Properties

Label 546.2.bi.e.257.7
Level $546$
Weight $2$
Character 546.257
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bi (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 257.7
Character \(\chi\) \(=\) 546.257
Dual form 546.2.bi.e.17.7

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +(-0.565041 + 1.63729i) q^{3} +1.00000 q^{4} +(1.26448 + 0.730045i) q^{5} +(0.565041 - 1.63729i) q^{6} +(-1.08820 - 2.41160i) q^{7} -1.00000 q^{8} +(-2.36146 - 1.85028i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(-0.565041 + 1.63729i) q^{3} +1.00000 q^{4} +(1.26448 + 0.730045i) q^{5} +(0.565041 - 1.63729i) q^{6} +(-1.08820 - 2.41160i) q^{7} -1.00000 q^{8} +(-2.36146 - 1.85028i) q^{9} +(-1.26448 - 0.730045i) q^{10} +(1.75974 - 3.04796i) q^{11} +(-0.565041 + 1.63729i) q^{12} +(0.214878 - 3.59914i) q^{13} +(1.08820 + 2.41160i) q^{14} +(-1.90978 + 1.65781i) q^{15} +1.00000 q^{16} -7.58718 q^{17} +(2.36146 + 1.85028i) q^{18} +(-1.72681 - 2.99093i) q^{19} +(1.26448 + 0.730045i) q^{20} +(4.56338 - 0.419048i) q^{21} +(-1.75974 + 3.04796i) q^{22} -3.60696i q^{23} +(0.565041 - 1.63729i) q^{24} +(-1.43407 - 2.48388i) q^{25} +(-0.214878 + 3.59914i) q^{26} +(4.36376 - 2.82092i) q^{27} +(-1.08820 - 2.41160i) q^{28} +(-0.170773 + 0.0985961i) q^{29} +(1.90978 - 1.65781i) q^{30} +(5.34484 + 9.25753i) q^{31} -1.00000 q^{32} +(3.99607 + 4.60343i) q^{33} +7.58718 q^{34} +(0.384576 - 3.84385i) q^{35} +(-2.36146 - 1.85028i) q^{36} +5.56471i q^{37} +(1.72681 + 2.99093i) q^{38} +(5.77144 + 2.38548i) q^{39} +(-1.26448 - 0.730045i) q^{40} +(2.60543 - 1.50425i) q^{41} +(-4.56338 + 0.419048i) q^{42} +(5.61139 - 9.71922i) q^{43} +(1.75974 - 3.04796i) q^{44} +(-1.63522 - 4.06360i) q^{45} +3.60696i q^{46} +(-11.0787 - 6.39629i) q^{47} +(-0.565041 + 1.63729i) q^{48} +(-4.63164 + 5.24861i) q^{49} +(1.43407 + 2.48388i) q^{50} +(4.28707 - 12.4224i) q^{51} +(0.214878 - 3.59914i) q^{52} +(4.21555 - 2.43385i) q^{53} +(-4.36376 + 2.82092i) q^{54} +(4.45029 - 2.56938i) q^{55} +(1.08820 + 2.41160i) q^{56} +(5.87274 - 1.13730i) q^{57} +(0.170773 - 0.0985961i) q^{58} -1.30815i q^{59} +(-1.90978 + 1.65781i) q^{60} +(0.865717 - 0.499822i) q^{61} +(-5.34484 - 9.25753i) q^{62} +(-1.89239 + 7.70836i) q^{63} +1.00000 q^{64} +(2.89925 - 4.39416i) q^{65} +(-3.99607 - 4.60343i) q^{66} +(4.78794 + 2.76432i) q^{67} -7.58718 q^{68} +(5.90566 + 2.03808i) q^{69} +(-0.384576 + 3.84385i) q^{70} +(5.33718 - 9.24427i) q^{71} +(2.36146 + 1.85028i) q^{72} +(-2.94410 - 5.09933i) q^{73} -5.56471i q^{74} +(4.87714 - 0.944496i) q^{75} +(-1.72681 - 2.99093i) q^{76} +(-9.26540 - 0.927001i) q^{77} +(-5.77144 - 2.38548i) q^{78} +(0.174645 - 0.302494i) q^{79} +(1.26448 + 0.730045i) q^{80} +(2.15296 + 8.73869i) q^{81} +(-2.60543 + 1.50425i) q^{82} +3.72979i q^{83} +(4.56338 - 0.419048i) q^{84} +(-9.59380 - 5.53898i) q^{85} +(-5.61139 + 9.71922i) q^{86} +(-0.0649367 - 0.335317i) q^{87} +(-1.75974 + 3.04796i) q^{88} +14.4601i q^{89} +(1.63522 + 4.06360i) q^{90} +(-8.91353 + 3.39839i) q^{91} -3.60696i q^{92} +(-18.1773 + 3.52018i) q^{93} +(11.0787 + 6.39629i) q^{94} -5.04260i q^{95} +(0.565041 - 1.63729i) q^{96} +(-1.72747 + 2.99206i) q^{97} +(4.63164 - 5.24861i) q^{98} +(-9.79510 + 3.94162i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 34q^{2} + 3q^{3} + 34q^{4} - 9q^{5} - 3q^{6} + 4q^{7} - 34q^{8} - 11q^{9} + O(q^{10}) \) \( 34q - 34q^{2} + 3q^{3} + 34q^{4} - 9q^{5} - 3q^{6} + 4q^{7} - 34q^{8} - 11q^{9} + 9q^{10} - 9q^{11} + 3q^{12} + 8q^{13} - 4q^{14} - 4q^{15} + 34q^{16} - 12q^{17} + 11q^{18} - 5q^{19} - 9q^{20} + 4q^{21} + 9q^{22} - 3q^{24} + 16q^{25} - 8q^{26} + 18q^{27} + 4q^{28} - 27q^{29} + 4q^{30} - q^{31} - 34q^{32} + 21q^{33} + 12q^{34} + 3q^{35} - 11q^{36} + 5q^{38} + 7q^{39} + 9q^{40} + 3q^{41} - 4q^{42} - 3q^{43} - 9q^{44} + 9q^{45} + 27q^{47} + 3q^{48} - 2q^{49} - 16q^{50} + 24q^{51} + 8q^{52} + 21q^{53} - 18q^{54} - 57q^{55} - 4q^{56} + 17q^{57} + 27q^{58} - 4q^{60} - 51q^{61} + q^{62} + 3q^{63} + 34q^{64} + 21q^{65} - 21q^{66} - 21q^{67} - 12q^{68} + 42q^{69} - 3q^{70} + 15q^{71} + 11q^{72} - 19q^{73} + 54q^{75} - 5q^{76} - 9q^{77} - 7q^{78} - 9q^{79} - 9q^{80} - 23q^{81} - 3q^{82} + 4q^{84} - 42q^{85} + 3q^{86} + 81q^{87} + 9q^{88} - 9q^{90} - 72q^{91} + 17q^{93} - 27q^{94} - 3q^{96} + 19q^{97} + 2q^{98} + 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −0.565041 + 1.63729i −0.326227 + 0.945292i
\(4\) 1.00000 0.500000
\(5\) 1.26448 + 0.730045i 0.565491 + 0.326486i 0.755346 0.655326i \(-0.227469\pi\)
−0.189856 + 0.981812i \(0.560802\pi\)
\(6\) 0.565041 1.63729i 0.230677 0.668422i
\(7\) −1.08820 2.41160i −0.411301 0.911500i
\(8\) −1.00000 −0.353553
\(9\) −2.36146 1.85028i −0.787152 0.616759i
\(10\) −1.26448 0.730045i −0.399862 0.230861i
\(11\) 1.75974 3.04796i 0.530581 0.918993i −0.468782 0.883314i \(-0.655307\pi\)
0.999363 0.0356795i \(-0.0113596\pi\)
\(12\) −0.565041 + 1.63729i −0.163113 + 0.472646i
\(13\) 0.214878 3.59914i 0.0595966 0.998223i
\(14\) 1.08820 + 2.41160i 0.290834 + 0.644528i
\(15\) −1.90978 + 1.65781i −0.493103 + 0.428045i
\(16\) 1.00000 0.250000
\(17\) −7.58718 −1.84016 −0.920080 0.391729i \(-0.871877\pi\)
−0.920080 + 0.391729i \(0.871877\pi\)
\(18\) 2.36146 + 1.85028i 0.556601 + 0.436114i
\(19\) −1.72681 2.99093i −0.396158 0.686165i 0.597090 0.802174i \(-0.296323\pi\)
−0.993248 + 0.116008i \(0.962990\pi\)
\(20\) 1.26448 + 0.730045i 0.282745 + 0.163243i
\(21\) 4.56338 0.419048i 0.995810 0.0914439i
\(22\) −1.75974 + 3.04796i −0.375177 + 0.649826i
\(23\) 3.60696i 0.752104i −0.926599 0.376052i \(-0.877281\pi\)
0.926599 0.376052i \(-0.122719\pi\)
\(24\) 0.565041 1.63729i 0.115339 0.334211i
\(25\) −1.43407 2.48388i −0.286814 0.496776i
\(26\) −0.214878 + 3.59914i −0.0421411 + 0.705850i
\(27\) 4.36376 2.82092i 0.839807 0.542885i
\(28\) −1.08820 2.41160i −0.205650 0.455750i
\(29\) −0.170773 + 0.0985961i −0.0317118 + 0.0183088i −0.515772 0.856726i \(-0.672495\pi\)
0.484060 + 0.875035i \(0.339162\pi\)
\(30\) 1.90978 1.65781i 0.348676 0.302674i
\(31\) 5.34484 + 9.25753i 0.959961 + 1.66270i 0.722584 + 0.691283i \(0.242954\pi\)
