Properties

Label 546.2.bi.e.17.16
Level $546$
Weight $2$
Character 546.17
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bi (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.16
Character \(\chi\) \(=\) 546.17
Dual form 546.2.bi.e.257.16

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +(1.69024 + 0.378264i) q^{3} +1.00000 q^{4} +(-0.870413 + 0.502533i) q^{5} +(-1.69024 - 0.378264i) q^{6} +(2.64571 - 0.0151415i) q^{7} -1.00000 q^{8} +(2.71383 + 1.27872i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(1.69024 + 0.378264i) q^{3} +1.00000 q^{4} +(-0.870413 + 0.502533i) q^{5} +(-1.69024 - 0.378264i) q^{6} +(2.64571 - 0.0151415i) q^{7} -1.00000 q^{8} +(2.71383 + 1.27872i) q^{9} +(0.870413 - 0.502533i) q^{10} +(0.310310 + 0.537472i) q^{11} +(1.69024 + 0.378264i) q^{12} +(-1.14202 + 3.41991i) q^{13} +(-2.64571 + 0.0151415i) q^{14} +(-1.66130 + 0.520156i) q^{15} +1.00000 q^{16} -0.342914 q^{17} +(-2.71383 - 1.27872i) q^{18} +(2.16909 - 3.75697i) q^{19} +(-0.870413 + 0.502533i) q^{20} +(4.47761 + 0.975184i) q^{21} +(-0.310310 - 0.537472i) q^{22} -2.82222i q^{23} +(-1.69024 - 0.378264i) q^{24} +(-1.99492 + 3.45530i) q^{25} +(1.14202 - 3.41991i) q^{26} +(4.10334 + 3.18788i) q^{27} +(2.64571 - 0.0151415i) q^{28} +(8.23191 + 4.75270i) q^{29} +(1.66130 - 0.520156i) q^{30} +(-1.25167 + 2.16796i) q^{31} -1.00000 q^{32} +(0.321192 + 1.02584i) q^{33} +0.342914 q^{34} +(-2.29525 + 1.34273i) q^{35} +(2.71383 + 1.27872i) q^{36} -4.34903i q^{37} +(-2.16909 + 3.75697i) q^{38} +(-3.22393 + 5.34849i) q^{39} +(0.870413 - 0.502533i) q^{40} +(-7.47421 - 4.31523i) q^{41} +(-4.47761 - 0.975184i) q^{42} +(-0.602811 - 1.04410i) q^{43} +(0.310310 + 0.537472i) q^{44} +(-3.00475 + 0.250780i) q^{45} +2.82222i q^{46} +(-0.0442417 + 0.0255429i) q^{47} +(1.69024 + 0.378264i) q^{48} +(6.99954 - 0.0801202i) q^{49} +(1.99492 - 3.45530i) q^{50} +(-0.579607 - 0.129712i) q^{51} +(-1.14202 + 3.41991i) q^{52} +(4.15182 + 2.39705i) q^{53} +(-4.10334 - 3.18788i) q^{54} +(-0.540195 - 0.311882i) q^{55} +(-2.64571 + 0.0151415i) q^{56} +(5.08741 - 5.52970i) q^{57} +(-8.23191 - 4.75270i) q^{58} -3.08963i q^{59} +(-1.66130 + 0.520156i) q^{60} +(5.78697 + 3.34111i) q^{61} +(1.25167 - 2.16796i) q^{62} +(7.19937 + 3.34202i) q^{63} +1.00000 q^{64} +(-0.724585 - 3.55064i) q^{65} +(-0.321192 - 1.02584i) q^{66} +(-4.75367 + 2.74453i) q^{67} -0.342914 q^{68} +(1.06755 - 4.77024i) q^{69} +(2.29525 - 1.34273i) q^{70} +(0.621982 + 1.07730i) q^{71} +(-2.71383 - 1.27872i) q^{72} +(-4.46154 + 7.72761i) q^{73} +4.34903i q^{74} +(-4.67892 + 5.08569i) q^{75} +(2.16909 - 3.75697i) q^{76} +(0.829127 + 1.41730i) q^{77} +(3.22393 - 5.34849i) q^{78} +(0.458065 + 0.793391i) q^{79} +(-0.870413 + 0.502533i) q^{80} +(5.72977 + 6.94044i) q^{81} +(7.47421 + 4.31523i) q^{82} -13.2261i q^{83} +(4.47761 + 0.975184i) q^{84} +(0.298476 - 0.172325i) q^{85} +(0.602811 + 1.04410i) q^{86} +(12.1161 + 11.1470i) q^{87} +(-0.310310 - 0.537472i) q^{88} +3.60015i q^{89} +(3.00475 - 0.250780i) q^{90} +(-2.96968 + 9.06537i) q^{91} -2.82222i q^{92} +(-2.93569 + 3.19091i) q^{93} +(0.0442417 - 0.0255429i) q^{94} +4.36015i q^{95} +(-1.69024 - 0.378264i) q^{96} +(-5.10398 - 8.84035i) q^{97} +(-6.99954 + 0.0801202i) q^{98} +(0.154854 + 1.85541i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 34q^{2} + 3q^{3} + 34q^{4} - 9q^{5} - 3q^{6} + 4q^{7} - 34q^{8} - 11q^{9} + O(q^{10}) \) \( 34q - 34q^{2} + 3q^{3} + 34q^{4} - 9q^{5} - 3q^{6} + 4q^{7} - 34q^{8} - 11q^{9} + 9q^{10} - 9q^{11} + 3q^{12} + 8q^{13} - 4q^{14} - 4q^{15} + 34q^{16} - 12q^{17} + 11q^{18} - 5q^{19} - 9q^{20} + 4q^{21} + 9q^{22} - 3q^{24} + 16q^{25} - 8q^{26} + 18q^{27} + 4q^{28} - 27q^{29} + 4q^{30} - q^{31} - 34q^{32} + 21q^{33} + 12q^{34} + 3q^{35} - 11q^{36} + 5q^{38} + 7q^{39} + 9q^{40} + 3q^{41} - 4q^{42} - 3q^{43} - 9q^{44} + 9q^{45} + 27q^{47} + 3q^{48} - 2q^{49} - 16q^{50} + 24q^{51} + 8q^{52} + 21q^{53} - 18q^{54} - 57q^{55} - 4q^{56} + 17q^{57} + 27q^{58} - 4q^{60} - 51q^{61} + q^{62} + 3q^{63} + 34q^{64} + 21q^{65} - 21q^{66} - 21q^{67} - 12q^{68} + 42q^{69} - 3q^{70} + 15q^{71} + 11q^{72} - 19q^{73} + 54q^{75} - 5q^{76} - 9q^{77} - 7q^{78} - 9q^{79} - 9q^{80} - 23q^{81} - 3q^{82} + 4q^{84} - 42q^{85} + 3q^{86} + 81q^{87} + 9q^{88} - 9q^{90} - 72q^{91} + 17q^{93} - 27q^{94} - 3q^{96} + 19q^{97} + 2q^{98} + 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.69024 + 0.378264i 0.975861 + 0.218391i
\(4\) 1.00000 0.500000
\(5\) −0.870413 + 0.502533i −0.389260 + 0.224740i −0.681840 0.731502i \(-0.738820\pi\)
0.292579 + 0.956241i \(0.405486\pi\)
\(6\) −1.69024 0.378264i −0.690038 0.154426i
\(7\) 2.64571 0.0151415i 0.999984 0.00572296i
\(8\) −1.00000 −0.353553
\(9\) 2.71383 + 1.27872i 0.904611 + 0.426239i
\(10\) 0.870413 0.502533i 0.275249 0.158915i
\(11\) 0.310310 + 0.537472i 0.0935619 + 0.162054i 0.909007 0.416780i \(-0.136841\pi\)
