Properties

Label 546.2.bi.e.257.12
Level $546$
Weight $2$
Character 546.257
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bi (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 257.12
Character \(\chi\) \(=\) 546.257
Dual form 546.2.bi.e.17.12

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +(0.841952 - 1.51364i) q^{3} +1.00000 q^{4} +(2.84717 + 1.64381i) q^{5} +(-0.841952 + 1.51364i) q^{6} +(1.87202 - 1.86964i) q^{7} -1.00000 q^{8} +(-1.58223 - 2.54883i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(0.841952 - 1.51364i) q^{3} +1.00000 q^{4} +(2.84717 + 1.64381i) q^{5} +(-0.841952 + 1.51364i) q^{6} +(1.87202 - 1.86964i) q^{7} -1.00000 q^{8} +(-1.58223 - 2.54883i) q^{9} +(-2.84717 - 1.64381i) q^{10} +(-1.03510 + 1.79285i) q^{11} +(0.841952 - 1.51364i) q^{12} +(3.53365 - 0.716460i) q^{13} +(-1.87202 + 1.86964i) q^{14} +(4.88532 - 2.92558i) q^{15} +1.00000 q^{16} +1.12362 q^{17} +(1.58223 + 2.54883i) q^{18} +(-0.505430 - 0.875431i) q^{19} +(2.84717 + 1.64381i) q^{20} +(-1.25382 - 4.40771i) q^{21} +(1.03510 - 1.79285i) q^{22} +3.50085i q^{23} +(-0.841952 + 1.51364i) q^{24} +(2.90424 + 5.03029i) q^{25} +(-3.53365 + 0.716460i) q^{26} +(-5.19019 + 0.248945i) q^{27} +(1.87202 - 1.86964i) q^{28} +(-7.97573 + 4.60479i) q^{29} +(-4.88532 + 2.92558i) q^{30} +(-1.86666 - 3.23315i) q^{31} -1.00000 q^{32} +(1.84223 + 3.07626i) q^{33} -1.12362 q^{34} +(8.40328 - 2.24594i) q^{35} +(-1.58223 - 2.54883i) q^{36} +6.97226i q^{37} +(0.505430 + 0.875431i) q^{38} +(1.89070 - 5.95191i) q^{39} +(-2.84717 - 1.64381i) q^{40} +(8.52566 - 4.92229i) q^{41} +(1.25382 + 4.40771i) q^{42} +(3.35600 - 5.81276i) q^{43} +(-1.03510 + 1.79285i) q^{44} +(-0.315084 - 9.85784i) q^{45} -3.50085i q^{46} +(1.05515 + 0.609193i) q^{47} +(0.841952 - 1.51364i) q^{48} +(0.00888497 - 6.99999i) q^{49} +(-2.90424 - 5.03029i) q^{50} +(0.946035 - 1.70076i) q^{51} +(3.53365 - 0.716460i) q^{52} +(-5.05843 + 2.92049i) q^{53} +(5.19019 - 0.248945i) q^{54} +(-5.89421 + 3.40302i) q^{55} +(-1.87202 + 1.86964i) q^{56} +(-1.75064 + 0.0279705i) q^{57} +(7.97573 - 4.60479i) q^{58} -9.80909i q^{59} +(4.88532 - 2.92558i) q^{60} +(-0.209571 + 0.120996i) q^{61} +(1.86666 + 3.23315i) q^{62} +(-7.72736 - 1.81324i) q^{63} +1.00000 q^{64} +(11.2386 + 3.76878i) q^{65} +(-1.84223 - 3.07626i) q^{66} +(-10.2316 - 5.90721i) q^{67} +1.12362 q^{68} +(5.29905 + 2.94755i) q^{69} +(-8.40328 + 2.24594i) q^{70} +(3.94585 - 6.83441i) q^{71} +(1.58223 + 2.54883i) q^{72} +(0.878160 + 1.52102i) q^{73} -6.97226i q^{74} +(10.0593 - 0.160721i) q^{75} +(-0.505430 - 0.875431i) q^{76} +(1.41426 + 5.29150i) q^{77} +(-1.89070 + 5.95191i) q^{78} +(-2.48977 + 4.31240i) q^{79} +(2.84717 + 1.64381i) q^{80} +(-3.99307 + 8.06569i) q^{81} +(-8.52566 + 4.92229i) q^{82} -0.999900i q^{83} +(-1.25382 - 4.40771i) q^{84} +(3.19914 + 1.84702i) q^{85} +(-3.35600 + 5.81276i) q^{86} +(0.254829 + 15.9494i) q^{87} +(1.03510 - 1.79285i) q^{88} +7.61879i q^{89} +(0.315084 + 9.85784i) q^{90} +(5.27553 - 7.94788i) q^{91} +3.50085i q^{92} +(-6.46548 + 0.103301i) q^{93} +(-1.05515 - 0.609193i) q^{94} -3.32333i q^{95} +(-0.841952 + 1.51364i) q^{96} +(-3.21628 + 5.57077i) q^{97} +(-0.00888497 + 6.99999i) q^{98} +(6.20743 - 0.198407i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 34q^{2} + 3q^{3} + 34q^{4} - 9q^{5} - 3q^{6} + 4q^{7} - 34q^{8} - 11q^{9} + O(q^{10}) \) \( 34q - 34q^{2} + 3q^{3} + 34q^{4} - 9q^{5} - 3q^{6} + 4q^{7} - 34q^{8} - 11q^{9} + 9q^{10} - 9q^{11} + 3q^{12} + 8q^{13} - 4q^{14} - 4q^{15} + 34q^{16} - 12q^{17} + 11q^{18} - 5q^{19} - 9q^{20} + 4q^{21} + 9q^{22} - 3q^{24} + 16q^{25} - 8q^{26} + 18q^{27} + 4q^{28} - 27q^{29} + 4q^{30} - q^{31} - 34q^{32} + 21q^{33} + 12q^{34} + 3q^{35} - 11q^{36} + 5q^{38} + 7q^{39} + 9q^{40} + 3q^{41} - 4q^{42} - 3q^{43} - 9q^{44} + 9q^{45} + 27q^{47} + 3q^{48} - 2q^{49} - 16q^{50} + 24q^{51} + 8q^{52} + 21q^{53} - 18q^{54} - 57q^{55} - 4q^{56} + 17q^{57} + 27q^{58} - 4q^{60} - 51q^{61} + q^{62} + 3q^{63} + 34q^{64} + 21q^{65} - 21q^{66} - 21q^{67} - 12q^{68} + 42q^{69} - 3q^{70} + 15q^{71} + 11q^{72} - 19q^{73} + 54q^{75} - 5q^{76} - 9q^{77} - 7q^{78} - 9q^{79} - 9q^{80} - 23q^{81} - 3q^{82} + 4q^{84} - 42q^{85} + 3q^{86} + 81q^{87} + 9q^{88} - 9q^{90} - 72q^{91} + 17q^{93} - 27q^{94} - 3q^{96} + 19q^{97} + 2q^{98} + 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.841952 1.51364i 0.486101 0.873903i
\(4\) 1.00000 0.500000
\(5\) 2.84717 + 1.64381i 1.27329 + 0.735135i 0.975606 0.219529i \(-0.0704519\pi\)
0.297686 + 0.954664i \(0.403785\pi\)
\(6\) −0.841952 + 1.51364i −0.343725 + 0.617942i
\(7\) 1.87202 1.86964i 0.707555 0.706658i
\(8\) −1.00000 −0.353553
\(9\) −1.58223 2.54883i −0.527411 0.849610i
\(10\) −2.84717 1.64381i −0.900353 0.519819i
\(11\) −1.03510 + 1.79285i −0.312095 + 0.540564i −0.978816 0.204744i \(-0.934364\pi\)
0.666721 + 0.745307i \(0.267697\pi\)
\(12\) 0.841952 1.51364i 0.243051 0.436951i
\(13\) 3.53365 0.716460i 0.980058 0.198710i
\(14\) −1.87202 + 1.86964i −0.500317 + 0.499683i
\(15\) 4.88532 2.92558i 1.26139 0.755383i
\(16\) 1.00000 0.250000
\(17\) 1.12362 0.272518 0.136259 0.990673i \(-0.456492\pi\)
0.136259 + 0.990673i \(0.456492\pi\)
\(18\) 1.58223 + 2.54883i 0.372936 + 0.600765i
\(19\) −0.505430 0.875431i −0.115954 0.200838i 0.802207 0.597046i \(-0.203659\pi\)
−0.918161 + 0.396209i \(0.870326\pi\)
\(20\) 2.84717 + 1.64381i 0.636646 + 0.367568i
\(21\) −1.25382 4.40771i −0.273607 0.961842i
\(22\) 1.03510 1.79285i 0.220684 0.382236i
\(23\) 3.50085i 0.729979i 0.931012 + 0.364989i \(0.118927\pi\)
−0.931012 + 0.364989i \(0.881073\pi\)
\(24\) −0.841952 + 1.51364i −0.171863 + 0.308971i
\(25\) 2.90424 + 5.03029i 0.580848 + 1.00606i
\(26\) −3.53365 + 0.716460i −0.693006 + 0.140509i
\(27\) −5.19019 + 0.248945i −0.998852 + 0.0479096i
\(28\) 1.87202 1.86964i 0.353778 0.353329i
\(29\) −7.97573 + 4.60479i −1.48106 + 0.855088i −0.999769 0.0214746i \(-0.993164\pi\)
−0.481287 + 0.876563i \(0.659831\pi\)
\(30\) −4.88532 + 2.92558i −0.891934 + 0.534136i
\(31\) −1.86666 3.23315i −0.335262 0.580691i 0.648273 0.761408i \(-0.275492\pi\)