0.237377 + 0.971418i \(0.423712\pi\)
\(32\) −1.00000 −0.176777
\(33\) 3.99607 + 4.60343i 0.695627 + 0.801354i
\(34\) 7.58718 1.30119
\(35\) 0.384576 3.84385i 0.0650052 0.649729i
\(36\) −2.36146 1.85028i −0.393576 0.308379i
\(37\) 5.56471i 0.914833i 0.889252 + 0.457417i \(0.151225\pi\)
−0.889252 + 0.457417i \(0.848775\pi\)
\(38\) 1.72681 + 2.99093i 0.280126 + 0.485192i
\(39\) 5.77144 + 2.38548i 0.924169 + 0.381983i
\(40\) −1.26448 0.730045i −0.199931 0.115430i
\(41\) 2.60543 1.50425i 0.406900 0.234924i −0.282557 0.959250i \(-0.591183\pi\)
0.689457 + 0.724327i \(0.257849\pi\)
\(42\) −4.56338 + 0.419048i −0.704144 + 0.0646606i
\(43\) 5.61139 9.71922i 0.855730 1.48217i −0.0202369 0.999795i \(-0.506442\pi\)
0.875967 0.482372i \(-0.160225\pi\)
\(44\) 1.75974 3.04796i 0.265291 0.459497i
\(45\) −1.63522 4.06360i −0.243764 0.605766i
\(46\) 3.60696i 0.531818i
\(47\) −11.0787 6.39629i −1.61599 0.932994i −0.987942 0.154822i \(-0.950520\pi\)
−0.628051 0.778172i \(-0.716147\pi\)
\(48\) −0.565041 + 1.63729i −0.0815567 + 0.236323i
\(49\) −4.63164 + 5.24861i −0.661663 + 0.749801i
\(50\) 1.43407 + 2.48388i 0.202808 + 0.351273i
\(51\) 4.28707 12.4224i 0.600309 1.73949i
\(52\) 0.214878 3.59914i 0.0297983 0.499111i
\(53\) 4.21555 2.43385i 0.579051 0.334315i −0.181705 0.983353i \(-0.558162\pi\)
0.760756 + 0.649038i \(0.224828\pi\)
\(54\) −4.36376 + 2.82092i −0.593833 + 0.383878i
\(55\) 4.45029 2.56938i 0.600077 0.346455i
\(56\) 1.08820 + 2.41160i 0.145417 + 0.322264i
\(57\) 5.87274 1.13730i 0.777864 0.150639i
\(58\) 0.170773 0.0985961i 0.0224236 0.0129463i
\(59\) 1.30815i 0.170306i −0.996368 0.0851532i \(-0.972862\pi\)
0.996368 0.0851532i \(-0.0271380\pi\)
\(60\) −1.90978 + 1.65781i −0.246551 + 0.214023i
\(61\) 0.865717 0.499822i 0.110844 0.0639956i −0.443553 0.896248i \(-0.646282\pi\)
0.554397 + 0.832252i \(0.312949\pi\)
\(62\) −5.34484 9.25753i −0.678795 1.17571i
\(63\) −1.89239 + 7.70836i −0.238419 + 0.971162i
\(64\) 1.00000 0.125000
\(65\) 2.89925 4.39416i 0.359607 0.545028i
\(66\) −3.99607 4.60343i −0.491883 0.566643i
\(67\) 4.78794 + 2.76432i 0.584940 + 0.337715i 0.763094 0.646287i \(-0.223679\pi\)
−0.178154 + 0.984003i \(0.557013\pi\)
\(68\) −7.58718 −0.920080
\(69\) 5.90566 + 2.03808i 0.710958 + 0.245356i
\(70\) −0.384576 + 3.84385i −0.0459656 + 0.459427i
\(71\) 5.33718 9.24427i 0.633407 1.09709i −0.353443 0.935456i \(-0.614989\pi\)
0.986850 0.161637i \(-0.0516773\pi\)
\(72\) 2.36146 + 1.85028i 0.278300 + 0.218057i
\(73\) −2.94410 5.09933i −0.344581 0.596832i 0.640697 0.767794i \(-0.278646\pi\)
−0.985278 + 0.170963i \(0.945312\pi\)
\(74\) 5.56471i 0.646885i
\(75\) 4.87714 0.944496i 0.563164 0.109061i
\(76\) −1.72681 2.99093i −0.198079 0.343083i
\(77\) −9.26540 0.927001i −1.05589 0.105642i
\(78\) −5.77144 2.38548i −0.653486 0.270103i
\(79\) 0.174645 0.302494i 0.0196491 0.0340332i −0.856034 0.516920i \(-0.827078\pi\)
0.875683 + 0.482887i \(0.160412\pi\)
\(80\) 1.26448 + 0.730045i 0.141373 + 0.0816215i
\(81\) 2.15296 + 8.73869i 0.239218 + 0.970966i
\(82\) −2.60543 + 1.50425i −0.287722 + 0.166116i
\(83\) 3.72979i 0.409398i 0.978825 + 0.204699i \(0.0656215\pi\)
−0.978825 + 0.204699i \(0.934379\pi\)
\(84\) 4.56338 0.419048i 0.497905 0.0457219i
\(85\) −9.59380 5.53898i −1.04059 0.600787i
\(86\) −5.61139 + 9.71922i −0.605092 + 1.04805i
\(87\) −0.0649367 0.335317i −0.00696194 0.0359498i
\(88\) −1.75974 + 3.04796i −0.187589 + 0.324913i
\(89\) 14.4601i 1.53276i 0.642385 + 0.766382i \(0.277945\pi\)
−0.642385 + 0.766382i \(0.722055\pi\)
\(90\) 1.63522 + 4.06360i 0.172367 + 0.428341i
\(91\) −8.91353 + 3.39839i −0.934392 + 0.356248i
\(92\) 3.60696i 0.376052i
\(93\) −18.1773 + 3.52018i −1.88490 + 0.365026i
\(94\) 11.0787 + 6.39629i 1.14268 + 0.659726i
\(95\) 5.04260i 0.517360i
\(96\) 0.565041 1.63729i 0.0576693 0.167106i
\(97\) −1.72747 + 2.99206i −0.175398 + 0.303798i −0.940299 0.340350i \(-0.889455\pi\)
0.764901 + 0.644148i \(0.222788\pi\)
\(98\) 4.63164 5.24861i 0.467866 0.530190i
\(99\) −9.79510 + 3.94162i −0.984445 + 0.396147i
\(100\) −1.43407 2.48388i −0.143407 0.248388i
\(101\) −5.80861 + 10.0608i −0.577979 + 1.00109i 0.417732 + 0.908570i \(0.362825\pi\)
−0.995711 + 0.0925183i \(0.970508\pi\)
\(102\) −4.28707 + 12.4224i −0.424483 + 1.23000i
\(103\) 16.2249 + 9.36744i 1.59869 + 0.923001i 0.991741 + 0.128257i \(0.0409381\pi\)
0.606944 + 0.794745i \(0.292395\pi\)
\(104\) −0.214878 + 3.59914i −0.0210706 + 0.352925i
\(105\) 6.07620 + 2.80159i 0.592977 + 0.273408i
\(106\) −4.21555 + 2.43385i −0.409451 + 0.236397i
\(107\) 0.350806i 0.0339137i −0.999856 0.0169568i \(-0.994602\pi\)
0.999856 0.0169568i \(-0.00539779\pi\)
\(108\) 4.36376 2.82092i 0.419903 0.271443i
\(109\) −8.12542 + 4.69121i −0.778274 + 0.449337i −0.835818 0.549006i \(-0.815006\pi\)
0.0575444 + 0.998343i \(0.481673\pi\)
\(110\) −4.45029 + 2.56938i −0.424319 + 0.244980i
\(111\) −9.11107 3.14429i −0.864784 0.298443i
\(112\) −1.08820 2.41160i −0.102825 0.227875i
\(113\) −5.03517 2.90706i −0.473669 0.273473i 0.244105 0.969749i \(-0.421506\pi\)
−0.717774 + 0.696276i \(0.754839\pi\)
\(114\) −5.87274 + 1.13730i −0.550033 + 0.106518i
\(115\) 2.63325 4.56092i 0.245552 0.425308i
\(116\) −0.170773 + 0.0985961i −0.0158559 + 0.00915442i
\(117\) −7.16683 + 8.10164i −0.662574 + 0.748997i
\(118\) 1.30815i 0.120425i
\(119\) 8.25637 + 18.2972i 0.756860 + 1.67731i
\(120\) 1.90978 1.65781i 0.174338 0.151337i
\(121\) −0.693357 1.20093i −0.0630324 0.109175i
\(122\) −0.865717 + 0.499822i −0.0783783 + 0.0452518i
\(123\) 0.990716 + 5.11581i 0.0893298 + 0.461277i
\(124\) 5.34484 + 9.25753i 0.479980 + 0.831350i
\(125\) 11.4882i 1.02754i
\(126\) 1.89239 7.70836i 0.168587 0.686716i
\(127\) −7.87940 13.6475i −0.699183 1.21102i −0.968750 0.248039i \(-0.920214\pi\)
0.269567 0.962982i \(-0.413120\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 12.7425 + 14.6793i 1.12192 + 1.29244i
\(130\) −2.89925 + 4.39416i −0.254281 + 0.385393i
\(131\) 6.32520 10.9556i 0.552635 0.957192i −0.445448 0.895308i \(-0.646956\pi\)
0.998083 0.0618843i \(-0.0197110\pi\)