−0.815446 + 0.578834i \(0.803508\pi\)
\(12\) 1.69024 + 0.378264i 0.487931 + 0.109195i
\(13\) −1.14202 + 3.41991i −0.316741 + 0.948512i
\(14\) −2.64571 + 0.0151415i −0.707095 + 0.00404675i
\(15\) −1.66130 + 0.520156i −0.428945 + 0.134304i
\(16\) 1.00000 0.250000
\(17\) −0.342914 −0.0831688 −0.0415844 0.999135i \(-0.513241\pi\)
−0.0415844 + 0.999135i \(0.513241\pi\)
\(18\) −2.71383 1.27872i −0.639656 0.301396i
\(19\) 2.16909 3.75697i 0.497623 0.861908i −0.502373 0.864651i \(-0.667540\pi\)
0.999996 + 0.00274283i \(0.000873072\pi\)
\(20\) −0.870413 + 0.502533i −0.194630 + 0.112370i
\(21\) 4.47761 + 0.975184i 0.977095 + 0.212803i
\(22\) −0.310310 0.537472i −0.0661582 0.114589i
\(23\) 2.82222i 0.588474i −0.955733 0.294237i \(-0.904935\pi\)
0.955733 0.294237i \(-0.0950655\pi\)
\(24\) −1.69024 0.378264i −0.345019 0.0772129i
\(25\) −1.99492 + 3.45530i −0.398984 + 0.691061i
\(26\) 1.14202 3.41991i 0.223969 0.670699i
\(27\) 4.10334 + 3.18788i 0.789688 + 0.613509i
\(28\) 2.64571 0.0151415i 0.499992 0.00286148i
\(29\) 8.23191 + 4.75270i 1.52863 + 0.882553i 0.999420 + 0.0340609i \(0.0108440\pi\)
0.529208 + 0.848492i \(0.322489\pi\)
\(30\) 1.66130 0.520156i 0.303310 0.0949671i
\(31\) −1.25167 + 2.16796i −0.224807 + 0.389377i −0.956262 0.292513i \(-0.905509\pi\)
0.731454 + 0.681890i \(0.238842\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0.321192 + 1.02584i 0.0559123 + 0.178575i
\(34\) 0.342914 0.0588092
\(35\) −2.29525 + 1.34273i −0.387968 + 0.226964i
\(36\) 2.71383 + 1.27872i 0.452305 + 0.213119i
\(37\) 4.34903i 0.714975i −0.933918 0.357488i \(-0.883633\pi\)
0.933918 0.357488i \(-0.116367\pi\)
\(38\) −2.16909 + 3.75697i −0.351872 + 0.609461i
\(39\) −3.22393 + 5.34849i −0.516241 + 0.856443i
\(40\) 0.870413 0.502533i 0.137624 0.0794574i
\(41\) −7.47421 4.31523i −1.16727 0.673926i −0.214238 0.976781i \(-0.568727\pi\)
−0.953037 + 0.302855i \(0.902060\pi\)
\(42\) −4.47761 0.975184i −0.690911 0.150474i
\(43\) −0.602811 1.04410i −0.0919278 0.159224i 0.816394 0.577495i \(-0.195970\pi\)
−0.908322 + 0.418271i \(0.862636\pi\)
\(44\) 0.310310 + 0.537472i 0.0467809 + 0.0810270i
\(45\) −3.00475 + 0.250780i −0.447922 + 0.0373840i
\(46\) 2.82222i 0.416114i
\(47\) −0.0442417 + 0.0255429i −0.00645331 + 0.00372582i −0.503223 0.864156i \(-0.667853\pi\)
0.496770 + 0.867882i \(0.334519\pi\)
\(48\) 1.69024 + 0.378264i 0.243965 + 0.0545977i
\(49\) 6.99954 0.0801202i 0.999934 0.0114457i
\(50\) 1.99492 3.45530i 0.282124 0.488654i
\(51\) −0.579607 0.129712i −0.0811612 0.0181633i
\(52\) −1.14202 + 3.41991i −0.158370 + 0.474256i
\(53\) 4.15182 + 2.39705i 0.570296 + 0.329260i 0.757267 0.653105i \(-0.226534\pi\)
−0.186972 + 0.982365i \(0.559867\pi\)
\(54\) −4.10334 3.18788i −0.558394 0.433816i
\(55\) −0.540195 0.311882i −0.0728399 0.0420541i
\(56\) −2.64571 + 0.0151415i −0.353548 + 0.00202337i
\(57\) 5.08741 5.52970i 0.673844 0.732426i
\(58\) −8.23191 4.75270i −1.08090 0.624059i
\(59\) 3.08963i 0.402235i −0.979567 0.201118i \(-0.935543\pi\)
0.979567 0.201118i \(-0.0644573\pi\)
\(60\) −1.66130 + 0.520156i −0.214473 + 0.0671519i
\(61\) 5.78697 + 3.34111i 0.740945 + 0.427785i 0.822413 0.568891i \(-0.192627\pi\)
−0.0814678 + 0.996676i \(0.525961\pi\)
\(62\) 1.25167 2.16796i 0.158963 0.275331i
\(63\) 7.19937 + 3.34202i 0.907035 + 0.421055i
\(64\) 1.00000 0.125000
\(65\) −0.724585 3.55064i −0.0898737 0.440402i
\(66\) −0.321192 1.02584i −0.0395360 0.126272i
\(67\) −4.75367 + 2.74453i −0.580754 + 0.335298i −0.761433 0.648244i \(-0.775504\pi\)
0.180679 + 0.983542i \(0.442170\pi\)
\(68\) −0.342914 −0.0415844
\(69\) 1.06755 4.77024i 0.128517 0.574269i
\(70\) 2.29525 1.34273i 0.274335 0.160488i
\(71\) 0.621982 + 1.07730i 0.0738157 + 0.127853i 0.900571 0.434710i \(-0.143149\pi\)
−0.826755 + 0.562562i \(0.809816\pi\)
\(72\) −2.71383 1.27872i −0.319828 0.150698i
\(73\) −4.46154 + 7.72761i −0.522183 + 0.904448i 0.477484 + 0.878641i \(0.341549\pi\)
−0.999667 + 0.0258074i \(0.991784\pi\)
\(74\) 4.34903i 0.505564i
\(75\) −4.67892 + 5.08569i −0.540275 + 0.587245i
\(76\) 2.16909 3.75697i 0.248811 0.430954i
\(77\) 0.829127 + 1.41730i 0.0944878 + 0.161516i
\(78\) 3.22393 5.34849i 0.365038 0.605597i
\(79\) 0.458065 + 0.793391i 0.0515363 + 0.0892635i 0.890643 0.454704i \(-0.150255\pi\)
−0.839106 + 0.543967i \(0.816922\pi\)
\(80\) −0.870413 + 0.502533i −0.0973151 + 0.0561849i
\(81\) 5.72977 + 6.94044i 0.636641 + 0.771160i
\(82\) 7.47421 + 4.31523i 0.825388 + 0.476538i
\(83\) 13.2261i 1.45176i −0.687822 0.725879i \(-0.741433\pi\)
0.687822 0.725879i \(-0.258567\pi\)
\(84\) 4.47761 + 0.975184i 0.488548 + 0.106401i
\(85\) 0.298476 0.172325i 0.0323743 0.0186913i
\(86\) 0.602811 + 1.04410i 0.0650028 + 0.112588i
\(87\) 12.1161 + 11.1470i 1.29899 + 1.19509i
\(88\) −0.310310 0.537472i −0.0330791 0.0572947i
\(89\) 3.60015i 0.381615i 0.981627 + 0.190807i \(0.0611106\pi\)