−0.983535 + 0.180717i \(0.942158\pi\)
\(32\) −1.00000 −0.176777
\(33\) 1.84223 + 3.07626i 0.320690 + 0.535509i
\(34\) −1.12362 −0.192699
\(35\) 8.40328 2.24594i 1.42041 0.379633i
\(36\) −1.58223 2.54883i −0.263706 0.424805i
\(37\) 6.97226i 1.14623i 0.819474 + 0.573116i \(0.194266\pi\)
−0.819474 + 0.573116i \(0.805734\pi\)
\(38\) 0.505430 + 0.875431i 0.0819916 + 0.142014i
\(39\) 1.89070 5.95191i 0.302754 0.953069i
\(40\) −2.84717 1.64381i −0.450177 0.259910i
\(41\) 8.52566 4.92229i 1.33148 0.768733i 0.345957 0.938250i \(-0.387554\pi\)
0.985527 + 0.169517i \(0.0542209\pi\)
\(42\) 1.25382 + 4.40771i 0.193469 + 0.680125i
\(43\) 3.35600 5.81276i 0.511785 0.886438i −0.488122 0.872776i \(-0.662318\pi\)
0.999907 0.0136621i \(-0.00434890\pi\)
\(44\) −1.03510 + 1.79285i −0.156047 + 0.270282i
\(45\) −0.315084 9.85784i −0.0469700 1.46952i
\(46\) 3.50085i 0.516173i
\(47\) 1.05515 + 0.609193i 0.153910 + 0.0888599i 0.574977 0.818170i \(-0.305011\pi\)
−0.421067 + 0.907029i \(0.638344\pi\)
\(48\) 0.841952 1.51364i 0.121525 0.218476i
\(49\) 0.00888497 6.99999i 0.00126928 0.999999i
\(50\) −2.90424 5.03029i −0.410722 0.711391i
\(51\) 0.946035 1.70076i 0.132471 0.238154i
\(52\) 3.53365 0.716460i 0.490029 0.0993551i
\(53\) −5.05843 + 2.92049i −0.694829 + 0.401160i −0.805419 0.592706i \(-0.798059\pi\)
0.110589 + 0.993866i \(0.464726\pi\)
\(54\) 5.19019 0.248945i 0.706295 0.0338772i
\(55\) −5.89421 + 3.40302i −0.794775 + 0.458863i
\(56\) −1.87202 + 1.86964i −0.250159 + 0.249841i
\(57\) −1.75064 + 0.0279705i −0.231878 + 0.00370479i
\(58\) 7.97573 4.60479i 1.04727 0.604639i
\(59\) 9.80909i 1.27703i −0.769607 0.638517i \(-0.779548\pi\)
0.769607 0.638517i \(-0.220452\pi\)
\(60\) 4.88532 2.92558i 0.630693 0.377691i
\(61\) −0.209571 + 0.120996i −0.0268328 + 0.0154919i −0.513356 0.858176i \(-0.671598\pi\)
0.486524 + 0.873667i \(0.338265\pi\)
\(62\) 1.86666 + 3.23315i 0.237066 + 0.410611i
\(63\) −7.72736 1.81324i −0.973556 0.228447i
\(64\) 1.00000 0.125000
\(65\) 11.2386 + 3.76878i 1.39398 + 0.467459i
\(66\) −1.84223 3.07626i −0.226762 0.378662i
\(67\) −10.2316 5.90721i −1.24999 0.721680i −0.278880 0.960326i \(-0.589963\pi\)
−0.971107 + 0.238645i \(0.923297\pi\)
\(68\) 1.12362 0.136259
\(69\) 5.29905 + 2.94755i 0.637930 + 0.354843i
\(70\) −8.40328 + 2.24594i −1.00438 + 0.268441i
\(71\) 3.94585 6.83441i 0.468286 0.811096i −0.531057 0.847336i \(-0.678205\pi\)
0.999343 + 0.0362405i \(0.0115383\pi\)
\(72\) 1.58223 + 2.54883i 0.186468 + 0.300383i
\(73\) 0.878160 + 1.52102i 0.102781 + 0.178022i 0.912829 0.408341i \(-0.133893\pi\)
−0.810049 + 0.586363i \(0.800559\pi\)
\(74\) 6.97226i 0.810509i
\(75\) 10.0593 0.160721i 1.16155 0.0185584i
\(76\) −0.505430 0.875431i −0.0579768 0.100419i
\(77\) 1.41426 + 5.29150i 0.161169 + 0.603023i
\(78\) −1.89070 + 5.95191i −0.214079 + 0.673921i
\(79\) −2.48977 + 4.31240i −0.280121 + 0.485183i −0.971414 0.237391i \(-0.923708\pi\)
0.691294 + 0.722574i \(0.257041\pi\)
\(80\) 2.84717 + 1.64381i 0.318323 + 0.183784i
\(81\) −3.99307 + 8.06569i −0.443675 + 0.896188i
\(82\) −8.52566 + 4.92229i −0.941502 + 0.543576i
\(83\) 0.999900i 0.109753i −0.998493 0.0548767i \(-0.982523\pi\)
0.998493 0.0548767i \(-0.0174766\pi\)
\(84\) −1.25382 4.40771i −0.136803 0.480921i
\(85\) 3.19914 + 1.84702i 0.346995 + 0.200338i
\(86\) −3.35600 + 5.81276i −0.361887 + 0.626806i
\(87\) 0.254829 + 15.9494i 0.0273206 + 1.70996i
\(88\) 1.03510 1.79285i 0.110342 0.191118i
\(89\) 7.61879i 0.807590i 0.914849 + 0.403795i \(0.132309\pi\)
−0.914849 + 0.403795i \(0.867691\pi\)
\(90\) 0.315084 + 9.85784i 0.0332128 + 1.03911i
\(91\) 5.27553 7.94788i 0.553025 0.833164i
\(92\) 3.50085i 0.364989i
\(93\) −6.46548 + 0.103301i −0.670439 + 0.0107118i
\(94\) −1.05515 0.609193i −0.108831 0.0628334i
\(95\) 3.32333i 0.340967i
\(96\) −0.841952 + 1.51364i −0.0859314 + 0.154486i
\(97\) −3.21628 + 5.57077i −0.326564 + 0.565626i −0.981828 0.189775i \(-0.939224\pi\)
0.655264 + 0.755400i \(0.272558\pi\)
\(98\) −0.00888497 + 6.99999i −0.000897518 + 0.707106i
\(99\) 6.20743 0.198407i 0.623870 0.0199407i
\(100\) 2.90424 + 5.03029i 0.290424 + 0.503029i
\(101\) −9.66204 + 16.7351i −0.961409 + 1.66521i −0.242441 + 0.970166i \(0.577948\pi\)
−0.718968 + 0.695043i \(0.755385\pi\)
\(102\) −0.946035 + 1.70076i −0.0936714 + 0.168400i
\(103\) −7.86720 4.54213i −0.775178 0.447549i 0.0595405 0.998226i \(-0.481036\pi\)
−0.834719 + 0.550677i \(0.814370\pi\)
\(104\) −3.53365 + 0.716460i −0.346503 + 0.0702547i
\(105\) 3.67561 14.6105i 0.358703 1.42584i
\(106\) 5.05843 2.92049i 0.491318 0.283663i
\(107\) 3.76351i 0.363832i −0.983314 0.181916i \(-0.941770\pi\)
0.983314 0.181916i \(-0.0582299\pi\)
\(108\) −5.19019 + 0.248945i −0.499426 + 0.0239548i
\(109\) −2.43945 + 1.40841i −0.233657 + 0.134902i −0.612258 0.790658i \(-0.709739\pi\)
0.378601 + 0.925560i \(0.376405\pi\)
\(110\) 5.89421 3.40302i 0.561991 0.324465i
\(111\) 10.5535 + 5.87031i 1.00170 + 0.557185i
\(112\) 1.87202 1.86964i 0.176889 0.176664i
\(113\) 4.57774 + 2.64296i 0.430637 + 0.248629i 0.699618 0.714517i \(-0.253354\pi\)
−0.268981 + 0.963146i \(0.586687\pi\)
\(114\) 1.75064 0.0279705i 0.163962 0.00261968i
\(115\) −5.75475 + 9.96752i −0.536633 + 0.929476i
\(116\) −7.97573 + 4.60479i −0.740528 + 0.427544i
\(117\) −7.41720 7.87307i −0.685720 0.727865i
\(118\) 9.80909i 0.903000i
\(119\) 2.10344 2.10077i 0.192822 0.192577i
\(120\) −4.88532 + 2.92558i −0.445967 + 0.267068i
\(121\) 3.35713 + 5.81473i 0.305194 + 0.528612i
\(122\) 0.209571 0.120996i 0.0189736 0.0109544i
\(123\) −0.272400 17.0491i −0.0245615 1.53727i
\(124\) −1.86666 3.23315i −0.167631 0.290346i
\(125\) 2.65798i 0.237737i
\(126\) 7.72736 + 1.81324i 0.688408 + 0.161536i
\(127\) 9.40084 + 16.2827i 0.834190 + 1.44486i 0.894688 + 0.446691i \(0.147398\pi\)
−0.0604988 + 0.998168i \(0.519269\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −5.97286 9.97385i −0.525881 0.878149i
\(130\) −11.2386 3.76878i −0.985692 0.330544i
\(131\) −1.45204 + 2.51500i −0.126865 + 0.219737i −0.922460 0.386092i \(-0.873825\pi\)
0.795595 + 0.605828i \(0.207158\pi\)