\(132\) 3.99607 + 4.60343i 0.347813 + 0.400677i
\(133\) −5.33380 + 7.41911i −0.462499 + 0.643318i
\(134\) −4.78794 2.76432i −0.413615 0.238801i
\(135\) 7.57727 0.381234i 0.652147 0.0328114i
\(136\) 7.58718 0.650595
\(137\) 1.25158 0.106930 0.0534648 0.998570i \(-0.482974\pi\)
0.0534648 + 0.998570i \(0.482974\pi\)
\(138\) −5.90566 2.03808i −0.502723 0.173493i
\(139\) 8.68419 + 5.01382i 0.736583 + 0.425267i 0.820826 0.571179i \(-0.193514\pi\)
−0.0842424 + 0.996445i \(0.526847\pi\)
\(140\) 0.384576 3.84385i 0.0325026 0.324864i
\(141\) 16.7325 14.5249i 1.40913 1.22322i
\(142\) −5.33718 + 9.24427i −0.447886 + 0.775762i
\(143\) −10.5919 6.98849i −0.885739 0.584407i
\(144\) −2.36146 1.85028i −0.196788 0.154190i
\(145\) −0.287918 −0.0239103
\(146\) 2.94410 + 5.09933i 0.243655 + 0.422024i
\(147\) −5.97644 10.5490i −0.492929 0.870070i
\(148\) 5.56471i 0.457417i
\(149\) −1.62311 2.81131i −0.132970 0.230311i 0.791850 0.610716i \(-0.209118\pi\)
−0.924820 + 0.380404i \(0.875785\pi\)
\(150\) −4.87714 + 0.944496i −0.398217 + 0.0771178i
\(151\) −8.04225 + 4.64320i −0.654469 + 0.377858i −0.790166 0.612892i \(-0.790006\pi\)
0.135697 + 0.990750i \(0.456673\pi\)
\(152\) 1.72681 + 2.99093i 0.140063 + 0.242596i
\(153\) 17.9168 + 14.0384i 1.44849 + 1.13494i
\(154\) 9.26540 + 0.927001i 0.746627 + 0.0746999i
\(155\) 15.6079i 1.25366i
\(156\) 5.77144 + 2.38548i 0.462085 + 0.190991i
\(157\) −16.2305 + 9.37071i −1.29534 + 0.747864i −0.979595 0.200981i \(-0.935587\pi\)
−0.315743 + 0.948845i \(0.602254\pi\)
\(158\) −0.174645 + 0.302494i −0.0138940 + 0.0240651i
\(159\) 1.60297 + 8.27732i 0.127124 + 0.656434i
\(160\) −1.26448 0.730045i −0.0999656 0.0577151i
\(161\) −8.69856 + 3.92510i −0.685542 + 0.309341i
\(162\) −2.15296 8.73869i −0.169153 0.686577i
\(163\) 0.787553 0.454694i 0.0616859 0.0356144i −0.468840 0.883283i \(-0.655328\pi\)
0.530526 + 0.847669i \(0.321995\pi\)
\(164\) 2.60543 1.50425i 0.203450 0.117462i
\(165\) 1.69223 + 8.73824i 0.131740 + 0.680271i
\(166\) 3.72979i 0.289488i
\(167\) 11.6602 6.73204i 0.902297 0.520941i 0.0243520 0.999703i \(-0.492248\pi\)
0.877945 + 0.478762i \(0.158914\pi\)
\(168\) −4.56338 + 0.419048i −0.352072 + 0.0323303i
\(169\) −12.9077 1.54676i −0.992896 0.118981i
\(170\) 9.59380 + 5.53898i 0.735811 + 0.424821i
\(171\) −1.45625 + 10.2580i −0.111362 + 0.784451i
\(172\) 5.61139 9.71922i 0.427865 0.741084i
\(173\) −5.08435 8.80635i −0.386556 0.669534i 0.605428 0.795900i \(-0.293002\pi\)
−0.991984 + 0.126366i \(0.959669\pi\)
\(174\) 0.0649367 + 0.335317i 0.00492284 + 0.0254203i
\(175\) −4.42957 + 6.16136i −0.334844 + 0.465755i
\(176\) 1.75974 3.04796i 0.132645 0.229748i
\(177\) 2.14182 + 0.739157i 0.160989 + 0.0555585i
\(178\) 14.4601i 1.08383i
\(179\) −7.39608 4.27013i −0.552809 0.319164i 0.197445 0.980314i \(-0.436736\pi\)
−0.750254 + 0.661150i \(0.770069\pi\)
\(180\) −1.63522 4.06360i −0.121882 0.302883i
\(181\) 25.4759i 1.89361i −0.321810 0.946804i \(-0.604291\pi\)
0.321810 0.946804i \(-0.395709\pi\)
\(182\) 8.91353 3.39839i 0.660715 0.251905i
\(183\) 0.329189 + 1.69985i 0.0243344 + 0.125657i
\(184\) 3.60696i 0.265909i
\(185\) −4.06249 + 7.03645i −0.298680 + 0.517330i
\(186\) 18.1773 3.52018i 1.33283 0.258112i
\(187\) −13.3514 + 23.1254i −0.976354 + 1.69110i
\(188\) −11.0787 6.39629i −0.807997 0.466497i
\(189\) −11.5516 7.45394i −0.840253 0.542194i
\(190\) 5.04260i 0.365829i
\(191\) 17.9487 10.3627i 1.29873 0.749819i 0.318541 0.947909i \(-0.396807\pi\)
0.980184 + 0.198089i \(0.0634737\pi\)
\(192\) −0.565041 + 1.63729i −0.0407783 + 0.118161i
\(193\) −8.21554 4.74324i −0.591367 0.341426i 0.174271 0.984698i \(-0.444243\pi\)
−0.765638 + 0.643272i \(0.777577\pi\)
\(194\) 1.72747 2.99206i 0.124025 0.214818i
\(195\) 5.55633 + 7.22979i 0.397897 + 0.517736i
\(196\) −4.63164 + 5.24861i −0.330832 + 0.374901i
\(197\) 3.21420 + 5.56716i 0.229002 + 0.396644i 0.957513 0.288391i \(-0.0931203\pi\)
−0.728510 + 0.685035i \(0.759787\pi\)
\(198\) 9.79510 3.94162i 0.696108 0.280118i
\(199\) 1.26513i 0.0896830i −0.998994 0.0448415i \(-0.985722\pi\)
0.998994 0.0448415i \(-0.0142783\pi\)
\(200\) 1.43407 + 2.48388i 0.101404 + 0.175637i
\(201\) −7.23138 + 6.27731i −0.510063 + 0.442767i
\(202\) 5.80861 10.0608i 0.408693 0.707876i
\(203\) 0.423610 + 0.304545i 0.0297316 + 0.0213749i
\(204\) 4.28707 12.4224i 0.300155 0.869744i
\(205\) 4.39267 0.306797
\(206\) −16.2249 9.36744i −1.13044 0.652660i
\(207\) −6.67388 + 8.51769i −0.463867 + 0.592020i
\(208\) 0.214878 3.59914i 0.0148991 0.249556i
\(209\) −12.1549 −0.840775
\(210\) −6.07620 2.80159i −0.419298 0.193328i
\(211\) −6.24577 10.8180i −0.429977 0.744742i 0.566894 0.823791i \(-0.308145\pi\)
−0.996871 + 0.0790492i \(0.974812\pi\)
\(212\) 4.21555 2.43385i 0.289525 0.167158i
\(213\) 12.1199 + 13.9619i 0.830438 + 0.956655i
\(214\) 0.350806i 0.0239806i
\(215\) 14.1909 8.19314i 0.967814 0.558768i
\(216\) −4.36376 + 2.82092i −0.296917 + 0.191939i
\(217\) 16.5092 22.9637i 1.12072 1.55887i
\(218\) 8.12542 4.69121i 0.550323 0.317729i
\(219\) 10.0126 1.93902i 0.676591 0.131027i
\(220\) 4.45029 2.56938i 0.300039 0.173227i
\(221\) −1.63032 + 27.3073i −0.109667 + 1.83689i
\(222\) 9.11107 + 3.14429i 0.611495 + 0.211031i
\(223\) −3.78556 6.55677i −0.253500 0.439074i 0.710987 0.703205i \(-0.248248\pi\)
−0.964487 + 0.264131i \(0.914915\pi\)
\(224\) 1.08820 + 2.41160i 0.0727084 + 0.161132i
\(225\) −1.20937 + 8.51899i −0.0806247 + 0.567933i
\(226\) 5.03517 + 2.90706i 0.334935 + 0.193375i
\(227\) 25.4572i 1.68965i 0.535042 + 0.844826i \(0.320296\pi\)
−0.535042 + 0.844826i \(0.679704\pi\)
\(228\) 5.87274 1.13730i 0.388932 0.0753196i
\(229\) 5.51406 9.55063i 0.364379 0.631124i −0.624297 0.781187i \(-0.714614\pi\)
0.988676 + 0.150063i \(0.0479478\pi\)
\(230\) −2.63325 + 4.56092i −0.173631 + 0.300738i
\(231\) 6.75311 14.6464i 0.444322 0.963661i
\(232\) 0.170773 0.0985961i 0.0112118 0.00647315i
\(233\) −6.18721 3.57219i −0.405338 0.234022i 0.283447 0.958988i \(-0.408522\pi\)
−0.688785 + 0.724966i \(0.741855\pi\)
\(234\) 7.16683 8.10164i 0.468510 0.529621i
\(235\) −9.33916 16.1759i −0.609219 1.05520i
