Properties

Label 546.2.bi.e.17.17
Level $546$
Weight $2$
Character 546.17
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bi (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.17
Character \(\chi\) \(=\) 546.17
Dual form 546.2.bi.e.257.17

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +(1.72971 - 0.0900624i) q^{3} +1.00000 q^{4} +(-1.98183 + 1.14421i) q^{5} +(-1.72971 + 0.0900624i) q^{6} +(-0.877809 + 2.49589i) q^{7} -1.00000 q^{8} +(2.98378 - 0.311563i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(1.72971 - 0.0900624i) q^{3} +1.00000 q^{4} +(-1.98183 + 1.14421i) q^{5} +(-1.72971 + 0.0900624i) q^{6} +(-0.877809 + 2.49589i) q^{7} -1.00000 q^{8} +(2.98378 - 0.311563i) q^{9} +(1.98183 - 1.14421i) q^{10} +(-0.148570 - 0.257331i) q^{11} +(1.72971 - 0.0900624i) q^{12} +(3.20028 - 1.66078i) q^{13} +(0.877809 - 2.49589i) q^{14} +(-3.32494 + 2.15764i) q^{15} +1.00000 q^{16} +0.893327 q^{17} +(-2.98378 + 0.311563i) q^{18} +(-3.94533 + 6.83352i) q^{19} +(-1.98183 + 1.14421i) q^{20} +(-1.29357 + 4.39621i) q^{21} +(0.148570 + 0.257331i) q^{22} +7.81240i q^{23} +(-1.72971 + 0.0900624i) q^{24} +(0.118437 - 0.205138i) q^{25} +(-3.20028 + 1.66078i) q^{26} +(5.13300 - 0.807639i) q^{27} +(-0.877809 + 2.49589i) q^{28} +(-0.980947 - 0.566350i) q^{29} +(3.32494 - 2.15764i) q^{30} +(-0.839051 + 1.45328i) q^{31} -1.00000 q^{32} +(-0.280159 - 0.431727i) q^{33} -0.893327 q^{34} +(-1.11615 - 5.95083i) q^{35} +(2.98378 - 0.311563i) q^{36} +4.99903i q^{37} +(3.94533 - 6.83352i) q^{38} +(5.38598 - 3.16089i) q^{39} +(1.98183 - 1.14421i) q^{40} +(6.52086 + 3.76482i) q^{41} +(1.29357 - 4.39621i) q^{42} +(-1.94207 - 3.36377i) q^{43} +(-0.148570 - 0.257331i) q^{44} +(-5.55685 + 4.03154i) q^{45} -7.81240i q^{46} +(5.21062 - 3.00835i) q^{47} +(1.72971 - 0.0900624i) q^{48} +(-5.45890 - 4.38183i) q^{49} +(-0.118437 + 0.205138i) q^{50} +(1.54520 - 0.0804552i) q^{51} +(3.20028 - 1.66078i) q^{52} +(-6.28351 - 3.62779i) q^{53} +(-5.13300 + 0.807639i) q^{54} +(0.588883 + 0.339992i) q^{55} +(0.877809 - 2.49589i) q^{56} +(-6.20883 + 12.1753i) q^{57} +(0.980947 + 0.566350i) q^{58} -6.02418i q^{59} +(-3.32494 + 2.15764i) q^{60} +(7.31581 + 4.22379i) q^{61} +(0.839051 - 1.45328i) q^{62} +(-1.84156 + 7.72066i) q^{63} +1.00000 q^{64} +(-4.44214 + 6.95319i) q^{65} +(0.280159 + 0.431727i) q^{66} +(2.94347 - 1.69941i) q^{67} +0.893327 q^{68} +(0.703603 + 13.5132i) q^{69} +(1.11615 + 5.95083i) q^{70} +(-1.14995 - 1.99178i) q^{71} +(-2.98378 + 0.311563i) q^{72} +(6.16302 - 10.6747i) q^{73} -4.99903i q^{74} +(0.186386 - 0.365496i) q^{75} +(-3.94533 + 6.83352i) q^{76} +(0.772686 - 0.144927i) q^{77} +(-5.38598 + 3.16089i) q^{78} +(4.46469 + 7.73307i) q^{79} +(-1.98183 + 1.14421i) q^{80} +(8.80586 - 1.85927i) q^{81} +(-6.52086 - 3.76482i) q^{82} -1.54870i q^{83} +(-1.29357 + 4.39621i) q^{84} +(-1.77042 + 1.02215i) q^{85} +(1.94207 + 3.36377i) q^{86} +(-1.74776 - 0.891273i) q^{87} +(0.148570 + 0.257331i) q^{88} -14.3106i q^{89} +(5.55685 - 4.03154i) q^{90} +(1.33588 + 9.44539i) q^{91} +7.81240i q^{92} +(-1.32043 + 2.58932i) q^{93} +(-5.21062 + 3.00835i) q^{94} -18.0572i q^{95} +(-1.72971 + 0.0900624i) q^{96} +(-1.19346 - 2.06713i) q^{97} +(5.45890 + 4.38183i) q^{98} +(-0.523476 - 0.721530i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 34q^{2} + 3q^{3} + 34q^{4} - 9q^{5} - 3q^{6} + 4q^{7} - 34q^{8} - 11q^{9} + O(q^{10}) \) \( 34q - 34q^{2} + 3q^{3} + 34q^{4} - 9q^{5} - 3q^{6} + 4q^{7} - 34q^{8} - 11q^{9} + 9q^{10} - 9q^{11} + 3q^{12} + 8q^{13} - 4q^{14} - 4q^{15} + 34q^{16} - 12q^{17} + 11q^{18} - 5q^{19} - 9q^{20} + 4q^{21} + 9q^{22} - 3q^{24} + 16q^{25} - 8q^{26} + 18q^{27} + 4q^{28} - 27q^{29} + 4q^{30} - q^{31} - 34q^{32} + 21q^{33} + 12q^{34} + 3q^{35} - 11q^{36} + 5q^{38} + 7q^{39} + 9q^{40} + 3q^{41} - 4q^{42} - 3q^{43} - 9q^{44} + 9q^{45} + 27q^{47} + 3q^{48} - 2q^{49} - 16q^{50} + 24q^{51} + 8q^{52} + 21q^{53} - 18q^{54} - 57q^{55} - 4q^{56} + 17q^{57} + 27q^{58} - 4q^{60} - 51q^{61} + q^{62} + 3q^{63} + 34q^{64} + 21q^{65} - 21q^{66} - 21q^{67} - 12q^{68} + 42q^{69} - 3q^{70} + 15q^{71} + 11q^{72} - 19q^{73} + 54q^{75} - 5q^{76} - 9q^{77} - 7q^{78} - 9q^{79} - 9q^{80} - 23q^{81} - 3q^{82} + 4q^{84} - 42q^{85} + 3q^{86} + 81q^{87} + 9q^{88} - 9q^{90} - 72q^{91} + 17q^{93} - 27q^{94} - 3q^{96} + 19q^{97} + 2q^{98} + 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.72971 0.0900624i 0.998647 0.0519975i
\(4\) 1.00000 0.500000
\(5\) −1.98183 + 1.14421i −0.886302 + 0.511707i −0.872731 0.488201i \(-0.837653\pi\)
−0.0135708 + 0.999908i \(0.504320\pi\)
\(6\) −1.72971 + 0.0900624i −0.706150 + 0.0367678i
\(7\) −0.877809 + 2.49589i −0.331781 + 0.943357i
\(8\) −1.00000 −0.353553
\(9\) 2.98378 0.311563i 0.994593 0.103854i
\(10\) 1.98183 1.14421i 0.626710 0.361831i
\(11\) −0.148570 0.257331i −0.0447956 0.0775883i 0.842758 0.538292i \(-0.180930\pi\)
−0.887554 + 0.460704i \(0.847597\pi\)
\(12\) 1.72971 0.0900624i 0.499324 0.0259988i
\(13\) 3.20028 1.66078i 0.887599 0.460618i
\(14\) 0.877809 2.49589i 0.234604 0.667054i
\(15\) −3.32494 + 2.15764i −0.858495 + 0.557100i
\(16\) 1.00000 0.250000
\(17\) 0.893327 0.216664 0.108332 0.994115i \(-0.465449\pi\)
0.108332 + 0.994115i \(0.465449\pi\)
\(18\) −2.98378 + 0.311563i −0.703283 + 0.0734362i
\(19\) −3.94533 + 6.83352i −0.905122 + 1.56772i −0.0843680 + 0.996435i \(0.526887\pi\)
−0.820754 + 0.571282i \(0.806446\pi\)
\(20\) −1.98183 + 1.14421i −0.443151 + 0.255853i
\(21\) −1.29357 + 4.39621i −0.282280 + 0.959332i
\(22\) 0.148570 + 0.257331i 0.0316753 + 0.0548632i
\(23\) 7.81240i 1.62900i 0.580165 + 0.814499i \(0.302988\pi\)
−0.580165 + 0.814499i \(0.697012\pi\)
\(24\) −1.72971 + 0.0900624i −0.353075 + 0.0183839i
\(25\) 0.118437 0.205138i 0.0236873 0.0410277i
\(26\) −3.20028 + 1.66078i −0.627627 + 0.325706i
\(27\) 5.13300 0.807639i 0.987847 0.155430i
\(28\) −0.877809 + 2.49589i −0.165890 + 0.471678i
\(29\) −0.980947 0.566350i −0.182157 0.105169i 0.406149 0.913807i \(-0.366872\pi\)
−0.588306 + 0.808639i \(0.700205\pi\)
\(30\) 3.32494 2.15764i 0.607048 0.393929i