\(132\) 1.84223 + 3.07626i 0.160345 + 0.267754i
\(133\) −2.58291 0.693847i −0.223967 0.0601642i
\(134\) 10.2316 + 5.90721i 0.883874 + 0.510305i
\(135\) −15.1865 7.82290i −1.30705 0.673288i
\(136\) −1.12362 −0.0963497
\(137\) −21.1790 −1.80945 −0.904724 0.425999i \(-0.859923\pi\)
−0.904724 + 0.425999i \(0.859923\pi\)
\(138\) −5.29905 2.94755i −0.451085 0.250912i
\(139\) 17.6205 + 10.1732i 1.49455 + 0.862878i 0.999980 0.00626156i \(-0.00199313\pi\)
0.494568 + 0.869139i \(0.335326\pi\)
\(140\) 8.40328 2.24594i 0.710207 0.189816i
\(141\) 1.81049 1.08421i 0.152471 0.0913073i
\(142\) −3.94585 + 6.83441i −0.331128 + 0.573531i
\(143\) −2.37318 + 7.07690i −0.198455 + 0.591800i
\(144\) −1.58223 2.54883i −0.131853 0.212403i
\(145\) −30.2777 −2.51442
\(146\) −0.878160 1.52102i −0.0726770 0.125880i
\(147\) −10.5880 5.90711i −0.873285 0.487210i
\(148\) 6.97226i 0.573116i
\(149\) −6.62502 11.4749i −0.542743 0.940058i −0.998745 0.0500793i \(-0.984053\pi\)
0.456003 0.889978i \(-0.349281\pi\)
\(150\) −10.0593 + 0.160721i −0.821338 + 0.0131228i
\(151\) −15.0137 + 8.66818i −1.22180 + 0.705407i −0.965301 0.261138i \(-0.915902\pi\)
−0.256499 + 0.966545i \(0.582569\pi\)
\(152\) 0.505430 + 0.875431i 0.0409958 + 0.0710068i
\(153\) −1.77783 2.86392i −0.143729 0.231534i
\(154\) −1.41426 5.29150i −0.113964 0.426401i
\(155\) 12.2738i 0.985852i
\(156\) 1.89070 5.95191i 0.151377 0.476534i
\(157\) 12.2223 7.05652i 0.975442 0.563172i 0.0745511 0.997217i \(-0.476248\pi\)
0.900891 + 0.434045i \(0.142914\pi\)
\(158\) 2.48977 4.31240i 0.198075 0.343076i
\(159\) 0.161620 + 10.1156i 0.0128173 + 0.802217i
\(160\) −2.84717 1.64381i −0.225088 0.129955i
\(161\) 6.54534 + 6.55365i 0.515845 + 0.516500i
\(162\) 3.99307 8.06569i 0.313725 0.633701i
\(163\) −8.93321 + 5.15759i −0.699703 + 0.403974i −0.807237 0.590228i \(-0.799038\pi\)
0.107534 + 0.994201i \(0.465705\pi\)
\(164\) 8.52566 4.92229i 0.665742 0.384366i
\(165\) 0.188323 + 11.7869i 0.0146610 + 0.917610i
\(166\) 0.999900i 0.0776073i
\(167\) −12.1099 + 6.99167i −0.937094 + 0.541032i −0.889048 0.457813i \(-0.848633\pi\)
−0.0480461 + 0.998845i \(0.515299\pi\)
\(168\) 1.25382 + 4.40771i 0.0967345 + 0.340062i
\(169\) 11.9734 5.06344i 0.921028 0.389495i
\(170\) −3.19914 1.84702i −0.245363 0.141660i
\(171\) −1.43162 + 2.67339i −0.109478 + 0.204439i
\(172\) 3.35600 5.81276i 0.255893 0.443219i
\(173\) −2.53897 4.39763i −0.193035 0.334346i 0.753220 0.657769i \(-0.228500\pi\)
−0.946254 + 0.323423i \(0.895166\pi\)
\(174\) −0.254829 15.9494i −0.0193186 1.20912i
\(175\) 14.8416 + 3.98690i 1.12192 + 0.301381i
\(176\) −1.03510 + 1.79285i −0.0780236 + 0.135141i
\(177\) −14.8475 8.25878i −1.11600 0.620768i
\(178\) 7.61879i 0.571053i
\(179\) −10.1439 5.85660i −0.758193 0.437743i 0.0704536 0.997515i \(-0.477555\pi\)
−0.828647 + 0.559772i \(0.810889\pi\)
\(180\) −0.315084 9.85784i −0.0234850 0.734760i
\(181\) 22.6731i 1.68528i 0.538480 + 0.842638i \(0.318999\pi\)
−0.538480 + 0.842638i \(0.681001\pi\)
\(182\) −5.27553 + 7.94788i −0.391048 + 0.589136i
\(183\) 0.00669590 + 0.419088i 0.000494975 + 0.0309798i
\(184\) 3.50085i 0.258086i
\(185\) −11.4611 + 19.8512i −0.842636 + 1.45949i
\(186\) 6.46548 0.103301i 0.474072 0.00757440i
\(187\) −1.16306 + 2.01448i −0.0850514 + 0.147313i
\(188\) 1.05515 + 0.609193i 0.0769549 + 0.0444299i
\(189\) −9.25067 + 10.1698i −0.672887 + 0.739745i
\(190\) 3.32333i 0.241100i
\(191\) 22.3913 12.9276i 1.62017 0.935408i 0.633302 0.773905i \(-0.281699\pi\)
0.986872 0.161503i \(-0.0516342\pi\)
\(192\) 0.841952 1.51364i 0.0607626 0.109238i
\(193\) 18.8878 + 10.9049i 1.35957 + 0.784951i 0.989566 0.144078i \(-0.0460216\pi\)
0.370008 + 0.929029i \(0.379355\pi\)
\(194\) 3.21628 5.57077i 0.230916 0.399958i
\(195\) 15.1670 13.8381i 1.08613 0.990969i
\(196\) 0.00888497 6.99999i 0.000634641 0.500000i
\(197\) −3.51025 6.07993i −0.250095 0.433177i 0.713457 0.700699i \(-0.247128\pi\)
−0.963552 + 0.267522i \(0.913795\pi\)
\(198\) −6.20743 + 0.198407i −0.441143 + 0.0141002i
\(199\) 15.0791i 1.06893i 0.845191 + 0.534464i \(0.179487\pi\)
−0.845191 + 0.534464i \(0.820513\pi\)
\(200\) −2.90424 5.03029i −0.205361 0.355695i
\(201\) −17.5559 + 10.5134i −1.23830 + 0.741557i
\(202\) 9.66204 16.7351i 0.679819 1.17748i
\(203\) −6.32139 + 23.5320i −0.443675 + 1.65162i
\(204\) 0.946035 1.70076i 0.0662357 0.119077i
\(205\) 32.3653 2.26049
\(206\) 7.86720 + 4.54213i 0.548134 + 0.316465i
\(207\) 8.92308 5.53917i 0.620197 0.384999i
\(208\) 3.53365 0.716460i 0.245015 0.0496776i
\(209\) 2.09268 0.144754
\(210\) −3.67561 + 14.6105i −0.253641 + 1.00822i
\(211\) −10.2101 17.6845i −0.702895 1.21745i −0.967446 0.253079i \(-0.918557\pi\)
0.264550 0.964372i \(-0.414776\pi\)
\(212\) −5.05843 + 2.92049i −0.347415 + 0.200580i
\(213\) −7.02265 11.7269i −0.481184 0.803511i
\(214\) 3.76351i 0.257268i
\(215\) 19.1102 11.0333i 1.30330 0.752463i
\(216\) 5.19019 0.248945i 0.353147 0.0169386i
\(217\) −9.53925 2.56252i −0.647567 0.173955i
\(218\) 2.43945 1.40841i 0.165220 0.0953899i
\(219\) 3.04165 0.0485974i 0.205535 0.00328391i
\(220\) −5.89421 + 3.40302i −0.397387 + 0.229432i
\(221\) 3.97048 0.805029i 0.267084 0.0541521i
\(222\) −10.5535 5.87031i −0.708306 0.393989i
\(223\) 1.37326 + 2.37855i 0.0919602 + 0.159280i 0.908336 0.418241i \(-0.137353\pi\)
−0.816376 + 0.577521i \(0.804020\pi\)
\(224\) −1.87202 + 1.86964i −0.125079 + 0.124921i
\(225\) 8.22617 15.3615i 0.548411 1.02410i
\(226\) −4.57774 2.64296i −0.304507 0.175807i
\(227\) 8.98000i 0.596024i −0.954562 0.298012i \(-0.903676\pi\)
0.954562 0.298012i \(-0.0963235\pi\)
\(228\) −1.75064 + 0.0279705i −0.115939 + 0.00185239i
\(229\) 8.23500 14.2634i 0.544184 0.942554i −0.454474 0.890760i \(-0.650173\pi\)
0.998658 0.0517940i \(-0.0164939\pi\)
\(230\) 5.75475 9.96752i 0.379457 0.657239i
\(231\) 9.20018 + 2.31451i 0.605328 + 0.152284i
\(232\) 7.97573 4.60479i 0.523633 0.302319i
\(233\) 4.79194 + 2.76663i 0.313931 + 0.181248i 0.648684 0.761058i \(-0.275320\pi\)
−0.334753 + 0.942306i \(0.608653\pi\)
\(234\) 7.41720 + 7.87307i 0.484877 + 0.514679i
\(235\) 2.00280 + 3.46895i 0.130648 + 0.226289i
