Properties

Label 546.2.bi.f.17.10
Level $546$
Weight $2$
Character 546.17
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bi (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.10
Character \(\chi\) \(=\) 546.17
Dual form 546.2.bi.f.257.10

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +(0.517534 - 1.65292i) q^{3} +1.00000 q^{4} +(0.870413 - 0.502533i) q^{5} +(0.517534 - 1.65292i) q^{6} +(2.64571 - 0.0151415i) q^{7} +1.00000 q^{8} +(-2.46432 - 1.71089i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(0.517534 - 1.65292i) q^{3} +1.00000 q^{4} +(0.870413 - 0.502533i) q^{5} +(0.517534 - 1.65292i) q^{6} +(2.64571 - 0.0151415i) q^{7} +1.00000 q^{8} +(-2.46432 - 1.71089i) q^{9} +(0.870413 - 0.502533i) q^{10} +(-0.310310 - 0.537472i) q^{11} +(0.517534 - 1.65292i) q^{12} +(-1.14202 + 3.41991i) q^{13} +(2.64571 - 0.0151415i) q^{14} +(-0.380181 - 1.69880i) q^{15} +1.00000 q^{16} +0.342914 q^{17} +(-2.46432 - 1.71089i) q^{18} +(2.16909 - 3.75697i) q^{19} +(0.870413 - 0.502533i) q^{20} +(1.34422 - 4.38099i) q^{21} +(-0.310310 - 0.537472i) q^{22} +2.82222i q^{23} +(0.517534 - 1.65292i) q^{24} +(-1.99492 + 3.45530i) q^{25} +(-1.14202 + 3.41991i) q^{26} +(-4.10334 + 3.18788i) q^{27} +(2.64571 - 0.0151415i) q^{28} +(-8.23191 - 4.75270i) q^{29} +(-0.380181 - 1.69880i) q^{30} +(-1.25167 + 2.16796i) q^{31} +1.00000 q^{32} +(-1.04900 + 0.234758i) q^{33} +0.342914 q^{34} +(2.29525 - 1.34273i) q^{35} +(-2.46432 - 1.71089i) q^{36} -4.34903i q^{37} +(2.16909 - 3.75697i) q^{38} +(5.06181 + 3.65760i) q^{39} +(0.870413 - 0.502533i) q^{40} +(7.47421 + 4.31523i) q^{41} +(1.34422 - 4.38099i) q^{42} +(-0.602811 - 1.04410i) q^{43} +(-0.310310 - 0.537472i) q^{44} +(-3.00475 - 0.250780i) q^{45} +2.82222i q^{46} +(0.0442417 - 0.0255429i) q^{47} +(0.517534 - 1.65292i) q^{48} +(6.99954 - 0.0801202i) q^{49} +(-1.99492 + 3.45530i) q^{50} +(0.177470 - 0.566810i) q^{51} +(-1.14202 + 3.41991i) q^{52} +(-4.15182 - 2.39705i) q^{53} +(-4.10334 + 3.18788i) q^{54} +(-0.540195 - 0.311882i) q^{55} +(2.64571 - 0.0151415i) q^{56} +(-5.08741 - 5.52970i) q^{57} +(-8.23191 - 4.75270i) q^{58} +3.08963i q^{59} +(-0.380181 - 1.69880i) q^{60} +(5.78697 + 3.34111i) q^{61} +(-1.25167 + 2.16796i) q^{62} +(-6.54577 - 4.48920i) q^{63} +1.00000 q^{64} +(0.724585 + 3.55064i) q^{65} +(-1.04900 + 0.234758i) q^{66} +(-4.75367 + 2.74453i) q^{67} +0.342914 q^{68} +(4.66492 + 1.46060i) q^{69} +(2.29525 - 1.34273i) q^{70} +(-0.621982 - 1.07730i) q^{71} +(-2.46432 - 1.71089i) q^{72} +(-4.46154 + 7.72761i) q^{73} -4.34903i q^{74} +(4.67892 + 5.08569i) q^{75} +(2.16909 - 3.75697i) q^{76} +(-0.829127 - 1.41730i) q^{77} +(5.06181 + 3.65760i) q^{78} +(0.458065 + 0.793391i) q^{79} +(0.870413 - 0.502533i) q^{80} +(3.14571 + 8.43235i) q^{81} +(7.47421 + 4.31523i) q^{82} +13.2261i q^{83} +(1.34422 - 4.38099i) q^{84} +(0.298476 - 0.172325i) q^{85} +(-0.602811 - 1.04410i) q^{86} +(-12.1161 + 11.1470i) q^{87} +(-0.310310 - 0.537472i) q^{88} -3.60015i q^{89} +(-3.00475 - 0.250780i) q^{90} +(-2.96968 + 9.06537i) q^{91} +2.82222i q^{92} +(2.93569 + 3.19091i) q^{93} +(0.0442417 - 0.0255429i) q^{94} -4.36015i q^{95} +(0.517534 - 1.65292i) q^{96} +(-5.10398 - 8.84035i) q^{97} +(6.99954 - 0.0801202i) q^{98} +(-0.154854 + 1.85541i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + O(q^{10}) \) \( 34q + 34q^{2} + 6q^{3} + 34q^{4} + 9q^{5} + 6q^{6} + 4q^{7} + 34q^{8} + 4q^{9} + 9q^{10} + 9q^{11} + 6q^{12} + 8q^{13} + 4q^{14} - 17q^{15} + 34q^{16} + 12q^{17} + 4q^{18} - 5q^{19} + 9q^{20} - 7q^{21} + 9q^{22} + 6q^{24} + 16q^{25} + 8q^{26} - 18q^{27} + 4q^{28} + 27q^{29} - 17q^{30} - q^{31} + 34q^{32} + 12q^{34} - 3q^{35} + 4q^{36} - 5q^{38} - 10q^{39} + 9q^{40} - 3q^{41} - 7q^{42} - 3q^{43} + 9q^{44} + 9q^{45} - 27q^{47} + 6q^{48} - 2q^{49} + 16q^{50} - 36q^{51} + 8q^{52} - 21q^{53} - 18q^{54} - 57q^{55} + 4q^{56} - 17q^{57} + 27q^{58} - 17q^{60} - 51q^{61} - q^{62} - 24q^{63} + 34q^{64} - 21q^{65} - 21q^{67} + 12q^{68} + 30q^{69} - 3q^{70} - 15q^{71} + 4q^{72} - 19q^{73} - 54q^{75} - 5q^{76} + 9q^{77} - 10q^{78} - 9q^{79} + 9q^{80} + 28q^{81} - 3q^{82} - 7q^{84} - 42q^{85} - 3q^{86} - 81q^{87} + 9q^{88} + 9q^{90} - 72q^{91} - 17q^{93} - 27q^{94} + 6q^{96} + 19q^{97} - 2q^{98} - 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.517534 1.65292i 0.298799 0.954316i
\(4\) 1.00000 0.500000
\(5\) 0.870413 0.502533i 0.389260 0.224740i −0.292579 0.956241i \(-0.594514\pi\)
0.681840 + 0.731502i \(0.261180\pi\)
\(6\) 0.517534 1.65292i 0.211282 0.674803i
\(7\) 2.64571 0.0151415i 0.999984 0.00572296i
\(8\) 1.00000 0.353553
\(9\) −2.46432 1.71089i −0.821439 0.570297i
\(10\) 0.870413 0.502533i 0.275249 0.158915i
\(11\) −0.310310 0.537472i −0.0935619 0.162054i 0.815446 0.578834i \(-0.196492\pi\)
−0.909007 + 0.416780i \(0.863159\pi\)
\(12\) 0.517534 1.65292i 0.149399 0.477158i
\(13\) −1.14202 + 3.41991i −0.316741 + 0.948512i
\(14\) 2.64571 0.0151415i 0.707095 0.00404675i
\(15\) −0.380181 1.69880i −0.0981622 0.438629i
\(16\) 1.00000 0.250000
\(17\) 0.342914 0.0831688 0.0415844 0.999135i \(-0.486759\pi\)
0.0415844 + 0.999135i \(0.486759\pi\)
\(18\) −2.46432 1.71089i −0.580845 0.403261i
\(19\) 2.16909 3.75697i 0.497623 0.861908i −0.502373 0.864651i \(-0.667540\pi\)
0.999996 + 0.00274283i \(0.000873072\pi\)
\(20\) 0.870413 0.502533i 0.194630 0.112370i
\(21\) 1.34422 4.38099i 0.293332 0.956011i
\(22\) −0.310310 0.537472i −0.0661582 0.114589i
\(23\) 2.82222i 0.588474i 0.955733 + 0.294237i \(0.0950655\pi\)
−0.955733 + 0.294237i \(0.904935\pi\)
\(24\) 0.517534 1.65292i 0.105641 0.337402i
\(25\) −1.99492 + 3.45530i −0.398984 + 0.691061i
\(26\) −1.14202 + 3.41991i −0.223969 + 0.670699i
\(27\) −4.10334 + 3.18788i −0.789688 + 0.613509i
\(28\) 2.64571 0.0151415i 0.499992 0.00286148i
\(29\) −8.23191 4.75270i −1.52863 0.882553i −0.999420 0.0340609i \(-0.989156\pi\)
−0.529208 0.848492i \(-0.677511\pi\)
\(30\) −0.380181 1.69880i −0.0694112 0.310158i
\(31\) −1.25167 + 2.16796i −0.224807 + 0.389377i −0.956262 0.292513i \(-0.905509\pi\)