−0.981627 + 0.190807i \(0.938889\pi\)
\(90\) 3.00475 0.250780i 0.316729 0.0264345i
\(91\) −2.96968 + 9.06537i −0.311307 + 0.950309i
\(92\) 2.82222i 0.294237i
\(93\) −2.93569 + 3.19091i −0.304417 + 0.330882i
\(94\) 0.0442417 0.0255429i 0.00456318 0.00263455i
\(95\) 4.36015i 0.447342i
\(96\) −1.69024 0.378264i −0.172510 0.0386064i
\(97\) −5.10398 8.84035i −0.518231 0.897602i −0.999776 0.0211806i \(-0.993258\pi\)
0.481545 0.876421i \(-0.340076\pi\)
\(98\) −6.99954 + 0.0801202i −0.707060 + 0.00809336i
\(99\) 0.154854 + 1.85541i 0.0155634 + 0.186475i
\(100\) −1.99492 + 3.45530i −0.199492 + 0.345530i
\(101\) −4.95624 8.58446i −0.493164 0.854185i 0.506805 0.862061i \(-0.330826\pi\)
−0.999969 + 0.00787556i \(0.997493\pi\)
\(102\) 0.579607 + 0.129712i 0.0573896 + 0.0128434i
\(103\) 8.93253 5.15720i 0.880149 0.508154i 0.00944127 0.999955i \(-0.496995\pi\)
0.870707 + 0.491801i \(0.163661\pi\)
\(104\) 1.14202 3.41991i 0.111985 0.335350i
\(105\) −4.38743 + 1.40134i −0.428170 + 0.136756i
\(106\) −4.15182 2.39705i −0.403260 0.232822i
\(107\) 14.7159i 1.42264i −0.702871 0.711318i \(-0.748099\pi\)
0.702871 0.711318i \(-0.251901\pi\)
\(108\) 4.10334 + 3.18788i 0.394844 + 0.306754i
\(109\) −15.5550 8.98070i −1.48990 0.860195i −0.489968 0.871740i \(-0.662992\pi\)
−0.999933 + 0.0115450i \(0.996325\pi\)
\(110\) 0.540195 + 0.311882i 0.0515056 + 0.0297367i
\(111\) 1.64508 7.35090i 0.156144 0.697717i
\(112\) 2.64571 0.0151415i 0.249996 0.00143074i
\(113\) −4.26195 + 2.46064i −0.400931 + 0.231478i −0.686886 0.726766i \(-0.741023\pi\)
0.285955 + 0.958243i \(0.407689\pi\)
\(114\) −5.08741 + 5.52970i −0.476479 + 0.517904i
\(115\) 1.41826 + 2.45650i 0.132253 + 0.229070i
\(116\) 8.23191 + 4.75270i 0.764314 + 0.441277i
\(117\) −7.47235 + 7.82074i −0.690819 + 0.723027i
\(118\) 3.08963i 0.284423i
\(119\) −0.907250 + 0.00519224i −0.0831674 + 0.000475972i
\(120\) 1.66130 0.520156i 0.151655 0.0474835i
\(121\) 5.30742 9.19271i 0.482492 0.835701i
\(122\) −5.78697 3.34111i −0.523927 0.302490i
\(123\) −11.0009 10.1210i −0.991919 0.912581i
\(124\) −1.25167 + 2.16796i −0.112404 + 0.194689i
\(125\) 9.03538i 0.808149i
\(126\) −7.19937 3.34202i −0.641371 0.297731i
\(127\) −2.78854 + 4.82989i −0.247443 + 0.428584i −0.962816 0.270159i \(-0.912924\pi\)
0.715373 + 0.698743i \(0.246257\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −0.623951 1.99280i −0.0549358 0.175456i
\(130\) 0.724585 + 3.55064i 0.0635503 + 0.311411i
\(131\) −9.12794 15.8101i −0.797512 1.38133i −0.921232 0.389014i \(-0.872816\pi\)
0.123720 0.992317i \(-0.460517\pi\)
\(132\) 0.321192 + 1.02584i 0.0279562 + 0.0892876i
\(133\) 5.68189 9.97269i 0.492682 0.864742i
\(134\) 4.75367 2.74453i 0.410655 0.237092i
\(135\) −5.17362 0.712712i −0.445274 0.0613405i
\(136\) 0.342914 0.0294046
\(137\) −8.10612 −0.692553 −0.346276 0.938133i \(-0.612554\pi\)
−0.346276 + 0.938133i \(0.612554\pi\)
\(138\) −1.06755 + 4.77024i −0.0908755 + 0.406069i
\(139\) −16.5296 + 9.54339i −1.40203 + 0.809460i −0.994600 0.103779i \(-0.966907\pi\)
−0.407425 + 0.913239i \(0.633573\pi\)
\(140\) −2.29525 + 1.34273i −0.193984 + 0.113482i
\(141\) −0.0844411 + 0.0264387i −0.00711122 + 0.00222654i
\(142\) −0.621982 1.07730i −0.0521956 0.0904054i
\(143\) −2.19249 + 0.447425i −0.183345 + 0.0374155i
\(144\) 2.71383 + 1.27872i 0.226153 + 0.106560i
\(145\) −9.55354 −0.793379
\(146\) 4.46154 7.72761i 0.369239 0.639541i
\(147\) 11.8612 + 2.51225i 0.978297 + 0.207207i
\(148\) 4.34903i 0.357488i
\(149\) −2.34608 + 4.06353i −0.192198 + 0.332898i −0.945979 0.324229i \(-0.894895\pi\)
0.753780 + 0.657127i \(0.228228\pi\)
\(150\) 4.67892 5.08569i 0.382032 0.415245i
\(151\) 6.80898 + 3.93117i 0.554107 + 0.319914i 0.750777 0.660556i \(-0.229679\pi\)
−0.196670 + 0.980470i \(0.563013\pi\)
\(152\) −2.16909 + 3.75697i −0.175936 + 0.304730i
\(153\) −0.930610 0.438489i −0.0752354 0.0354498i
\(154\) −0.829127 1.41730i −0.0668129 0.114209i
\(155\) 2.51603i 0.202092i
\(156\) −3.22393 + 5.34849i −0.258121 + 0.428222i
\(157\) −19.8931 11.4853i −1.58764 0.916627i −0.993694 0.112126i \(-0.964234\pi\)
−0.593951 0.804501i \(-0.702433\pi\)
\(158\) −0.458065 0.793391i −0.0364417 0.0631188i
\(159\) 6.11085 + 5.62208i 0.484622 + 0.445860i
\(160\) 0.870413 0.502533i 0.0688122 0.0397287i
\(161\) −0.0427328 7.46677i −0.00336782 0.588464i
\(162\) −5.72977 6.94044i −0.450173 0.545293i
\(163\) −7.66125 4.42322i −0.600075 0.346454i 0.168996 0.985617i \(-0.445948\pi\)
−0.769071 + 0.639163i \(0.779281\pi\)
\(164\) −7.47421 4.31523i −0.583637 0.336963i
\(165\) −0.795086 0.731492i −0.0618974 0.0569466i
\(166\) 13.2261i 1.02655i
\(167\) 3.95886 + 2.28565i 0.306345 + 0.176869i 0.645290 0.763938i \(-0.276737\pi\)
−0.338945 + 0.940806i \(0.610070\pi\)
\(168\) −4.47761 0.975184i −0.345455 0.0752371i
\(169\) −10.3916 7.81124i −0.799351 0.600864i