\(236\) 9.80909i 0.638517i
\(237\) 4.43118 + 7.39946i 0.287836 + 0.480646i
\(238\) −2.10344 + 2.10077i −0.136346 + 0.136173i
\(239\) −4.33497 −0.280406 −0.140203 0.990123i \(-0.544776\pi\)
−0.140203 + 0.990123i \(0.544776\pi\)
\(240\) 4.88532 2.92558i 0.315346 0.188846i
\(241\) 4.20698 0.270995 0.135498 0.990778i \(-0.456737\pi\)
0.135498 + 0.990778i \(0.456737\pi\)
\(242\) −3.35713 5.81473i −0.215805 0.373785i
\(243\) 8.84661 + 12.8350i 0.567510 + 0.823366i
\(244\) −0.209571 + 0.120996i −0.0134164 + 0.00774595i
\(245\) 11.5320 19.9155i 0.736751 1.27236i
\(246\) 0.272400 + 17.0491i 0.0173676 + 1.08701i
\(247\) −2.41322 2.73135i −0.153550 0.173791i
\(248\) 1.86666 + 3.23315i 0.118533 + 0.205305i
\(249\) −1.51349 0.841868i −0.0959137 0.0533512i
\(250\) 2.65798i 0.168105i
\(251\) −9.79168 + 16.9597i −0.618045 + 1.07049i 0.371797 + 0.928314i \(0.378742\pi\)
−0.989842 + 0.142172i \(0.954591\pi\)
\(252\) −7.72736 1.81324i −0.486778 0.114223i
\(253\) −6.27649 3.62374i −0.394600 0.227822i
\(254\) −9.40084 16.2827i −0.589861 1.02167i
\(255\) 5.48925 3.28725i 0.343750 0.205855i
\(256\) 1.00000 0.0625000
\(257\) −17.9497 −1.11967 −0.559837 0.828603i \(-0.689136\pi\)
−0.559837 + 0.828603i \(0.689136\pi\)
\(258\) 5.97286 + 9.97385i 0.371854 + 0.620945i
\(259\) 13.0356 + 13.0522i 0.809994 + 0.811023i
\(260\) 11.2386 + 3.76878i 0.696990 + 0.233730i
\(261\) 24.3563 + 13.0429i 1.50762 + 0.807337i
\(262\) 1.45204 2.51500i 0.0897072 0.155377i
\(263\) 24.1161 + 13.9235i 1.48707 + 0.858557i 0.999891 0.0147476i \(-0.00469446\pi\)
0.487174 + 0.873305i \(0.338028\pi\)
\(264\) −1.84223 3.07626i −0.113381 0.189331i
\(265\) −19.2029 −1.17963
\(266\) 2.58291 + 0.693847i 0.158369 + 0.0425425i
\(267\) 11.5321 + 6.41466i 0.705755 + 0.392571i
\(268\) −10.2316 5.90721i −0.624994 0.360840i
\(269\) −28.3069 −1.72590 −0.862951 0.505288i \(-0.831386\pi\)
−0.862951 + 0.505288i \(0.831386\pi\)
\(270\) 15.1865 + 7.82290i 0.924224 + 0.476087i
\(271\) 25.3037 1.53709 0.768546 0.639795i \(-0.220981\pi\)
0.768546 + 0.639795i \(0.220981\pi\)
\(272\) 1.12362 0.0681295
\(273\) −7.58852 14.6770i −0.459278 0.888292i
\(274\) 21.1790 1.27947
\(275\) −12.0247 −0.725118
\(276\) 5.29905 + 2.94755i 0.318965 + 0.177422i
\(277\) −13.0935 −0.786713 −0.393356 0.919386i \(-0.628686\pi\)
−0.393356 + 0.919386i \(0.628686\pi\)
\(278\) −17.6205 10.1732i −1.05680 0.610147i
\(279\) −5.28726 + 9.87340i −0.316540 + 0.591105i
\(280\) −8.40328 + 2.24594i −0.502192 + 0.134220i
\(281\) 16.5616 0.987980 0.493990 0.869468i \(-0.335538\pi\)
0.493990 + 0.869468i \(0.335538\pi\)
\(282\) −1.81049 + 1.08421i −0.107813 + 0.0645640i
\(283\) −15.9278 9.19594i −0.946811 0.546642i −0.0547224 0.998502i \(-0.517427\pi\)
−0.892089 + 0.451860i \(0.850761\pi\)
\(284\) 3.94585 6.83441i 0.234143 0.405548i
\(285\) −5.03034 2.79808i −0.297971 0.165744i
\(286\) 2.37318 7.07690i 0.140329 0.418466i
\(287\) 6.75725 25.1545i 0.398868 1.48483i
\(288\) 1.58223 + 2.54883i 0.0932340 + 0.150191i
\(289\) −15.7375 −0.925734
\(290\) 30.2777 1.77797
\(291\) 5.72420 + 9.55863i 0.335559 + 0.560337i
\(292\) 0.878160 + 1.52102i 0.0513904 + 0.0890108i
\(293\) 7.37759 + 4.25945i 0.431003 + 0.248840i 0.699774 0.714364i \(-0.253284\pi\)
−0.268771 + 0.963204i \(0.586617\pi\)
\(294\) 10.5880 + 5.90711i 0.617506 + 0.344510i
\(295\) 16.1243 27.9281i 0.938793 1.62604i
\(296\) 6.97226i 0.405254i
\(297\) 4.92604 9.56289i 0.285838 0.554895i
\(298\) 6.62502 + 11.4749i 0.383777 + 0.664721i
\(299\) 2.50822 + 12.3708i 0.145054 + 0.715422i
\(300\) 10.0593 0.160721i 0.580774 0.00927922i
\(301\) −4.58529 17.1561i −0.264292 0.988861i
\(302\) 15.0137 8.66818i 0.863943 0.498798i
\(303\) 17.1961 + 28.7151i 0.987889 + 1.64964i
\(304\) −0.505430 0.875431i −0.0289884 0.0502094i
\(305\) −0.795576 −0.0455546
\(306\) 1.77783 + 2.86392i 0.101632 + 0.163719i
\(307\) −21.3161 −1.21658 −0.608288 0.793716i \(-0.708143\pi\)
−0.608288 + 0.793716i \(0.708143\pi\)
\(308\) 1.41426 + 5.29150i 0.0805847 + 0.301511i
\(309\) −13.4990 + 8.08388i −0.767930 + 0.459876i
\(310\) 12.2738i 0.697103i
\(311\) −7.40693 12.8292i −0.420008 0.727476i 0.575931 0.817498i \(-0.304639\pi\)
−0.995940 + 0.0900223i \(0.971306\pi\)
\(312\) −1.89070 + 5.95191i −0.107040 + 0.336961i
\(313\) −22.7031 13.1077i −1.28326 0.740889i −0.305814 0.952091i \(-0.598929\pi\)
−0.977442 + 0.211203i \(0.932262\pi\)
\(314\) −12.2223 + 7.05652i −0.689742 + 0.398223i
\(315\) −19.0205 17.8649i −1.07168 1.00658i
\(316\) −2.48977 + 4.31240i −0.140060 + 0.242592i
\(317\) 9.80532 16.9833i 0.550722 0.953878i −0.447501 0.894283i \(-0.647686\pi\)
0.998223 0.0595945i \(-0.0189808\pi\)
\(318\) −0.161620 10.1156i −0.00906319 0.567253i
\(319\) 19.0657i 1.06747i
\(320\) 2.84717 + 1.64381i 0.159161 + 0.0918919i
\(321\) −5.69661 3.16869i −0.317954 0.176859i
\(322\) −6.54534 6.55365i −0.364758 0.365221i
\(323\) −0.567912 0.983652i −0.0315995 0.0547319i
\(324\) −3.99307 + 8.06569i −0.221837 + 0.448094i
\(325\) 13.8666 + 15.6945i 0.769179 + 0.870575i
\(326\) 8.93321 5.15759i 0.494765 0.285652i
\(327\) 0.0779417 + 4.87827i 0.00431019 + 0.269769i
\(328\) −8.52566 + 4.92229i −0.470751 + 0.271788i
\(329\) 3.11423 0.832338i 0.171693 0.0458883i
\(330\) −0.188323 11.7869i −0.0103669 0.648848i
\(331\) 22.5837 13.0387i 1.24131 0.716671i 0.271949 0.962312i \(-0.412332\pi\)
0.969361 + 0.245641i \(0.0789985\pi\)
\(332\) 0.999900i 0.0548767i
\(333\) 17.7711 11.0317i 0.973851 0.604536i
\(334\) 12.1099 6.99167i 0.662626 0.382567i
\(335\) −19.4207 33.6376i −1.06107 1.83782i
\(336\) −1.25382 4.40771i −0.0684016 0.240460i
\(337\) −13.5184 −0.736394 −0.368197 0.929748i \(-0.620025\pi\)
−0.368197 + 0.929748i \(0.620025\pi\)
\(338\) −11.9734 + 5.06344i −0.651265 + 0.275415i
\(339\) 7.85473 4.70382i 0.426610 0.255476i
\(340\) 3.19914 + 1.84702i 0.173498 + 0.100169i
\(341\) 7.72873 0.418534
\(342\) 1.43162 2.67339i 0.0774129 0.144561i
\(343\) −13.0708 13.1207i −0.705759 0.708452i
\(344\) −3.35600 + 5.81276i −0.180943 + 0.313403i
\(345\) 10.2420 + 17.1028i 0.551413 + 0.920784i
\(346\) 2.53897 + 4.39763i 0.136496 + 0.236418i