0.731454 + 0.681890i \(0.238842\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.04900 + 0.234758i −0.182607 + 0.0408661i
\(34\) 0.342914 0.0588092
\(35\) 2.29525 1.34273i 0.387968 0.226964i
\(36\) −2.46432 1.71089i −0.410719 0.285148i
\(37\) 4.34903i 0.714975i −0.933918 0.357488i \(-0.883633\pi\)
0.933918 0.357488i \(-0.116367\pi\)
\(38\) 2.16909 3.75697i 0.351872 0.609461i
\(39\) 5.06181 + 3.65760i 0.810539 + 0.585685i
\(40\) 0.870413 0.502533i 0.137624 0.0794574i
\(41\) 7.47421 + 4.31523i 1.16727 + 0.673926i 0.953037 0.302855i \(-0.0979398\pi\)
0.214238 + 0.976781i \(0.431273\pi\)
\(42\) 1.34422 4.38099i 0.207417 0.676002i
\(43\) −0.602811 1.04410i −0.0919278 0.159224i 0.816394 0.577495i \(-0.195970\pi\)
−0.908322 + 0.418271i \(0.862636\pi\)
\(44\) −0.310310 0.537472i −0.0467809 0.0810270i
\(45\) −3.00475 0.250780i −0.447922 0.0373840i
\(46\) 2.82222i 0.416114i
\(47\) 0.0442417 0.0255429i 0.00645331 0.00372582i −0.496770 0.867882i \(-0.665481\pi\)
0.503223 + 0.864156i \(0.332147\pi\)
\(48\) 0.517534 1.65292i 0.0746996 0.238579i
\(49\) 6.99954 0.0801202i 0.999934 0.0114457i
\(50\) −1.99492 + 3.45530i −0.282124 + 0.488654i
\(51\) 0.177470 0.566810i 0.0248507 0.0793693i
\(52\) −1.14202 + 3.41991i −0.158370 + 0.474256i
\(53\) −4.15182 2.39705i −0.570296 0.329260i 0.186972 0.982365i \(-0.440133\pi\)
−0.757267 + 0.653105i \(0.773466\pi\)
\(54\) −4.10334 + 3.18788i −0.558394 + 0.433816i
\(55\) −0.540195 0.311882i −0.0728399 0.0420541i
\(56\) 2.64571 0.0151415i 0.353548 0.00202337i
\(57\) −5.08741 5.52970i −0.673844 0.732426i
\(58\) −8.23191 4.75270i −1.08090 0.624059i
\(59\) 3.08963i 0.402235i 0.979567 + 0.201118i \(0.0644573\pi\)
−0.979567 + 0.201118i \(0.935543\pi\)
\(60\) −0.380181 1.69880i −0.0490811 0.219315i
\(61\) 5.78697 + 3.34111i 0.740945 + 0.427785i 0.822413 0.568891i \(-0.192627\pi\)
−0.0814678 + 0.996676i \(0.525961\pi\)
\(62\) −1.25167 + 2.16796i −0.158963 + 0.275331i
\(63\) −6.54577 4.48920i −0.824689 0.565586i
\(64\) 1.00000 0.125000
\(65\) 0.724585 + 3.55064i 0.0898737 + 0.440402i
\(66\) −1.04900 + 0.234758i −0.129123 + 0.0288967i
\(67\) −4.75367 + 2.74453i −0.580754 + 0.335298i −0.761433 0.648244i \(-0.775504\pi\)
0.180679 + 0.983542i \(0.442170\pi\)
\(68\) 0.342914 0.0415844
\(69\) 4.66492 + 1.46060i 0.561590 + 0.175835i
\(70\) 2.29525 1.34273i 0.274335 0.160488i
\(71\) −0.621982 1.07730i −0.0738157 0.127853i 0.826755 0.562562i \(-0.190184\pi\)
−0.900571 + 0.434710i \(0.856851\pi\)
\(72\) −2.46432 1.71089i −0.290423 0.201630i
\(73\) −4.46154 + 7.72761i −0.522183 + 0.904448i 0.477484 + 0.878641i \(0.341549\pi\)
−0.999667 + 0.0258074i \(0.991784\pi\)
\(74\) 4.34903i 0.505564i
\(75\) 4.67892 + 5.08569i 0.540275 + 0.587245i
\(76\) 2.16909 3.75697i 0.248811 0.430954i
\(77\) −0.829127 1.41730i −0.0944878 0.161516i
\(78\) 5.06181 + 3.65760i 0.573138 + 0.414142i
\(79\) 0.458065 + 0.793391i 0.0515363 + 0.0892635i 0.890643 0.454704i \(-0.150255\pi\)
−0.839106 + 0.543967i \(0.816922\pi\)
\(80\) 0.870413 0.502533i 0.0973151 0.0561849i
\(81\) 3.14571 + 8.43235i 0.349524 + 0.936928i
\(82\) 7.47421 + 4.31523i 0.825388 + 0.476538i
\(83\) 13.2261i 1.45176i 0.687822 + 0.725879i \(0.258567\pi\)
−0.687822 + 0.725879i \(0.741433\pi\)
\(84\) 1.34422 4.38099i 0.146666 0.478005i
\(85\) 0.298476 0.172325i 0.0323743 0.0186913i
\(86\) −0.602811 1.04410i −0.0650028 0.112588i
\(87\) −12.1161 + 11.1470i −1.29899 + 1.19509i
\(88\) −0.310310 0.537472i −0.0330791 0.0572947i
\(89\) 3.60015i 0.381615i −0.981627 0.190807i \(-0.938889\pi\)
0.981627 0.190807i \(-0.0611106\pi\)
\(90\) −3.00475 0.250780i −0.316729 0.0264345i
\(91\) −2.96968 + 9.06537i −0.311307 + 0.950309i
\(92\) 2.82222i 0.294237i
\(93\) 2.93569 + 3.19091i 0.304417 + 0.330882i
\(94\) 0.0442417 0.0255429i 0.00456318 0.00263455i
\(95\) 4.36015i 0.447342i
\(96\) 0.517534 1.65292i 0.0528206 0.168701i
\(97\) −5.10398 8.84035i −0.518231 0.897602i −0.999776 0.0211806i \(-0.993258\pi\)
0.481545 0.876421i \(-0.340076\pi\)
\(98\) 6.99954 0.0801202i 0.707060 0.00809336i
\(99\) −0.154854 + 1.85541i −0.0155634 + 0.186475i
\(100\) −1.99492 + 3.45530i −0.199492 + 0.345530i
\(101\) 4.95624 + 8.58446i 0.493164 + 0.854185i 0.999969 0.00787556i \(-0.00250689\pi\)
−0.506805 + 0.862061i \(0.669174\pi\)
\(102\) 0.177470 0.566810i 0.0175721 0.0561226i
\(103\) 8.93253 5.15720i 0.880149 0.508154i 0.00944127 0.999955i \(-0.496995\pi\)
0.870707 + 0.491801i \(0.163661\pi\)
\(104\) −1.14202 + 3.41991i −0.111985 + 0.335350i
\(105\) −1.03157 4.48878i −0.100671 0.438060i
\(106\) −4.15182 2.39705i −0.403260 0.232822i
\(107\) 14.7159i 1.42264i 0.702871 + 0.711318i \(0.251901\pi\)
−0.702871 + 0.711318i \(0.748099\pi\)
\(108\) −4.10334 + 3.18788i −0.394844 + 0.306754i
\(109\) −15.5550 8.98070i −1.48990 0.860195i −0.489968 0.871740i \(-0.662992\pi\)
−0.999933 + 0.0115450i \(0.996325\pi\)
\(110\) −0.540195 0.311882i −0.0515056 0.0297367i
\(111\) −7.18861 2.25077i −0.682313 0.213634i
\(112\) 2.64571 0.0151415i 0.249996 0.00143074i
\(113\) 4.26195 2.46064i 0.400931 0.231478i −0.285955 0.958243i \(-0.592311\pi\)
0.686886 + 0.726766i \(0.258977\pi\)
\(114\) −5.08741 5.52970i −0.476479 0.517904i
\(115\) 1.41826 + 2.45650i 0.132253 + 0.229070i
\(116\) −8.23191 4.75270i −0.764314 0.441277i
\(117\) 8.66540 6.47386i 0.801116 0.598509i
\(118\) 3.08963i 0.284423i
\(119\) 0.907250 0.00519224i 0.0831674 0.000475972i
\(120\) −0.380181 1.69880i −0.0347056 0.155079i
\(121\) 5.30742 9.19271i 0.482492 0.835701i
\(122\) 5.78697 + 3.34111i 0.523927 + 0.302490i
\(123\) 11.0009 10.1210i 0.991919 0.912581i
\(124\) −1.25167 + 2.16796i −0.112404 + 0.194689i
\(125\) 9.03538i 0.808149i
\(126\) −6.54577 4.48920i −0.583143 0.399930i
\(127\) −2.78854 + 4.82989i −0.247443 + 0.428584i −0.962816 0.270159i \(-0.912924\pi\)
0.715373 + 0.698743i \(0.246257\pi\)
\(128\) 1.00000 0.0883883
\(129\) −2.03779 + 0.456044i −0.179418 + 0.0401524i
\(130\) 0.724585 + 3.55064i 0.0635503 + 0.311411i
\(131\) 9.12794 + 15.8101i 0.797512 + 1.38133i 0.921232 + 0.389014i \(0.127184\pi\)
−0.123720 + 0.992317i \(0.539483\pi\)
\(132\) −1.04900 + 0.234758i −0.0913034 + 0.0204331i