\(170\) −0.298476 + 0.172325i −0.0228921 + 0.0132168i
\(171\) 10.6906 7.42214i 0.817533 0.567585i
\(172\) −0.602811 1.04410i −0.0459639 0.0796118i
\(173\) −6.56172 + 11.3652i −0.498879 + 0.864083i −0.999999 0.00129451i \(-0.999588\pi\)
0.501121 + 0.865377i \(0.332921\pi\)
\(174\) −12.1161 11.1470i −0.918522 0.845055i
\(175\) −5.22566 + 9.17193i −0.395023 + 0.693333i
\(176\) 0.310310 + 0.537472i 0.0233905 + 0.0405135i
\(177\) 1.16870 5.22222i 0.0878445 0.392526i
\(178\) 3.60015i 0.269842i
\(179\) −16.9504 + 9.78634i −1.26693 + 0.731465i −0.974407 0.224792i \(-0.927830\pi\)
−0.292528 + 0.956257i \(0.594497\pi\)
\(180\) −3.00475 + 0.250780i −0.223961 + 0.0186920i
\(181\) 22.4310i 1.66728i −0.552305 0.833642i \(-0.686252\pi\)
0.552305 0.833642i \(-0.313748\pi\)
\(182\) 2.96968 9.06537i 0.220127 0.671970i
\(183\) 8.51755 + 7.83628i 0.629635 + 0.579274i
\(184\) 2.82222i 0.208057i
\(185\) 2.18553 + 3.78545i 0.160683 + 0.278312i
\(186\) 2.93569 3.19091i 0.215255 0.233969i
\(187\) −0.106409 0.184307i −0.00778143 0.0134778i
\(188\) −0.0442417 + 0.0255429i −0.00322665 + 0.00186291i
\(189\) 10.9045 + 8.37208i 0.793186 + 0.608979i
\(190\) 4.36015i 0.316319i
\(191\) 11.3808 + 6.57071i 0.823486 + 0.475440i 0.851617 0.524164i \(-0.175622\pi\)
−0.0281311 + 0.999604i \(0.508956\pi\)
\(192\) 1.69024 + 0.378264i 0.121983 + 0.0272989i
\(193\) 10.9286 6.30961i 0.786656 0.454176i −0.0521281 0.998640i \(-0.516600\pi\)
0.838784 + 0.544464i \(0.183267\pi\)
\(194\) 5.10398 + 8.84035i 0.366444 + 0.634700i
\(195\) 0.118356 6.27552i 0.00847562 0.449399i
\(196\) 6.99954 0.0801202i 0.499967 0.00572287i
\(197\) 0.693687 1.20150i 0.0494232 0.0856034i −0.840255 0.542191i \(-0.817595\pi\)
0.889679 + 0.456587i \(0.150928\pi\)
\(198\) −0.154854 1.85541i −0.0110050 0.131858i
\(199\) 8.75865i 0.620885i 0.950592 + 0.310442i \(0.100477\pi\)
−0.950592 + 0.310442i \(0.899523\pi\)
\(200\) 1.99492 3.45530i 0.141062 0.244327i
\(201\) −9.07302 + 2.84078i −0.639961 + 0.200373i
\(202\) 4.95624 + 8.58446i 0.348720 + 0.604000i
\(203\) 21.8512 + 12.4496i 1.53365 + 0.873791i
\(204\) −0.579607 0.129712i −0.0405806 0.00908166i
\(205\) 8.67419 0.605832
\(206\) −8.93253 + 5.15720i −0.622359 + 0.359319i
\(207\) 3.60882 7.65904i 0.250830 0.532340i
\(208\) −1.14202 + 3.41991i −0.0791851 + 0.237128i
\(209\) 2.69235 0.186234
\(210\) 4.38743 1.40134i 0.302762 0.0967013i
\(211\) 12.8567 22.2684i 0.885089 1.53302i 0.0394776 0.999220i \(-0.487431\pi\)
0.845611 0.533799i \(-0.179236\pi\)
\(212\) 4.15182 + 2.39705i 0.285148 + 0.164630i
\(213\) 0.643794 + 2.05618i 0.0441121 + 0.140887i
\(214\) 14.7159i 1.00595i
\(215\) 1.04939 + 0.605865i 0.0715677 + 0.0413196i
\(216\) −4.10334 3.18788i −0.279197 0.216908i
\(217\) −3.27873 + 5.75474i −0.222575 + 0.390657i
\(218\) 15.5550 + 8.98070i 1.05352 + 0.608250i
\(219\) −10.4642 + 11.3739i −0.707102 + 0.768576i
\(220\) −0.540195 0.311882i −0.0364199 0.0210271i
\(221\) 0.391616 1.17273i 0.0263429 0.0788866i
\(222\) −1.64508 + 7.35090i −0.110411 + 0.493360i
\(223\) −4.67710 + 8.10097i −0.313201 + 0.542481i −0.979054 0.203603i \(-0.934735\pi\)
0.665852 + 0.746084i \(0.268068\pi\)
\(224\) −2.64571 + 0.0151415i −0.176774 + 0.00101169i
\(225\) −9.83224 + 6.82618i −0.655482 + 0.455079i
\(226\) 4.26195 2.46064i 0.283501 0.163679i
\(227\) 11.7911i 0.782600i 0.920263 + 0.391300i \(0.127974\pi\)
−0.920263 + 0.391300i \(0.872026\pi\)
\(228\) 5.08741 5.52970i 0.336922 0.366213i
\(229\) −5.47329 9.48001i −0.361685 0.626457i 0.626553 0.779379i \(-0.284465\pi\)
−0.988238 + 0.152922i \(0.951132\pi\)
\(230\) −1.41826 2.45650i −0.0935172 0.161977i
\(231\) 0.865312 + 2.70920i 0.0569334 + 0.178252i
\(232\) −8.23191 4.75270i −0.540451 0.312030i
\(233\) −5.40464 + 3.12037i −0.354070 + 0.204422i −0.666476 0.745526i \(-0.732198\pi\)
0.312406 + 0.949949i \(0.398865\pi\)
\(234\) 7.47235 7.82074i 0.488483 0.511258i
\(235\) 0.0256723 0.0444658i 0.00167468 0.00290063i
\(236\) 3.08963i 0.201118i
\(237\) 0.474128 + 1.51429i 0.0307979 + 0.0983638i
\(238\) 0.907250 0.00519224i 0.0588083 0.000336563i
\(239\) 30.4624 1.97045 0.985225 0.171267i \(-0.0547862\pi\)
0.985225 + 0.171267i \(0.0547862\pi\)
\(240\) −1.66130 + 0.520156i −0.107236 + 0.0335759i
\(241\) 5.69491 0.366842 0.183421 0.983034i \(-0.441283\pi\)
0.183421 + 0.983034i \(0.441283\pi\)
\(242\) −5.30742 + 9.19271i −0.341174 + 0.590930i
\(243\) 7.05938 + 13.8984i 0.452859 + 0.891582i
\(244\) 5.78697 + 3.34111i 0.370473 + 0.213892i
\(245\) −6.05223 + 3.58724i −0.386663 + 0.229180i
\(246\) 11.0009 + 10.1210i 0.701393 + 0.645292i
\(247\) 10.3713 + 11.7086i 0.659913 + 0.745002i
\(248\) 1.25167 2.16796i 0.0794813 0.137666i
\(249\) 5.00298 22.3554i 0.317051 1.41671i
\(250\) 9.03538i 0.571448i
\(251\) 12.0289 + 20.8346i 0.759255 + 1.31507i 0.943231 + 0.332138i \(0.107770\pi\)
−0.183976 + 0.982931i \(0.558897\pi\)