\(236\) 1.30815i 0.0851532i
\(237\) 0.396590 + 0.456866i 0.0257613 + 0.0296767i
\(238\) −8.25637 18.2972i −0.535181 1.18603i
\(239\) 7.32463 0.473791 0.236896 0.971535i \(-0.423870\pi\)
0.236896 + 0.971535i \(0.423870\pi\)
\(240\) −1.90978 + 1.65781i −0.123276 + 0.107011i
\(241\) 17.4268 1.12256 0.561280 0.827626i \(-0.310309\pi\)
0.561280 + 0.827626i \(0.310309\pi\)
\(242\) 0.693357 + 1.20093i 0.0445707 + 0.0771986i
\(243\) −15.5243 1.41269i −0.995885 0.0906244i
\(244\) 0.865717 0.499822i 0.0554219 0.0319978i
\(245\) −9.68832 + 3.25543i −0.618964 + 0.207982i
\(246\) −0.990716 5.11581i −0.0631657 0.326172i
\(247\) −11.1358 + 5.57236i −0.708555 + 0.354561i
\(248\) −5.34484 9.25753i −0.339397 0.587854i
\(249\) −6.10676 2.10748i −0.387000 0.133556i
\(250\) 11.4882i 0.726577i
\(251\) −6.39321 + 11.0734i −0.403536 + 0.698944i −0.994150 0.108010i \(-0.965552\pi\)
0.590614 + 0.806954i \(0.298886\pi\)
\(252\) −1.89239 + 7.70836i −0.119209 + 0.485581i
\(253\) −10.9939 6.34731i −0.691178 0.399052i
\(254\) 7.87940 + 13.6475i 0.494397 + 0.856321i
\(255\) 14.4898 12.5781i 0.907388 0.787672i
\(256\) 1.00000 0.0625000
\(257\) 21.3460 1.33153 0.665764 0.746163i \(-0.268106\pi\)
0.665764 + 0.746163i \(0.268106\pi\)
\(258\) −12.7425 14.6793i −0.793316 0.913891i
\(259\) 13.4199 6.05552i 0.833870 0.376272i
\(260\) 2.89925 4.39416i 0.179804 0.272514i
\(261\) 0.585704 + 0.0831475i 0.0362542 + 0.00514670i
\(262\) −6.32520 + 10.9556i −0.390772 + 0.676837i
\(263\) −13.7817 7.95686i −0.849816 0.490641i 0.0107730 0.999942i \(-0.496571\pi\)
−0.860589 + 0.509301i \(0.829904\pi\)
\(264\) −3.99607 4.60343i −0.245941 0.283321i
\(265\) 7.10729 0.436597
\(266\) 5.33380 7.41911i 0.327037 0.454895i
\(267\) −23.6754 8.17053i −1.44891 0.500028i
\(268\) 4.78794 + 2.76432i 0.292470 + 0.168858i
\(269\) 15.4992 0.945002 0.472501 0.881330i \(-0.343351\pi\)
0.472501 + 0.881330i \(0.343351\pi\)
\(270\) −7.57727 + 0.381234i −0.461138 + 0.0232011i
\(271\) 14.9966 0.910977 0.455489 0.890242i \(-0.349465\pi\)
0.455489 + 0.890242i \(0.349465\pi\)
\(272\) −7.58718 −0.460040
\(273\) −0.527644 16.5143i −0.0319345 0.999490i
\(274\) −1.25158 −0.0756107
\(275\) −10.0943 −0.608711
\(276\) 5.90566 + 2.03808i 0.355479 + 0.122678i
\(277\) −0.719351 −0.0432216 −0.0216108 0.999766i \(-0.506879\pi\)
−0.0216108 + 0.999766i \(0.506879\pi\)
\(278\) −8.68419 5.01382i −0.520843 0.300709i
\(279\) 4.50738 31.7507i 0.269850 1.90086i
\(280\) −0.384576 + 3.84385i −0.0229828 + 0.229714i
\(281\) 7.30448 0.435749 0.217874 0.975977i \(-0.430088\pi\)
0.217874 + 0.975977i \(0.430088\pi\)
\(282\) −16.7325 + 14.5249i −0.996406 + 0.864945i
\(283\) 12.9252 + 7.46234i 0.768320 + 0.443590i 0.832275 0.554363i \(-0.187038\pi\)
−0.0639547 + 0.997953i \(0.520371\pi\)
\(284\) 5.33718 9.24427i 0.316703 0.548546i
\(285\) 8.25622 + 2.84928i 0.489056 + 0.168777i
\(286\) 10.5919 + 6.98849i 0.626312 + 0.413238i
\(287\) −6.46287 4.64634i −0.381491 0.274265i
\(288\) 2.36146 + 1.85028i 0.139150 + 0.109029i
\(289\) 40.5653 2.38619
\(290\) 0.287918 0.0169072
\(291\) −3.92279 4.51901i −0.229958 0.264909i
\(292\) −2.94410 5.09933i −0.172290 0.298416i
\(293\) 13.1158 + 7.57239i 0.766231 + 0.442384i 0.831529 0.555482i \(-0.187466\pi\)
−0.0652973 + 0.997866i \(0.520800\pi\)
\(294\) 5.97644 + 10.5490i 0.348553 + 0.615232i
\(295\) 0.955007 1.65412i 0.0556027 0.0963066i
\(296\) 5.56471i 0.323442i
\(297\) −0.918945 18.2646i −0.0533226 1.05982i
\(298\) 1.62311 + 2.81131i 0.0940242 + 0.162855i
\(299\) −12.9820 0.775059i −0.750767 0.0448228i
\(300\) 4.87714 0.944496i 0.281582 0.0545305i
\(301\) −29.5452 2.95599i −1.70296 0.170380i
\(302\) 8.04225 4.64320i 0.462780 0.267186i
\(303\) −13.1904 15.1952i −0.757768 0.872940i
\(304\) −1.72681 2.99093i −0.0990395 0.171541i
\(305\) 1.45957 0.0835748
\(306\) −17.9168 14.0384i −1.02424 0.802520i
\(307\) 0.289284 0.0165103 0.00825515 0.999966i \(-0.497372\pi\)
0.00825515 + 0.999966i \(0.497372\pi\)
\(308\) −9.26540 0.927001i −0.527945 0.0528208i
\(309\) −24.5050 + 21.2719i −1.39404 + 1.21012i
\(310\) 15.6079i 0.886468i
\(311\) −5.96970 10.3398i −0.338511 0.586318i 0.645642 0.763640i \(-0.276590\pi\)
−0.984153 + 0.177322i \(0.943256\pi\)
\(312\) −5.77144 2.38548i −0.326743 0.135051i
\(313\) −7.95301 4.59167i −0.449530 0.259537i 0.258101 0.966118i \(-0.416903\pi\)
−0.707632 + 0.706581i \(0.750236\pi\)
\(314\) 16.2305 9.37071i 0.915942 0.528820i
\(315\) −8.02033 + 8.36551i −0.451895 + 0.471343i
\(316\) 0.174645 0.302494i 0.00982454 0.0170166i
\(317\) −11.5121 + 19.9395i −0.646582 + 1.11991i 0.337352 + 0.941379i \(0.390469\pi\)
−0.983934 + 0.178534i \(0.942864\pi\)
\(318\) −1.60297 8.27732i −0.0898899 0.464169i
\(319\) 0.694013i 0.0388573i
\(320\) 1.26448 + 0.730045i 0.0706863 + 0.0408108i
\(321\) 0.574372 + 0.198220i 0.0320583 + 0.0110635i
\(322\) 8.69856 3.92510i 0.484752 0.218737i
\(323\) 13.1016 + 22.6927i 0.728994 + 1.26265i
\(324\) 2.15296 + 8.73869i 0.119609 + 0.485483i
\(325\) −9.24798 + 4.62768i −0.512986 + 0.256698i
\(326\) −0.787553 + 0.454694i −0.0436185 + 0.0251832i
\(327\) −3.08969 15.9544i −0.170860 0.882281i
\(328\) −2.60543 + 1.50425i −0.143861 + 0.0830581i
\(329\) −3.36946 + 33.6778i −0.185764 + 1.85672i
\(330\) −1.69223 8.73824i −0.0931540 0.481024i
\(331\) −20.4980 + 11.8345i −1.12667 + 0.650483i −0.943095 0.332522i \(-0.892100\pi\)
−0.183575 + 0.983006i \(0.558767\pi\)
\(332\) 3.72979i 0.204699i
\(333\) 10.2963 13.1408i 0.564231 0.720113i
\(334\) −11.6602 + 6.73204i −0.638020 + 0.368361i
\(335\) 4.03616 + 6.99083i 0.220519 + 0.381950i
\(336\) 4.56338 0.419048i 0.248953 0.0228610i
\(337\) 19.1537 1.04337 0.521684 0.853139i \(-0.325304\pi\)
0.521684 + 0.853139i \(0.325304\pi\)
\(338\) 12.9077 + 1.54676i 0.702084 + 0.0841325i
\(339\) 7.60478 6.60144i 0.413035 0.358541i
\(340\) −9.59380 5.53898i −0.520297 0.300394i
\(341\) 37.6220 2.03735
\(342\) 1.45625 10.2580i 0.0787447 0.554690i
\(343\) 17.6977 + 5.45814i 0.955586 + 0.294712i
\(344\) −5.61139 + 9.71922i −0.302546 + 0.524025i
\(345\) 5.97967 + 6.88850i 0.321934 + 0.370865i