\(347\) 33.5765i 1.80248i 0.433322 + 0.901239i \(0.357341\pi\)
−0.433322 + 0.901239i \(0.642659\pi\)
\(348\) 0.254829 + 15.9494i 0.0136603 + 0.854979i
\(349\) 11.8845 + 20.5845i 0.636161 + 1.10186i 0.986268 + 0.165153i \(0.0528118\pi\)
−0.350107 + 0.936710i \(0.613855\pi\)
\(350\) −14.8416 3.98690i −0.793318 0.213109i
\(351\) −18.1619 + 4.59825i −0.969413 + 0.245436i
\(352\) 1.03510 1.79285i 0.0551710 0.0955590i
\(353\) 9.28444 + 5.36037i 0.494161 + 0.285304i 0.726299 0.687379i \(-0.241239\pi\)
−0.232138 + 0.972683i \(0.574572\pi\)
\(354\) 14.8475 + 8.25878i 0.789134 + 0.438949i
\(355\) 22.4690 12.9725i 1.19253 0.688508i
\(356\) 7.61879i 0.403795i
\(357\) −1.40882 4.95260i −0.0745628 0.262119i
\(358\) 10.1439 + 5.85660i 0.536123 + 0.309531i
\(359\) 7.26878 12.5899i 0.383632 0.664469i −0.607947 0.793978i \(-0.708007\pi\)
0.991578 + 0.129508i \(0.0413399\pi\)
\(360\) 0.315084 + 9.85784i 0.0166064 + 0.519554i
\(361\) 8.98908 15.5695i 0.473110 0.819450i
\(362\) 22.6731i 1.19167i
\(363\) 11.6280 0.185784i 0.610310 0.00975113i
\(364\) 5.27553 7.94788i 0.276513 0.416582i
\(365\) 5.77412i 0.302231i
\(366\) −0.00669590 0.419088i −0.000350000 0.0219061i
\(367\) −15.1524 8.74823i −0.790948 0.456654i 0.0493484 0.998782i \(-0.484286\pi\)
−0.840296 + 0.542128i \(0.817619\pi\)
\(368\) 3.50085i 0.182495i
\(369\) −26.0357 13.9422i −1.35536 0.725804i
\(370\) 11.4611 19.8512i 0.595834 1.03201i
\(371\) −4.00920 + 14.9247i −0.208147 + 0.774849i
\(372\) −6.46548 + 0.103301i −0.335219 + 0.00535591i
\(373\) 5.93324 + 10.2767i 0.307211 + 0.532106i 0.977751 0.209768i \(-0.0672708\pi\)
−0.670540 + 0.741874i \(0.733937\pi\)
\(374\) 1.16306 2.01448i 0.0601404 0.104166i
\(375\) 4.02323 + 2.23789i 0.207759 + 0.115564i
\(376\) −1.05515 0.609193i −0.0544153 0.0314167i
\(377\) −24.8843 + 21.9860i −1.28161 + 1.13234i
\(378\) 9.25067 10.1698i 0.475803 0.523079i
\(379\) 10.9141 6.30127i 0.560620 0.323674i −0.192774 0.981243i \(-0.561748\pi\)
0.753394 + 0.657569i \(0.228415\pi\)
\(380\) 3.32333i 0.170483i
\(381\) 32.5613 0.520243i 1.66817 0.0266528i
\(382\) −22.3913 + 12.9276i −1.14564 + 0.661433i
\(383\) −0.920885 + 0.531673i −0.0470550 + 0.0271672i −0.523343 0.852122i \(-0.675315\pi\)
0.476288 + 0.879289i \(0.341982\pi\)
\(384\) −0.841952 + 1.51364i −0.0429657 + 0.0772428i
\(385\) −4.67162 + 17.3906i −0.238088 + 0.886305i
\(386\) −18.8878 10.9049i −0.961364 0.555044i
\(387\) −20.1257 + 0.643275i −1.02305 + 0.0326995i
\(388\) −3.21628 + 5.57077i −0.163282 + 0.282813i
\(389\) −2.28039 + 1.31658i −0.115620 + 0.0667534i −0.556695 0.830717i \(-0.687931\pi\)
0.441075 + 0.897470i \(0.354597\pi\)
\(390\) −15.1670 + 13.8381i −0.768009 + 0.700721i
\(391\) 3.93363i 0.198932i
\(392\) −0.00888497 + 6.99999i −0.000448759 + 0.353553i
\(393\) 2.58427 + 4.31538i 0.130359 + 0.217682i
\(394\) 3.51025 + 6.07993i 0.176844 + 0.306302i
\(395\) −14.1776 + 8.18542i −0.713351 + 0.411853i
\(396\) 6.20743 0.198407i 0.311935 0.00997033i
\(397\) −4.27357 7.40204i −0.214484 0.371498i 0.738629 0.674113i \(-0.235474\pi\)
−0.953113 + 0.302615i \(0.902140\pi\)
\(398\) 15.0791i 0.755846i
\(399\) −3.22493 + 3.32543i −0.161448 + 0.166480i
\(400\) 2.90424 + 5.03029i 0.145212 + 0.251515i
\(401\) −15.5754 −0.777797 −0.388898 0.921281i \(-0.627144\pi\)
−0.388898 + 0.921281i \(0.627144\pi\)
\(402\) 17.5559 10.5134i 0.875609 0.524360i
\(403\) −8.91255 10.0874i −0.443966 0.502491i
\(404\) −9.66204 + 16.7351i −0.480705 + 0.832605i
\(405\) −24.6274 + 16.4005i −1.22375 + 0.814948i
\(406\) 6.32139 23.5320i 0.313725 1.16787i
\(407\) −12.5002 7.21699i −0.619612 0.357733i
\(408\) −0.946035 + 1.70076i −0.0468357 + 0.0842002i
\(409\) 10.8097 0.534504 0.267252 0.963627i \(-0.413884\pi\)
0.267252 + 0.963627i \(0.413884\pi\)
\(410\) −32.3653 −1.59841
\(411\) −17.8317 + 32.0575i −0.879575 + 1.58128i
\(412\) −7.86720 4.54213i −0.387589 0.223775i
\(413\) −18.3395 18.3628i −0.902427 0.903573i
\(414\) −8.92308 + 5.53917i −0.438546 + 0.272235i
\(415\) 1.64365 2.84688i 0.0806836 0.139748i
\(416\) −3.53365 + 0.716460i −0.173251 + 0.0351273i
\(417\) 30.2341 18.1058i 1.48057 0.886643i
\(418\) −2.09268 −0.102357
\(419\) −7.13932 12.3657i −0.348779 0.604102i 0.637254 0.770654i \(-0.280070\pi\)
−0.986033 + 0.166551i \(0.946737\pi\)
\(420\) 3.67561 14.6105i 0.179351 0.712921i
\(421\) 31.1553i 1.51842i 0.650848 + 0.759208i \(0.274414\pi\)
−0.650848 + 0.759208i \(0.725586\pi\)
\(422\) 10.2101 + 17.6845i 0.497022 + 0.860867i
\(423\) −0.116769 3.65329i −0.00567753 0.177629i
\(424\) 5.05843 2.92049i 0.245659 0.141831i
\(425\) 3.26326 + 5.65214i 0.158292 + 0.274169i
\(426\) 7.02265 + 11.7269i 0.340249 + 0.568168i
\(427\) −0.166101 + 0.618327i −0.00803819 + 0.0299230i
\(428\) 3.76351i 0.181916i
\(429\) 8.71380 + 9.55056i 0.420706 + 0.461105i
\(430\) −19.1102 + 11.0333i −0.921575 + 0.532071i
\(431\) 10.7951 18.6976i 0.519981 0.900634i −0.479749 0.877406i \(-0.659272\pi\)
0.999730 0.0232279i \(-0.00739433\pi\)
\(432\) −5.19019 + 0.248945i −0.249713 + 0.0119774i
\(433\) 16.2009 + 9.35358i 0.778565 + 0.449505i 0.835921 0.548849i \(-0.184934\pi\)
−0.0573567 + 0.998354i \(0.518267\pi\)
\(434\) 9.53925 + 2.56252i 0.457899 + 0.123005i
\(435\) −25.4923 + 45.8296i −1.22226 + 2.19736i
\(436\) −2.43945 + 1.40841i −0.116828 + 0.0674508i
\(437\) 3.06476 1.76944i 0.146607 0.0846437i
\(438\) −3.04165 + 0.0485974i −0.145336 + 0.00232207i
\(439\) 14.3709i 0.685885i −0.939356 0.342943i \(-0.888576\pi\)
0.939356 0.342943i \(-0.111424\pi\)
\(440\) 5.89421 3.40302i 0.280995 0.162233i
\(441\) −17.8559 + 11.0530i −0.850279 + 0.526332i
\(442\) −3.97048 + 0.805029i −0.188857 + 0.0382913i
\(443\) 1.21594 + 0.702023i 0.0577711 + 0.0333541i 0.528607 0.848866i \(-0.322714\pi\)
−0.470836 + 0.882221i \(0.656048\pi\)
\(444\) 10.5535 + 5.87031i 0.500848 + 0.278593i
\(445\) −12.5239 + 21.6920i −0.593688 + 1.02830i
\(446\) −1.37326 2.37855i −0.0650257 0.112628i
\(447\) −22.9468 + 0.366629i −1.08535 + 0.0173409i
\(448\) 1.87202 1.86964i 0.0884444 0.0883322i
\(449\) 11.0266 19.0987i 0.520379 0.901323i −0.479340 0.877629i \(-0.659124\pi\)