\(252\) 7.19937 + 3.34202i 0.453518 + 0.210527i
\(253\) 1.51687 0.875762i 0.0953645 0.0550587i
\(254\) 2.78854 4.82989i 0.174969 0.303055i
\(255\) 0.569682 0.178369i 0.0356749 0.0111699i
\(256\) 1.00000 0.0625000
\(257\) −29.5356 −1.84238 −0.921189 0.389116i \(-0.872780\pi\)
−0.921189 + 0.389116i \(0.872780\pi\)
\(258\) 0.623951 + 1.99280i 0.0388455 + 0.124066i
\(259\) −0.0658509 11.5063i −0.00409178 0.714964i
\(260\) −0.724585 3.55064i −0.0449369 0.220201i
\(261\) 16.2627 + 23.4243i 1.00663 + 1.44993i
\(262\) 9.12794 + 15.8101i 0.563926 + 0.976748i
\(263\) 19.0802 11.0160i 1.17654 0.679274i 0.221327 0.975200i \(-0.428961\pi\)
0.955211 + 0.295925i \(0.0956280\pi\)
\(264\) −0.321192 1.02584i −0.0197680 0.0631359i
\(265\) −4.81839 −0.295991
\(266\) −5.68189 + 9.97269i −0.348379 + 0.611465i
\(267\) −1.36181 + 6.08512i −0.0833412 + 0.372403i
\(268\) −4.75367 + 2.74453i −0.290377 + 0.167649i
\(269\) −6.41553 −0.391162 −0.195581 0.980688i \(-0.562659\pi\)
−0.195581 + 0.980688i \(0.562659\pi\)
\(270\) 5.17362 + 0.712712i 0.314856 + 0.0433743i
\(271\) 20.6367 1.25359 0.626794 0.779185i \(-0.284367\pi\)
0.626794 + 0.779185i \(0.284367\pi\)
\(272\) −0.342914 −0.0207922
\(273\) −8.44858 + 14.1993i −0.511331 + 0.859384i
\(274\) 8.10612 0.489709
\(275\) −2.47617 −0.149319
\(276\) 1.06755 4.77024i 0.0642587 0.287134i
\(277\) 12.0754 0.725543 0.362771 0.931878i \(-0.381831\pi\)
0.362771 + 0.931878i \(0.381831\pi\)
\(278\) 16.5296 9.54339i 0.991382 0.572375i
\(279\) −6.16904 + 4.28295i −0.369330 + 0.256413i
\(280\) 2.29525 1.34273i 0.137167 0.0802438i
\(281\) 30.4581 1.81698 0.908488 0.417911i \(-0.137238\pi\)
0.908488 + 0.417911i \(0.137238\pi\)
\(282\) 0.0844411 0.0264387i 0.00502839 0.00157440i
\(283\) 15.2403 8.79901i 0.905943 0.523047i 0.0268196 0.999640i \(-0.491462\pi\)
0.879124 + 0.476594i \(0.158129\pi\)
\(284\) 0.621982 + 1.07730i 0.0369079 + 0.0639263i
\(285\) −1.64929 + 7.36971i −0.0976955 + 0.436544i
\(286\) 2.19249 0.447425i 0.129644 0.0264568i
\(287\) −19.8399 11.3037i −1.17111 0.667235i
\(288\) −2.71383 1.27872i −0.159914 0.0753491i
\(289\) −16.8824 −0.993083
\(290\) 9.55354 0.561003
\(291\) −5.28297 16.8730i −0.309693 0.989112i
\(292\) −4.46154 + 7.72761i −0.261092 + 0.452224i
\(293\) −14.3730 + 8.29824i −0.839678 + 0.484788i −0.857155 0.515059i \(-0.827770\pi\)
0.0174766 + 0.999847i \(0.494437\pi\)
\(294\) −11.8612 2.51225i −0.691760 0.146518i
\(295\) 1.55264 + 2.68925i 0.0903982 + 0.156574i
\(296\) 4.34903i 0.252782i
\(297\) −0.440093 + 3.19466i −0.0255368 + 0.185373i
\(298\) 2.34608 4.06353i 0.135905 0.235394i
\(299\) 9.65174 + 3.22304i 0.558175 + 0.186393i
\(300\) −4.67892 + 5.08569i −0.270137 + 0.293623i
\(301\) −1.61067 2.75325i −0.0928375 0.158695i
\(302\) −6.80898 3.93117i −0.391813 0.226213i
\(303\) −5.13005 16.3846i −0.294713 0.941269i
\(304\) 2.16909 3.75697i 0.124406 0.215477i
\(305\) −6.71606 −0.384561
\(306\) 0.930610 + 0.438489i 0.0531995 + 0.0250668i
\(307\) −26.3002 −1.50103 −0.750514 0.660854i \(-0.770194\pi\)
−0.750514 + 0.660854i \(0.770194\pi\)
\(308\) 0.829127 + 1.41730i 0.0472439 + 0.0807579i
\(309\) 17.0489 5.33806i 0.969879 0.303671i
\(310\) 2.51603i 0.142901i
\(311\) −6.89170 + 11.9368i −0.390793 + 0.676873i −0.992554 0.121803i \(-0.961132\pi\)
0.601762 + 0.798676i \(0.294466\pi\)
\(312\) 3.22393 5.34849i 0.182519 0.302798i
\(313\) 7.93246 4.57981i 0.448369 0.258866i −0.258772 0.965938i \(-0.583318\pi\)
0.707141 + 0.707072i \(0.249985\pi\)
\(314\) 19.8931 + 11.4853i 1.12263 + 0.648153i
\(315\) −7.94590 + 0.708986i −0.447701 + 0.0399469i
\(316\) 0.458065 + 0.793391i 0.0257681 + 0.0446317i
\(317\) −2.37076 4.10628i −0.133155 0.230631i 0.791736 0.610863i \(-0.209178\pi\)
−0.924891 + 0.380232i \(0.875844\pi\)
\(318\) −6.11085 5.62208i −0.342680 0.315271i
\(319\) 5.89923i 0.330293i
\(320\) −0.870413 + 0.502533i −0.0486575 + 0.0280924i
\(321\) 5.56648 24.8733i 0.310691 1.38829i
\(322\) 0.0427328 + 7.46677i 0.00238140 + 0.416107i
\(323\) −0.743810 + 1.28832i −0.0413867 + 0.0716838i
\(324\) 5.72977 + 6.94044i 0.318321 + 0.385580i
\(325\) −9.53858 10.7685i −0.529105 0.597328i
\(326\) 7.66125 + 4.42322i 0.424317 + 0.244980i
\(327\) −22.8947 21.0635i −1.26608 1.16481i
\(328\) 7.47421 + 4.31523i 0.412694 + 0.238269i
\(329\) −0.116664 + 0.0682490i −0.00643188 + 0.00376269i
\(330\) 0.795086 + 0.731492i 0.0437680 + 0.0402673i
\(331\) 21.1492 + 12.2105i 1.16246 + 0.671149i 0.951893 0.306430i \(-0.0991345\pi\)
0.210571 + 0.977579i \(0.432468\pi\)
\(332\) 13.2261i 0.725879i
\(333\) 5.56117 11.8025i 0.304750 0.646774i
\(334\) −3.95886 2.28565i −0.216619 0.125065i
\(335\) 2.75844 4.77776i 0.150710 0.261037i
\(336\) 4.47761 + 0.975184i 0.244274 + 0.0532006i
\(337\) 1.88882 0.102891 0.0514453 0.998676i \(-0.483617\pi\)
0.0514453 + 0.998676i \(0.483617\pi\)
\(338\) 10.3916 + 7.81124i 0.565226 + 0.424875i