\(133\) 5.68189 9.97269i 0.492682 0.864742i
\(134\) −4.75367 + 2.74453i −0.410655 + 0.237092i
\(135\) −1.96958 + 4.83684i −0.169515 + 0.416289i
\(136\) 0.342914 0.0294046
\(137\) 8.10612 0.692553 0.346276 0.938133i \(-0.387446\pi\)
0.346276 + 0.938133i \(0.387446\pi\)
\(138\) 4.66492 + 1.46060i 0.397104 + 0.124334i
\(139\) −16.5296 + 9.54339i −1.40203 + 0.809460i −0.994600 0.103779i \(-0.966907\pi\)
−0.407425 + 0.913239i \(0.633573\pi\)
\(140\) 2.29525 1.34273i 0.193984 0.113482i
\(141\) −0.0193240 0.0863474i −0.00162737 0.00727177i
\(142\) −0.621982 1.07730i −0.0521956 0.0904054i
\(143\) 2.19249 0.447425i 0.183345 0.0374155i
\(144\) −2.46432 1.71089i −0.205360 0.142574i
\(145\) −9.55354 −0.793379
\(146\) −4.46154 + 7.72761i −0.369239 + 0.639541i
\(147\) 3.49007 11.6112i 0.287856 0.957674i
\(148\) 4.34903i 0.357488i
\(149\) 2.34608 4.06353i 0.192198 0.332898i −0.753780 0.657127i \(-0.771772\pi\)
0.945979 + 0.324229i \(0.105105\pi\)
\(150\) 4.67892 + 5.08569i 0.382032 + 0.415245i
\(151\) 6.80898 + 3.93117i 0.554107 + 0.319914i 0.750777 0.660556i \(-0.229679\pi\)
−0.196670 + 0.980470i \(0.563013\pi\)
\(152\) 2.16909 3.75697i 0.175936 0.304730i
\(153\) −0.845048 0.586688i −0.0683181 0.0474309i
\(154\) −0.829127 1.41730i −0.0668129 0.114209i
\(155\) 2.51603i 0.202092i
\(156\) 5.06181 + 3.65760i 0.405270 + 0.292842i
\(157\) −19.8931 11.4853i −1.58764 0.916627i −0.993694 0.112126i \(-0.964234\pi\)
−0.593951 0.804501i \(-0.702433\pi\)
\(158\) 0.458065 + 0.793391i 0.0364417 + 0.0631188i
\(159\) −6.11085 + 5.62208i −0.484622 + 0.445860i
\(160\) 0.870413 0.502533i 0.0688122 0.0397287i
\(161\) 0.0427328 + 7.46677i 0.00336782 + 0.588464i
\(162\) 3.14571 + 8.43235i 0.247151 + 0.662508i
\(163\) −7.66125 4.42322i −0.600075 0.346454i 0.168996 0.985617i \(-0.445948\pi\)
−0.769071 + 0.639163i \(0.779281\pi\)
\(164\) 7.47421 + 4.31523i 0.583637 + 0.336963i
\(165\) −0.795086 + 0.731492i −0.0618974 + 0.0569466i
\(166\) 13.2261i 1.02655i
\(167\) −3.95886 2.28565i −0.306345 0.176869i 0.338945 0.940806i \(-0.389930\pi\)
−0.645290 + 0.763938i \(0.723263\pi\)
\(168\) 1.34422 4.38099i 0.103709 0.338001i
\(169\) −10.3916 7.81124i −0.799351 0.600864i
\(170\) 0.298476 0.172325i 0.0228921 0.0132168i
\(171\) −11.7731 + 5.54729i −0.900310 + 0.424212i
\(172\) −0.602811 1.04410i −0.0459639 0.0796118i
\(173\) 6.56172 11.3652i 0.498879 0.864083i −0.501121 0.865377i \(-0.667079\pi\)
0.999999 + 0.00129451i \(0.000412056\pi\)
\(174\) −12.1161 + 11.1470i −0.918522 + 0.845055i
\(175\) −5.22566 + 9.17193i −0.395023 + 0.693333i
\(176\) −0.310310 0.537472i −0.0233905 0.0405135i
\(177\) 5.10692 + 1.59899i 0.383860 + 0.120187i
\(178\) 3.60015i 0.269842i
\(179\) 16.9504 9.78634i 1.26693 0.731465i 0.292528 0.956257i \(-0.405503\pi\)
0.974407 + 0.224792i \(0.0721702\pi\)
\(180\) −3.00475 0.250780i −0.223961 0.0186920i
\(181\) 22.4310i 1.66728i −0.552305 0.833642i \(-0.686252\pi\)
0.552305 0.833642i \(-0.313748\pi\)
\(182\) −2.96968 + 9.06537i −0.220127 + 0.671970i
\(183\) 8.51755 7.83628i 0.629635 0.579274i
\(184\) 2.82222i 0.208057i
\(185\) −2.18553 3.78545i −0.160683 0.278312i
\(186\) 2.93569 + 3.19091i 0.215255 + 0.233969i
\(187\) −0.106409 0.184307i −0.00778143 0.0134778i
\(188\) 0.0442417 0.0255429i 0.00322665 0.00186291i
\(189\) −10.8080 + 8.49634i −0.786164 + 0.618018i
\(190\) 4.36015i 0.316319i
\(191\) −11.3808 6.57071i −0.823486 0.475440i 0.0281311 0.999604i \(-0.491044\pi\)
−0.851617 + 0.524164i \(0.824378\pi\)
\(192\) 0.517534 1.65292i 0.0373498 0.119290i
\(193\) 10.9286 6.30961i 0.786656 0.454176i −0.0521281 0.998640i \(-0.516600\pi\)
0.838784 + 0.544464i \(0.183267\pi\)
\(194\) −5.10398 8.84035i −0.366444 0.634700i
\(195\) 6.24393 + 0.639892i 0.447137 + 0.0458236i
\(196\) 6.99954 0.0801202i 0.499967 0.00572287i
\(197\) −0.693687 + 1.20150i −0.0494232 + 0.0856034i −0.889679 0.456587i \(-0.849072\pi\)
0.840255 + 0.542191i \(0.182405\pi\)
\(198\) −0.154854 + 1.85541i −0.0110050 + 0.131858i
\(199\) 8.75865i 0.620885i 0.950592 + 0.310442i \(0.100477\pi\)
−0.950592 + 0.310442i \(0.899523\pi\)
\(200\) −1.99492 + 3.45530i −0.141062 + 0.244327i
\(201\) 2.07632 + 9.27785i 0.146452 + 0.654409i
\(202\) 4.95624 + 8.58446i 0.348720 + 0.604000i
\(203\) −21.8512 12.4496i −1.53365 0.873791i
\(204\) 0.177470 0.566810i 0.0124254 0.0396847i
\(205\) 8.67419 0.605832
\(206\) 8.93253 5.15720i 0.622359 0.359319i
\(207\) 4.82851 6.95485i 0.335605 0.483395i
\(208\) −1.14202 + 3.41991i −0.0791851 + 0.237128i
\(209\) −2.69235 −0.186234
\(210\) −1.03157 4.48878i −0.0711850 0.309755i
\(211\) 12.8567 22.2684i 0.885089 1.53302i 0.0394776 0.999220i \(-0.487431\pi\)
0.845611 0.533799i \(-0.179236\pi\)
\(212\) −4.15182 2.39705i −0.285148 0.164630i
\(213\) −2.10260 + 0.470547i −0.144068 + 0.0322414i
\(214\) 14.7159i 1.00595i
\(215\) −1.04939 0.605865i −0.0715677 0.0413196i
\(216\) −4.10334 + 3.18788i −0.279197 + 0.216908i
\(217\) −3.27873 + 5.75474i −0.222575 + 0.390657i
\(218\) −15.5550 8.98070i −1.05352 0.608250i
\(219\) 10.4642 + 11.3739i 0.707102 + 0.768576i
\(220\) −0.540195 0.311882i −0.0364199 0.0210271i
\(221\) −0.391616 + 1.17273i −0.0263429 + 0.0788866i
\(222\) −7.18861 2.25077i −0.482468 0.151062i
\(223\) −4.67710 + 8.10097i −0.313201 + 0.542481i −0.979054 0.203603i \(-0.934735\pi\)
0.665852 + 0.746084i \(0.268068\pi\)
\(224\) 2.64571 0.0151415i 0.176774 0.00101169i
\(225\) 10.8278 5.10188i 0.721851 0.340125i
\(226\) 4.26195 2.46064i 0.283501 0.163679i
\(227\) 11.7911i 0.782600i −0.920263 0.391300i \(-0.872026\pi\)
0.920263 0.391300i \(-0.127974\pi\)
\(228\) −5.08741 5.52970i −0.336922 0.366213i
\(229\) −5.47329 9.48001i −0.361685 0.626457i 0.626553 0.779379i \(-0.284465\pi\)
−0.988238 + 0.152922i \(0.951132\pi\)
\(230\) 1.41826 + 2.45650i 0.0935172 + 0.161977i
\(231\) −2.77178 + 0.636985i −0.182370 + 0.0419105i
\(232\) −8.23191 4.75270i −0.540451 0.312030i
\(233\) 5.40464 3.12037i 0.354070 0.204422i −0.312406 0.949949i \(-0.601135\pi\)
0.666476 + 0.745526i \(0.267802\pi\)
\(234\) 8.66540 6.47386i 0.566475 0.423210i
\(235\) 0.0256723 0.0444658i 0.00167468 0.00290063i