\(31\) −0.839051 + 1.45328i −0.150698 + 0.261017i −0.931484 0.363782i \(-0.881485\pi\)
0.780786 + 0.624798i \(0.214819\pi\)
\(32\) −1.00000 −0.176777
\(33\) −0.280159 0.431727i −0.0487694 0.0751541i
\(34\) −0.893327 −0.153204
\(35\) −1.11615 5.95083i −0.188664 1.00587i
\(36\) 2.98378 0.311563i 0.497296 0.0519272i
\(37\) 4.99903i 0.821835i 0.911673 + 0.410918i \(0.134792\pi\)
−0.911673 + 0.410918i \(0.865208\pi\)
\(38\) 3.94533 6.83352i 0.640018 1.10854i
\(39\) 5.38598 3.16089i 0.862447 0.506148i
\(40\) 1.98183 1.14421i 0.313355 0.180916i
\(41\) 6.52086 + 3.76482i 1.01839 + 0.587966i 0.913636 0.406532i \(-0.133262\pi\)
0.104751 + 0.994498i \(0.466595\pi\)
\(42\) 1.29357 4.39621i 0.199602 0.678350i
\(43\) −1.94207 3.36377i −0.296163 0.512970i 0.679092 0.734054i \(-0.262374\pi\)
−0.975255 + 0.221084i \(0.929041\pi\)
\(44\) −0.148570 0.257331i −0.0223978 0.0387942i
\(45\) −5.55685 + 4.03154i −0.828366 + 0.600986i
\(46\) 7.81240i 1.15188i
\(47\) 5.21062 3.00835i 0.760047 0.438813i −0.0692655 0.997598i \(-0.522066\pi\)
0.829313 + 0.558785i \(0.188732\pi\)
\(48\) 1.72971 0.0900624i 0.249662 0.0129994i
\(49\) −5.45890 4.38183i −0.779843 0.625975i
\(50\) −0.118437 + 0.205138i −0.0167495 + 0.0290109i
\(51\) 1.54520 0.0804552i 0.216371 0.0112660i
\(52\) 3.20028 1.66078i 0.443799 0.230309i
\(53\) −6.28351 3.62779i −0.863107 0.498315i 0.00194455 0.999998i \(-0.499381\pi\)
−0.865051 + 0.501683i \(0.832714\pi\)
\(54\) −5.13300 + 0.807639i −0.698513 + 0.109906i
\(55\) 0.588883 + 0.339992i 0.0794049 + 0.0458444i
\(56\) 0.877809 2.49589i 0.117302 0.333527i
\(57\) −6.20883 + 12.1753i −0.822380 + 1.61266i
\(58\) 0.980947 + 0.566350i 0.128805 + 0.0743654i
\(59\) 6.02418i 0.784281i −0.919905 0.392141i \(-0.871735\pi\)
0.919905 0.392141i \(-0.128265\pi\)
\(60\) −3.32494 + 2.15764i −0.429248 + 0.278550i
\(61\) 7.31581 + 4.22379i 0.936694 + 0.540800i 0.888922 0.458058i \(-0.151455\pi\)
0.0477714 + 0.998858i \(0.484788\pi\)
\(62\) 0.839051 1.45328i 0.106560 0.184567i
\(63\) −1.84156 + 7.72066i −0.232015 + 0.972712i
\(64\) 1.00000 0.125000
\(65\) −4.44214 + 6.95319i −0.550979 + 0.862436i
\(66\) 0.280159 + 0.431727i 0.0344852 + 0.0531420i
\(67\) 2.94347 1.69941i 0.359602 0.207617i −0.309304 0.950963i \(-0.600096\pi\)
0.668906 + 0.743347i \(0.266763\pi\)
\(68\) 0.893327 0.108332
\(69\) 0.703603 + 13.5132i 0.0847039 + 1.62679i
\(70\) 1.11615 + 5.95083i 0.133406 + 0.711260i
\(71\) −1.14995 1.99178i −0.136474 0.236381i 0.789685 0.613512i \(-0.210244\pi\)
−0.926160 + 0.377131i \(0.876910\pi\)
\(72\) −2.98378 + 0.311563i −0.351642 + 0.0367181i
\(73\) 6.16302 10.6747i 0.721327 1.24937i −0.239141 0.970985i \(-0.576866\pi\)
0.960468 0.278390i \(-0.0898007\pi\)
\(74\) 4.99903i 0.581125i
\(75\) 0.186386 0.365496i 0.0215220 0.0422038i
\(76\) −3.94533 + 6.83352i −0.452561 + 0.783858i
\(77\) 0.772686 0.144927i 0.0880558 0.0165159i
\(78\) −5.38598 + 3.16089i −0.609842 + 0.357900i
\(79\) 4.46469 + 7.73307i 0.502317 + 0.870039i 0.999996 + 0.00267764i \(0.000852321\pi\)
−0.497679 + 0.867361i \(0.665814\pi\)
\(80\) −1.98183 + 1.14421i −0.221575 + 0.127927i
\(81\) 8.80586 1.85927i 0.978429 0.206586i
\(82\) −6.52086 3.76482i −0.720109 0.415755i
\(83\) 1.54870i 0.169992i −0.996381 0.0849962i \(-0.972912\pi\)
0.996381 0.0849962i \(-0.0270878\pi\)
\(84\) −1.29357 + 4.39621i −0.141140 + 0.479666i
\(85\) −1.77042 + 1.02215i −0.192029 + 0.110868i
\(86\) 1.94207 + 3.36377i 0.209419 + 0.362725i
\(87\) −1.74776 0.891273i −0.187379 0.0955545i
\(88\) 0.148570 + 0.257331i 0.0158376 + 0.0274316i
\(89\) 14.3106i 1.51692i −0.651720 0.758460i \(-0.725952\pi\)
0.651720 0.758460i \(-0.274048\pi\)
\(90\) 5.55685 4.03154i 0.585743 0.424961i
\(91\) 1.33588 + 9.44539i 0.140039 + 0.990146i
\(92\) 7.81240i 0.814499i
\(93\) −1.32043 + 2.58932i −0.136922 + 0.268500i
\(94\) −5.21062 + 3.00835i −0.537435 + 0.310288i
\(95\) 18.0572i 1.85263i
\(96\) −1.72971 + 0.0900624i −0.176538 + 0.00919195i
\(97\) −1.19346 2.06713i −0.121178 0.209886i 0.799055 0.601258i \(-0.205334\pi\)
−0.920232 + 0.391373i \(0.872000\pi\)
\(98\) 5.45890 + 4.38183i 0.551432 + 0.442631i
\(99\) −0.523476 0.721530i −0.0526113 0.0725165i
\(100\) 0.118437 0.205138i 0.0118437 0.0205138i
\(101\) 9.38860 + 16.2615i 0.934200 + 1.61808i 0.776054 + 0.630666i \(0.217218\pi\)
0.158146 + 0.987416i \(0.449448\pi\)
\(102\) −1.54520 + 0.0804552i −0.152997 + 0.00796625i
\(103\) −12.3898 + 7.15323i −1.22080 + 0.704828i −0.965088 0.261925i \(-0.915643\pi\)
−0.255710 + 0.966753i \(0.582309\pi\)
\(104\) −3.20028 + 1.66078i −0.313813 + 0.162853i
\(105\) −2.46656 10.1927i −0.240712 0.994702i
\(106\) 6.28351 + 3.62779i 0.610309 + 0.352362i
\(107\) 16.6853i 1.61303i −0.591212 0.806516i \(-0.701350\pi\)
0.591212 0.806516i \(-0.298650\pi\)
\(108\) 5.13300 0.807639i 0.493923 0.0777151i
\(109\) −9.70354 5.60234i −0.929431 0.536607i −0.0427994 0.999084i \(-0.513628\pi\)
−0.886632 + 0.462476i \(0.846961\pi\)
\(110\) −0.588883 0.339992i −0.0561478 0.0324169i
\(111\) 0.450224 + 8.64686i 0.0427334 + 0.820723i
\(112\) −0.877809 + 2.49589i −0.0829452 + 0.235839i
\(113\) −7.27033 + 4.19753i −0.683935 + 0.394870i −0.801336 0.598214i \(-0.795877\pi\)
0.117401 + 0.993085i \(0.462544\pi\)
\(114\) 6.20883 12.1753i 0.581510 1.14032i
\(115\) −8.93903 15.4829i −0.833569 1.44378i
\(116\) −0.980947 0.566350i −0.0910786 0.0525843i
\(117\) 9.03149 5.95249i 0.834962 0.550308i
\(118\) 6.02418i 0.554571i
\(119\) −0.784171 + 2.22964i −0.0718849 + 0.204391i
\(120\) 3.32494 2.15764i 0.303524 0.196965i
\(121\) 5.45585 9.44982i 0.495987 0.859074i
\(122\) −7.31581 4.22379i −0.662343 0.382404i
\(123\) 11.6183 + 5.92475i 1.04758 + 0.534217i
\(124\) −0.839051 + 1.45328i −0.0753490 + 0.130508i
\(125\) 10.9000i 0.974929i
\(126\) 1.84156 7.72066i 0.164059 0.687811i
\(127\) 2.63228 4.55924i 0.233577 0.404567i −0.725281 0.688453i \(-0.758290\pi\)
0.958858 + 0.283886i \(0.0916236\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −3.66217 5.64343i −0.322436 0.496876i
\(130\) 4.44214 6.95319i 0.389601 0.609835i
\(131\) 0.386257 + 0.669016i 0.0337474 + 0.0584522i 0.882406 0.470489i \(-0.155922\pi\)