\(339\) −8.13450 + 2.54693i −0.441806 + 0.138330i
\(340\) 0.298476 0.172325i 0.0161872 0.00934566i
\(341\) −1.55362 −0.0841335
\(342\) −10.6906 + 7.42214i −0.578083 + 0.401343i
\(343\) 18.5175 0.317958i 0.999853 0.0171681i
\(344\) 0.602811 + 1.04410i 0.0325014 + 0.0562940i
\(345\) 1.46800 + 4.68855i 0.0790342 + 0.252423i
\(346\) 6.56172 11.3652i 0.352760 0.610999i
\(347\) 34.7424i 1.86507i 0.361079 + 0.932535i \(0.382408\pi\)
−0.361079 + 0.932535i \(0.617592\pi\)
\(348\) 12.1161 + 11.1470i 0.649493 + 0.597544i
\(349\) 4.20668 7.28618i 0.225178 0.390021i −0.731195 0.682169i \(-0.761037\pi\)
0.956373 + 0.292148i \(0.0943702\pi\)
\(350\) 5.22566 9.17193i 0.279323 0.490260i
\(351\) −15.5884 + 10.3924i −0.832047 + 0.554706i
\(352\) −0.310310 0.537472i −0.0165396 0.0286474i
\(353\) −17.1652 + 9.91033i −0.913611 + 0.527474i −0.881591 0.472014i \(-0.843527\pi\)
−0.0320198 + 0.999487i \(0.510194\pi\)
\(354\) −1.16870 + 5.22222i −0.0621155 + 0.277558i
\(355\) −1.08276 0.625133i −0.0574671 0.0331786i
\(356\) 3.60015i 0.190807i
\(357\) −1.53543 0.334404i −0.0812638 0.0176985i
\(358\) 16.9504 9.78634i 0.895858 0.517224i
\(359\) −0.111157 0.192530i −0.00586667 0.0101614i 0.863077 0.505072i \(-0.168534\pi\)
−0.868944 + 0.494911i \(0.835201\pi\)
\(360\) 3.00475 0.250780i 0.158364 0.0132172i
\(361\) 0.0901205 + 0.156093i 0.00474318 + 0.00821544i
\(362\) 22.4310i 1.17895i
\(363\) 12.4481 13.5303i 0.653355 0.710157i
\(364\) −2.96968 + 9.06537i −0.155654 + 0.475155i
\(365\) 8.96828i 0.469421i
\(366\) −8.51755 7.83628i −0.445219 0.409609i
\(367\) −11.6056 + 6.70049i −0.605806 + 0.349763i −0.771322 0.636445i \(-0.780404\pi\)
0.165516 + 0.986207i \(0.447071\pi\)
\(368\) 2.82222i 0.147118i
\(369\) −14.7658 21.2682i −0.768676 1.10718i
\(370\) −2.18553 3.78545i −0.113620 0.196796i
\(371\) 11.0208 + 6.27904i 0.572171 + 0.325991i
\(372\) −2.93569 + 3.19091i −0.152208 + 0.165441i
\(373\) 3.97778 6.88972i 0.205962 0.356736i −0.744477 0.667648i \(-0.767301\pi\)
0.950439 + 0.310912i \(0.100634\pi\)
\(374\) 0.106409 + 0.184307i 0.00550230 + 0.00953026i
\(375\) 3.41776 15.2720i 0.176493 0.788642i
\(376\) 0.0442417 0.0255429i 0.00228159 0.00131728i
\(377\) −25.6548 + 22.7247i −1.32129 + 1.17038i
\(378\) −10.9045 8.37208i −0.560867 0.430613i
\(379\) −4.29409 2.47919i −0.220572 0.127348i 0.385643 0.922648i \(-0.373980\pi\)
−0.606215 + 0.795301i \(0.707313\pi\)
\(380\) 4.36015i 0.223671i
\(381\) −6.54028 + 7.10888i −0.335069 + 0.364199i
\(382\) −11.3808 6.57071i −0.582293 0.336187i
\(383\) −9.40956 5.43261i −0.480806 0.277594i 0.239946 0.970786i \(-0.422870\pi\)
−0.720752 + 0.693193i \(0.756204\pi\)
\(384\) −1.69024 0.378264i −0.0862548 0.0193032i
\(385\) −1.43392 0.816968i −0.0730793 0.0416366i
\(386\) −10.9286 + 6.30961i −0.556250 + 0.321151i
\(387\) −0.300821 3.60433i −0.0152916 0.183219i
\(388\) −5.10398 8.84035i −0.259115 0.448801i
\(389\) 33.7632 + 19.4932i 1.71186 + 0.988345i 0.932048 + 0.362334i \(0.118020\pi\)
0.779815 + 0.626011i \(0.215313\pi\)
\(390\) −0.118356 + 6.27552i −0.00599317 + 0.317773i
\(391\) 0.967778i 0.0489427i
\(392\) −6.99954 + 0.0801202i −0.353530 + 0.00404668i
\(393\) −9.44804 30.1756i −0.476591 1.52216i
\(394\) −0.693687 + 1.20150i −0.0349475 + 0.0605308i
\(395\) −0.797410 0.460385i −0.0401221 0.0231645i
\(396\) 0.154854 + 1.85541i 0.00778172 + 0.0932377i
\(397\) −11.1038 + 19.2323i −0.557282 + 0.965240i 0.440440 + 0.897782i \(0.354822\pi\)
−0.997722 + 0.0674585i \(0.978511\pi\)
\(398\) 8.75865i 0.439032i
\(399\) 13.3761 14.7070i 0.669641 0.736271i
\(400\) −1.99492 + 3.45530i −0.0997461 + 0.172765i
\(401\) 29.6513 1.48072 0.740358 0.672213i \(-0.234656\pi\)
0.740358 + 0.672213i \(0.234656\pi\)
\(402\) 9.07302 2.84078i 0.452521 0.141685i
\(403\) −5.98479 6.75647i −0.298124 0.336564i
\(404\) −4.95624 8.58446i −0.246582 0.427093i
\(405\) −8.47507 3.16165i −0.421129 0.157104i
\(406\) −21.8512 12.4496i −1.08446 0.617863i
\(407\) 2.33748 1.34954i 0.115865 0.0668944i
\(408\) 0.579607 + 0.129712i 0.0286948 + 0.00642170i
\(409\) −1.06094 −0.0524602 −0.0262301 0.999656i \(-0.508350\pi\)
−0.0262301 + 0.999656i \(0.508350\pi\)
\(410\) −8.67419 −0.428388
\(411\) −13.7013 3.06626i −0.675835 0.151247i
\(412\) 8.93253 5.15720i 0.440074 0.254077i
\(413\) −0.0467817 8.17425i −0.00230198 0.402229i
\(414\) −3.60882 + 7.65904i −0.177364 + 0.376421i
\(415\) 6.64657 + 11.5122i 0.326268 + 0.565112i
\(416\) 1.14202 3.41991i 0.0559923 0.167675i
\(417\) −31.5490 + 9.87806i −1.54496 + 0.483731i
\(418\) −2.69235 −0.131687
\(419\) −2.10360 + 3.64355i −0.102768 + 0.177999i −0.912824 0.408353i \(-0.866103\pi\)
0.810056 + 0.586352i \(0.199437\pi\)
\(420\) −4.38743 + 1.40134i −0.214085 + 0.0683782i
\(421\) 12.1375i 0.591544i 0.955259 + 0.295772i \(0.0955768\pi\)
−0.955259 + 0.295772i \(0.904423\pi\)