\(236\) 3.08963i 0.201118i
\(237\) 1.54848 0.346539i 0.100585 0.0225101i
\(238\) 0.907250 0.00519224i 0.0588083 0.000336563i
\(239\) −30.4624 −1.97045 −0.985225 0.171267i \(-0.945214\pi\)
−0.985225 + 0.171267i \(0.945214\pi\)
\(240\) −0.380181 1.69880i −0.0245405 0.109657i
\(241\) 5.69491 0.366842 0.183421 0.983034i \(-0.441283\pi\)
0.183421 + 0.983034i \(0.441283\pi\)
\(242\) 5.30742 9.19271i 0.341174 0.590930i
\(243\) 15.5660 0.835596i 0.998562 0.0536035i
\(244\) 5.78697 + 3.34111i 0.370473 + 0.213892i
\(245\) 6.05223 3.58724i 0.386663 0.229180i
\(246\) 11.0009 10.1210i 0.701393 0.645292i
\(247\) 10.3713 + 11.7086i 0.659913 + 0.745002i
\(248\) −1.25167 + 2.16796i −0.0794813 + 0.137666i
\(249\) 21.8618 + 6.84498i 1.38544 + 0.433783i
\(250\) 9.03538i 0.571448i
\(251\) −12.0289 20.8346i −0.759255 1.31507i −0.943231 0.332138i \(-0.892230\pi\)
0.183976 0.982931i \(-0.441103\pi\)
\(252\) −6.54577 4.48920i −0.412345 0.282793i
\(253\) 1.51687 0.875762i 0.0953645 0.0550587i
\(254\) −2.78854 + 4.82989i −0.174969 + 0.303055i
\(255\) −0.130369 0.582543i −0.00816403 0.0364803i
\(256\) 1.00000 0.0625000
\(257\) 29.5356 1.84238 0.921189 0.389116i \(-0.127220\pi\)
0.921189 + 0.389116i \(0.127220\pi\)
\(258\) −2.03779 + 0.456044i −0.126867 + 0.0283920i
\(259\) −0.0658509 11.5063i −0.00409178 0.714964i
\(260\) 0.724585 + 3.55064i 0.0449369 + 0.220201i
\(261\) 12.1547 + 25.7960i 0.752357 + 1.59673i
\(262\) 9.12794 + 15.8101i 0.563926 + 0.976748i
\(263\) −19.0802 + 11.0160i −1.17654 + 0.679274i −0.955211 0.295925i \(-0.904372\pi\)
−0.221327 + 0.975200i \(0.571039\pi\)
\(264\) −1.04900 + 0.234758i −0.0645613 + 0.0144484i
\(265\) −4.81839 −0.295991
\(266\) 5.68189 9.97269i 0.348379 0.611465i
\(267\) −5.95077 1.86320i −0.364181 0.114026i
\(268\) −4.75367 + 2.74453i −0.290377 + 0.167649i
\(269\) 6.41553 0.391162 0.195581 0.980688i \(-0.437341\pi\)
0.195581 + 0.980688i \(0.437341\pi\)
\(270\) −1.96958 + 4.83684i −0.119865 + 0.294361i
\(271\) 20.6367 1.25359 0.626794 0.779185i \(-0.284367\pi\)
0.626794 + 0.779185i \(0.284367\pi\)
\(272\) 0.342914 0.0207922
\(273\) 13.4475 + 9.60030i 0.813878 + 0.581036i
\(274\) 8.10612 0.489709
\(275\) 2.47617 0.149319
\(276\) 4.66492 + 1.46060i 0.280795 + 0.0879176i
\(277\) 12.0754 0.725543 0.362771 0.931878i \(-0.381831\pi\)
0.362771 + 0.931878i \(0.381831\pi\)
\(278\) −16.5296 + 9.54339i −0.991382 + 0.572375i
\(279\) 6.79366 3.20107i 0.406726 0.191643i
\(280\) 2.29525 1.34273i 0.137167 0.0802438i
\(281\) −30.4581 −1.81698 −0.908488 0.417911i \(-0.862762\pi\)
−0.908488 + 0.417911i \(0.862762\pi\)
\(282\) −0.0193240 0.0863474i −0.00115072 0.00514192i
\(283\) 15.2403 8.79901i 0.905943 0.523047i 0.0268196 0.999640i \(-0.491462\pi\)
0.879124 + 0.476594i \(0.158129\pi\)
\(284\) −0.621982 1.07730i −0.0369079 0.0639263i
\(285\) −7.20700 2.25653i −0.426906 0.133665i
\(286\) 2.19249 0.447425i 0.129644 0.0264568i
\(287\) 19.8399 + 11.3037i 1.17111 + 0.667235i
\(288\) −2.46432 1.71089i −0.145211 0.100815i
\(289\) −16.8824 −0.993083
\(290\) −9.55354 −0.561003
\(291\) −17.2539 + 3.86131i −1.01144 + 0.226354i
\(292\) −4.46154 + 7.72761i −0.261092 + 0.452224i
\(293\) 14.3730 8.29824i 0.839678 0.484788i −0.0174766 0.999847i \(-0.505563\pi\)
0.857155 + 0.515059i \(0.172230\pi\)
\(294\) 3.49007 11.6112i 0.203545 0.677178i
\(295\) 1.55264 + 2.68925i 0.0903982 + 0.156574i
\(296\) 4.34903i 0.252782i
\(297\) 2.98670 + 1.21620i 0.173306 + 0.0705710i
\(298\) 2.34608 4.06353i 0.135905 0.235394i
\(299\) −9.65174 3.22304i −0.558175 0.186393i
\(300\) 4.67892 + 5.08569i 0.270137 + 0.293623i
\(301\) −1.61067 2.75325i −0.0928375 0.158695i
\(302\) 6.80898 + 3.93117i 0.391813 + 0.226213i
\(303\) 16.7545 3.74954i 0.962519 0.215405i
\(304\) 2.16909 3.75697i 0.124406 0.215477i
\(305\) 6.71606 0.384561
\(306\) −0.845048 0.586688i −0.0483082 0.0335387i
\(307\) −26.3002 −1.50103 −0.750514 0.660854i \(-0.770194\pi\)
−0.750514 + 0.660854i \(0.770194\pi\)
\(308\) −0.829127 1.41730i −0.0472439 0.0807579i
\(309\) −3.90157 17.4338i −0.221953 0.991776i
\(310\) 2.51603i 0.142901i
\(311\) 6.89170 11.9368i 0.390793 0.676873i −0.601762 0.798676i \(-0.705534\pi\)
0.992554 + 0.121803i \(0.0388676\pi\)
\(312\) 5.06181 + 3.65760i 0.286569 + 0.207071i
\(313\) 7.93246 4.57981i 0.448369 0.258866i −0.258772 0.965938i \(-0.583318\pi\)
0.707141 + 0.707072i \(0.249985\pi\)
\(314\) −19.8931 11.4853i −1.12263 0.648153i
\(315\) −7.95349 0.617993i −0.448128 0.0348200i
\(316\) 0.458065 + 0.793391i 0.0257681 + 0.0446317i
\(317\) 2.37076 + 4.10628i 0.133155 + 0.230631i 0.924891 0.380232i \(-0.124156\pi\)
−0.791736 + 0.610863i \(0.790822\pi\)
\(318\) −6.11085 + 5.62208i −0.342680 + 0.315271i
\(319\) 5.89923i 0.330293i
\(320\) 0.870413 0.502533i 0.0486575 0.0280924i
\(321\) 24.3242 + 7.61596i 1.35764 + 0.425081i
\(322\) 0.0427328 + 7.46677i 0.00238140 + 0.416107i
\(323\) 0.743810 1.28832i 0.0413867 0.0716838i
\(324\) 3.14571 + 8.43235i 0.174762 + 0.468464i
\(325\) −9.53858 10.7685i −0.529105 0.597328i
\(326\) −7.66125 4.42322i −0.424317 0.244980i
\(327\) −22.8947 + 21.0635i −1.26608 + 1.16481i
\(328\) 7.47421 + 4.31523i 0.412694 + 0.238269i
\(329\) 0.116664 0.0682490i 0.00643188 0.00376269i
\(330\) −0.795086 + 0.731492i −0.0437680 + 0.0402673i
\(331\) 21.1492 + 12.2105i 1.16246 + 0.671149i 0.951893 0.306430i \(-0.0991345\pi\)
0.210571 + 0.977579i \(0.432468\pi\)
\(332\) 13.2261i 0.725879i
\(333\) −7.44070 + 10.7174i −0.407748 + 0.587309i
\(334\) −3.95886 2.28565i −0.216619 0.125065i
\(335\) −2.75844 + 4.77776i −0.150710 + 0.261037i
\(336\) 1.34422 4.38099i 0.0733330 0.239003i
\(337\) 1.88882 0.102891 0.0514453 0.998676i \(-0.483617\pi\)
0.0514453 + 0.998676i \(0.483617\pi\)
\(338\) −10.3916 7.81124i −0.565226 0.424875i
\(339\) −1.86154 8.31815i −0.101105 0.451780i
\(340\) 0.298476 0.172325i 0.0161872 0.00934566i
\(341\) 1.55362 0.0841335
\(342\) −11.7731 + 5.54729i −0.636615 + 0.299963i
\(343\) 18.5175 0.317958i 0.999853 0.0171681i
\(344\) −0.602811 1.04410i −0.0325014 0.0562940i
\(345\) 4.79440 1.07295i 0.258122 0.0577659i