−0.848658 + 0.528941i \(0.822589\pi\)
\(132\) −0.280159 0.431727i −0.0243847 0.0375770i
\(133\) −13.5924 15.8456i −1.17861 1.37399i
\(134\) −2.94347 + 1.69941i −0.254277 + 0.146807i
\(135\) −9.24864 + 7.47384i −0.795996 + 0.643246i
\(136\) −0.893327 −0.0766022
\(137\) 2.58684 0.221009 0.110505 0.993876i \(-0.464753\pi\)
0.110505 + 0.993876i \(0.464753\pi\)
\(138\) −0.703603 13.5132i −0.0598947 1.15032i
\(139\) 10.2034 5.89092i 0.865438 0.499661i −0.000391380 1.00000i \(-0.500125\pi\)
0.865830 + 0.500339i \(0.166791\pi\)
\(140\) −1.11615 5.95083i −0.0943319 0.502937i
\(141\) 8.74191 5.67285i 0.736202 0.477740i
\(142\) 1.14995 + 1.99178i 0.0965020 + 0.167146i
\(143\) −0.902838 0.576790i −0.0754991 0.0482336i
\(144\) 2.98378 0.311563i 0.248648 0.0259636i
\(145\) 2.59209 0.215262
\(146\) −6.16302 + 10.6747i −0.510055 + 0.883441i
\(147\) −9.83694 7.08764i −0.811337 0.584578i
\(148\) 4.99903i 0.410918i
\(149\) 1.64375 2.84705i 0.134661 0.233240i −0.790807 0.612066i \(-0.790339\pi\)
0.925468 + 0.378826i \(0.123672\pi\)
\(150\) −0.186386 + 0.365496i −0.0152183 + 0.0298426i
\(151\) 10.5899 + 6.11409i 0.861795 + 0.497557i 0.864613 0.502439i \(-0.167564\pi\)
−0.00281814 + 0.999996i \(0.500897\pi\)
\(152\) 3.94533 6.83352i 0.320009 0.554272i
\(153\) 2.66549 0.278328i 0.215492 0.0225015i
\(154\) −0.772686 + 0.144927i −0.0622648 + 0.0116785i
\(155\) 3.84021i 0.308453i
\(156\) 5.38598 3.16089i 0.431223 0.253074i
\(157\) −15.4715 8.93248i −1.23476 0.712889i −0.266742 0.963768i \(-0.585947\pi\)
−0.968019 + 0.250879i \(0.919280\pi\)
\(158\) −4.46469 7.73307i −0.355192 0.615210i
\(159\) −11.1954 5.70910i −0.887851 0.452761i
\(160\) 1.98183 1.14421i 0.156678 0.0904578i
\(161\) −19.4989 6.85779i −1.53673 0.540470i
\(162\) −8.80586 + 1.85927i −0.691853 + 0.146078i
\(163\) −2.00708 1.15879i −0.157207 0.0907632i 0.419333 0.907833i \(-0.362264\pi\)
−0.576540 + 0.817069i \(0.695597\pi\)
\(164\) 6.52086 + 3.76482i 0.509194 + 0.293983i
\(165\) 1.04922 + 0.535050i 0.0816813 + 0.0416536i
\(166\) 1.54870i 0.120203i
\(167\) 11.5588 + 6.67349i 0.894449 + 0.516410i 0.875395 0.483408i \(-0.160601\pi\)
0.0190536 + 0.999818i \(0.493935\pi\)
\(168\) 1.29357 4.39621i 0.0998009 0.339175i
\(169\) 7.48361 10.6299i 0.575662 0.817687i
\(170\) 1.77042 1.02215i 0.135785 0.0783957i
\(171\) −9.64293 + 21.6189i −0.737413 + 1.65324i
\(172\) −1.94207 3.36377i −0.148082 0.256485i
\(173\) 9.18090 15.9018i 0.698011 1.20899i −0.271144 0.962539i \(-0.587402\pi\)
0.969155 0.246452i \(-0.0792648\pi\)
\(174\) 1.74776 + 0.891273i 0.132497 + 0.0675673i
\(175\) 0.408037 + 0.475677i 0.0308447 + 0.0359578i
\(176\) −0.148570 0.257331i −0.0111989 0.0193971i
\(177\) −0.542552 10.4201i −0.0407807 0.783220i
\(178\) 14.3106i 1.07262i
\(179\) −8.93640 + 5.15943i −0.667938 + 0.385634i −0.795295 0.606223i \(-0.792684\pi\)
0.127357 + 0.991857i \(0.459351\pi\)
\(180\) −5.55685 + 4.03154i −0.414183 + 0.300493i
\(181\) 5.21743i 0.387809i −0.981020 0.193904i \(-0.937885\pi\)
0.981020 0.193904i \(-0.0621151\pi\)
\(182\) −1.33588 9.44539i −0.0990223 0.700139i
\(183\) 13.0346 + 6.64704i 0.963547 + 0.491363i
\(184\) 7.81240i 0.575938i
\(185\) −5.71994 9.90723i −0.420538 0.728394i
\(186\) 1.32043 2.58932i 0.0968185 0.189858i
\(187\) −0.132722 0.229881i −0.00970559 0.0168106i
\(188\) 5.21062 3.00835i 0.380024 0.219407i
\(189\) −2.49002 + 13.5203i −0.181122 + 0.983461i
\(190\) 18.0572i 1.31001i
\(191\) 22.8395 + 13.1864i 1.65261 + 0.954135i 0.975994 + 0.217799i \(0.0698877\pi\)
0.676616 + 0.736336i \(0.263446\pi\)
\(192\) 1.72971 0.0900624i 0.124831 0.00649969i
\(193\) 2.77543 1.60239i 0.199780 0.115343i −0.396773 0.917917i \(-0.629870\pi\)
0.596553 + 0.802574i \(0.296537\pi\)
\(194\) 1.19346 + 2.06713i 0.0856855 + 0.148412i
\(195\) −7.05738 + 12.4270i −0.505389 + 0.889919i
\(196\) −5.45890 4.38183i −0.389922 0.312988i
\(197\) −12.9869 + 22.4940i −0.925278 + 1.60263i −0.134165 + 0.990959i \(0.542835\pi\)
−0.791113 + 0.611670i \(0.790498\pi\)
\(198\) 0.523476 + 0.721530i 0.0372018 + 0.0512769i
\(199\) 5.54735i 0.393241i 0.980480 + 0.196621i \(0.0629967\pi\)
−0.980480 + 0.196621i \(0.937003\pi\)
\(200\) −0.118437 + 0.205138i −0.00837474 + 0.0145055i
\(201\) 4.93829 3.20459i 0.348320 0.226034i
\(202\) −9.38860 16.2615i −0.660579 1.14416i
\(203\) 2.27463 1.95118i 0.159648 0.136946i
\(204\) 1.54520 0.0804552i 0.108185 0.00563299i
\(205\) −17.2310 −1.20346
\(206\) 12.3898 7.15323i 0.863235 0.498389i
\(207\) 2.43406 + 23.3105i 0.169179 + 1.62019i
\(208\) 3.20028 1.66078i 0.221900 0.115154i
\(209\) 2.34464 0.162182
\(210\) 2.46656 + 10.1927i 0.170209 + 0.703361i
\(211\) 1.17040 2.02719i 0.0805736 0.139558i −0.822923 0.568153i \(-0.807658\pi\)
0.903496 + 0.428596i \(0.140991\pi\)
\(212\) −6.28351 3.62779i −0.431553 0.249158i
\(213\) −2.16847 3.34163i −0.148581 0.228965i
\(214\) 16.6853i 1.14059i
\(215\) 7.69772 + 4.44428i 0.524980 + 0.303097i
\(216\) −5.13300 + 0.807639i −0.349257 + 0.0549529i
\(217\) −2.89069 3.36988i −0.196233 0.228762i
\(218\) 9.70354 + 5.60234i 0.657207 + 0.379439i
\(219\) 9.69883 19.0191i 0.655387 1.28519i
\(220\) 0.588883 + 0.339992i 0.0397025 + 0.0229222i
\(221\) 2.85890 1.48362i 0.192310 0.0997992i
\(222\) −0.450224 8.64686i −0.0302171 0.580339i
\(223\) 0.746837 1.29356i 0.0500119 0.0866232i −0.839936 0.542686i \(-0.817407\pi\)
0.889948 + 0.456063i \(0.150741\pi\)
\(224\) 0.877809 2.49589i 0.0586511 0.166763i
\(225\) 0.289475 0.648988i 0.0192983 0.0432658i
\(226\) 7.27033 4.19753i 0.483615 0.279215i
\(227\) 6.37084i 0.422848i 0.977394 + 0.211424i \(0.0678100\pi\)
−0.977394 + 0.211424i \(0.932190\pi\)
\(228\) −6.20883 + 12.1753i −0.411190 + 0.806330i
\(229\) −3.93382 6.81358i −0.259954 0.450254i 0.706275 0.707937i \(-0.250374\pi\)
−0.966229 + 0.257684i \(0.917041\pi\)
\(230\) 8.93903 + 15.4829i 0.589422 + 1.02091i
\(231\) 1.32347 0.320271i 0.0870779 0.0210723i
\(232\) 0.980947 + 0.566350i 0.0644023 + 0.0371827i
\(233\) −8.04627 + 4.64552i −0.527129 + 0.304338i −0.739847 0.672776i \(-0.765102\pi\)
0.212718 + 0.977114i \(0.431769\pi\)
\(234\) −9.03149 + 5.95249i −0.590407 + 0.389127i
