091i 0.368241i
\(695\) 13.4809 23.3496i 0.511360 0.885701i
\(696\) 1.74776 0.891273i 0.0662486 0.0337836i
\(697\) 5.82526 + 3.36322i 0.220648 + 0.127391i
\(698\) 13.2526 22.9542i 0.501619 0.868829i
\(699\) 0.836773 16.0708i 0.0316497 0.607853i
\(700\) 0.408037 + 0.475677i 0.0154224 + 0.0179789i
\(701\) 33.7755i 1.27568i 0.770167 + 0.637842i \(0.220173\pi\)
−0.770167 + 0.637842i \(0.779827\pi\)
\(702\) −17.7684 + 5.94012i −0.670624 + 0.224195i
\(703\) −34.1610 19.7228i −1.28840 0.743861i
\(704\) 0.148570 + 0.257331i 0.00559945 + 0.00969854i
\(705\) 10.8341 + 21.2452i 0.408034 + 0.800142i
\(706\) −22.1838 + 12.8078i −0.834900 + 0.482030i
\(707\) 48.8283 9.15835i 1.83638 0.344435i
\(708\) 8.75277 + 5.67990i 0.328949 + 0.213464i
\(709\) −1.05799 0.610834i −0.0397338 0.0229403i 0.480002 0.877268i \(-0.340636\pi\)
−0.519735 + 0.854327i \(0.673969\pi\)
\(710\) 4.55803 + 2.63158i 0.171060 + 0.0987614i
\(711\) 15.7310 21.6827i 0.589958 0.813166i
\(712\) 14.3106i 0.536312i
\(713\) 11.3536 + 6.55500i 0.425196 + 0.245487i
\(714\) −2.50018 3.24157i −0.0935670 0.121313i
\(715\) 2.44924 + 0.110064i 0.0915965 + 0.00411615i
\(716\) 8.93640 5.15943i 0.333969 0.192817i
\(717\) 21.3147 32.8461i 0.796012 1.22666i
\(718\) −6.41408 11.1095i −0.239371 0.414604i
\(719\) 15.5184 26.8786i 0.578738 1.00240i −0.416887 0.908959i \(-0.636879\pi\)
0.995624 0.0934449i \(-0.0297879\pi\)
\(720\) −5.55685 4.03154i −0.207092 0.150246i
\(721\) −6.97780 37.2026i −0.259867 1.38550i
\(722\) −21.6313 37.4666i −0.805035 1.39436i
\(723\) 27.4251 42.2622i 1.01995 1.57175i
\(724\) 5.21743i 0.193904i
\(725\) 0.232360 0.134153i 0.00862964 0.00498232i
\(726\) −8.58596 16.8368i −0.318655 0.624872i
\(727\) 33.4726i 1.24143i −0.784036 0.620716i \(-0.786842\pi\)
0.784036 0.620716i \(-0.213158\pi\)
\(728\) 1.33588 + 9.44539i 0.0495111 + 0.350069i
\(729\) 25.6954 + 8.29123i 0.951683 + 0.307083i
\(730\) 28.2072i 1.04399i
\(731\) 1.73491 + 3.00495i 0.0641678 + 0.111142i
\(732\) 13.0346 6.64704i 0.481773 0.245682i
\(733\) −12.3342 21.3634i −0.455573 0.789076i 0.543148 0.839637i \(-0.317232\pi\)
−0.998721 + 0.0505610i \(0.983899\pi\)
\(734\) −21.2692 + 12.2798i −0.785061 + 0.453255i
\(735\) −18.4697 + 20.7049i −0.681264 + 0.763711i
\(736\) 7.81240i 0.287969i
\(737\) 0.874625 + 0.504965i 0.0322172 + 0.0186006i
\(738\) −2.34596 + 22.4668i −0.0863559 + 0.827013i
\(739\) 38.5610 22.2632i 1.41849 0.818964i 0.422321 0.906446i \(-0.361215\pi\)
0.996166 + 0.0874820i \(0.0278820\pi\)
\(740\) 5.71994 + 9.90723i 0.210269 + 0.364197i
\(741\) 40.0906 + 28.6529i 1.47276 + 1.05259i
\(742\) −14.5703 + 12.4984i −0.534892 + 0.458832i
\(743\) −19.9258 + 34.5124i −0.731006 + 1.26614i 0.225448 + 0.974255i \(0.427615\pi\)
−0.956454 + 0.291884i \(0.905718\pi\)
\(744\) 1.32043 + 2.58932i 0.0484092 + 0.0949289i
\(745\) 7.52318i 0.275628i
\(746\) 10.7383 18.5993i 0.393158 0.680969i
\(747\) 4.24316 1.89262i 0.155249 0.0692474i
\(748\) −0.132722 0.229881i −0.00485279 0.00840529i
\(749\) −41.6447 14.6465i −1.52166 0.535173i
\(750\) 15.8371 + 10.2771i 0.578289 + 0.375267i
\(751\) −17.9853 −0.656292 −0.328146 0.944627i \(-0.606424\pi\)
−0.328146 + 0.944627i \(0.606424\pi\)
\(752\) −5.21062 + 3.00835i −0.190012 + 0.109703i
\(753\) −23.8373 1.24116i −0.868679 0.0452303i
\(754\) 4.07989 + 0.183342i 0.148581 + 0.00667691i
\(755\) 27.9832 1.01841
\(756\) 6.52157 12.1024i 0.237187 0.440162i
\(757\) 20.2665 35.1027i 0.736600 1.27583i −0.217417 0.976079i \(-0.569763\pi\)
0.954018 0.299750i \(-0.0969034\pi\)
\(758\) −13.9171 8.03505i −0.505492 0.291846i
\(759\) 0.209069 4.01531i 0.00758873 0.145747i
\(760\) 18.0572i 0.655003i
\(761\) 1.19636 + 0.690718i 0.0433680 + 0.0250385i 0.521527 0.853235i \(-0.325362\pi\)
−0.478159 + 0.878273i \(0.658696\pi\)
\(762\) −4.14246 8.12322i −0.150065 0.294273i
\(763\) 22.5007 19.3012i 0.814579 0.698749i
\(764\) −22.8395 13.1864i −0.826305 0.477067i
\(765\) 4.96409 + 3.60148i 0.179477 + 0.130212i
\(766\) −23.1968 13.3927i −0.838136 0.483898i
\(767\) 10.0048 + 19.2791i 0.361254 + 0.696127i
\(768\) 0.942850 1.45294i 0.0340222 0.0524284i
\(769\) −3.70242 + 6.41278i −0.133513 + 0.231251i −0.925028 0.379898i \(-0.875959\pi\)
0.791516 + 0.611149i \(0.209292\pi\)
\(770\) −1.36551 + 1.17134i −0.0492095 + 0.0422120i
\(771\) 5.30300 8.17196i 0.190983 0.294306i
\(772\) 2.77543 1.60239i 0.0998899 0.0576714i
\(773\) 5.44545i 0.195859i 0.995193 + 0.0979297i \(0.0312220\pi\)
−0.995193 + 0.0979297i \(0.968778\pi\)
\(774\) −6.