0.999719 0.0236937i \(-0.00754264\pi\)
\(450\) −8.22617 + 15.3615i −0.387785 + 0.724149i
\(451\) 20.3803i 0.959669i
\(452\) 4.57774 + 2.64296i 0.215319 + 0.124314i
\(453\) 0.479698 + 30.0236i 0.0225382 + 1.41063i
\(454\) 8.98000i 0.421453i
\(455\) 28.0851 13.9570i 1.31665 0.654313i
\(456\) 1.75064 0.0279705i 0.0819812 0.00130984i
\(457\) 42.3253i 1.97990i −0.141432 0.989948i \(-0.545171\pi\)
0.141432 0.989948i \(-0.454829\pi\)
\(458\) −8.23500 + 14.2634i −0.384796 + 0.666486i
\(459\) −5.83180 + 0.279720i −0.272205 + 0.0130562i
\(460\) −5.75475 + 9.96752i −0.268317 + 0.464738i
\(461\) 10.2913 + 5.94166i 0.479312 + 0.276731i 0.720130 0.693839i \(-0.244082\pi\)
−0.240818 + 0.970570i \(0.577416\pi\)
\(462\) −9.20018 2.31451i −0.428031 0.107681i
\(463\) 3.56440i 0.165652i 0.996564 + 0.0828258i \(0.0263945\pi\)
−0.996564 + 0.0828258i \(0.973605\pi\)
\(464\) −7.97573 + 4.60479i −0.370264 + 0.213772i
\(465\) −18.5781 10.3339i −0.861539 0.479224i
\(466\) −4.79194 2.76663i −0.221983 0.128162i
\(467\) −3.56143 + 6.16858i −0.164803 + 0.285448i −0.936585 0.350439i \(-0.886032\pi\)
0.771782 + 0.635887i \(0.219366\pi\)
\(468\) −7.41720 7.87307i −0.342860 0.363933i
\(469\) −30.1981 + 8.07101i −1.39442 + 0.372684i
\(470\) −2.00280 3.46895i −0.0923821 0.160011i
\(471\) −0.390508 24.4414i −0.0179937 1.12620i
\(472\) 9.80909i 0.451500i
\(473\) 6.94759 + 12.0336i 0.319451 + 0.553305i
\(474\) −4.43118 7.39946i −0.203531 0.339868i
\(475\) 2.93578 5.08492i 0.134703 0.233312i
\(476\) 2.10344 2.10077i 0.0964108 0.0962885i
\(477\) 15.4474 + 8.27219i 0.707290 + 0.378758i
\(478\) 4.33497 0.198277
\(479\) 26.4547 + 15.2736i 1.20875 + 0.697870i 0.962485 0.271334i \(-0.0874648\pi\)
0.246260 + 0.969204i \(0.420798\pi\)
\(480\) −4.88532 + 2.92558i −0.222984 + 0.133534i
\(481\) 4.99535 + 24.6375i 0.227768 + 1.12337i
\(482\) −4.20698 −0.191623
\(483\) 15.4308 4.38945i 0.702124 0.199727i
\(484\) 3.35713 + 5.81473i 0.152597 + 0.264306i
\(485\) −18.3146 + 10.5739i −0.831623 + 0.480138i
\(486\) −8.84661 12.8350i −0.401290 0.582208i
\(487\) 32.0202i 1.45098i −0.688235 0.725488i \(-0.741614\pi\)
0.688235 0.725488i \(-0.258386\pi\)
\(488\) 0.209571 0.120996i 0.00948681 0.00547721i
\(489\) 0.285421 + 17.8641i 0.0129072 + 0.807844i
\(490\) −11.5320 + 19.9155i −0.520962 + 0.899693i
\(491\) 13.0865 7.55549i 0.590585 0.340975i −0.174744 0.984614i \(-0.555910\pi\)
0.765329 + 0.643639i \(0.222576\pi\)
\(492\) −0.272400 17.0491i −0.0122807 0.768635i
\(493\) −8.96170 + 5.17404i −0.403615 + 0.233027i
\(494\) 2.41322 + 2.73135i 0.108576 + 0.122889i
\(495\) 17.9997 + 9.63896i 0.809028 + 0.433239i
\(496\) −1.86666 3.23315i −0.0838156 0.145173i
\(497\) −5.39121 20.1715i −0.241829 0.904813i
\(498\) 1.51349 + 0.841868i 0.0678212 + 0.0377250i
\(499\) −4.18606 2.41682i −0.187394 0.108192i 0.403368 0.915038i \(-0.367839\pi\)
−0.590762 + 0.806846i \(0.701173\pi\)
\(500\) 2.65798i 0.118868i
\(501\) 0.386919 + 24.2168i 0.0172863 + 1.08193i
\(502\) 9.79168 16.9597i 0.437024 0.756948i
\(503\) 13.7946 23.8930i 0.615073 1.06534i −0.375299 0.926904i \(-0.622460\pi\)
0.990372 0.138433i \(-0.0442066\pi\)
\(504\) 7.72736 + 1.81324i 0.344204 + 0.0807682i
\(505\) −55.0189 + 31.7652i −2.44831 + 1.41353i
\(506\) 6.27649 + 3.62374i 0.279024 + 0.161095i
\(507\) 2.41676 22.3866i 0.107332 0.994223i
\(508\) 9.40084 + 16.2827i 0.417095 + 0.722429i
\(509\) 31.3889i 1.39129i −0.718386 0.695645i \(-0.755119\pi\)
0.718386 0.695645i \(-0.244881\pi\)
\(510\) −5.48925 + 3.28725i −0.243068 + 0.145562i
\(511\) 4.48769 + 1.20553i 0.198524 + 0.0533293i
\(512\) −1.00000 −0.0441942
\(513\) 2.84121 + 4.41782i 0.125443 + 0.195052i
\(514\) 17.9497 0.791728
\(515\) −14.9328 25.8644i −0.658019 1.13972i
\(516\) −5.97286 9.97385i −0.262940 0.439074i
\(517\) −2.18438 + 1.26115i −0.0960688 + 0.0554654i
\(518\) −13.0356 13.0522i −0.572753 0.573480i
\(519\) −8.79414 + 0.140507i −0.386020 + 0.00616757i
\(520\) −11.2386 3.76878i −0.492846 0.165272i
\(521\) 0.178115 + 0.308505i 0.00780338 + 0.0135159i 0.869901 0.493227i \(-0.164183\pi\)
−0.862097 + 0.506743i \(0.830849\pi\)
\(522\) −24.3563 13.0429i −1.06605 0.570874i
\(523\) 24.9103i 1.08925i 0.838679 + 0.544626i \(0.183328\pi\)
−0.838679 + 0.544626i \(0.816672\pi\)
\(524\) −1.45204 + 2.51500i −0.0634326 + 0.109868i
\(525\) 18.5307 19.1081i 0.808745 0.833948i
\(526\) −24.1161 13.9235i −1.05151 0.607092i
\(527\) −2.09742 3.63284i −0.0913650 0.158249i
\(528\) 1.84223 + 3.07626i 0.0801726 + 0.133877i
\(529\) 10.7440 0.467131
\(530\) 19.2029 0.834122
\(531\) −25.0017 + 15.5203i −1.08498 + 0.673523i
\(532\) −2.58291 0.693847i −0.111984 0.0300821i
\(533\) 26.6001 23.5020i 1.15218 1.01798i
\(534\) −11.5321 6.41466i −0.499044 0.277589i
\(535\) 6.18650 10.7153i 0.267466 0.463264i
\(536\) 10.2316 + 5.90721i 0.441937 + 0.255153i
\(537\) −17.4055 + 10.4233i −0.751103 + 0.449799i
\(538\) 28.3069 1.22040
\(539\) 12.5407 + 7.26163i 0.540167 + 0.312780i
\(540\) −15.1865 7.82290i −0.653525 0.336644i
\(541\) 17.5713 + 10.1448i 0.755447 + 0.436158i 0.827659 0.561232i \(-0.189672\pi\)
−0.0722115 + 0.997389i \(0.523006\pi\)
\(542\) −25.3037 −1.08689
\(543\) 34.3190 + 19.0896i 1.47277 + 0.819215i
\(544\) −1.12362 −0.0481748
\(545\) −9.26068 −0.396684
\(546\) 7.58852 + 14.6770i 0.324759 + 0.628118i
\(547\) −18.3443 −0.784344 −0.392172 0.919892i \(-0.628276\pi\)
−0.392172 + 0.919892i \(0.628276\pi\)
\(548\) −21.1790 −0.904724
\(549\) 0.639987 + 0.342716i 0.0273140 + 0.0146268i
\(550\) 12.0247 0.512736
\(551\) 8.06235 + 4.65480i 0.343468 + 0.198301i
\(552\) −5.29905 2.94755i −0.225542 0.125456i
\(553\) 3.40176 + 12.7279i 0.144658 + 0.541243i
\(554\) 13.0935 0.556290
\(555\) 20.3979 + 34.0618i 0.865844 + 1.44584i
\(556\) 17.6205 + 10.1732i 0.747274 + 0.431439i
\(557\) −6.08906 + 10.5466i −0.258002 + 0.446872i −0.965707 0.259636i \(-0.916397\pi\)
0.707705 + 0.706508i \(0.249731\pi\)
\(558\) 5.28726 9.87340i 0.223828 0.417975i
\(559\) 7.69432 22.9447i 0.325435 0.970457i
\(560\) 8.40328 2.24594i 0.355103 0.0949082i
\(561\) 2.06996 + 3.45655i 0.0873939 + 0.145936i