\(235\) −6.88438 + 11.9241i −0.449088 + 0.777842i
\(236\) 6.02418i 0.392141i
\(237\) 8.41907 + 12.9739i 0.546877 + 0.842743i
\(238\) 0.784171 2.22964i 0.0508303 0.144526i
\(239\) −22.6067 −1.46230 −0.731152 0.682215i \(-0.761017\pi\)
−0.731152 + 0.682215i \(0.761017\pi\)
\(240\) −3.32494 + 2.15764i −0.214624 + 0.139275i
\(241\) 29.0874 1.87368 0.936842 0.349753i \(-0.113734\pi\)
0.936842 + 0.349753i \(0.113734\pi\)
\(242\) −5.45585 + 9.44982i −0.350716 + 0.607457i
\(243\) 15.0641 4.00907i 0.966363 0.257182i
\(244\) 7.31581 + 4.22379i 0.468347 + 0.270400i
\(245\) 15.8324 + 2.43790i 1.01149 + 0.155752i
\(246\) −11.6183 5.92475i −0.740753 0.377749i
\(247\) −1.27720 + 28.4215i −0.0812665 + 1.80842i
\(248\) 0.839051 1.45328i 0.0532798 0.0922834i
\(249\) −0.139480 2.67881i −0.00883919 0.169762i
\(250\) 10.9000i 0.689379i
\(251\) 6.89055 + 11.9348i 0.434928 + 0.753317i 0.997290 0.0735742i \(-0.0234406\pi\)
−0.562362 + 0.826891i \(0.690107\pi\)
\(252\) −1.84156 + 7.72066i −0.116007 + 0.486356i
\(253\) 2.01037 1.16069i 0.126391 0.0729720i
\(254\) −2.63228 + 4.55924i −0.165164 + 0.286072i
\(255\) −2.97026 + 1.92748i −0.186005 + 0.120703i
\(256\) 1.00000 0.0625000
\(257\) −5.62443 −0.350843 −0.175421 0.984493i \(-0.556129\pi\)
−0.175421 + 0.984493i \(0.556129\pi\)
\(258\) 3.66217 + 5.64343i 0.227997 + 0.351345i
\(259\) −12.4770 4.38819i −0.775284 0.272669i
\(260\) −4.44214 + 6.95319i −0.275490 + 0.431218i
\(261\) −3.10338 1.38424i −0.192094 0.0856820i
\(262\) −0.386257 0.669016i −0.0238630 0.0413320i
\(263\) −16.7851 + 9.69087i −1.03501 + 0.597564i −0.918416 0.395615i \(-0.870531\pi\)
−0.116595 + 0.993179i \(0.537198\pi\)
\(264\) 0.280159 + 0.431727i 0.0172426 + 0.0265710i
\(265\) 16.6038 1.01996
\(266\) 13.5924 + 15.8456i 0.833406 + 0.971558i
\(267\) −1.28885 24.7531i −0.0788761 1.51487i
\(268\) 2.94347 1.69941i 0.179801 0.103808i
\(269\) 27.9546 1.70442 0.852211 0.523199i \(-0.175261\pi\)
0.852211 + 0.523199i \(0.175261\pi\)
\(270\) 9.24864 7.47384i 0.562854 0.454844i
\(271\) −20.4588 −1.24279 −0.621393 0.783499i \(-0.713433\pi\)
−0.621393 + 0.783499i \(0.713433\pi\)
\(272\) 0.893327 0.0541659
\(273\) 3.16136 + 16.2175i 0.191334 + 0.981525i
\(274\) −2.58684 −0.156277
\(275\) −0.0703847 −0.00424436
\(276\) 0.703603 + 13.5132i 0.0423519 + 0.813397i
\(277\) 6.51069 0.391190 0.195595 0.980685i \(-0.437336\pi\)
0.195595 + 0.980685i \(0.437336\pi\)
\(278\) −10.2034 + 5.89092i −0.611957 + 0.353314i
\(279\) −2.05075 + 4.59768i −0.122775 + 0.275256i
\(280\) 1.11615 + 5.95083i 0.0667028 + 0.355630i
\(281\) −10.0287 −0.598262 −0.299131 0.954212i \(-0.596697\pi\)
−0.299131 + 0.954212i \(0.596697\pi\)
\(282\) −8.74191 + 5.67285i −0.520573 + 0.337814i
\(283\) 19.8164 11.4410i 1.17796 0.680097i 0.222420 0.974951i \(-0.428605\pi\)
0.955542 + 0.294854i \(0.0952712\pi\)
\(284\) −1.14995 1.99178i −0.0682372 0.118190i
\(285\) −1.62627 31.2336i −0.0963321 1.85012i
\(286\) 0.902838 + 0.576790i 0.0533859 + 0.0341063i
\(287\) −15.1206 + 12.9705i −0.892543 + 0.765626i
\(288\) −2.98378 + 0.311563i −0.175821 + 0.0183590i
\(289\) −16.2020 −0.953057
\(290\) −2.59209 −0.152213
\(291\) −2.25051 3.46805i −0.131927 0.203301i
\(292\) 6.16302 10.6747i 0.360663 0.624687i
\(293\) −17.4353 + 10.0663i −1.01858 + 0.588080i −0.913693 0.406404i \(-0.866783\pi\)
−0.104890 + 0.994484i \(0.533449\pi\)
\(294\) 9.83694 + 7.08764i 0.573702 + 0.413359i
\(295\) 6.89293 + 11.9389i 0.401322 + 0.695110i
\(296\) 4.99903i 0.290563i
\(297\) −0.970443 1.20089i −0.0563108 0.0696828i
\(298\) −1.64375 + 2.84705i −0.0952198 + 0.164925i
\(299\) 12.9747 + 25.0019i 0.750345 + 1.44590i
\(300\) 0.186386 0.365496i 0.0107610 0.0211019i
\(301\) 10.1004 1.89445i 0.582175 0.109194i
\(302\) −10.5899 6.11409i −0.609381 0.351826i
\(303\) 17.7041 + 27.2821i 1.01707 + 1.56732i
\(304\) −3.94533 + 6.83352i −0.226280 + 0.391929i
\(305\) −19.3316 −1.10692
\(306\) −2.66549 + 0.278328i −0.152376 + 0.0159110i
\(307\) 3.07801 0.175672 0.0878358 0.996135i \(-0.472005\pi\)
0.0878358 + 0.996135i \(0.472005\pi\)
\(308\) 0.772686 0.144927i 0.0440279 0.00825797i
\(309\) −20.7864 + 13.4888i −1.18250 + 0.767353i
\(310\) 3.84021i 0.218109i
\(311\) 7.75963 13.4401i 0.440008 0.762117i −0.557681 0.830055i \(-0.688309\pi\)
0.997690 + 0.0679384i \(0.0216421\pi\)
\(312\) −5.38598 + 3.16089i −0.304921 + 0.178950i
\(313\) 13.7068 7.91361i 0.774752 0.447303i −0.0598149 0.998209i \(-0.519051\pi\)
0.834567 + 0.550906i \(0.185718\pi\)
\(314\) 15.4715 + 8.93248i 0.873108 + 0.504089i
\(315\) −5.18440 17.4082i −0.292108 0.980840i
\(316\) 4.46469 + 7.73307i 0.251159 + 0.435019i
\(317\) −6.47213 11.2101i −0.363511 0.629619i 0.625025 0.780605i \(-0.285089\pi\)
−0.988536 + 0.150985i \(0.951755\pi\)
\(318\) 11.1954 + 5.70910i 0.627805 + 0.320151i
\(319\) 0.336571i 0.0188444i
\(320\) −1.98183 + 1.14421i −0.110788 + 0.0639633i
\(321\) −1.50272 28.8608i −0.0838737 1.61085i
\(322\) 19.4989 + 6.85779i 1.08663 + 0.382170i
\(323\) −3.52448 + 6.10457i −0.196107 + 0.339667i
\(324\) 8.80586 1.85927i 0.489214 0.103293i
\(325\) 0.0383409 0.853198i 0.00212677 0.0473269i
\(326\) 2.00708 + 1.15879i 0.111162 + 0.0641793i
\(327\) −17.2889 8.81649i −0.956076 0.487553i
\(328\) −6.52086 3.76482i −0.360054 0.207877i
\(329\) 2.93458 + 15.6459i 0.161789 + 0.862585i
\(330\) −1.04922 0.535050i −0.0577574 0.0294535i
\(331\) 7.76227 + 4.48155i 0.426653 + 0.246328i 0.697920 0.716176i \(-0.254109\pi\)
−0.271267 + 0.962504i \(0.587443\pi\)
\(332\) 1.54870i 0.0849962i
\(333\) 1.55751 + 14.9160i 0.0853512 + 0.817391i
\(334\) −11.5588 6.67349i −0.632471 0.365157i
\(335\) −3.88898 + 6.73591i −0.212477 + 0.368022i
\(336\) −1.29357 + 4.39621i −0.0705699 + 0.239833i
\(337\) −7.76837 −0.423170 −0.211585 0.977360i \(-0.567863\pi\)
−0.211585 + 0.977360i \(0.567863\pi\)
\(338\) −7.48361 + 10.6299i −0.407055 + 0.578192i
\(339\) −12.1975 + 7.91528i −0.662478 + 0.429899i
\(340\) −1.77042 + 1.02215i −0.0960147 + 0.0554341i
\(341\) 0.498633 0.0270025
\(342\) 9.64293 21.6189i 0.521430 1.16902i
\(343\) 15.7284 9.77839i 0.849255 0.527984i
\(344\) 1.94207 + 3.36377i 0.104710 + 0.181362i