\(346\) 5.08435 + 8.80635i 0.273336 + 0.473432i
\(347\) 31.7120i 1.70239i −0.524852 0.851194i \(-0.675879\pi\)
0.524852 0.851194i \(-0.324121\pi\)
\(348\) −0.0649367 0.335317i −0.00348097 0.0179749i
\(349\) −3.87835 6.71749i −0.207603 0.359579i 0.743356 0.668896i \(-0.233233\pi\)
−0.950959 + 0.309317i \(0.899900\pi\)
\(350\) 4.42957 6.16136i 0.236771 0.329338i
\(351\) −9.21520 16.3120i −0.491871 0.870668i
\(352\) −1.75974 + 3.04796i −0.0937944 + 0.162457i
\(353\) 0.491689 + 0.283877i 0.0261700 + 0.0151092i 0.513028 0.858372i \(-0.328524\pi\)
−0.486858 + 0.873481i \(0.661857\pi\)
\(354\) −2.14182 0.739157i −0.113836 0.0392858i
\(355\) 13.4975 7.79277i 0.716371 0.413597i
\(356\) 14.4601i 0.766382i
\(357\) −34.6231 + 3.17939i −1.83245 + 0.168271i
\(358\) 7.39608 + 4.27013i 0.390895 + 0.225683i
\(359\) 3.12906 5.41969i 0.165145 0.286040i −0.771562 0.636155i \(-0.780524\pi\)
0.936707 + 0.350115i \(0.113857\pi\)
\(360\) 1.63522 + 4.06360i 0.0861837 + 0.214170i
\(361\) 3.53624 6.12495i 0.186118 0.322366i
\(362\) 25.4759i 1.33898i
\(363\) 2.35805 0.456654i 0.123765 0.0239681i
\(364\) −8.91353 + 3.39839i −0.467196 + 0.178124i
\(365\) 8.59731i 0.450004i
\(366\) −0.329189 1.69985i −0.0172070 0.0888527i
\(367\) −18.6936 10.7928i −0.975800 0.563378i −0.0748003 0.997199i \(-0.523832\pi\)
−0.900999 + 0.433820i \(0.857165\pi\)
\(368\) 3.60696i 0.188026i
\(369\) −8.93588 1.26855i −0.465183 0.0660382i
\(370\) 4.06249 7.03645i 0.211199 0.365807i
\(371\) −10.4568 7.51772i −0.542892 0.390300i
\(372\) −18.1773 + 3.52018i −0.942451 + 0.182513i
\(373\) 0.378056 + 0.654812i 0.0195750 + 0.0339049i 0.875647 0.482952i \(-0.160435\pi\)
−0.856072 + 0.516857i \(0.827102\pi\)
\(374\) 13.3514 23.1254i 0.690387 1.19579i
\(375\) 18.8095 + 6.49130i 0.971320 + 0.335209i
\(376\) 11.0787 + 6.39629i 0.571340 + 0.329863i
\(377\) 0.318166 + 0.635824i 0.0163864 + 0.0327466i
\(378\) 11.5516 + 7.45394i 0.594149 + 0.383389i
\(379\) 6.26101 3.61480i 0.321607 0.185680i −0.330502 0.943805i \(-0.607218\pi\)
0.652108 + 0.758126i \(0.273885\pi\)
\(380\) 5.04260i 0.258680i
\(381\) 26.7972 5.18947i 1.37286 0.265865i
\(382\) −17.9487 + 10.3627i −0.918338 + 0.530202i
\(383\) 1.16788 0.674277i 0.0596760 0.0344540i −0.469865 0.882738i \(-0.655697\pi\)
0.529541 + 0.848284i \(0.322364\pi\)
\(384\) 0.565041 1.63729i 0.0288346 0.0835528i
\(385\) −11.0391 7.93633i −0.562606 0.404473i
\(386\) 8.21554 + 4.74324i 0.418160 + 0.241425i
\(387\) −31.2343 + 12.5689i −1.58773 + 0.638913i
\(388\) −1.72747 + 2.99206i −0.0876989 + 0.151899i
\(389\) 3.70239 2.13758i 0.187719 0.108379i −0.403196 0.915114i \(-0.632101\pi\)
0.590914 + 0.806734i \(0.298767\pi\)
\(390\) −5.55633 7.22979i −0.281356 0.366095i
\(391\) 27.3667i 1.38399i
\(392\) 4.63164 5.24861i 0.233933 0.265095i
\(393\) 14.3635 + 16.5465i 0.724541 + 0.834663i
\(394\) −3.21420 5.56716i −0.161929 0.280470i
\(395\) 0.441668 0.254997i 0.0222228 0.0128303i
\(396\) −9.79510 + 3.94162i −0.492223 + 0.198074i
\(397\) −2.86479 4.96196i −0.143780 0.249034i 0.785137 0.619322i \(-0.212592\pi\)
−0.928917 + 0.370288i \(0.879259\pi\)
\(398\) 1.26513i 0.0634155i
\(399\) −9.13343 12.9251i −0.457244 0.647064i
\(400\) −1.43407 2.48388i −0.0717034 0.124194i
\(401\) 21.9761 1.09743 0.548717 0.836008i \(-0.315117\pi\)
0.548717 + 0.836008i \(0.315117\pi\)
\(402\) 7.23138 6.27731i 0.360669 0.313084i
\(403\) 34.4676 17.2476i 1.71696 0.859163i
\(404\) −5.80861 + 10.0608i −0.288989 + 0.500544i
\(405\) −3.65728 + 12.6216i −0.181732 + 0.627173i
\(406\) −0.423610 0.304545i −0.0210234 0.0151143i
\(407\) 16.9610 + 9.79244i 0.840726 + 0.485393i
\(408\) −4.28707 + 12.4224i −0.212241 + 0.615002i
\(409\) −8.43899 −0.417281 −0.208641 0.977992i \(-0.566904\pi\)
−0.208641 + 0.977992i \(0.566904\pi\)
\(410\) −4.39267 −0.216938
\(411\) −0.707194 + 2.04920i −0.0348833 + 0.101080i
\(412\) 16.2249 + 9.36744i 0.799343 + 0.461501i
\(413\) −3.15473 + 1.42353i −0.155234 + 0.0700471i
\(414\) 6.67388 8.51769i 0.328003 0.418622i
\(415\) −2.72292 + 4.71623i −0.133663 + 0.231511i
\(416\) −0.214878 + 3.59914i −0.0105353 + 0.176462i
\(417\) −13.1160 + 11.3856i −0.642294 + 0.557553i
\(418\) 12.1549 0.594518
\(419\) 12.4744 + 21.6063i 0.609413 + 1.05553i 0.991337 + 0.131341i \(0.0419282\pi\)
−0.381924 + 0.924194i \(0.624738\pi\)
\(420\) 6.07620 + 2.80159i 0.296488 + 0.136704i
\(421\) 23.2628i 1.13376i 0.823800 + 0.566881i \(0.191850\pi\)
−0.823800 + 0.566881i \(0.808150\pi\)
\(422\) 6.24577 + 10.8180i 0.304040 + 0.526612i
\(423\) 14.3270 + 35.6032i 0.696601 + 1.73109i
\(424\) −4.21555 + 2.43385i −0.204725 + 0.118198i
\(425\) 10.8805 + 18.8456i 0.527783 + 0.914147i
\(426\) −12.1199 13.9619i −0.587209 0.676457i
\(427\) −2.14744 1.54386i −0.103922 0.0747125i
\(428\) 0.350806i 0.0169568i
\(429\) 17.4271 13.3933i 0.841386 0.646633i
\(430\) −14.1909 + 8.19314i −0.684348 + 0.395108i
\(431\) 11.3685 19.6908i 0.547602 0.948474i −0.450837 0.892606i \(-0.648874\pi\)
0.998438 0.0558673i \(-0.0177924\pi\)
\(432\) 4.36376 2.82092i 0.209952 0.135721i
\(433\) 11.9025 + 6.87194i 0.572000 + 0.330244i 0.757948 0.652315i \(-0.226202\pi\)
−0.185948 + 0.982560i \(0.559536\pi\)
\(434\) −16.5092 + 22.9637i −0.792468 + 1.10229i
\(435\) 0.162686 0.471407i 0.00780018 0.0226022i
\(436\) −8.12542 + 4.69121i −0.389137 + 0.224668i
\(437\) −10.7882 + 6.22855i −0.516068 + 0.297952i
\(438\) −10.0126 + 1.93902i −0.478422 + 0.0926501i
\(439\) 12.1761i 0.581134i 0.956855 + 0.290567i \(0.0938439\pi\)
−0.956855 + 0.290567i \(0.906156\pi\)
\(440\) −4.45029 + 2.56938i −0.212159 + 0.122490i
\(441\) 20.6488 3.82455i 0.983276 0.182121i
\(442\) 1.63032 27.3073i 0.0775465 1.29888i
\(443\) 1.94173 + 1.12106i 0.0922543 + 0.0532630i 0.545417 0.838165i \(-0.316371\pi\)
−0.453163 + 0.891428i \(0.649704\pi\)
\(444\) −9.11107 3.14429i −0.432392 0.149222i
\(445\) −10.5565 + 18.2844i −0.500426 + 0.866763i
\(446\) 3.78556 + 6.55677i 0.179251 + 0.310472i
\(447\) 5.52006 1.06900i 0.261090 0.0505620i
\(448\) −1.08820 2.41160i −0.0514126 0.113937i
\(449\) −3.91929 + 6.78842i −0.184963 + 0.320365i −0.943564 0.331190i \(-0.892550\pi\)