\(346\) 6.56172 11.3652i 0.352760 0.610999i
\(347\) 34.7424i 1.86507i −0.361079 0.932535i \(-0.617592\pi\)
0.361079 0.932535i \(-0.382408\pi\)
\(348\) −12.1161 + 11.1470i −0.649493 + 0.597544i
\(349\) 4.20668 7.28618i 0.225178 0.390021i −0.731195 0.682169i \(-0.761037\pi\)
0.956373 + 0.292148i \(0.0943702\pi\)
\(350\) −5.22566 + 9.17193i −0.279323 + 0.490260i
\(351\) −6.21616 17.6737i −0.331794 0.943352i
\(352\) −0.310310 0.537472i −0.0165396 0.0286474i
\(353\) 17.1652 9.91033i 0.913611 0.527474i 0.0320198 0.999487i \(-0.489806\pi\)
0.881591 + 0.472014i \(0.156473\pi\)
\(354\) 5.10692 + 1.59899i 0.271430 + 0.0849852i
\(355\) −1.08276 0.625133i −0.0574671 0.0331786i
\(356\) 3.60015i 0.190807i
\(357\) 0.460950 1.50230i 0.0243961 0.0795102i
\(358\) 16.9504 9.78634i 0.895858 0.517224i
\(359\) 0.111157 + 0.192530i 0.00586667 + 0.0101614i 0.868944 0.494911i \(-0.164799\pi\)
−0.863077 + 0.505072i \(0.831466\pi\)
\(360\) −3.00475 0.250780i −0.158364 0.0132172i
\(361\) 0.0901205 + 0.156093i 0.00474318 + 0.00821544i
\(362\) 22.4310i 1.17895i
\(363\) −12.4481 13.5303i −0.653355 0.710157i
\(364\) −2.96968 + 9.06537i −0.155654 + 0.475155i
\(365\) 8.96828i 0.469421i
\(366\) 8.51755 7.83628i 0.445219 0.409609i
\(367\) −11.6056 + 6.70049i −0.605806 + 0.349763i −0.771322 0.636445i \(-0.780404\pi\)
0.165516 + 0.986207i \(0.447071\pi\)
\(368\) 2.82222i 0.147118i
\(369\) −11.0359 23.4216i −0.574507 1.21928i
\(370\) −2.18553 3.78545i −0.113620 0.196796i
\(371\) −11.0208 6.27904i −0.572171 0.325991i
\(372\) 2.93569 + 3.19091i 0.152208 + 0.165441i
\(373\) 3.97778 6.88972i 0.205962 0.356736i −0.744477 0.667648i \(-0.767301\pi\)
0.950439 + 0.310912i \(0.100634\pi\)
\(374\) −0.106409 0.184307i −0.00550230 0.00953026i
\(375\) 14.9348 + 4.67612i 0.771230 + 0.241474i
\(376\) 0.0442417 0.0255429i 0.00228159 0.00131728i
\(377\) 25.6548 22.7247i 1.32129 1.17038i
\(378\) −10.8080 + 8.49634i −0.555902 + 0.437005i
\(379\) −4.29409 2.47919i −0.220572 0.127348i 0.385643 0.922648i \(-0.373980\pi\)
−0.606215 + 0.795301i \(0.707313\pi\)
\(380\) 4.36015i 0.223671i
\(381\) 6.54028 + 7.10888i 0.335069 + 0.364199i
\(382\) −11.3808 6.57071i −0.582293 0.336187i
\(383\) 9.40956 + 5.43261i 0.480806 + 0.277594i 0.720752 0.693193i \(-0.243796\pi\)
−0.239946 + 0.970786i \(0.577130\pi\)
\(384\) 0.517534 1.65292i 0.0264103 0.0843504i
\(385\) −1.43392 0.816968i −0.0730793 0.0416366i
\(386\) 10.9286 6.30961i 0.556250 0.321151i
\(387\) −0.300821 + 3.60433i −0.0152916 + 0.183219i
\(388\) −5.10398 8.84035i −0.259115 0.448801i
\(389\) −33.7632 19.4932i −1.71186 0.988345i −0.932048 0.362334i \(-0.881980\pi\)
−0.779815 0.626011i \(-0.784687\pi\)
\(390\) 6.24393 + 0.639892i 0.316174 + 0.0324022i
\(391\) 0.967778i 0.0489427i
\(392\) 6.99954 0.0801202i 0.353530 0.00404668i
\(393\) 30.8568 6.90555i 1.55652 0.348339i
\(394\) −0.693687 + 1.20150i −0.0349475 + 0.0605308i
\(395\) 0.797410 + 0.460385i 0.0401221 + 0.0231645i
\(396\) −0.154854 + 1.85541i −0.00778172 + 0.0932377i
\(397\) −11.1038 + 19.2323i −0.557282 + 0.965240i 0.440440 + 0.897782i \(0.354822\pi\)
−0.997722 + 0.0674585i \(0.978511\pi\)
\(398\) 8.75865i 0.439032i
\(399\) −13.5435 14.5529i −0.678024 0.728558i
\(400\) −1.99492 + 3.45530i −0.0997461 + 0.172765i
\(401\) −29.6513 −1.48072 −0.740358 0.672213i \(-0.765344\pi\)
−0.740358 + 0.672213i \(0.765344\pi\)
\(402\) 2.07632 + 9.27785i 0.103557 + 0.462737i
\(403\) −5.98479 6.75647i −0.298124 0.336564i
\(404\) 4.95624 + 8.58446i 0.246582 + 0.427093i
\(405\) 6.97560 + 5.75880i 0.346620 + 0.286157i
\(406\) −21.8512 12.4496i −1.08446 0.617863i
\(407\) −2.33748 + 1.34954i −0.115865 + 0.0668944i
\(408\) 0.177470 0.566810i 0.00878605 0.0280613i
\(409\) −1.06094 −0.0524602 −0.0262301 0.999656i \(-0.508350\pi\)
−0.0262301 + 0.999656i \(0.508350\pi\)
\(410\) 8.67419 0.428388
\(411\) 4.19519 13.3988i 0.206934 0.660914i
\(412\) 8.93253 5.15720i 0.440074 0.254077i
\(413\) 0.0467817 + 8.17425i 0.00230198 + 0.402229i
\(414\) 4.82851 6.95485i 0.237308 0.341812i
\(415\) 6.64657 + 11.5122i 0.326268 + 0.565112i
\(416\) −1.14202 + 3.41991i −0.0559923 + 0.167675i
\(417\) 7.21985 + 32.2613i 0.353557 + 1.57984i
\(418\) −2.69235 −0.131687
\(419\) 2.10360 3.64355i 0.102768 0.177999i −0.810056 0.586352i \(-0.800563\pi\)
0.912824 + 0.408353i \(0.133897\pi\)
\(420\) −1.03157 4.48878i −0.0503354 0.219030i
\(421\) 12.1375i 0.591544i 0.955259 + 0.295772i \(0.0955768\pi\)
−0.955259 + 0.295772i \(0.904423\pi\)
\(422\) 12.8567 22.2684i 0.625853 1.08401i
\(423\) −0.152727 0.0127467i −0.00742582 0.000619767i
\(424\) −4.15182 2.39705i −0.201630 0.116411i
\(425\) −0.684086 + 1.18487i −0.0331830 + 0.0574747i
\(426\) −2.10260 + 0.470547i −0.101871 + 0.0227981i
\(427\) 15.3612 + 8.75197i 0.743381 + 0.423537i
\(428\) 14.7159i 0.711318i
\(429\) 0.395128 3.85557i 0.0190769 0.186149i
\(430\) −1.04939 0.605865i −0.0506060 0.0292174i
\(431\) −3.37233 5.84104i −0.162439 0.281353i 0.773304 0.634036i \(-0.218603\pi\)
−0.935743 + 0.352683i \(0.885269\pi\)
\(432\) −4.10334 + 3.18788i −0.197422 + 0.153377i
\(433\) −25.4298 + 14.6819i −1.22208 + 0.705566i −0.965360 0.260920i \(-0.915974\pi\)
−0.256717 + 0.966487i \(0.582641\pi\)
\(434\) −3.27873 + 5.75474i −0.157384 + 0.276236i
\(435\) −4.94429 + 15.7913i −0.237060 + 0.757134i
\(436\) −15.5550 8.98070i −0.744951 0.430098i
\(437\) 10.6030 + 6.12164i 0.507210 + 0.292838i
\(438\) 10.4642 + 11.3739i 0.499996 + 0.543465i
\(439\) 3.82128i 0.182380i −0.995834 0.0911898i \(-0.970933\pi\)
0.995834 0.0911898i \(-0.0290670\pi\)
\(440\) −0.540195 0.311882i −0.0257528 0.0148684i
\(441\) −17.3862 11.7780i −0.827913 0.560857i
\(442\) −0.391616 + 1.17273i −0.0186273 + 0.0557813i
\(443\) −20.4039 + 11.7802i −0.969420 + 0.559695i −0.899059 0.437827i \(-0.855748\pi\)
−0.0703604 + 0.997522i \(0.522415\pi\)
\(444\) −7.18861 2.25077i −0.341156 0.106817i
\(445\) −1.80919 3.13361i −0.0857640 0.148548i
\(446\) −4.67710 + 8.10097i −0.221467 + 0.383592i
\(447\) −5.50253 5.98091i −0.260261 0.282887i
\(448\) 2.64571 0.0151415i 0.124998 0.000715371i
\(449\) 3.91435 + 6.77986i 0.184730 + 0.319961i 0.943485 0.331414i \(-0.107526\pi\)