\(345\) −16.8563 25.9757i −0.907514 1.39849i
\(346\) −9.18090 + 15.9018i −0.493568 + 0.854886i
\(347\) 9.70091i 0.520772i 0.965505 + 0.260386i \(0.0838498\pi\)
−0.965505 + 0.260386i \(0.916150\pi\)
\(348\) −1.74776 0.891273i −0.0936897 0.0477773i
\(349\) 13.2526 22.9542i 0.709396 1.22871i −0.255686 0.966760i \(-0.582301\pi\)
0.965081 0.261950i \(-0.0843655\pi\)
\(350\) −0.408037 0.475677i −0.0218105 0.0254260i
\(351\) 15.0857 11.1095i 0.805218 0.592980i
\(352\) 0.148570 + 0.257331i 0.00791882 + 0.0137158i
\(353\) 22.1838 12.8078i 1.18073 0.681693i 0.224544 0.974464i \(-0.427911\pi\)
0.956183 + 0.292771i \(0.0945774\pi\)
\(354\) 0.542552 + 10.4201i 0.0288363 + 0.553820i
\(355\) 4.55803 + 2.63158i 0.241915 + 0.139670i
\(356\) 14.3106i 0.758460i
\(357\) −1.15558 + 3.92726i −0.0611598 + 0.207852i
\(358\) 8.93640 5.15943i 0.472303 0.272684i
\(359\) 6.41408 + 11.1095i 0.338522 + 0.586338i 0.984155 0.177310i \(-0.0567396\pi\)
−0.645633 + 0.763648i \(0.723406\pi\)
\(360\) 5.55685 4.03154i 0.292872 0.212481i
\(361\) −21.6313 37.4666i −1.13849 1.97192i
\(362\) 5.21743i 0.274222i
\(363\) 8.58596 16.8368i 0.450646 0.883702i
\(364\) 1.33588 + 9.44539i 0.0700193 + 0.495073i
\(365\) 28.2072i 1.47643i
\(366\) −13.0346 6.64704i −0.681331 0.347446i
\(367\) −21.2692 + 12.2798i −1.11024 + 0.641000i −0.938893 0.344210i \(-0.888147\pi\)
−0.171352 + 0.985210i \(0.554813\pi\)
\(368\) 7.81240i 0.407249i
\(369\) 20.6298 + 9.20173i 1.07394 + 0.479023i
\(370\) 5.71994 + 9.90723i 0.297366 + 0.515052i
\(371\) 14.5703 12.4984i 0.756451 0.648886i
\(372\) −1.32043 + 2.58932i −0.0684610 + 0.134250i
\(373\) 10.7383 18.5993i 0.556009 0.963036i −0.441815 0.897106i \(-0.645665\pi\)
0.997824 0.0659297i \(-0.0210013\pi\)
\(374\) 0.132722 + 0.229881i 0.00686289 + 0.0118869i
\(375\) −0.981684 18.8539i −0.0506939 0.973611i
\(376\) −5.21062 + 3.00835i −0.268717 + 0.155144i
\(377\) −4.07989 0.183342i −0.210125 0.00944257i
\(378\) 2.49002 13.5203i 0.128073 0.695412i
\(379\) −13.9171 8.03505i −0.714874 0.412733i 0.0979889 0.995188i \(-0.468759\pi\)
−0.812863 + 0.582455i \(0.802092\pi\)
\(380\) 18.0572i 0.926314i
\(381\) 4.14246 8.12322i 0.212224 0.416165i
\(382\) −22.8395 13.1864i −1.16857 0.674675i
\(383\) 23.1968 + 13.3927i 1.18530 + 0.684335i 0.957235 0.289310i \(-0.0934259\pi\)
0.228068 + 0.973645i \(0.426759\pi\)
\(384\) −1.72971 + 0.0900624i −0.0882688 + 0.00459598i
\(385\) −1.36551 + 1.17134i −0.0695927 + 0.0596968i
\(386\) −2.77543 + 1.60239i −0.141266 + 0.0815597i
\(387\) −6.84274 9.43166i −0.347836 0.479438i
\(388\) −1.19346 2.06713i −0.0605888 0.104943i
\(389\) −3.67405 2.12122i −0.186282 0.107550i 0.403959 0.914777i \(-0.367634\pi\)
−0.590241 + 0.807227i \(0.700967\pi\)
\(390\) 7.05738 12.4270i 0.357364 0.629268i
\(391\) 6.97903i 0.352945i
\(392\) 5.45890 + 4.38183i 0.275716 + 0.221316i
\(393\) 0.728364 + 1.12242i 0.0367411 + 0.0566184i
\(394\) 12.9869 22.4940i 0.654270 1.13323i
\(395\) −17.6965 10.2171i −0.890409 0.514078i
\(396\) −0.523476 0.721530i −0.0263056 0.0362583i
\(397\) −0.355073 + 0.615005i −0.0178206 + 0.0308662i −0.874798 0.484488i \(-0.839006\pi\)
0.856978 + 0.515354i \(0.172339\pi\)
\(398\) 5.54735i 0.278063i
\(399\) −24.9380 26.1841i −1.24846 1.31085i
\(400\) 0.118437 0.205138i 0.00592183 0.0102569i
\(401\) −15.2330 −0.760701 −0.380351 0.924842i \(-0.624197\pi\)
−0.380351 + 0.924842i \(0.624197\pi\)
\(402\) −4.93829 + 3.20459i −0.246300 + 0.159830i
\(403\) −0.271622 + 6.04439i −0.0135305 + 0.301092i
\(404\) 9.38860 + 16.2615i 0.467100 + 0.809041i
\(405\) −15.3243 + 13.7605i −0.761472 + 0.683766i
\(406\) −2.27463 + 1.95118i −0.112888 + 0.0968357i
\(407\) 1.28641 0.742707i 0.0637648 0.0368146i
\(408\) −1.54520 + 0.0804552i −0.0764986 + 0.00398313i
\(409\) 26.0063 1.28593 0.642964 0.765896i \(-0.277704\pi\)
0.642964 + 0.765896i \(0.277704\pi\)
\(410\) 17.2310 0.850978
\(411\) 4.47448 0.232977i 0.220710 0.0114919i
\(412\) −12.3898 + 7.15323i −0.610399 + 0.352414i
\(413\) 15.0357 + 5.28808i 0.739857 + 0.260209i
\(414\) −2.43406 23.3105i −0.119627 1.14565i
\(415\) 1.77204 + 3.06927i 0.0869863 + 0.150665i
\(416\) −3.20028 + 1.66078i −0.156907 + 0.0814265i
\(417\) 17.1183 11.1085i 0.838286 0.543986i
\(418\) −2.34464 −0.114680
\(419\) −4.44170 + 7.69326i −0.216991 + 0.375840i −0.953887 0.300167i \(-0.902958\pi\)
0.736895 + 0.676007i \(0.236291\pi\)
\(420\) −2.46656 10.1927i −0.120356 0.497351i
\(421\) 11.9274i 0.581308i 0.956828 + 0.290654i \(0.0938729\pi\)
−0.956828 + 0.290654i \(0.906127\pi\)
\(422\) −1.17040 + 2.02719i −0.0569742 + 0.0986822i
\(423\) 14.6100 10.5997i 0.710365 0.515375i
\(424\) 6.28351 + 3.62779i 0.305154 + 0.176181i
\(425\) 0.105803 0.183256i 0.00513219 0.00888921i
\(426\) 2.16847 + 3.34163i 0.105063 + 0.161902i
\(427\) −16.9640 + 14.5518i −0.820945 + 0.704209i
\(428\) 16.6853i 0.806516i
\(429\) −1.61359 0.916367i −0.0779050 0.0442426i
\(430\) −7.69772 4.44428i −0.371217 0.214322i
\(431\) 9.74149 + 16.8728i 0.469231 + 0.812732i 0.999381 0.0351717i \(-0.0111978\pi\)
−0.530150 + 0.847904i \(0.677864\pi\)
\(432\) 5.13300 0.807639i 0.246962 0.0388576i
\(433\) −15.8703 + 9.16273i −0.762679 + 0.440333i −0.830257 0.557381i \(-0.811806\pi\)
0.0675780 + 0.997714i \(0.478473\pi\)
\(434\) 2.89069 + 3.36988i 0.138758 + 0.161759i
\(435\) 4.48357 0.233450i 0.214971 0.0111931i
\(436\) −9.70354 5.60234i −0.464715 0.268304i
\(437\) −53.3862 30.8225i −2.55381 1.47444i
\(438\) −9.69883 + 19.0191i −0.463428 + 0.908768i
\(439\) 2.49215i 0.118944i 0.998230 + 0.0594720i \(0.0189417\pi\)
−0.998230 + 0.0594720i \(0.981058\pi\)
\(440\) −0.588883 0.339992i −0.0280739 0.0162085i
\(441\) −17.6534 11.3736i −0.840636 0.541600i
\(442\) −2.85890 + 1.48362i −0.135984 + 0.0705687i
\(443\) −14.4424 + 8.33832i −0.686179 + 0.396166i −0.802179 0.597083i \(-0.796326\pi\)
0.116000 + 0.993249i \(0.462993\pi\)
\(444\) 0.450224 + 8.64686i 0.0213667 + 0.410362i
\(445\) 16.3743 + 28.3612i 0.776218 + 1.34445i
\(446\) −0.746837 + 1.29356i −0.0353638 + 0.0612519i
\(447\) 2.58679 5.07261i 0.122351 0.239926i
\(448\) −0.877809 + 2.49589i −0.0414726 + 0.117920i