\(422\) −12.8567 + 22.2684i −0.625853 + 1.08401i
\(423\) −0.152727 + 0.0127467i −0.00742582 + 0.000619767i
\(424\) −4.15182 2.39705i −0.201630 0.116411i
\(425\) 0.684086 1.18487i 0.0331830 0.0574747i
\(426\) −0.643794 2.05618i −0.0311919 0.0996222i
\(427\) 15.3612 + 8.75197i 0.743381 + 0.423537i
\(428\) 14.7159i 0.711318i
\(429\) −3.87508 0.0730836i −0.187090 0.00352851i
\(430\) −1.04939 0.605865i −0.0506060 0.0292174i
\(431\) 3.37233 + 5.84104i 0.162439 + 0.281353i 0.935743 0.352683i \(-0.114731\pi\)
−0.773304 + 0.634036i \(0.781397\pi\)
\(432\) 4.10334 + 3.18788i 0.197422 + 0.153377i
\(433\) −25.4298 + 14.6819i −1.22208 + 0.705566i −0.965360 0.260920i \(-0.915974\pi\)
−0.256717 + 0.966487i \(0.582641\pi\)
\(434\) 3.27873 5.75474i 0.157384 0.276236i
\(435\) −16.1478 3.61376i −0.774228 0.173267i
\(436\) −15.5550 8.98070i −0.744951 0.430098i
\(437\) −10.6030 6.12164i −0.507210 0.292838i
\(438\) 10.4642 11.3739i 0.499996 0.543465i
\(439\) 3.82128i 0.182380i −0.995834 0.0911898i \(-0.970933\pi\)
0.995834 0.0911898i \(-0.0290670\pi\)
\(440\) 0.540195 + 0.311882i 0.0257528 + 0.0148684i
\(441\) 19.0980 + 8.73299i 0.909430 + 0.415857i
\(442\) −0.391616 + 1.17273i −0.0186273 + 0.0557813i
\(443\) 20.4039 11.7802i 0.969420 0.559695i 0.0703604 0.997522i \(-0.477585\pi\)
0.899059 + 0.437827i \(0.144252\pi\)
\(444\) 1.64508 7.35090i 0.0780721 0.348858i
\(445\) −1.80919 3.13361i −0.0857640 0.148548i
\(446\) 4.67710 8.10097i 0.221467 0.383592i
\(447\) −5.50253 + 5.98091i −0.260261 + 0.282887i
\(448\) 2.64571 0.0151415i 0.124998 0.000715371i
\(449\) −3.91435 6.77986i −0.184730 0.319961i 0.758756 0.651375i \(-0.225808\pi\)
−0.943485 + 0.331414i \(0.892474\pi\)
\(450\) 9.83224 6.82618i 0.463496 0.321789i
\(451\) 5.35624i 0.252215i
\(452\) −4.26195 + 2.46064i −0.200465 + 0.115739i
\(453\) 10.0218 + 9.22021i 0.470865 + 0.433203i
\(454\) 11.7911i 0.553382i
\(455\) −1.97080 9.38298i −0.0923926 0.439881i
\(456\) −5.08741 + 5.52970i −0.238240 + 0.258952i
\(457\) 31.8029i 1.48768i −0.668360 0.743838i \(-0.733003\pi\)
0.668360 0.743838i \(-0.266997\pi\)
\(458\) 5.47329 + 9.48001i 0.255750 + 0.442972i
\(459\) −1.40709 1.09317i −0.0656774 0.0510248i
\(460\) 1.41826 + 2.45650i 0.0661267 + 0.114535i
\(461\) 26.9000 15.5307i 1.25286 0.723337i 0.281181 0.959655i \(-0.409274\pi\)
0.971676 + 0.236318i \(0.0759406\pi\)
\(462\) −0.865312 2.70920i −0.0402580 0.126043i
\(463\) 27.0578i 1.25748i 0.777614 + 0.628742i \(0.216430\pi\)
−0.777614 + 0.628742i \(0.783570\pi\)
\(464\) 8.23191 + 4.75270i 0.382157 + 0.220638i
\(465\) 0.951723 4.25269i 0.0441351 0.197214i
\(466\) 5.40464 3.12037i 0.250365 0.144548i
\(467\) −15.8112 27.3859i −0.731657 1.26727i −0.956175 0.292797i \(-0.905414\pi\)
0.224517 0.974470i \(-0.427919\pi\)
\(468\) −7.47235 + 7.82074i −0.345410 + 0.361514i
\(469\) −12.5353 + 7.33322i −0.578825 + 0.338616i
\(470\) −0.0256723 + 0.0444658i −0.00118418 + 0.00205105i
\(471\) −29.2797 26.9378i −1.34914 1.24123i
\(472\) 3.08963i 0.142212i
\(473\) 0.374116 0.647988i 0.0172019 0.0297945i
\(474\) −0.474128 1.51429i −0.0217774 0.0695537i
\(475\) 8.65432 + 14.9897i 0.397087 + 0.687775i
\(476\) −0.907250 + 0.00519224i −0.0415837 + 0.000237986i
\(477\) 8.20218 + 11.8142i 0.375552 + 0.540935i
\(478\) −30.4624 −1.39332
\(479\) 9.21963 5.32296i 0.421256 0.243212i −0.274359 0.961627i \(-0.588466\pi\)
0.695614 + 0.718415i \(0.255132\pi\)
\(480\) 1.66130 0.520156i 0.0758275 0.0237418i
\(481\) 14.8733 + 4.96669i 0.678163 + 0.226462i
\(482\) −5.69491 −0.259396
\(483\) 2.75219 12.6368i 0.125229 0.574995i
\(484\) 5.30742 9.19271i 0.241246 0.417851i
\(485\) 8.88514 + 5.12984i 0.403453 + 0.232934i
\(486\) −7.05938 13.8984i −0.320220 0.630444i
\(487\) 39.5929i 1.79413i 0.441903 + 0.897063i \(0.354304\pi\)
−0.441903 + 0.897063i \(0.645696\pi\)
\(488\) −5.78697 3.34111i −0.261964 0.151245i
\(489\) −11.2762 10.3743i −0.509928 0.469142i
\(490\) 6.05223 3.58724i 0.273412 0.162055i
\(491\) −27.5795 15.9230i −1.24465 0.718597i −0.274610 0.961556i \(-0.588549\pi\)
−0.970037 + 0.242959i \(0.921882\pi\)
\(492\) −11.0009 10.1210i −0.495959 0.456291i
\(493\) −2.82283 1.62976i −0.127134 0.0734009i
\(494\) −10.3713 11.7086i −0.466629 0.526796i
\(495\) −1.06719 1.53715i −0.0479666 0.0690898i
\(496\) −1.25167 + 2.16796i −0.0562018 + 0.0973443i
\(497\) 1.66190 + 2.84082i 0.0745462 + 0.127428i
\(498\) −5.00298 + 22.3554i −0.224189 + 1.00177i
\(499\) 7.30529 4.21771i 0.327030 0.188811i −0.327492 0.944854i \(-0.606203\pi\)
0.654522 + 0.756043i \(0.272870\pi\)
\(500\) 9.03538i 0.404075i
\(501\) 5.82684 + 5.36079i 0.260324 + 0.239502i
\(502\) −12.0289 20.8346i −0.536875 0.929894i
\(503\) 4.21408 + 7.29900i 0.187896 + 0.325446i 0.944549 0.328371i \(-0.106500\pi\)
−0.756652 + 0.653818i \(0.773166\pi\)
\(504\) −7.19937 3.34202i −0.320685 0.148865i
\(505\) 8.62794 + 4.98135i 0.383938 + 0.221667i