−0.758756 + 0.651375i \(0.774192\pi\)
\(450\) 10.8278 5.10188i 0.510426 0.240505i
\(451\) 5.35624i 0.252215i
\(452\) 4.26195 2.46064i 0.200465 0.115739i
\(453\) 10.0218 9.22021i 0.470865 0.433203i
\(454\) 11.7911i 0.553382i
\(455\) 1.97080 + 9.38298i 0.0923926 + 0.439881i
\(456\) −5.08741 5.52970i −0.238240 0.258952i
\(457\) 31.8029i 1.48768i −0.668360 0.743838i \(-0.733003\pi\)
0.668360 0.743838i \(-0.266997\pi\)
\(458\) −5.47329 9.48001i −0.255750 0.442972i
\(459\) −1.40709 + 1.09317i −0.0656774 + 0.0510248i
\(460\) 1.41826 + 2.45650i 0.0661267 + 0.114535i
\(461\) −26.9000 + 15.5307i −1.25286 + 0.723337i −0.971676 0.236318i \(-0.924059\pi\)
−0.281181 + 0.959655i \(0.590726\pi\)
\(462\) −2.77178 + 0.636985i −0.128955 + 0.0296352i
\(463\) 27.0578i 1.25748i 0.777614 + 0.628742i \(0.216430\pi\)
−0.777614 + 0.628742i \(0.783570\pi\)
\(464\) −8.23191 4.75270i −0.382157 0.220638i
\(465\) 4.15880 + 1.30213i 0.192860 + 0.0603848i
\(466\) 5.40464 3.12037i 0.250365 0.144548i
\(467\) 15.8112 + 27.3859i 0.731657 + 1.26727i 0.956175 + 0.292797i \(0.0945861\pi\)
−0.224517 + 0.974470i \(0.572081\pi\)
\(468\) 8.66540 6.47386i 0.400558 0.299254i
\(469\) −12.5353 + 7.33322i −0.578825 + 0.338616i
\(470\) 0.0256723 0.0444658i 0.00118418 0.00205105i
\(471\) −29.2797 + 26.9378i −1.34914 + 1.24123i
\(472\) 3.08963i 0.142212i
\(473\) −0.374116 + 0.647988i −0.0172019 + 0.0297945i
\(474\) 1.54848 0.346539i 0.0711240 0.0159171i
\(475\) 8.65432 + 14.9897i 0.397087 + 0.687775i
\(476\) 0.907250 0.00519224i 0.0415837 0.000237986i
\(477\) 6.13030 + 13.0104i 0.280687 + 0.595705i
\(478\) −30.4624 −1.39332
\(479\) −9.21963 + 5.32296i −0.421256 + 0.243212i −0.695614 0.718415i \(-0.744868\pi\)
0.274359 + 0.961627i \(0.411534\pi\)
\(480\) −0.380181 1.69880i −0.0173528 0.0775394i
\(481\) 14.8733 + 4.96669i 0.678163 + 0.226462i
\(482\) 5.69491 0.259396
\(483\) 12.3641 + 3.79368i 0.562587 + 0.172618i
\(484\) 5.30742 9.19271i 0.241246 0.417851i
\(485\) −8.88514 5.12984i −0.403453 0.232934i
\(486\) 15.5660 0.835596i 0.706090 0.0379034i
\(487\) 39.5929i 1.79413i 0.441903 + 0.897063i \(0.354304\pi\)
−0.441903 + 0.897063i \(0.645696\pi\)
\(488\) 5.78697 + 3.34111i 0.261964 + 0.151245i
\(489\) −11.2762 + 10.3743i −0.509928 + 0.469142i
\(490\) 6.05223 3.58724i 0.273412 0.162055i
\(491\) 27.5795 + 15.9230i 1.24465 + 0.718597i 0.970037 0.242959i \(-0.0781181\pi\)
0.274610 + 0.961556i \(0.411451\pi\)
\(492\) 11.0009 10.1210i 0.495959 0.456291i
\(493\) −2.82283 1.62976i −0.127134 0.0734009i
\(494\) 10.3713 + 11.7086i 0.466629 + 0.526796i
\(495\) 0.797616 + 1.69279i 0.0358502 + 0.0760852i
\(496\) −1.25167 + 2.16796i −0.0562018 + 0.0973443i
\(497\) −1.66190 2.84082i −0.0745462 0.127428i
\(498\) 21.8618 + 6.84498i 0.979651 + 0.306731i
\(499\) 7.30529 4.21771i 0.327030 0.188811i −0.327492 0.944854i \(-0.606203\pi\)
0.654522 + 0.756043i \(0.272870\pi\)
\(500\) 9.03538i 0.404075i
\(501\) −5.82684 + 5.36079i −0.260324 + 0.239502i
\(502\) −12.0289 20.8346i −0.536875 0.929894i
\(503\) −4.21408 7.29900i −0.187896 0.325446i 0.756652 0.653818i \(-0.226834\pi\)
−0.944549 + 0.328371i \(0.893500\pi\)
\(504\) −6.54577 4.48920i −0.291572 0.199965i
\(505\) 8.62794 + 4.98135i 0.383938 + 0.221667i
\(506\) 1.51687 0.875762i 0.0674329 0.0389324i
\(507\) −18.2894 + 13.1339i −0.812260 + 0.583296i
\(508\) −2.78854 + 4.82989i −0.123722 + 0.214292i
\(509\) 16.2934i 0.722191i −0.932529 0.361096i \(-0.882403\pi\)
0.932529 0.361096i \(-0.117597\pi\)
\(510\) −0.130369 0.582543i −0.00577284 0.0257954i
\(511\) −11.6869 + 20.5125i −0.516999 + 0.907422i
\(512\) 1.00000 0.0441942
\(513\) 3.07628 + 22.3309i 0.135821 + 0.985934i
\(514\) 29.5356 1.30276
\(515\) 5.18333 8.97779i 0.228405 0.395609i
\(516\) −2.03779 + 0.456044i −0.0897088 + 0.0200762i
\(517\) −0.0274572 0.0158524i −0.00120757 0.000697189i
\(518\) −0.0658509 11.5063i −0.00289332 0.505556i
\(519\) −15.3900 16.7279i −0.675544 0.734275i
\(520\) 0.724585 + 3.55064i 0.0317752 + 0.155706i
\(521\) 9.43681 16.3450i 0.413434 0.716089i −0.581828 0.813312i \(-0.697662\pi\)
0.995263 + 0.0972224i \(0.0309958\pi\)
\(522\) 12.1547 + 25.7960i 0.531997 + 1.12906i
\(523\) 18.3022i 0.800301i −0.916449 0.400151i \(-0.868958\pi\)
0.916449 0.400151i \(-0.131042\pi\)
\(524\) 9.12794 + 15.8101i 0.398756 + 0.690665i
\(525\) 12.4561 + 13.3844i 0.543627 + 0.584144i
\(526\) −19.0802 + 11.0160i −0.831938 + 0.480319i
\(527\) −0.429216 + 0.743423i −0.0186969 + 0.0323840i
\(528\) −1.04900 + 0.234758i −0.0456517 + 0.0102165i
\(529\) 15.0351 0.653699
\(530\) −4.81839 −0.209298
\(531\) 5.28601 7.61382i 0.229393 0.330412i
\(532\) 5.68189 9.97269i 0.246341 0.432371i
\(533\) −23.2934 + 20.6330i −1.00895 + 0.893715i
\(534\) −5.95077 1.86320i −0.257515 0.0806285i
\(535\) 7.39520 + 12.8089i 0.319722 + 0.553775i
\(536\) −4.75367 + 2.74453i −0.205327 + 0.118546i
\(537\) −7.40364 33.0825i −0.319491 1.42762i
\(538\) 6.41553 0.276593
\(539\) −2.21509 3.73720i −0.0954106 0.160972i
\(540\) −1.96958 + 4.83684i −0.0847573 + 0.208144i
\(541\) 1.05318 0.608052i 0.0452796 0.0261422i −0.477189 0.878801i \(-0.658344\pi\)
0.522469 + 0.852658i \(0.325011\pi\)
\(542\) 20.6367 0.886420
\(543\) −37.0768 11.6088i −1.59112 0.498182i
\(544\) 0.342914 0.0147023
\(545\) −18.0524 −0.773280
\(546\) 13.4475 + 9.60030i 0.575498 + 0.410855i
\(547\) −11.3034 −0.483301 −0.241650 0.970363i \(-0.577689\pi\)
−0.241650 + 0.970363i \(0.577689\pi\)
\(548\) 8.10612 0.346276
\(549\) −8.54465 18.1344i −0.364677 0.773958i
\(550\) 2.47617 0.105584
\(551\) −35.7115 + 20.6180i −1.52136 + 0.878357i
\(552\) 4.66492 + 1.46060i 0.198552 + 0.0621671i
\(553\) 1.22392 + 2.09215i 0.0520463 + 0.0889671i
\(554\) 12.0754 0.513036
\(555\) −7.38814 + 1.65341i −0.313609 + 0.0701835i
\(556\) −16.5296 + 9.54339i −0.701013 + 0.404730i
\(557\) −9.76868 16.9199i −0.413912 0.716917i 0.581401 0.813617i \(-0.302505\pi\)
−0.995314 + 0.0966996i \(0.969171\pi\)
\(558\) 6.79366 3.20107i 0.287599 0.135512i
\(559\) 4.25915 0.869172i 0.180143 0.0367621i
\(560\) 2.29525 1.34273i 0.0969920 0.0567409i