\(449\) 18.5701 + 32.1643i 0.876375 + 1.51793i 0.855290 + 0.518149i \(0.173379\pi\)
0.0210850 + 0.999778i \(0.493288\pi\)
\(450\) −0.289475 + 0.648988i −0.0136460 + 0.0305936i
\(451\) 2.23736i 0.105353i
\(452\) −7.27033 + 4.19753i −0.341968 + 0.197435i
\(453\) 18.8681 + 9.62183i 0.886501 + 0.452073i
\(454\) 6.37084i 0.298998i
\(455\) −13.4550 17.1906i −0.630781 0.805910i
\(456\) 6.20883 12.1753i 0.290755 0.570161i
\(457\) 16.1075i 0.753476i 0.926320 + 0.376738i \(0.122954\pi\)
−0.926320 + 0.376738i \(0.877046\pi\)
\(458\) 3.93382 + 6.81358i 0.183815 + 0.318378i
\(459\) 4.58545 0.721486i 0.214031 0.0336761i
\(460\) −8.93903 15.4829i −0.416784 0.721892i
\(461\) 12.1978 7.04240i 0.568108 0.327997i −0.188285 0.982114i \(-0.560293\pi\)
0.756393 + 0.654117i \(0.226960\pi\)
\(462\) −1.32347 + 0.320271i −0.0615734 + 0.0149004i
\(463\) 20.5027i 0.952843i 0.879217 + 0.476421i \(0.158066\pi\)
−0.879217 + 0.476421i \(0.841934\pi\)
\(464\) −0.980947 0.566350i −0.0455393 0.0262921i
\(465\) −0.345858 6.64244i −0.0160388 0.308036i
\(466\) 8.04627 4.64552i 0.372736 0.215199i
\(467\) −2.86923 4.96965i −0.132772 0.229968i 0.791972 0.610557i \(-0.209054\pi\)
−0.924744 + 0.380589i \(0.875721\pi\)
\(468\) 9.03149 5.95249i 0.417481 0.275154i
\(469\) 1.65774 + 8.83834i 0.0765473 + 0.408116i
\(470\) 6.88438 11.9241i 0.317553 0.550018i
\(471\) −27.5657 14.0572i −1.27016 0.647720i
\(472\) 6.02418i 0.277285i
\(473\) −0.577069 + 0.999512i −0.0265336 + 0.0459576i
\(474\) −8.41907 12.9739i −0.386701 0.595909i
\(475\) 0.934544 + 1.61868i 0.0428798 + 0.0742701i
\(476\) −0.784171 + 2.22964i −0.0359424 + 0.102196i
\(477\) −19.8789 8.86680i −0.910192 0.405983i
\(478\) 22.6067 1.03401
\(479\) 24.3944 14.0841i 1.11461 0.643519i 0.174589 0.984641i \(-0.444140\pi\)
0.940019 + 0.341122i \(0.110807\pi\)
\(480\) 3.32494 2.15764i 0.151762 0.0984823i
\(481\) 8.30229 + 15.9983i 0.378552 + 0.729460i
\(482\) −29.0874 −1.32489
\(483\) −34.3450 10.1059i −1.56275 0.459833i
\(484\) 5.45585 9.44982i 0.247993 0.429537i
\(485\) 4.73047 + 2.73114i 0.214800 + 0.124015i
\(486\) −15.0641 + 4.00907i −0.683322 + 0.181855i
\(487\) 29.7095i 1.34627i −0.739521 0.673133i \(-0.764948\pi\)
0.739521 0.673133i \(-0.235052\pi\)
\(488\) −7.31581 4.22379i −0.331171 0.191202i
\(489\) −3.57602 1.82360i −0.161713 0.0824661i
\(490\) −15.8324 2.43790i −0.715233 0.110133i
\(491\) 35.4120 + 20.4451i 1.59812 + 0.922676i 0.991849 + 0.127418i \(0.0406690\pi\)
0.606272 + 0.795258i \(0.292664\pi\)
\(492\) 11.6183 + 5.92475i 0.523791 + 0.267109i
\(493\) −0.876307 0.505936i −0.0394669 0.0227862i
\(494\) 1.27720 28.4215i 0.0574641 1.27874i
\(495\) 1.86302 + 0.830985i 0.0837367 + 0.0373500i
\(496\) −0.839051 + 1.45328i −0.0376745 + 0.0652542i
\(497\) 5.98070 1.12175i 0.268271 0.0503175i
\(498\) 0.139480 + 2.67881i 0.00625025 + 0.120040i
\(499\) 11.0351 6.37111i 0.493998 0.285210i −0.232233 0.972660i \(-0.574603\pi\)
0.726232 + 0.687450i \(0.241270\pi\)
\(500\) 10.9000i 0.487465i
\(501\) 20.5944 + 10.5022i 0.920091 + 0.469202i
\(502\) −6.89055 11.9348i −0.307540 0.532675i
\(503\) −20.5763 35.6392i −0.917453 1.58908i −0.803270 0.595615i \(-0.796908\pi\)
−0.114183 0.993460i \(-0.536425\pi\)
\(504\) 1.84156 7.72066i 0.0820297 0.343906i
\(505\) −37.2132 21.4851i −1.65597 0.956073i
\(506\) −2.01037 + 1.16069i −0.0893720 + 0.0515990i
\(507\) 11.9871 19.0607i 0.532366 0.846514i
\(508\) 2.63228 4.55924i 0.116788 0.202284i
\(509\) 17.9868i 0.797250i −0.917114 0.398625i \(-0.869488\pi\)
0.917114 0.398625i \(-0.130512\pi\)
\(510\) 2.97026 1.92748i 0.131525 0.0853502i
\(511\) 21.2328 + 24.7525i 0.939283 + 1.09499i
\(512\) −1.00000 −0.0441942
\(513\) −14.7324 + 38.2629i −0.650451 + 1.68935i
\(514\) 5.62443 0.248083
\(515\) 16.3696 28.3530i 0.721331 1.24938i
\(516\) −3.66217 5.64343i −0.161218 0.248438i
\(517\) −1.54829 0.893904i −0.0680936 0.0393139i
\(518\) 12.4770 + 4.38819i 0.548208 + 0.192806i
\(519\) 14.4481 28.3323i 0.634202 1.24365i
\(520\) 4.44214 6.95319i 0.194801 0.304917i
\(521\) 12.5794 21.7881i 0.551113 0.954555i −0.447082 0.894493i \(-0.647537\pi\)
0.998195 0.0600622i \(-0.0191299\pi\)
\(522\) 3.10338 + 1.38424i 0.135831 + 0.0605863i
\(523\) 42.1093i 1.84131i 0.390375 + 0.920656i \(0.372345\pi\)
−0.390375 + 0.920656i \(0.627655\pi\)
\(524\) 0.386257 + 0.669016i 0.0168737 + 0.0292261i
\(525\) 0.748626 + 0.786033i 0.0326727 + 0.0343053i
\(526\) 16.7851 9.69087i 0.731864 0.422542i
\(527\) −0.749548 + 1.29825i −0.0326508 + 0.0565529i
\(528\) −0.280159 0.431727i −0.0121924 0.0187885i
\(529\) −38.0335 −1.65363
\(530\) −16.6038 −0.721224
\(531\) −1.87691 17.9748i −0.0814511 0.780040i
\(532\) −13.5924 15.8456i −0.589307 0.686995i
\(533\) 27.1211 + 1.21877i 1.17475 + 0.0527906i
\(534\) 1.28885 + 24.7531i 0.0557738 + 1.07117i
\(535\) 19.0915 + 33.0675i 0.825399 + 1.42963i
\(536\) −2.94347 + 1.69941i −0.127139 + 0.0734035i
\(537\) −14.9927 + 9.72914i −0.646982 + 0.419843i
\(538\) −27.9546 −1.20521
\(539\) −0.316550 + 2.05576i −0.0136348 + 0.0885477i
\(540\) −9.24864 + 7.47384i −0.397998 + 0.321623i
\(541\) −15.7491 + 9.09276i −0.677107 + 0.390928i −0.798764 0.601644i \(-0.794513\pi\)
0.121657 + 0.992572i \(0.461179\pi\)
\(542\) 20.4588 0.878782
\(543\) −0.469894 9.02463i −0.0201651 0.387284i
\(544\) −0.893327 −0.0383011
\(545\) 25.6410 1.09834
\(546\) −3.16136 16.2175i −0.135294 0.694043i
\(547\) 7.61792 0.325719 0.162859 0.986649i \(-0.447928\pi\)
0.162859 + 0.986649i \(0.447928\pi\)
\(548\) 2.58684 0.110505
\(549\) 23.1447 + 10.3235i 0.987793 + 0.440596i
\(550\) 0.0703847 0.00300121
\(551\) 7.74033 4.46888i 0.329749 0.190381i
\(552\) −0.703603 13.5132i −0.0299473 0.575158i
\(553\) −23.2200 + 4.35520i −0.987416 + 0.185202i
\(554\) −6.51069 −0.276613
\(555\) −10.7861 16.6215i −0.457844 0.705542i
\(556\) 10.2034 5.89092i 0.432719 0.249831i
\(557\) −15.8600 27.4704i −0.672011 1.16396i −0.977333 0.211708i \(-0.932097\pi\)
0.305322 0.952249i \(-0.401236\pi\)
\(558\) 2.05075 4.59768i 0.0868154 0.194635i
\(559\) −11.8017 7.53965i −0.499157 0.318893i
\(560\) −1.11615 5.95083i −0.0471660 0.251468i