\(562\) −16.5616 −0.698608
\(563\) 11.3717 0.479262 0.239631 0.970864i \(-0.422974\pi\)
0.239631 + 0.970864i \(0.422974\pi\)
\(564\) 1.81049 1.08421i 0.0762353 0.0456536i
\(565\) 8.68905 + 15.0499i 0.365551 + 0.633153i
\(566\) 15.9278 + 9.19594i 0.669497 + 0.386534i
\(567\) 7.60485 + 22.5647i 0.319374 + 0.947629i
\(568\) −3.94585 + 6.83441i −0.165564 + 0.286766i
\(569\) 24.0497i 1.00822i −0.863641 0.504108i \(-0.831821\pi\)
0.863641 0.504108i \(-0.168179\pi\)
\(570\) 5.03034 + 2.79808i 0.210698 + 0.117199i
\(571\) 3.64194 + 6.30802i 0.152410 + 0.263983i 0.932113 0.362167i \(-0.117963\pi\)
−0.779703 + 0.626150i \(0.784630\pi\)
\(572\) −2.37318 + 7.07690i −0.0992277 + 0.295900i
\(573\) −0.715414 44.7768i −0.0298868 1.87058i
\(574\) −6.75725 + 25.1545i −0.282042 + 1.04993i
\(575\) −17.6103 + 10.1673i −0.734401 + 0.424007i
\(576\) −1.58223 2.54883i −0.0659264 0.106201i
\(577\) −2.11186 3.65785i −0.0879179 0.152278i 0.818713 0.574203i \(-0.194688\pi\)
−0.906631 + 0.421925i \(0.861355\pi\)
\(578\) 15.7375 0.654593
\(579\) 32.4087 19.4080i 1.34686 0.806570i
\(580\) −30.2777 −1.25721
\(581\) −1.86945 1.87183i −0.0775581 0.0776566i
\(582\) −5.72420 9.55863i −0.237276 0.396218i
\(583\) 12.0920i 0.500799i
\(584\) −0.878160 1.52102i −0.0363385 0.0629402i
\(585\) −8.17615 34.6084i −0.338042 1.43088i
\(586\) −7.37759 4.25945i −0.304765 0.175956i
\(587\) 39.5103 22.8113i 1.63077 0.941523i 0.646908 0.762568i \(-0.276062\pi\)
0.983857 0.178954i \(-0.0572714\pi\)
\(588\) −10.5880 5.90711i −0.436642 0.243605i
\(589\) −1.88693 + 3.26827i −0.0777498 + 0.134667i
\(590\) −16.1243 + 27.9281i −0.663827 + 1.14978i
\(591\) −12.1583 + 0.194257i −0.500126 + 0.00799068i
\(592\) 6.97226i 0.286558i
\(593\) 21.1653 + 12.2198i 0.869154 + 0.501807i 0.867067 0.498191i \(-0.166002\pi\)
0.00208732 + 0.999998i \(0.499336\pi\)
\(594\) −4.92604 + 9.56289i −0.202118 + 0.392370i
\(595\) 9.44210 2.52358i 0.387088 0.103457i
\(596\) −6.62502 11.4749i −0.271371 0.470029i
\(597\) 22.8244 + 12.6959i 0.934139 + 0.519607i
\(598\) −2.50822 12.3708i −0.102569 0.505879i
\(599\) −11.4214 + 6.59416i −0.466667 + 0.269430i −0.714843 0.699285i \(-0.753502\pi\)
0.248177 + 0.968715i \(0.420169\pi\)
\(600\) −10.0593 + 0.160721i −0.410669 + 0.00656140i
\(601\) 34.6176 19.9865i 1.41208 0.815266i 0.416497 0.909137i \(-0.363258\pi\)
0.995584 + 0.0938714i \(0.0299242\pi\)
\(602\) 4.58529 + 17.1561i 0.186883 + 0.699230i
\(603\) 1.13229 + 35.4252i 0.0461103 + 1.44262i
\(604\) −15.0137 + 8.66818i −0.610900 + 0.352703i
\(605\) 22.0740i 0.897436i
\(606\) −17.1961 28.7151i −0.698543 1.16647i
\(607\) −17.4747 + 10.0890i −0.709275 + 0.409500i −0.810793 0.585334i \(-0.800964\pi\)
0.101518 + 0.994834i \(0.467630\pi\)
\(608\) 0.505430 + 0.875431i 0.0204979 + 0.0355034i
\(609\) 30.2968 + 29.3811i 1.22769 + 1.19058i
\(610\) 0.795576 0.0322119
\(611\) 4.16500 + 1.39670i 0.168498 + 0.0565044i
\(612\) −1.77783 2.86392i −0.0718646 0.115767i
\(613\) 21.6006 + 12.4711i 0.872440 + 0.503703i 0.868158 0.496288i \(-0.165304\pi\)
0.00428146 + 0.999991i \(0.498637\pi\)
\(614\) 21.3161 0.860249
\(615\) 27.2500 48.9895i 1.09883 1.97545i
\(616\) −1.41426 5.29150i −0.0569820 0.213201i
\(617\) −1.22499 + 2.12175i −0.0493164 + 0.0854185i −0.889630 0.456682i \(-0.849038\pi\)
0.840313 + 0.542101i \(0.182371\pi\)
\(618\) 13.4990 8.08388i 0.543008 0.325181i
\(619\) −11.9145 20.6365i −0.478883 0.829449i 0.520824 0.853664i \(-0.325625\pi\)
−0.999707 + 0.0242147i \(0.992291\pi\)
\(620\) 12.2738i 0.492926i
\(621\) −0.871522 18.1701i −0.0349730 0.729140i
\(622\) 7.40693 + 12.8292i 0.296991 + 0.514403i
\(623\) 14.2444 + 14.2625i 0.570690 + 0.571415i
\(624\) 1.89070 5.95191i 0.0756885 0.238267i
\(625\) 10.1520 17.5837i 0.406079 0.703350i
\(626\) 22.7031 + 13.1077i 0.907399 + 0.523887i
\(627\) 1.76194 3.16758i 0.0703651 0.126501i
\(628\) 12.2223 7.05652i 0.487721 0.281586i
\(629\) 7.83418i 0.312369i
\(630\) 19.0205 + 17.8649i 0.757794 + 0.711756i
\(631\) −17.5516 10.1334i −0.698718 0.403405i 0.108152 0.994134i \(-0.465507\pi\)
−0.806870 + 0.590729i \(0.798840\pi\)
\(632\) 2.48977 4.31240i 0.0990376 0.171538i
\(633\) −35.3645 + 0.565030i −1.40561 + 0.0224579i
\(634\) −9.80532 + 16.9833i −0.389419 + 0.674494i
\(635\) 61.8129i 2.45297i
\(636\) 0.161620 + 10.1156i 0.00640865 + 0.401109i
\(637\) −4.98382 24.7419i −0.197466 0.980310i
\(638\) 19.0657i 0.754818i
\(639\) −23.6630 + 0.756337i −0.936095 + 0.0299202i
\(640\) −2.84717 1.64381i −0.112544 0.0649774i
\(641\) 33.2647i 1.31388i −0.753945 0.656938i \(-0.771851\pi\)
0.753945 0.656938i \(-0.228149\pi\)
\(642\) 5.69661 + 3.16869i 0.224827 + 0.125058i
\(643\) −3.65734 + 6.33469i −0.144231 + 0.249816i −0.929086 0.369864i \(-0.879404\pi\)
0.784855 + 0.619680i \(0.212738\pi\)
\(644\) 6.54534 + 6.55365i 0.257923 + 0.258250i
\(645\) −0.610581 38.2155i −0.0240416 1.50473i
\(646\) 0.567912 + 0.983652i 0.0223442 + 0.0387013i
\(647\) −16.0186 + 27.7451i −0.629757 + 1.09077i 0.357843 + 0.933782i \(0.383512\pi\)
−0.987600 + 0.156990i \(0.949821\pi\)
\(648\) 3.99307 8.06569i 0.156863 0.316850i
\(649\) 17.5862 + 10.1534i 0.690319 + 0.398556i
\(650\) −13.8666 15.6945i −0.543892 0.615590i
\(651\) −11.9103 + 12.2815i −0.466803 + 0.481350i
\(652\) −8.93321 + 5.15759i −0.349851 + 0.201987i
\(653\) 33.6453i 1.31664i −0.752737 0.658321i \(-0.771267\pi\)
0.752737 0.658321i \(-0.228733\pi\)
\(654\) −0.0779417 4.87827i −0.00304776 0.190755i
\(655\) −8.26839 + 4.77376i −0.323073 + 0.186526i
\(656\) 8.52566 4.92229i 0.332871 0.192183i
\(657\) 2.48736 4.64489i 0.0970412 0.181214i
\(658\) −3.11423 + 0.832338i −0.121405 + 0.0324479i
\(659\) −21.1966 12.2379i −0.825704 0.476720i 0.0266755 0.999644i \(-0.491508\pi\)
−0.852379 + 0.522924i \(0.824841\pi\)
\(660\) 0.188323 + 11.7869i 0.00733048 + 0.458805i
\(661\) 2.77785 4.81137i 0.108046 0.187141i −0.806933 0.590643i \(-0.798874\pi\)
0.914979 + 0.403503i \(0.132207\pi\)
\(662\) −22.5837 + 13.0387i −0.877739 + 0.506763i
\(663\) 2.12443 6.68769i 0.0825060 0.259728i
\(664\) 0.999900i 0.0388037i