\(561\) −0.359715 + 0.0805018i −0.0151872 + 0.00339879i
\(562\) −30.4581 −1.28480
\(563\) 31.1373 1.31228 0.656141 0.754638i \(-0.272188\pi\)
0.656141 + 0.754638i \(0.272188\pi\)
\(564\) −0.0193240 0.0863474i −0.000813685 0.00363588i
\(565\) 2.47311 4.28354i 0.104044 0.180210i
\(566\) 15.2403 8.79901i 0.640599 0.369850i
\(567\) 8.45032 + 22.2619i 0.354880 + 0.934912i
\(568\) −0.621982 1.07730i −0.0260978 0.0452027i
\(569\) 1.93823i 0.0812549i 0.999174 + 0.0406275i \(0.0129357\pi\)
−0.999174 + 0.0406275i \(0.987064\pi\)
\(570\) −7.20700 2.25653i −0.301868 0.0945155i
\(571\) 5.29680 9.17432i 0.221664 0.383933i −0.733649 0.679528i \(-0.762185\pi\)
0.955313 + 0.295595i \(0.0955178\pi\)
\(572\) 2.19249 0.447425i 0.0916725 0.0187078i
\(573\) −16.7508 + 15.4110i −0.699776 + 0.643805i
\(574\) 19.8399 + 11.3037i 0.828102 + 0.471806i
\(575\) −9.75164 5.63011i −0.406671 0.234792i
\(576\) −2.46432 1.71089i −0.102680 0.0712871i
\(577\) −8.46005 + 14.6532i −0.352197 + 0.610022i −0.986634 0.162952i \(-0.947898\pi\)
0.634437 + 0.772974i \(0.281232\pi\)
\(578\) −16.8824 −0.702216
\(579\) −4.77340 21.3295i −0.198376 0.886425i
\(580\) −9.55354 −0.396689
\(581\) 0.200264 + 34.9925i 0.00830836 + 1.45173i
\(582\) −17.2539 + 3.86131i −0.715198 + 0.160056i
\(583\) 2.97531i 0.123225i
\(584\) −4.46154 + 7.72761i −0.184620 + 0.319771i
\(585\) 4.28914 9.98958i 0.177334 0.413018i
\(586\) 14.3730 8.29824i 0.593742 0.342797i
\(587\) −17.0112 9.82143i −0.702128 0.405374i 0.106012 0.994365i \(-0.466192\pi\)
−0.808139 + 0.588991i \(0.799525\pi\)
\(588\) 3.49007 11.6112i 0.143928 0.478837i
\(589\) 5.42997 + 9.40499i 0.223738 + 0.387526i
\(590\) 1.55264 + 2.68925i 0.0639212 + 0.110715i
\(591\) 1.62698 + 1.76843i 0.0669252 + 0.0727435i
\(592\) 4.34903i 0.178744i
\(593\) −8.82193 + 5.09334i −0.362273 + 0.209158i −0.670077 0.742291i \(-0.733739\pi\)
0.307804 + 0.951450i \(0.400406\pi\)
\(594\) 2.98670 + 1.21620i 0.122546 + 0.0499012i
\(595\) 0.787072 0.460442i 0.0322668 0.0188763i
\(596\) 2.34608 4.06353i 0.0960992 0.166449i
\(597\) 14.4774 + 4.53290i 0.592520 + 0.185519i
\(598\) −9.65174 3.22304i −0.394689 0.131800i
\(599\) 1.11601 + 0.644326i 0.0455988 + 0.0263265i 0.522626 0.852562i \(-0.324952\pi\)
−0.477027 + 0.878888i \(0.658286\pi\)
\(600\) 4.67892 + 5.08569i 0.191016 + 0.207623i
\(601\) 11.6473 + 6.72456i 0.475103 + 0.274301i 0.718373 0.695658i \(-0.244887\pi\)
−0.243271 + 0.969958i \(0.578220\pi\)
\(602\) −1.61067 2.75325i −0.0656460 0.112214i
\(603\) 16.4102 + 1.36961i 0.668273 + 0.0557748i
\(604\) 6.80898 + 3.93117i 0.277053 + 0.159957i
\(605\) 10.6686i 0.433741i
\(606\) 16.7545 3.74954i 0.680604 0.152314i
\(607\) 26.8707 + 15.5138i 1.09065 + 0.629685i 0.933748 0.357930i \(-0.116517\pi\)
0.156898 + 0.987615i \(0.449851\pi\)
\(608\) 2.16909 3.75697i 0.0879681 0.152365i
\(609\) −31.8870 + 29.6753i −1.29213 + 1.20250i
\(610\) 6.71606 0.271926
\(611\) 0.0368295 + 0.180473i 0.00148996 + 0.00730116i
\(612\) −0.845048 0.586688i −0.0341590 0.0237154i
\(613\) −16.9453 + 9.78339i −0.684416 + 0.395148i −0.801517 0.597972i \(-0.795973\pi\)
0.117101 + 0.993120i \(0.462640\pi\)
\(614\) −26.3002 −1.06139
\(615\) 4.48919 14.3378i 0.181022 0.578155i
\(616\) −0.829127 1.41730i −0.0334065 0.0571045i
\(617\) 22.9771 + 39.7974i 0.925022 + 1.60218i 0.791526 + 0.611135i \(0.209287\pi\)
0.133495 + 0.991049i \(0.457380\pi\)
\(618\) −3.90157 17.4338i −0.156944 0.701291i
\(619\) 8.61313 14.9184i 0.346191 0.599620i −0.639378 0.768892i \(-0.720808\pi\)
0.985569 + 0.169272i \(0.0541416\pi\)
\(620\) 2.51603i 0.101046i
\(621\) −8.99692 11.5805i −0.361034 0.464711i
\(622\) 6.89170 11.9368i 0.276332 0.478621i
\(623\) −0.0545118 9.52494i −0.00218397 0.381609i
\(624\) 5.06181 + 3.65760i 0.202635 + 0.146421i
\(625\) −5.43403 9.41201i −0.217361 0.376480i
\(626\) 7.93246 4.57981i 0.317045 0.183046i
\(627\) −1.39339 + 4.45026i −0.0556465 + 0.177726i
\(628\) −19.8931 11.4853i −0.793822 0.458314i
\(629\) 1.49134i 0.0594636i
\(630\) −7.95349 0.617993i −0.316875 0.0246214i
\(631\) −25.7893 + 14.8894i −1.02665 + 0.592739i −0.916024 0.401123i \(-0.868620\pi\)
−0.110630 + 0.993862i \(0.535287\pi\)
\(632\) 0.458065 + 0.793391i 0.0182208 + 0.0315594i
\(633\) −30.1542 32.7757i −1.19852 1.30272i
\(634\) 2.37076 + 4.10628i 0.0941549 + 0.163081i
\(635\) 5.60534i 0.222441i
\(636\) −6.11085 + 5.62208i −0.242311 + 0.222930i
\(637\) −7.71964 + 24.0293i −0.305863 + 0.952075i
\(638\) 5.89923i 0.233553i
\(639\) −0.310389 + 3.71896i −0.0122788 + 0.147120i
\(640\) 0.870413 0.502533i 0.0344061 0.0198644i
\(641\) 41.3412i 1.63288i 0.577432 + 0.816439i \(0.304055\pi\)
−0.577432 + 0.816439i \(0.695945\pi\)
\(642\) 24.3242 + 7.61596i 0.959999 + 0.300578i
\(643\) 16.2778 + 28.1940i 0.641934 + 1.11186i 0.985001 + 0.172551i \(0.0552009\pi\)
−0.343067 + 0.939311i \(0.611466\pi\)
\(644\) 0.0427328 + 7.46677i 0.00168391 + 0.294232i
\(645\) −1.54454 + 1.42100i −0.0608163 + 0.0559520i
\(646\) 0.743810 1.28832i 0.0292648 0.0506881i
\(647\) 2.13561 + 3.69899i 0.0839595 + 0.145422i 0.904947 0.425524i \(-0.139910\pi\)
−0.820988 + 0.570946i \(0.806577\pi\)
\(648\) 3.14571 + 8.43235i 0.123575 + 0.331254i
\(649\) 1.66059 0.958741i 0.0651838 0.0376339i
\(650\) −9.53858 10.7685i −0.374134 0.422375i
\(651\) 7.81530 + 8.39778i 0.306306 + 0.329135i
\(652\) −7.66125 4.42322i −0.300038 0.173227i
\(653\) 12.9710i 0.507595i −0.967257 0.253798i \(-0.918320\pi\)
0.967257 0.253798i \(-0.0816797\pi\)
\(654\) −22.8947 + 21.0635i −0.895253 + 0.823647i
\(655\) 15.8901 + 9.17418i 0.620879 + 0.358465i
\(656\) 7.47421 + 4.31523i 0.291819 + 0.168482i
\(657\) 24.2157 11.4101i 0.944745 0.445149i
\(658\) 0.116664 0.0682490i 0.00454803 0.00266062i
\(659\) 31.7740 18.3447i 1.23774 0.714609i 0.269107 0.963110i \(-0.413271\pi\)
0.968631 + 0.248502i \(0.0799381\pi\)
\(660\) −0.795086 + 0.731492i −0.0309487 + 0.0284733i
\(661\) −3.58999 6.21804i −0.139634 0.241854i 0.787724 0.616028i \(-0.211259\pi\)
−0.927358 + 0.374175i \(0.877926\pi\)
\(662\) 21.1492 + 12.2105i 0.821986 + 0.474574i
\(663\) 1.73577 + 1.25424i 0.0674116 + 0.0487107i