\(561\) −0.250274 0.385674i −0.0105666 0.0162832i
\(562\) 10.0287 0.423035
\(563\) 2.89827 0.122147 0.0610737 0.998133i \(-0.480548\pi\)
0.0610737 + 0.998133i \(0.480548\pi\)
\(564\) 8.74191 5.67285i 0.368101 0.238870i
\(565\) 9.60572 16.6376i 0.404115 0.699949i
\(566\) −19.8164 + 11.4410i −0.832945 + 0.480901i
\(567\) −3.08933 + 23.6105i −0.129740 + 0.991548i
\(568\) 1.14995 + 1.99178i 0.0482510 + 0.0835732i
\(569\) 37.8812i 1.58806i 0.607878 + 0.794030i \(0.292021\pi\)
−0.607878 + 0.794030i \(0.707979\pi\)
\(570\) 1.62627 + 31.2336i 0.0681171 + 1.30823i
\(571\) −13.5869 + 23.5332i −0.568594 + 0.984834i 0.428111 + 0.903726i \(0.359179\pi\)
−0.996705 + 0.0811082i \(0.974154\pi\)
\(572\) −0.902838 0.576790i −0.0377496 0.0241168i
\(573\) 40.6933 + 20.7516i 1.69999 + 0.866912i
\(574\) 15.1206 12.9705i 0.631123 0.541380i
\(575\) 1.60262 + 0.925274i 0.0668340 + 0.0385866i
\(576\) 2.98378 0.311563i 0.124324 0.0129818i
\(577\) −19.0478 + 32.9918i −0.792972 + 1.37347i 0.131147 + 0.991363i \(0.458134\pi\)
−0.924119 + 0.382105i \(0.875199\pi\)
\(578\) 16.2020 0.673913
\(579\) 4.65637 3.02164i 0.193512 0.125575i
\(580\) 2.59209 0.107631
\(581\) 3.86539 + 1.35947i 0.160363 + 0.0564002i
\(582\) 2.25051 + 3.46805i 0.0932866 + 0.143755i
\(583\) 2.15593i 0.0892894i
\(584\) −6.16302 + 10.6747i −0.255028 + 0.441721i
\(585\) −11.0880 + 22.1308i −0.458432 + 0.914994i
\(586\) 17.4353 10.0663i 0.720248 0.415835i
\(587\) −19.1503 11.0565i −0.790419 0.456349i 0.0496910 0.998765i \(-0.484176\pi\)
−0.840110 + 0.542416i \(0.817510\pi\)
\(588\) −9.83694 7.08764i −0.405669 0.292289i
\(589\) −6.62068 11.4673i −0.272800 0.472504i
\(590\) −6.89293 11.9389i −0.283777 0.491517i
\(591\) −20.4377 + 40.0776i −0.840694 + 1.64857i
\(592\) 4.99903i 0.205459i
\(593\) −22.7957 + 13.1611i −0.936109 + 0.540463i −0.888738 0.458415i \(-0.848417\pi\)
−0.0473705 + 0.998877i \(0.515084\pi\)
\(594\) 0.970443 + 1.20089i 0.0398178 + 0.0492732i
\(595\) −0.997088 5.31604i −0.0408766 0.217936i
\(596\) 1.64375 2.84705i 0.0673305 0.116620i
\(597\) 0.499607 + 9.59529i 0.0204476 + 0.392709i
\(598\) −12.9747 25.0019i −0.530574 1.02240i
\(599\) 5.69118 + 3.28581i 0.232536 + 0.134254i 0.611741 0.791058i \(-0.290469\pi\)
−0.379206 + 0.925312i \(0.623803\pi\)
\(600\) −0.186386 + 0.365496i −0.00760916 + 0.0149213i
\(601\) 22.1774 + 12.8041i 0.904634 + 0.522291i 0.878701 0.477373i \(-0.158411\pi\)
0.0259335 + 0.999664i \(0.491744\pi\)
\(602\) −10.1004 + 1.89445i −0.411660 + 0.0772119i
\(603\) 8.25319 5.98775i 0.336096 0.243840i
\(604\) 10.5899 + 6.11409i 0.430897 + 0.248779i
\(605\) 24.9706i 1.01520i
\(606\) −17.7041 27.2821i −0.719179 1.10826i
\(607\) 36.9259 + 21.3192i 1.49878 + 0.865320i 0.999999 0.00140959i \(-0.000448687\pi\)
0.498779 + 0.866729i \(0.333782\pi\)
\(608\) 3.94533 6.83352i 0.160004 0.277136i
\(609\) 3.75872 3.57984i 0.152311 0.145062i
\(610\) 19.3316 0.782714
\(611\) 11.6792 18.2813i 0.472492 0.739582i
\(612\) 2.66549 0.278328i 0.107746 0.0112507i
\(613\) −3.48038 + 2.00940i −0.140571 + 0.0811588i −0.568636 0.822589i \(-0.692529\pi\)
0.428065 + 0.903748i \(0.359195\pi\)
\(614\) −3.07801 −0.124219
\(615\) −29.8046 + 1.55186i −1.20184 + 0.0625772i
\(616\) −0.772686 + 0.144927i −0.0311324 + 0.00583927i
\(617\) −12.9809 22.4837i −0.522593 0.905158i −0.999654 0.0262879i \(-0.991631\pi\)
0.477061 0.878870i \(-0.341702\pi\)
\(618\) 20.7864 13.4888i 0.836152 0.542601i
\(619\) 2.84282 4.92392i 0.114263 0.197909i −0.803222 0.595680i \(-0.796883\pi\)
0.917485 + 0.397771i \(0.130216\pi\)
\(620\) 3.84021i 0.154226i
\(621\) 6.30960 + 40.1011i 0.253196 + 1.60920i
\(622\) −7.75963 + 13.4401i −0.311133 + 0.538898i
\(623\) 35.7176 + 12.5620i 1.43100 + 0.503285i
\(624\) 5.38598 3.16089i 0.215612 0.126537i
\(625\) 13.0641 + 22.6277i 0.522565 + 0.905109i
\(626\) −13.7068 + 7.91361i −0.547833 + 0.316291i
\(627\) 4.05554 0.211164i 0.161963 0.00843307i
\(628\) −15.4715 8.93248i −0.617380 0.356445i
\(629\) 4.46577i 0.178062i
\(630\) 5.18440 + 17.4082i 0.206552 + 0.693559i
\(631\) 11.9099 6.87621i 0.474128 0.273738i −0.243838 0.969816i \(-0.578407\pi\)
0.717966 + 0.696078i \(0.245073\pi\)
\(632\) −4.46469 7.73307i −0.177596 0.307605i
\(633\) 1.84188 3.61186i 0.0732080 0.143558i
\(634\) 6.47213 + 11.2101i 0.257041 + 0.445208i
\(635\) 12.0475i 0.478092i
\(636\) −11.1954 5.70910i −0.443925 0.226381i
\(637\) −24.7473 4.95704i −0.980523 0.196405i
\(638\) 0.336571i 0.0133250i
\(639\) −4.05177 5.58474i −0.160286 0.220929i
\(640\) 1.98183 1.14421i 0.0783388 0.0452289i
\(641\) 6.28822i 0.248370i 0.992259 + 0.124185i \(0.0396316\pi\)
−0.992259 + 0.124185i \(0.960368\pi\)
\(642\) 1.50272 + 28.8608i 0.0593077 + 1.13904i
\(643\) −17.3160 29.9922i −0.682877 1.18278i −0.974099 0.226122i \(-0.927395\pi\)
0.291222 0.956656i \(-0.405938\pi\)
\(644\) −19.4989 6.85779i −0.768363 0.270235i
\(645\) 13.7151 + 6.99403i 0.540030 + 0.275390i
\(646\) 3.52448 6.10457i 0.138669 0.240181i
\(647\) −9.06347 15.6984i −0.356322 0.617167i 0.631022 0.775765i \(-0.282636\pi\)
−0.987343 + 0.158598i \(0.949303\pi\)
\(648\) −8.80586 + 1.85927i −0.345927 + 0.0730391i
\(649\) −1.55021 + 0.895014i −0.0608511 + 0.0351324i
\(650\) −0.0383409 + 0.853198i −0.00150385 + 0.0334652i
\(651\) −5.30356 5.56856i −0.207863 0.218249i
\(652\) −2.00708 1.15879i −0.0786033 0.0453816i
\(653\) 40.1546i 1.57137i −0.618627 0.785685i \(-0.712311\pi\)
0.618627 0.785685i \(-0.287689\pi\)
\(654\) 17.2889 + 8.81649i 0.676048 + 0.344752i
\(655\) −1.53099 0.883918i −0.0598208 0.0345375i
\(656\) 6.52086 + 3.76482i 0.254597 + 0.146992i
\(657\) 15.0632 33.7710i 0.587673 1.31753i
\(658\) −2.93458 15.6459i −0.114402 0.609940i
\(659\) 15.7627 9.10062i 0.614029 0.354510i −0.160512 0.987034i \(-0.551314\pi\)
0.774541 + 0.632524i \(0.217981\pi\)
\(660\) 1.04922 + 0.535050i 0.0408406 + 0.0208268i
\(661\) 11.5569 + 20.0171i 0.449510 + 0.778575i 0.998354 0.0573503i \(-0.0182652\pi\)
−0.548844 + 0.835925i \(0.684932\pi\)
\(662\) −7.76227 4.48155i −0.301689 0.174180i
\(663\) 4.81144 2.82371i 0.186861 0.109664i
\(664\) 1.54870i 0.0601014i