0.758601 + 0.651555i \(0.225883\pi\)
\(450\) 1.20937 8.51899i 0.0570102 0.401589i
\(451\) 10.5883i 0.498584i
\(452\) −5.03517 2.90706i −0.236834 0.136736i
\(453\) −3.05807 15.7911i −0.143681 0.741932i
\(454\) 25.4572i 1.19476i
\(455\) −13.7519 2.21010i −0.644700 0.103611i
\(456\) −5.87274 + 1.13730i −0.275016 + 0.0532590i
\(457\) 6.54295i 0.306066i 0.988221 + 0.153033i \(0.0489041\pi\)
−0.988221 + 0.153033i \(0.951096\pi\)
\(458\) −5.51406 + 9.55063i −0.257655 + 0.446272i
\(459\) −33.1087 + 21.4028i −1.54538 + 0.998997i
\(460\) 2.63325 4.56092i 0.122776 0.212654i
\(461\) 20.3030 + 11.7219i 0.945606 + 0.545946i 0.891713 0.452601i \(-0.149504\pi\)
0.0538925 + 0.998547i \(0.482837\pi\)
\(462\) −6.75311 + 14.6464i −0.314183 + 0.681411i
\(463\) 37.3356i 1.73513i 0.497321 + 0.867567i \(0.334317\pi\)
−0.497321 + 0.867567i \(0.665683\pi\)
\(464\) −0.170773 + 0.0985961i −0.00792796 + 0.00457721i
\(465\) −25.5547 8.81910i −1.18507 0.408976i
\(466\) 6.18721 + 3.57219i 0.286617 + 0.165479i
\(467\) −3.36611 + 5.83027i −0.155765 + 0.269792i −0.933337 0.359001i \(-0.883118\pi\)
0.777572 + 0.628793i \(0.216451\pi\)
\(468\) −7.16683 + 8.10164i −0.331287 + 0.374498i
\(469\) 1.45620 14.5547i 0.0672410 0.672075i
\(470\) 9.33916 + 16.1759i 0.430783 + 0.746138i
\(471\) −6.17167 31.8690i −0.284376 1.46845i
\(472\) 1.30815i 0.0602124i
\(473\) −19.7492 34.2066i −0.908068 1.57282i
\(474\) −0.396590 0.456866i −0.0182160 0.0209846i
\(475\) −4.95273 + 8.57838i −0.227247 + 0.393603i
\(476\) 8.25637 + 18.2972i 0.378430 + 0.838653i
\(477\) −14.4581 2.05250i −0.661993 0.0939776i
\(478\) −7.32463 −0.335021
\(479\) −11.2141 6.47445i −0.512384 0.295825i 0.221429 0.975176i \(-0.428928\pi\)
−0.733813 + 0.679351i \(0.762261\pi\)
\(480\) 1.90978 1.65781i 0.0871691 0.0756684i
\(481\) 20.0282 + 1.19574i 0.913207 + 0.0545209i
\(482\) −17.4268 −0.793769
\(483\) −1.51149 16.4599i −0.0687753 0.748953i
\(484\) −0.693357 1.20093i −0.0315162 0.0545877i
\(485\) −4.36868 + 2.52226i −0.198372 + 0.114530i
\(486\) 15.5243 + 1.41269i 0.704197 + 0.0640811i
\(487\) 8.67630i 0.393161i 0.980488 + 0.196580i \(0.0629837\pi\)
−0.980488 + 0.196580i \(0.937016\pi\)
\(488\) −0.865717 + 0.499822i −0.0391892 + 0.0226259i
\(489\) 0.299467 + 1.54638i 0.0135424 + 0.0699295i
\(490\) 9.68832 3.25543i 0.437674 0.147065i
\(491\) 14.7725 8.52893i 0.666676 0.384905i −0.128140 0.991756i \(-0.540901\pi\)
0.794816 + 0.606851i \(0.207567\pi\)
\(492\) 0.990716 + 5.11581i 0.0446649 + 0.230639i
\(493\) 1.29569 0.748066i 0.0583549 0.0336912i
\(494\) 11.1358 5.57236i 0.501024 0.250712i
\(495\) −15.2632 2.16679i −0.686031 0.0973901i
\(496\) 5.34484 + 9.25753i 0.239990 + 0.415675i
\(497\) −28.1014 2.81154i −1.26052 0.126115i
\(498\) 6.10676 + 2.10748i 0.273650 + 0.0944386i
\(499\) 20.1546 + 11.6362i 0.902243 + 0.520910i 0.877927 0.478794i \(-0.158926\pi\)
0.0243156 + 0.999704i \(0.492259\pi\)
\(500\) 11.4882i 0.513768i
\(501\) 4.43381 + 22.8951i 0.198088 + 1.02288i
\(502\) 6.39321 11.0734i 0.285343 0.494228i
\(503\) −4.33129 + 7.50201i −0.193122 + 0.334498i −0.946283 0.323338i \(-0.895195\pi\)
0.753161 + 0.657836i \(0.228528\pi\)
\(504\) 1.89239 7.70836i 0.0842937 0.343358i
\(505\) −14.6897 + 8.48110i −0.653683 + 0.377404i
\(506\) 10.9939 + 6.34731i 0.488737 + 0.282172i
\(507\) 9.82585 20.2596i 0.436381 0.899762i
\(508\) −7.87940 13.6475i −0.349592 0.605511i
\(509\) 5.78402i 0.256372i −0.991750 0.128186i \(-0.959085\pi\)
0.991750 0.128186i \(-0.0409155\pi\)
\(510\) −14.4898 + 12.5781i −0.641621 + 0.556968i
\(511\) −9.09378 + 12.6491i −0.402285 + 0.559563i
\(512\) −1.00000 −0.0441942
\(513\) −15.9725 8.18050i −0.705205 0.361178i
\(514\) −21.3460 −0.941532
\(515\) 13.6773 + 23.6898i 0.602694 + 1.04390i
\(516\) 12.7425 + 14.6793i 0.560959 + 0.646218i
\(517\) −38.9912 + 22.5116i −1.71483 + 0.990058i
\(518\) −13.4199 + 6.05552i −0.589635 + 0.266064i
\(519\) 17.2914 3.34862i 0.759010 0.146988i
\(520\) −2.89925 + 4.39416i −0.127140 + 0.192697i
\(521\) −5.46547 9.46647i −0.239447 0.414734i 0.721109 0.692822i \(-0.243633\pi\)
−0.960556 + 0.278088i \(0.910299\pi\)
\(522\) −0.585704 0.0831475i −0.0256356 0.00363927i
\(523\) 13.6134i 0.595270i 0.954680 + 0.297635i \(0.0961979\pi\)
−0.954680 + 0.297635i \(0.903802\pi\)
\(524\) 6.32520 10.9556i 0.276318 0.478596i
\(525\) −7.58506 10.7339i −0.331039 0.468467i
\(526\) 13.7817 + 7.95686i 0.600910 + 0.346936i
\(527\) −40.5522 70.2385i −1.76648 3.05964i
\(528\) 3.99607 + 4.60343i 0.173907 + 0.200338i
\(529\) 9.98981 0.434340
\(530\) −7.10729 −0.308721
\(531\) −2.42043 + 3.08913i −0.105038 + 0.134057i
\(532\) −5.33380 + 7.41911i −0.231250 + 0.321659i
\(533\) −4.85414 9.70054i −0.210256 0.420177i
\(534\) 23.6754 + 8.17053i 1.02453 + 0.353573i
\(535\) 0.256104 0.443585i 0.0110723 0.0191779i
\(536\) −4.78794 2.76432i −0.206808 0.119400i
\(537\) 11.1705 9.69675i 0.482044 0.418446i
\(538\) −15.4992 −0.668218
\(539\) 7.84705 + 23.3532i 0.337996 + 1.00589i
\(540\) 7.57727 0.381234i 0.326074 0.0164057i
\(541\) −3.38852 1.95636i −0.145684 0.0841105i 0.425386 0.905012i \(-0.360138\pi\)
−0.571070 + 0.820901i \(0.693472\pi\)
\(542\) −14.9966 −0.644158
\(543\) 41.7115 + 14.3949i 1.79001 + 0.617746i
\(544\) 7.58718 0.325298
\(545\) −13.6992 −0.586809
\(546\) 0.527644 + 16.5143i 0.0225811 + 0.706746i
\(547\) −10.8125 −0.462308 −0.231154 0.972917i \(-0.574250\pi\)
−0.231154 + 0.972917i \(0.574250\pi\)
\(548\) 1.25158 0.0534648
\(549\) −2.96916 0.421507i −0.126721 0.0179895i
\(550\) 10.0943 0.430424
\(551\) 0.589787 + 0.340514i 0.0251258 + 0.0145064i
\(552\) −5.90566 2.03808i −0.251361 0.0867466i
\(553\) −0.919543 0.0920001i −0.0391030 0.00391224i
\(554\) 0.719351 0.0305623
\(555\) −9.22525 10.6274i −0.391590 0.451107i
\(556\) 8.68419 + 5.01382i 0.368292 + 0.212633i
\(557\) 11.6199 20.1263i 0.492351 0.852778i −0.507610 0.861587i \(-0.669471\pi\)
0.999961 + 0.00880939i \(0.00280415\pi\)
\(558\) −4.50738 + 31.7507i −0.190812 + 1.34411i
\(559\) −33.7751 22.2847i −1.42853 0.942541i
\(560\) 0.384576 3.84385i 0.0162513 0.162432i
\(561\) −30.3189 34.9270i −1.28007 1.47462i