\(665\) −6.21343 6.22133i −0.240947 0.241253i
\(666\) −17.7711 + 11.0317i −0.688617 + 0.427472i
\(667\) −16.1207 27.9219i −0.624196 1.08114i
\(668\) −12.1099 + 6.99167i −0.468547 + 0.270516i
\(669\) 4.75650 0.0759962i 0.183897 0.00293818i
\(670\) 19.4207 + 33.6376i 0.750287 + 1.29953i
\(671\) 0.500970i 0.0193397i
\(672\) 1.25382 + 4.40771i 0.0483673 + 0.170031i
\(673\) 9.31475 + 16.1336i 0.359057 + 0.621905i 0.987804 0.155705i \(-0.0497649\pi\)
−0.628746 + 0.777610i \(0.716432\pi\)
\(674\) 13.5184 0.520709
\(675\) −16.3258 25.3851i −0.628381 0.977075i
\(676\) 11.9734 5.06344i 0.460514 0.194748i
\(677\) −13.4512 + 23.2982i −0.516972 + 0.895422i 0.482833 + 0.875712i \(0.339608\pi\)
−0.999806 + 0.0197102i \(0.993726\pi\)
\(678\) −7.85473 + 4.70382i −0.301659 + 0.180649i
\(679\) 4.39440 + 16.4419i 0.168642 + 0.630981i
\(680\) −3.19914 1.84702i −0.122681 0.0708301i
\(681\) −13.5925 7.56073i −0.520867 0.289728i
\(682\) −7.72873 −0.295948
\(683\) −40.7673 −1.55992 −0.779958 0.625831i \(-0.784760\pi\)
−0.779958 + 0.625831i \(0.784760\pi\)
\(684\) −1.43162 + 2.67339i −0.0547392 + 0.102220i
\(685\) −60.3003 34.8144i −2.30395 1.33019i
\(686\) 13.0708 + 13.1207i 0.499047 + 0.500951i
\(687\) −14.6563 24.4740i −0.559172 0.933740i
\(688\) 3.35600 5.81276i 0.127946 0.221609i
\(689\) −15.7823 + 13.9441i −0.601258 + 0.531230i
\(690\) −10.2420 17.1028i −0.389908 0.651093i
\(691\) 13.7971 0.524865 0.262432 0.964950i \(-0.415475\pi\)
0.262432 + 0.964950i \(0.415475\pi\)
\(692\) −2.53897 4.39763i −0.0965173 0.167173i
\(693\) 11.2495 11.9771i 0.427332 0.454972i
\(694\) 33.5765i 1.27454i
\(695\) 33.4456 + 57.9295i 1.26866 + 2.19739i
\(696\) −0.254829 15.9494i −0.00965928 0.604562i
\(697\) 9.57961 5.53079i 0.362854 0.209494i
\(698\) −11.8845 20.5845i −0.449833 0.779134i
\(699\) 8.22228 4.92393i 0.310995 0.186240i
\(700\) 14.8416 + 3.98690i 0.560961 + 0.150691i
\(701\) 9.30649i 0.351501i −0.984435 0.175751i \(-0.943765\pi\)
0.984435 0.175751i \(-0.0562352\pi\)
\(702\) 18.1619 4.59825i 0.685478 0.173550i
\(703\) 6.10373 3.52399i 0.230207 0.132910i
\(704\) −1.03510 + 1.79285i −0.0390118 + 0.0675704i
\(705\) 6.93701 0.110835i 0.261263 0.00417428i
\(706\) −9.28444 5.36037i −0.349425 0.201740i
\(707\) 13.2012 + 49.3930i 0.496483 + 1.85762i
\(708\) −14.8475 8.25878i −0.558002 0.310384i
\(709\) −2.68396 + 1.54958i −0.100798 + 0.0581958i −0.549552 0.835460i \(-0.685201\pi\)
0.448754 + 0.893656i \(0.351868\pi\)
\(710\) −22.4690 + 12.9725i −0.843246 + 0.486848i
\(711\) 14.9310 0.477236i 0.559955 0.0178978i
\(712\) 7.61879i 0.285526i
\(713\) 11.3188 6.53491i 0.423892 0.244734i
\(714\) 1.40882 + 4.95260i 0.0527238 + 0.185346i
\(715\) −18.3899 + 16.2481i −0.687745 + 0.607643i
\(716\) −10.1439 5.85660i −0.379097 0.218871i
\(717\) −3.64984 + 6.56161i −0.136306 + 0.245048i
\(718\) −7.26878 + 12.5899i −0.271268 + 0.469851i
\(719\) −5.88702 10.1966i −0.219549 0.380270i 0.735121 0.677936i \(-0.237125\pi\)
−0.954670 + 0.297666i \(0.903792\pi\)
\(720\) −0.315084 9.85784i −0.0117425 0.367380i
\(721\) −23.2197 + 6.20590i −0.864746 + 0.231120i
\(722\) −8.98908 + 15.5695i −0.334539 + 0.579438i
\(723\) 3.54207 6.36786i 0.131731 0.236823i
\(724\) 22.6731i 0.842638i
\(725\) −46.3269 26.7468i −1.72054 0.993353i
\(726\) −11.6280 + 0.185784i −0.431554 + 0.00689509i
\(727\) 13.8729i 0.514518i −0.966342 0.257259i \(-0.917181\pi\)
0.966342 0.257259i \(-0.0828194\pi\)
\(728\) −5.27553 + 7.94788i −0.195524 + 0.294568i
\(729\) 26.8761 2.58415i 0.995409 0.0957091i
\(730\) 5.77412i 0.213710i
\(731\) 3.77087 6.53134i 0.139471 0.241570i
\(732\) 0.00669590 + 0.419088i 0.000247488 + 0.0154899i
\(733\) 21.6003 37.4129i 0.797827 1.38188i −0.123202 0.992382i \(-0.539316\pi\)
0.921029 0.389495i \(-0.127350\pi\)
\(734\) 15.1524 + 8.74823i 0.559284 + 0.322903i
\(735\) −20.4357 34.2232i −0.753781 1.26234i
\(736\) 3.50085i 0.129043i
\(737\) 21.1814 12.2291i 0.780228 0.450465i
\(738\) 26.0357 + 13.9422i 0.958387 + 0.513221i
\(739\) −29.5969 17.0878i −1.08874 0.628585i −0.155500 0.987836i \(-0.549699\pi\)
−0.933241 + 0.359251i \(0.883032\pi\)
\(740\) −11.4611 + 19.8512i −0.421318 + 0.729744i
\(741\) −6.16610 + 1.35310i −0.226517 + 0.0497074i
\(742\) 4.00920 14.9247i 0.147182 0.547901i
\(743\) 15.6321 + 27.0755i 0.573484 + 0.993304i 0.996204 + 0.0870439i \(0.0277420\pi\)
−0.422720 + 0.906260i \(0.638925\pi\)
\(744\) 6.46548 0.103301i 0.237036 0.00378720i
\(745\) 43.5611i 1.59596i
\(746\) −5.93324 10.2767i −0.217231 0.376256i
\(747\) −2.54858 + 1.58208i −0.0932475 + 0.0578851i
\(748\) −1.16306 + 2.01448i −0.0425257 + 0.0736567i
\(749\) −7.03641 7.04534i −0.257105 0.257431i
\(750\) −4.02323 2.23789i −0.146908 0.0817162i
\(751\) 2.10325 0.0767488 0.0383744 0.999263i \(-0.487782\pi\)
0.0383744 + 0.999263i \(0.487782\pi\)
\(752\) 1.05515 + 0.609193i 0.0384775 + 0.0222150i
\(753\) 17.4268 + 29.1004i 0.635068 + 1.06048i
\(754\) 24.8843 21.9860i 0.906233 0.800684i
\(755\) −56.9955 −2.07428
\(756\) −9.25067 + 10.1698i −0.336444 + 0.369873i
\(757\) 16.8638 + 29.2089i 0.612924 + 1.06162i 0.990745 + 0.135737i \(0.0433402\pi\)
−0.377821 + 0.925879i \(0.623326\pi\)
\(758\) −10.9141 + 6.30127i −0.396419 + 0.228872i
\(759\) −10.7696 + 6.44936i −0.390910 + 0.234097i
\(760\) 3.32333i 0.120550i
\(761\) 16.6410 9.60768i 0.603235 0.348278i −0.167078 0.985944i \(-0.553433\pi\)
0.770313 + 0.637666i \(0.220100\pi\)
\(762\) −32.5613 + 0.520243i −1.17957 + 0.0188464i
\(763\) −1.93345 + 7.19746i −0.0699956 + 0.260566i
\(764\) 22.3913 12.9276i 0.810087 0.467704i
\(765\) −0.354035 11.0765i −0.0128002 0.400471i
\(766\) 0.920885 0.531673i 0.0332729 0.0192101i
\(767\) −7.02782 34.6619i −0.253760 1.25157i
\(768\) 0.841952 1.51364i 0.0303813 0.0546189i
\(769\) 19.1381 + 33.1482i 0.690139 + 1.19536i 0.971792 + 0.235840i \(0.0757840\pi\)
−0.281653 + 0.959516i \(0.590883\pi\)
\(770\) 4.67162 17.3906i 0.168353 0.626712i
\(771\) −15.1128 + 27.1695i −0.544274 + 0.978485i
\(772\) 18.8878 + 10.9049i 0.679787 + 0.392475i
\(773\) 2.52422i 0.0907898i −0.998969 0.0453949i \(-0.985545\pi\)
0.998969 0.0453949i \(-0.0144546\pi\)