\(665\) 45.0687 + 15.8508i 1.74769 + 0.614666i
\(666\) −1.55751 14.9160i −0.0603524 0.577983i
\(667\) 4.42455 7.66355i 0.171319 0.296734i
\(668\) 11.5588 + 6.67349i 0.447224 + 0.258205i
\(669\) 1.17531 2.30474i 0.0454401 0.0891065i
\(670\) 3.88898 6.73591i 0.150244 0.260231i
\(671\) 2.51012i 0.0969020i
\(672\) 1.29357 4.39621i 0.0499005 0.169588i
\(673\) −18.1450 + 31.4281i −0.699438 + 1.21146i 0.269223 + 0.963078i \(0.413233\pi\)
−0.968661 + 0.248385i \(0.920100\pi\)
\(674\) 7.76837 0.299226
\(675\) 0.442258 1.14863i 0.0170225 0.0442108i
\(676\) 7.48361 10.6299i 0.287831 0.408844i
\(677\) −2.13681 3.70106i −0.0821243 0.142243i 0.822038 0.569433i \(-0.192837\pi\)
−0.904162 + 0.427189i \(0.859504\pi\)
\(678\) 12.1975 7.91528i 0.468443 0.303985i
\(679\) 6.20696 1.16419i 0.238201 0.0446776i
\(680\) 1.77042 1.02215i 0.0678927 0.0391978i
\(681\) 0.573773 + 11.0197i 0.0219870 + 0.422276i
\(682\) −0.498633 −0.0190936
\(683\) −30.0773 −1.15088 −0.575438 0.817846i \(-0.695168\pi\)
−0.575438 + 0.817846i \(0.695168\pi\)
\(684\) −9.64293 + 21.6189i −0.368706 + 0.826620i
\(685\) −5.12669 + 2.95989i −0.195881 + 0.113092i
\(686\) −15.7284 + 9.77839i −0.600514 + 0.373341i
\(687\) −7.41801 11.4312i −0.283015 0.436128i
\(688\) −1.94207 3.36377i −0.0740408 0.128242i
\(689\) −26.1340 1.17441i −0.995625 0.0447413i
\(690\) 16.8563 + 25.9757i 0.641709 + 0.988879i
\(691\) −17.1832 −0.653679 −0.326840 0.945080i \(-0.605984\pi\)
−0.326840 + 0.945080i \(0.605984\pi\)
\(692\) 9.18090 15.9018i 0.349006 0.604495i
\(693\) 2.26037 0.673170i 0.0858644 0.0255716i
\(694\) 9.70091i 0.368241i
\(695\) −13.4809 + 23.3496i −0.511360 + 0.885701i
\(696\) 1.74776 + 0.891273i 0.0662486 + 0.0337836i
\(697\) 5.82526 + 3.36322i 0.220648 + 0.127391i
\(698\) −13.2526 + 22.9542i −0.501619 + 0.868829i
\(699\) −13.4993 + 8.76006i −0.510591 + 0.331336i
\(700\) 0.408037 + 0.475677i 0.0154224 + 0.0179789i
\(701\) 33.7755i 1.27568i −0.770167 0.637842i \(-0.779827\pi\)
0.770167 0.637842i \(-0.220173\pi\)
\(702\) −15.0857 + 11.1095i −0.569375 + 0.419300i
\(703\) −34.1610 19.7228i −1.28840 0.743861i
\(704\) −0.148570 0.257331i −0.00559945 0.00969854i
\(705\) −10.8341 + 21.2452i −0.408034 + 0.800142i
\(706\) −22.1838 + 12.8078i −0.834900 + 0.482030i
\(707\) −48.8283 + 9.15835i −1.83638 + 0.344435i
\(708\) −0.542552 10.4201i −0.0203904 0.391610i
\(709\) −1.05799 0.610834i −0.0397338 0.0229403i 0.480002 0.877268i \(-0.340636\pi\)
−0.519735 + 0.854327i \(0.673969\pi\)
\(710\) −4.55803 2.63158i −0.171060 0.0987614i
\(711\) 15.7310 + 21.6827i 0.589958 + 0.813166i
\(712\) 14.3106i 0.536312i
\(713\) −11.3536 6.55500i −0.425196 0.245487i
\(714\) 1.15558 3.92726i 0.0432465 0.146974i
\(715\) 2.44924 + 0.110064i 0.0915965 + 0.00411615i
\(716\) −8.93640 + 5.15943i −0.333969 + 0.192817i
\(717\) −39.1029 + 2.03601i −1.46033 + 0.0760362i
\(718\) −6.41408 11.1095i −0.239371 0.414604i
\(719\) −15.5184 + 26.8786i −0.578738 + 1.00240i 0.416887 + 0.908959i \(0.363121\pi\)
−0.995624 + 0.0934449i \(0.970212\pi\)
\(720\) −5.55685 + 4.03154i −0.207092 + 0.150246i
\(721\) −6.97780 37.2026i −0.259867 1.38550i
\(722\) 21.6313 + 37.4666i 0.805035 + 1.39436i
\(723\) 50.3127 2.61968i 1.87115 0.0974270i
\(724\) 5.21743i 0.193904i
\(725\) −0.232360 + 0.134153i −0.00862964 + 0.00498232i
\(726\) −8.58596 + 16.8368i −0.318655 + 0.624872i
\(727\) 33.4726i 1.24143i −0.784036 0.620716i \(-0.786842\pi\)
0.784036 0.620716i \(-0.213158\pi\)
\(728\) −1.33588 9.44539i −0.0495111 0.350069i
\(729\) 25.6954 8.29123i 0.951683 0.307083i
\(730\) 28.2072i 1.04399i
\(731\) −1.73491 3.00495i −0.0641678 0.111142i
\(732\) 13.0346 + 6.64704i 0.481773 + 0.245682i
\(733\) −12.3342 21.3634i −0.455573 0.789076i 0.543148 0.839637i \(-0.317232\pi\)
−0.998721 + 0.0505610i \(0.983899\pi\)
\(734\) 21.2692 12.2798i 0.785061 0.453255i
\(735\) 27.6049 + 2.79096i 1.01822 + 0.102946i
\(736\) 7.81240i 0.287969i
\(737\) −0.874625 0.504965i −0.0322172 0.0186006i
\(738\) −20.6298 9.20173i −0.759392 0.338720i
\(739\) 38.5610 22.2632i 1.41849 0.818964i 0.422321 0.906446i \(-0.361215\pi\)
0.996166 + 0.0874820i \(0.0278820\pi\)
\(740\) −5.71994 9.90723i −0.210269 0.364197i
\(741\) 0.350522 + 49.2760i 0.0128768 + 1.81020i
\(742\) −14.5703 + 12.4984i −0.534892 + 0.458832i
\(743\) 19.9258 34.5124i 0.731006 1.26614i −0.225448 0.974255i \(-0.572385\pi\)
0.956454 0.291884i \(-0.0942820\pi\)
\(744\) 1.32043 2.58932i 0.0484092 0.0949289i
\(745\) 7.52318i 0.275628i
\(746\) −10.7383 + 18.5993i −0.393158 + 0.680969i
\(747\) −0.482519 4.62099i −0.0176545 0.169073i
\(748\) −0.132722 0.229881i −0.00485279 0.00840529i
\(749\) 41.6447 + 14.6465i 1.52166 + 0.535173i
\(750\) 0.981684 + 18.8539i 0.0358460 + 0.688447i
\(751\) −17.9853 −0.656292 −0.328146 0.944627i \(-0.606424\pi\)
−0.328146 + 0.944627i \(0.606424\pi\)
\(752\) 5.21062 3.00835i 0.190012 0.109703i
\(753\) 12.9935 + 20.0231i 0.473510 + 0.729683i
\(754\) 4.07989 + 0.183342i 0.148581 + 0.00667691i
\(755\) −27.9832 −1.01841
\(756\) −2.49002 + 13.5203i −0.0905612 + 0.491730i
\(757\) 20.2665 35.1027i 0.736600 1.27583i −0.217417 0.976079i \(-0.569763\pi\)
0.954018 0.299750i \(-0.0969034\pi\)
\(758\) 13.9171 + 8.03505i 0.505492 + 0.291846i
\(759\) 3.37283 2.18871i 0.122426 0.0794453i
\(760\) 18.0572i 0.655003i
\(761\) −1.19636 0.690718i −0.0433680 0.0250385i 0.478159 0.878273i \(-0.341304\pi\)
−0.521527 + 0.853235i \(0.674638\pi\)
\(762\) −4.14246 + 8.12322i −0.150065 + 0.294273i
\(763\) 22.5007 19.3012i 0.814579 0.698749i
\(764\) 22.8395 + 13.1864i 0.826305 + 0.477067i
\(765\) −4.96409 + 3.60148i −0.179477 + 0.130212i
\(766\) −23.1968 13.3927i −0.838136 0.483898i
\(767\) −10.0048 19.2791i −0.361254 0.696127i
\(768\) 1.72971 0.0900624i 0.0624155 0.00324985i
\(769\) −3.70242 + 6.41278i −0.133513 + 0.231251i −0.925028 0.379898i \(-0.875959\pi\)
0.791516 + 0.611149i \(0.209292\pi\)
\(770\) 1.36551 1.17134i 0.0492095 0.0422120i
\(771\) −9.72863 + 0.506550i −0.350368 + 0.0182430i
\(772\) 2.77543 1.60239i 0.0998899 0.0576714i
\(773\) 5.44545i 0.195859i −0.995193 0.0979297i \(-0.968778\pi\)
0.995193 0.0979297i \(-0.0312220\pi\)