\(562\) −7.30448 −0.308121
\(563\) −11.8776 −0.500580 −0.250290 0.968171i \(-0.580526\pi\)
−0.250290 + 0.968171i \(0.580526\pi\)
\(564\) 16.7325 14.5249i 0.704566 0.611609i
\(565\) −4.24457 7.35181i −0.178570 0.309293i
\(566\) −12.9252 7.46234i −0.543285 0.313666i
\(567\) 18.7314 14.7015i 0.786645 0.617406i
\(568\) −5.33718 + 9.24427i −0.223943 + 0.387881i
\(569\) 1.93128i 0.0809635i 0.999180 + 0.0404817i \(0.0128893\pi\)
−0.999180 + 0.0404817i \(0.987111\pi\)
\(570\) −8.25622 2.84928i −0.345815 0.119343i
\(571\) 6.46083 + 11.1905i 0.270377 + 0.468307i 0.968958 0.247224i \(-0.0795182\pi\)
−0.698581 + 0.715531i \(0.746185\pi\)
\(572\) −10.5919 6.98849i −0.442869 0.292203i
\(573\) 6.82502 + 35.2427i 0.285119 + 1.47229i
\(574\) 6.46287 + 4.64634i 0.269755 + 0.193934i
\(575\) −8.95926 + 5.17263i −0.373627 + 0.215714i
\(576\) −2.36146 1.85028i −0.0983940 0.0770948i
\(577\) 18.9813 + 32.8766i 0.790203 + 1.36867i 0.925841 + 0.377913i \(0.123358\pi\)
−0.135638 + 0.990758i \(0.543308\pi\)
\(578\) −40.5653 −1.68729
\(579\) 12.4082 10.7711i 0.515667 0.447632i
\(580\) −0.287918 −0.0119552
\(581\) 8.99477 4.05876i 0.373166 0.168386i
\(582\) 3.92279 + 4.51901i 0.162605 + 0.187319i
\(583\) 17.1318i 0.709525i
\(584\) 2.94410 + 5.09933i 0.121828 + 0.211012i
\(585\) −14.9768 + 5.01221i −0.619216 + 0.207229i
\(586\) −13.1158 7.57239i −0.541807 0.312813i
\(587\) 3.62595 2.09345i 0.149659 0.0864058i −0.423300 0.905989i \(-0.639129\pi\)
0.572960 + 0.819584i \(0.305795\pi\)
\(588\) −5.97644 10.5490i −0.246464 0.435035i
\(589\) 18.4591 31.9720i 0.760592 1.31738i
\(590\) −0.955007 + 1.65412i −0.0393170 + 0.0680991i
\(591\) −10.9312 + 2.11692i −0.449651 + 0.0870783i
\(592\) 5.56471i 0.228708i
\(593\) 25.7814 + 14.8849i 1.05872 + 0.611250i 0.925077 0.379780i \(-0.124000\pi\)
0.133639 + 0.991030i \(0.457334\pi\)
\(594\) 0.918945 + 18.2646i 0.0377048 + 0.749407i
\(595\) −2.91785 + 29.1639i −0.119620 + 1.19561i
\(596\) −1.62311 2.81131i −0.0664852 0.115156i
\(597\) 2.07140 + 0.714853i 0.0847766 + 0.0292570i
\(598\) 12.9820 + 0.775059i 0.530873 + 0.0316945i
\(599\) −14.8413 + 8.56865i −0.606401 + 0.350106i −0.771556 0.636162i \(-0.780521\pi\)
0.165155 + 0.986268i \(0.447188\pi\)
\(600\) −4.87714 + 0.944496i −0.199109 + 0.0385589i
\(601\) −17.6704 + 10.2020i −0.720790 + 0.416149i −0.815044 0.579400i \(-0.803287\pi\)
0.0942531 + 0.995548i \(0.469954\pi\)
\(602\) 29.5452 + 2.95599i 1.20417 + 0.120477i
\(603\) −6.19177 15.3868i −0.252148 0.626600i
\(604\) −8.04225 + 4.64320i −0.327235 + 0.188929i
\(605\) 2.02473i 0.0823169i
\(606\) 13.1904 + 15.1952i 0.535823 + 0.617262i
\(607\) −9.18240 + 5.30146i −0.372702 + 0.215180i −0.674638 0.738149i \(-0.735700\pi\)
0.301936 + 0.953328i \(0.402367\pi\)
\(608\) 1.72681 + 2.99093i 0.0700315 + 0.121298i
\(609\) −0.737987 + 0.521493i −0.0299047 + 0.0211320i
\(610\) −1.45957 −0.0590963
\(611\) −25.4017 + 38.4994i −1.02764 + 1.55752i
\(612\) 17.9168 + 14.0384i 0.724244 + 0.567468i
\(613\) 19.7900 + 11.4258i 0.799310 + 0.461482i 0.843230 0.537553i \(-0.180651\pi\)
−0.0439195 + 0.999035i \(0.513985\pi\)
\(614\) −0.289284 −0.0116745
\(615\) −2.48204 + 7.19209i −0.100085 + 0.290013i
\(616\) 9.26540 + 0.927001i 0.373314 + 0.0373500i
\(617\) 2.03229 3.52003i 0.0818170 0.141711i −0.822213 0.569179i \(-0.807261\pi\)
0.904030 + 0.427468i \(0.140594\pi\)
\(618\) 24.5050 21.2719i 0.985734 0.855681i
\(619\) 5.71042 + 9.89074i 0.229521 + 0.397542i 0.957666 0.287881i \(-0.0929506\pi\)
−0.728145 + 0.685423i \(0.759617\pi\)
\(620\) 15.6079i 0.626828i
\(621\) −10.1749 15.7399i −0.408306 0.631622i
\(622\) 5.96970 + 10.3398i 0.239363 + 0.414589i
\(623\) 34.8719 15.7354i 1.39711 0.630427i
\(624\) 5.77144 + 2.38548i 0.231042 + 0.0954957i
\(625\) 1.21656 2.10715i 0.0486624 0.0842858i
\(626\) 7.95301 + 4.59167i 0.317866 + 0.183520i
\(627\) 6.86804 19.9012i 0.274283 0.794778i
\(628\) −16.2305 + 9.37071i −0.647669 + 0.373932i
\(629\) 42.2205i 1.68344i
\(630\) 8.02033 8.36551i 0.319538 0.333290i
\(631\) −2.43600 1.40642i −0.0969755 0.0559888i 0.450728 0.892661i \(-0.351164\pi\)
−0.547703 + 0.836673i \(0.684498\pi\)
\(632\) −0.174645 + 0.302494i −0.00694700 + 0.0120326i
\(633\) 21.2414 4.11355i 0.844268 0.163499i
\(634\) 11.5121 19.9395i 0.457203 0.791898i
\(635\) 23.0093i 0.913095i
\(636\) 1.60297 + 8.27732i 0.0635618 + 0.328217i
\(637\) 17.8953 + 17.7978i 0.709036 + 0.705173i
\(638\) 0.694013i 0.0274762i
\(639\) −29.7080 + 11.9547i −1.17523 + 0.472920i
\(640\) −1.26448 0.730045i −0.0499828 0.0288576i
\(641\) 22.9946i 0.908232i −0.890943 0.454116i \(-0.849955\pi\)
0.890943 0.454116i \(-0.150045\pi\)
\(642\) −0.574372 0.198220i −0.0226686 0.00782310i
\(643\) −5.08228 + 8.80277i −0.200426 + 0.347147i −0.948666 0.316281i \(-0.897566\pi\)
0.748240 + 0.663428i \(0.230899\pi\)
\(644\) −8.69856 + 3.92510i −0.342771 + 0.154671i
\(645\) 5.39611 + 27.8642i 0.212472 + 1.09715i
\(646\) −13.1016 22.6927i −0.515477 0.892832i
\(647\) 21.2471 36.8010i 0.835309 1.44680i −0.0584688 0.998289i \(-0.518622\pi\)
0.893778 0.448509i \(-0.148045\pi\)
\(648\) −2.15296 8.73869i −0.0845763 0.343288i
\(649\) −3.98718 2.30200i −0.156510 0.0903613i
\(650\) 9.24798 4.62768i 0.362736 0.181513i
\(651\) 28.2698 + 40.0058i 1.10798 + 1.56795i
\(652\) 0.787553 0.454694i 0.0308430 0.0178072i
\(653\) 21.6406i 0.846862i −0.905928 0.423431i \(-0.860826\pi\)
0.905928 0.423431i \(-0.139174\pi\)
\(654\) 3.08969 + 15.9544i 0.120817 + 0.623867i
\(655\) 15.9961 9.23536i 0.625020 0.360855i
\(656\) 2.60543 1.50425i 0.101725 0.0587309i
\(657\) −2.48280 + 17.4893i −0.0968633 + 0.682321i
\(658\) 3.36946 33.6778i 0.131355 1.31290i
\(659\) 4.44211 + 2.56466i 0.173040 + 0.0999048i 0.584019 0.811740i \(-0.301480\pi\)
−0.410978 + 0.911645i \(0.634813\pi\)
\(660\) 1.69223 + 8.73824i 0.0658698 + 0.340135i
\(661\) 11.9740 20.7396i 0.465736 0.806678i −0.533499 0.845801i \(-0.679123\pi\)
0.999234 + 0.0391228i \(0.0124563\pi\)
\(662\) 20.4980 11.8345i 0.796676 0.459961i
\(663\) −43.7889 18.0991i −1.70062 0.702910i
\(664\) 3.72979i 0.144744i
\(665\) −12.1607 + 5.48736i −0.471574 + 0.212791i