\(664\) 13.2261i 0.513274i
\(665\) −0.0660194 11.5357i −0.00256012 0.447335i
\(666\) −7.44070 + 10.7174i −0.288321 + 0.415290i
\(667\) 13.4132 23.2323i 0.519360 0.899557i
\(668\) −3.95886 2.28565i −0.153173 0.0884343i
\(669\) 10.9697 + 11.9234i 0.424114 + 0.460986i
\(670\) −2.75844 + 4.77776i −0.106568 + 0.184581i
\(671\) 4.14711i 0.160097i
\(672\) 1.34422 4.38099i 0.0518543 0.169000i
\(673\) −2.07797 + 3.59915i −0.0800999 + 0.138737i −0.903293 0.429025i \(-0.858857\pi\)
0.823193 + 0.567762i \(0.192191\pi\)
\(674\) 1.88882 0.0727546
\(675\) −2.82927 20.5379i −0.108899 0.790503i
\(676\) −10.3916 7.81124i −0.399675 0.300432i
\(677\) −5.94798 10.3022i −0.228599 0.395946i 0.728794 0.684733i \(-0.240081\pi\)
−0.957393 + 0.288787i \(0.906748\pi\)
\(678\) −1.86154 8.31815i −0.0714922 0.319457i
\(679\) −13.6375 23.3117i −0.523359 0.894621i
\(680\) 0.298476 0.172325i 0.0114460 0.00660838i
\(681\) −19.4897 6.10227i −0.746848 0.233840i
\(682\) 1.55362 0.0594913
\(683\) −4.43181 −0.169578 −0.0847892 0.996399i \(-0.527022\pi\)
−0.0847892 + 0.996399i \(0.527022\pi\)
\(684\) −11.7731 + 5.54729i −0.450155 + 0.212106i
\(685\) 7.05567 4.07359i 0.269583 0.155644i
\(686\) 18.5175 0.317958i 0.707003 0.0121397i
\(687\) −18.5024 + 4.14070i −0.705909 + 0.157977i
\(688\) −0.602811 1.04410i −0.0229819 0.0398059i
\(689\) 12.9392 11.4613i 0.492943 0.436642i
\(690\) 4.79440 1.07295i 0.182520 0.0408466i
\(691\) −33.6142 −1.27874 −0.639372 0.768897i \(-0.720806\pi\)
−0.639372 + 0.768897i \(0.720806\pi\)
\(692\) 6.56172 11.3652i 0.249439 0.432041i
\(693\) −0.381605 + 4.91121i −0.0144960 + 0.186561i
\(694\) 34.7424i 1.31880i
\(695\) −9.59174 + 16.6134i −0.363835 + 0.630181i
\(696\) −12.1161 + 11.1470i −0.459261 + 0.422527i
\(697\) 2.56301 + 1.47975i 0.0970808 + 0.0560496i
\(698\) 4.20668 7.28618i 0.159225 0.275786i
\(699\) −2.36065 10.5484i −0.0892880 0.398976i
\(700\) −5.22566 + 9.17193i −0.197511 + 0.346667i
\(701\) 37.0012i 1.39751i 0.715359 + 0.698757i \(0.246263\pi\)
−0.715359 + 0.698757i \(0.753737\pi\)
\(702\) −6.21616 17.6737i −0.234614 0.667050i
\(703\) −16.3392 9.43342i −0.616243 0.355788i
\(704\) −0.310310 0.537472i −0.0116952 0.0202567i
\(705\) −0.0602123 0.0654470i −0.00226772 0.00246488i
\(706\) 17.1652 9.91033i 0.646021 0.372980i
\(707\) 13.2427 + 22.6369i 0.498044 + 0.851349i
\(708\) 5.10692 + 1.59899i 0.191930 + 0.0600936i
\(709\) −38.2116 22.0615i −1.43507 0.828537i −0.437567 0.899186i \(-0.644160\pi\)
−0.997501 + 0.0706486i \(0.977493\pi\)
\(710\) −1.08276 0.625133i −0.0406354 0.0234608i
\(711\) 0.228589 2.73886i 0.00857274 0.102715i
\(712\) 3.60015i 0.134921i
\(713\) −6.11846 3.53250i −0.229138 0.132293i
\(714\) 0.460950 1.50230i 0.0172506 0.0562222i
\(715\) 1.68352 1.49124i 0.0629602 0.0557693i
\(716\) 16.9504 9.78634i 0.633467 0.365733i
\(717\) −15.7653 + 50.3520i −0.588767 + 1.88043i
\(718\) 0.111157 + 0.192530i 0.00414836 + 0.00718517i
\(719\) −9.72356 + 16.8417i −0.362627 + 0.628089i −0.988392 0.151923i \(-0.951454\pi\)
0.625765 + 0.780012i \(0.284787\pi\)
\(720\) −3.00475 0.250780i −0.111980 0.00934601i
\(721\) 23.5548 13.7797i 0.877226 0.513183i
\(722\) 0.0901205 + 0.156093i 0.00335394 + 0.00580919i
\(723\) 2.94731 9.41326i 0.109612 0.350083i
\(724\) 22.4310i 0.833642i
\(725\) 32.8440 18.9625i 1.21980 0.704250i
\(726\) −12.4481 13.5303i −0.461992 0.502157i
\(727\) 17.7877i 0.659708i 0.944032 + 0.329854i \(0.107000\pi\)
−0.944032 + 0.329854i \(0.893000\pi\)
\(728\) −2.96968 + 9.06537i −0.110064 + 0.335985i
\(729\) 6.67478 26.1619i 0.247214 0.968961i
\(730\) 8.96828i 0.331931i
\(731\) −0.206712 0.358036i −0.00764552 0.0132424i
\(732\) 8.51755 7.83628i 0.314818 0.289637i
\(733\) −20.9177 36.2305i −0.772613 1.33820i −0.936126 0.351664i \(-0.885616\pi\)
0.163513 0.986541i \(-0.447717\pi\)
\(734\) −11.6056 + 6.70049i −0.428370 + 0.247319i
\(735\) −2.79720 11.8604i −0.103176 0.437477i
\(736\) 2.82222i 0.104028i
\(737\) 2.95022 + 1.70331i 0.108673 + 0.0627423i
\(738\) −11.0359 23.4216i −0.406238 0.862163i
\(739\) 15.7822 9.11186i 0.580558 0.335185i −0.180797 0.983520i \(-0.557868\pi\)
0.761355 + 0.648335i \(0.224534\pi\)
\(740\) −2.18553 3.78545i −0.0803416 0.139156i
\(741\) 24.7210 11.0834i 0.908149 0.407160i
\(742\) −11.0208 6.27904i −0.404586 0.230511i
\(743\) 16.0336 27.7710i 0.588216 1.01882i −0.406250 0.913762i \(-0.633164\pi\)
0.994466 0.105058i \(-0.0335027\pi\)
\(744\) 2.93569 + 3.19091i 0.107628 + 0.116985i
\(745\) 4.71593i 0.172778i
\(746\) 3.97778 6.88972i 0.145637 0.252251i
\(747\) 22.6285 32.5934i 0.827933 1.19253i
\(748\) −0.106409 0.184307i −0.00389071 0.00673891i
\(749\) 0.222821 + 38.9338i 0.00814169 + 1.42261i
\(750\) 14.9348 + 4.67612i 0.545342 + 0.170748i
\(751\) 26.9689 0.984110 0.492055 0.870564i \(-0.336246\pi\)
0.492055 + 0.870564i \(0.336246\pi\)
\(752\) 0.0442417 0.0255429i 0.00161333 0.000931455i
\(753\) −40.6634 + 9.10018i −1.48186 + 0.331629i
\(754\) 25.6548 22.7247i 0.934294 0.827585i
\(755\) 7.90216 0.287589
\(756\) −10.8080 + 8.49634i −0.393082 + 0.309009i
\(757\) −15.4821 + 26.8158i −0.562706 + 0.974635i 0.434553 + 0.900646i \(0.356906\pi\)
−0.997259 + 0.0739889i \(0.976427\pi\)
\(758\) −4.29409 2.47919i −0.155968 0.0900483i
\(759\) −0.662539 2.96050i −0.0240487 0.107459i
\(760\) 4.36015i 0.158159i
\(761\) −2.09713 1.21078i −0.0760207 0.0438906i 0.461508 0.887136i \(-0.347309\pi\)
−0.537529 + 0.843246i \(0.680642\pi\)
\(762\) 6.54028 + 7.10888i 0.236930 + 0.257528i
\(763\) −41.2901 23.5248i −1.49480 0.851654i
\(764\) −11.3808 6.57071i −0.411743 0.237720i
\(765\) −1.03037 0.0859958i −0.0372531 0.00310918i
\(766\) 9.40956 + 5.43261i 0.339981 + 0.196288i
\(767\) −10.5662 3.52843i −0.381525 0.127404i
\(768\) 0.517534 1.65292i 0.0186749 0.0596448i
\(769\) 4.75805 8.24119i 0.171580 0.297185i −0.767393 0.641177i \(-0.778446\pi\)
0.938972 + 0.343993i \(0.111780\pi\)
\(770\) −1.43392 0.816968i −0.0516749 0.0294415i
\(771\) 15.2857 48.8200i 0.550500 1.75821i
\(772\) 10.9286 6.30961i 0.393328 0.227088i
\(773\) 34.8889i 1.25487i −0.778671 0.627433i \(-0.784106\pi\)