\(666\) −10.2963 + 13.1408i −0.398972 + 0.509197i
\(667\) 0.355633 + 0.615974i 0.0137701 + 0.0238506i
\(668\) 11.6602 6.73204i 0.451148 0.260471i
\(669\) 12.8744 2.49322i 0.497751 0.0963933i
\(670\) −4.03616 6.99083i −0.155930 0.270079i
\(671\) 3.51822i 0.135819i
\(672\) −4.56338 + 0.419048i −0.176036 + 0.0161651i
\(673\) −8.33251 14.4323i −0.321195 0.556326i 0.659540 0.751669i \(-0.270751\pi\)
−0.980735 + 0.195344i \(0.937418\pi\)
\(674\) −19.1537 −0.737772
\(675\) −13.2647 6.79367i −0.510560 0.261489i
\(676\) −12.9077 1.54676i −0.496448 0.0594906i
\(677\) −18.1468 + 31.4312i −0.697439 + 1.20800i 0.271913 + 0.962322i \(0.412344\pi\)
−0.969352 + 0.245678i \(0.920989\pi\)
\(678\) −7.60478 + 6.60144i −0.292060 + 0.253527i
\(679\) 9.09550 + 0.910002i 0.349053 + 0.0349227i
\(680\) 9.59380 + 5.53898i 0.367905 + 0.212410i
\(681\) −41.6808 14.3843i −1.59721 0.551209i
\(682\) −37.6220 −1.44062
\(683\) 36.5747 1.39949 0.699747 0.714391i \(-0.253296\pi\)
0.699747 + 0.714391i \(0.253296\pi\)
\(684\) −1.45625 + 10.2580i −0.0556809 + 0.392225i
\(685\) 1.58259 + 0.913710i 0.0604677 + 0.0349110i
\(686\) −17.6977 5.45814i −0.675701 0.208393i
\(687\) 12.5215 + 14.4246i 0.477726 + 0.550334i
\(688\) 5.61139 9.71922i 0.213932 0.370542i
\(689\) −7.85394 15.6954i −0.299211 0.597946i
\(690\) −5.97967 6.88850i −0.227642 0.262241i
\(691\) 17.4627 0.664312 0.332156 0.943225i \(-0.392224\pi\)
0.332156 + 0.943225i \(0.392224\pi\)
\(692\) −5.08435 8.80635i −0.193278 0.334767i
\(693\) 20.1646 + 19.3326i 0.765991 + 0.734386i
\(694\) 31.7120i 1.20377i
\(695\) 7.32063 + 12.6797i 0.277687 + 0.480969i
\(696\) 0.0649367 + 0.335317i 0.00246142 + 0.0127102i
\(697\) −19.7679 + 11.4130i −0.748761 + 0.432297i
\(698\) 3.87835 + 6.71749i 0.146798 + 0.254261i
\(699\) 9.34475 8.11185i 0.353451 0.306818i
\(700\) −4.42957 + 6.16136i −0.167422 + 0.232877i
\(701\) 42.7684i 1.61534i −0.589635 0.807670i \(-0.700728\pi\)
0.589635 0.807670i \(-0.299272\pi\)
\(702\) 9.21520 + 16.3120i 0.347805 + 0.615655i
\(703\) 16.6436 9.60922i 0.627727 0.362418i
\(704\) 1.75974 3.04796i 0.0663226 0.114874i
\(705\) 31.7617 6.15089i 1.19621 0.231656i
\(706\) −0.491689 0.283877i −0.0185050 0.0106838i
\(707\) 30.5836 + 3.05988i 1.15021 + 0.115079i
\(708\) 2.14182 + 0.739157i 0.0804946 + 0.0277792i
\(709\) 31.6856 18.2937i 1.18998 0.687033i 0.231675 0.972793i \(-0.425579\pi\)
0.958301 + 0.285760i \(0.0922459\pi\)
\(710\) −13.4975 + 7.79277i −0.506551 + 0.292457i
\(711\) −0.972114 + 0.391185i −0.0364571 + 0.0146706i
\(712\) 14.4601i 0.541914i
\(713\) 33.3916 19.2786i 1.25052 0.721990i
\(714\) 34.6231 3.17939i 1.29574 0.118986i
\(715\) −8.29128 16.5693i −0.310076 0.619658i
\(716\) −7.39608 4.27013i −0.276404 0.159582i
\(717\) −4.13872 + 11.9926i −0.154563 + 0.447871i
\(718\) −3.12906 + 5.41969i −0.116775 + 0.202261i
\(719\) −9.53832 16.5209i −0.355719 0.616124i 0.631521 0.775358i \(-0.282431\pi\)
−0.987241 + 0.159234i \(0.949097\pi\)
\(720\) −1.63522 4.06360i −0.0609410 0.151441i
\(721\) 4.93461 49.3216i 0.183775 1.83683i
\(722\) −3.53624 + 6.12495i −0.131605 + 0.227947i
\(723\) −9.84686 + 28.5328i −0.366209 + 1.06115i
\(724\) 25.4759i 0.946804i
\(725\) 0.489801 + 0.282787i 0.0181908 + 0.0105024i
\(726\) −2.35805 + 0.456654i −0.0875154 + 0.0169480i
\(727\) 9.70964i 0.360111i −0.983656 0.180055i \(-0.942372\pi\)
0.983656 0.180055i \(-0.0576277\pi\)
\(728\) 8.91353 3.39839i 0.330357 0.125953i
\(729\) 11.0849 24.6196i 0.410551 0.911838i
\(730\) 8.59731i 0.318201i
\(731\) −42.5746 + 73.7414i −1.57468 + 2.72743i
\(732\) 0.329189 + 1.69985i 0.0121672 + 0.0628284i
\(733\) 16.1353 27.9472i 0.595972 1.03225i −0.397437 0.917629i \(-0.630100\pi\)
0.993409 0.114624i \(-0.0365664\pi\)
\(734\) 18.6936 + 10.7928i 0.689995 + 0.398369i
\(735\) 0.144207 17.7021i 0.00531916 0.652951i
\(736\) 3.60696i 0.132954i
\(737\) 16.8510 9.72896i 0.620716 0.358371i
\(738\) 8.93588 + 1.26855i 0.328934 + 0.0466960i
\(739\) 19.4708 + 11.2415i 0.716246 + 0.413525i 0.813370 0.581747i \(-0.197631\pi\)
−0.0971231 + 0.995272i \(0.530964\pi\)
\(740\) −4.06249 + 7.03645i −0.149340 + 0.258665i
\(741\) −2.83138 21.3812i −0.104013 0.785459i
\(742\) 10.4568 + 7.51772i 0.383883 + 0.275984i
\(743\) 19.9808 + 34.6077i 0.733023 + 1.26963i 0.955585 + 0.294715i \(0.0952248\pi\)
−0.222562 + 0.974919i \(0.571442\pi\)
\(744\) 18.1773 3.52018i 0.666413 0.129056i
\(745\) 4.73977i 0.173652i
\(746\) −0.378056 0.654812i −0.0138416 0.0239744i
\(747\) 6.90114 8.80774i 0.252499 0.322258i
\(748\) −13.3514 + 23.1254i −0.488177 + 0.845548i
\(749\) −0.846003 + 0.381747i −0.0309123 + 0.0139487i
\(750\) −18.8095 6.49130i −0.686827 0.237029i
\(751\) 31.2080 1.13880 0.569399 0.822061i \(-0.307176\pi\)
0.569399 + 0.822061i \(0.307176\pi\)
\(752\) −11.0787 6.39629i −0.403998 0.233249i
\(753\) −14.5179 16.7245i −0.529062 0.609473i
\(754\) −0.318166 0.635824i −0.0115869 0.0231553i
\(755\) −13.5590 −0.493462
\(756\) −11.5516 7.45394i −0.420127 0.271097i
\(757\) −0.452106 0.783071i −0.0164321 0.0284612i 0.857692 0.514163i \(-0.171897\pi\)
−0.874125 + 0.485702i \(0.838564\pi\)
\(758\) −6.26101 + 3.61480i −0.227410 + 0.131295i
\(759\) 16.6044 14.4137i 0.602701 0.523184i
\(760\) 5.04260i 0.182914i
\(761\) −36.2071 + 20.9042i −1.31251 + 0.757776i −0.982511 0.186206i \(-0.940381\pi\)
−0.329996 + 0.943982i \(0.607047\pi\)
\(762\) −26.7972 + 5.18947i −0.970759 + 0.187995i
\(763\) 20.1554 + 14.4903i 0.729675 + 0.524584i
\(764\) 17.9487 10.3627i 0.649363 0.374910i
\(765\) 12.4067 + 30.8312i 0.448565 + 1.11471i
\(766\) −1.16788 + 0.674277i −0.0421973 + 0.0243626i
\(767\) −4.70821 0.281093i −0.170004 0.0101497i
\(768\) −0.565041 + 1.63729i −0.0203892 + 0.0590807i
\(769\) −10.4819 18.1551i −0.377986 0.654691i 0.612783 0.790251i \(-0.290050\pi\)
−0.990769 + 0.135560i \(0.956717\pi\)
\(770\) 11.0391 + 7.93633i 0.397822 + 0.286006i
\(771\) −12.0614 + 34.9497i −0.434380 + 1.25868i
\(772\) −8.21554 4.74324i −0.295684 0.170713i
\(773\) 23.1443i 0.832442i 0.909263 + 0.416221i \(0.136646\pi\)
−0.909263 + 0.416221i \(0.863354\pi\)