\(506\) −1.51687 + 0.875762i −0.0674329 + 0.0389324i
\(507\) −14.6095 17.1336i −0.648832 0.760931i
\(508\) −2.78854 + 4.82989i −0.123722 + 0.214292i
\(509\) 16.2934i 0.722191i 0.932529 + 0.361096i \(0.117597\pi\)
−0.932529 + 0.361096i \(0.882403\pi\)
\(510\) −0.569682 + 0.178369i −0.0252259 + 0.00789830i
\(511\) −11.6869 + 20.5125i −0.516999 + 0.907422i
\(512\) −1.00000 −0.0441942
\(513\) 20.8773 8.50132i 0.921755 0.375342i
\(514\) 29.5356 1.30276
\(515\) −5.18333 + 8.97779i −0.228405 + 0.395609i
\(516\) −0.623951 1.99280i −0.0274679 0.0877282i
\(517\) −0.0274572 0.0158524i −0.00120757 0.000697189i
\(518\) 0.0658509 + 11.5063i 0.00289332 + 0.505556i
\(519\) −15.3900 + 16.7279i −0.675544 + 0.734275i
\(520\) 0.724585 + 3.55064i 0.0317752 + 0.155706i
\(521\) −9.43681 + 16.3450i −0.413434 + 0.716089i −0.995263 0.0972224i \(-0.969004\pi\)
0.581828 + 0.813312i \(0.302338\pi\)
\(522\) −16.2627 23.4243i −0.711798 1.02525i
\(523\) 18.3022i 0.800301i −0.916449 0.400151i \(-0.868958\pi\)
0.916449 0.400151i \(-0.131042\pi\)
\(524\) −9.12794 15.8101i −0.398756 0.690665i
\(525\) −12.3020 + 13.5261i −0.536905 + 0.590327i
\(526\) −19.0802 + 11.0160i −0.831938 + 0.480319i
\(527\) 0.429216 0.743423i 0.0186969 0.0323840i
\(528\) 0.321192 + 1.02584i 0.0139781 + 0.0446438i
\(529\) 15.0351 0.653699
\(530\) 4.81839 0.209298
\(531\) 3.95076 8.38473i 0.171448 0.363866i
\(532\) 5.68189 9.97269i 0.246341 0.432371i
\(533\) 23.2934 20.6330i 1.00895 0.893715i
\(534\) 1.36181 6.08512i 0.0589312 0.263329i
\(535\) 7.39520 + 12.8089i 0.319722 + 0.553775i
\(536\) 4.75367 2.74453i 0.205327 0.118546i
\(537\) −32.3521 + 10.1295i −1.39610 + 0.437121i
\(538\) 6.41553 0.276593
\(539\) 2.21509 + 3.73720i 0.0954106 + 0.160972i
\(540\) −5.17362 0.712712i −0.222637 0.0306702i
\(541\) 1.05318 0.608052i 0.0452796 0.0261422i −0.477189 0.878801i \(-0.658344\pi\)
0.522469 + 0.852658i \(0.325011\pi\)
\(542\) −20.6367 −0.886420
\(543\) 8.48485 37.9138i 0.364120 1.62704i
\(544\) 0.342914 0.0147023
\(545\) 18.0524 0.773280
\(546\) 8.44858 14.1993i 0.361566 0.607676i
\(547\) −11.3034 −0.483301 −0.241650 0.970363i \(-0.577689\pi\)
−0.241650 + 0.970363i \(0.577689\pi\)
\(548\) −8.10612 −0.346276
\(549\) 11.4325 + 16.4671i 0.487928 + 0.702798i
\(550\) 2.47617 0.105584
\(551\) 35.7115 20.6180i 1.52136 0.878357i
\(552\) −1.06755 + 4.77024i −0.0454378 + 0.203035i
\(553\) 1.22392 + 2.09215i 0.0520463 + 0.0889671i
\(554\) −12.0754 −0.513036
\(555\) 2.26217 + 7.22503i 0.0960238 + 0.306685i
\(556\) −16.5296 + 9.54339i −0.701013 + 0.404730i
\(557\) 9.76868 + 16.9199i 0.413912 + 0.716917i 0.995314 0.0966996i \(-0.0308286\pi\)
−0.581401 + 0.813617i \(0.697495\pi\)
\(558\) 6.16904 4.28295i 0.261156 0.181312i
\(559\) 4.25915 0.869172i 0.180143 0.0367621i
\(560\) −2.29525 + 1.34273i −0.0969920 + 0.0567409i
\(561\) −0.110141 0.351773i −0.00465016 0.0148519i
\(562\) −30.4581 −1.28480
\(563\) −31.1373 −1.31228 −0.656141 0.754638i \(-0.727812\pi\)
−0.656141 + 0.754638i \(0.727812\pi\)
\(564\) −0.0844411 + 0.0264387i −0.00355561 + 0.00111327i
\(565\) 2.47311 4.28354i 0.104044 0.180210i
\(566\) −15.2403 + 8.79901i −0.640599 + 0.369850i
\(567\) 15.2644 + 18.2756i 0.641044 + 0.767504i
\(568\) −0.621982 1.07730i −0.0260978 0.0452027i
\(569\) 1.93823i 0.0812549i −0.999174 0.0406275i \(-0.987064\pi\)
0.999174 0.0406275i \(-0.0129357\pi\)
\(570\) 1.64929 7.36971i 0.0690811 0.308683i
\(571\) 5.29680 9.17432i 0.221664 0.383933i −0.733649 0.679528i \(-0.762185\pi\)
0.955313 + 0.295595i \(0.0955178\pi\)
\(572\) −2.19249 + 0.447425i −0.0916725 + 0.0187078i
\(573\) 16.7508 + 15.4110i 0.699776 + 0.643805i
\(574\) 19.8399 + 11.3037i 0.828102 + 0.471806i
\(575\) 9.75164 + 5.63011i 0.406671 + 0.234792i
\(576\) 2.71383 + 1.27872i 0.113076 + 0.0532798i
\(577\) −8.46005 + 14.6532i −0.352197 + 0.610022i −0.986634 0.162952i \(-0.947898\pi\)
0.634437 + 0.772974i \(0.281232\pi\)
\(578\) 16.8824 0.702216
\(579\) 20.8586 6.53088i 0.866855 0.271414i
\(580\) −9.55354 −0.396689
\(581\) −0.200264 34.9925i −0.00830836 1.45173i
\(582\) 5.28297 + 16.8730i 0.218986 + 0.699408i
\(583\) 2.97531i 0.123225i
\(584\) 4.46154 7.72761i 0.184620 0.319771i
\(585\) 2.57385 10.5624i 0.106416 0.436700i
\(586\) 14.3730 8.29824i 0.593742 0.342797i
\(587\) 17.0112 + 9.82143i 0.702128 + 0.405374i 0.808139 0.588991i \(-0.200475\pi\)
−0.106012 + 0.994365i \(0.533808\pi\)
\(588\) 11.8612 + 2.51225i 0.489149 + 0.103604i
\(589\) 5.42997 + 9.40499i 0.223738 + 0.387526i
\(590\) −1.55264 2.68925i −0.0639212 0.110715i
\(591\) 1.62698 1.76843i 0.0669252 0.0727435i
\(592\) 4.34903i 0.178744i
\(593\) 8.82193 5.09334i 0.362273 0.209158i −0.307804 0.951450i \(-0.599594\pi\)
0.670077 + 0.742291i \(0.266261\pi\)
\(594\) 0.440093 3.19466i 0.0180572 0.131079i
\(595\) 0.787072 0.460442i 0.0322668 0.0188763i
\(596\) −2.34608 + 4.06353i −0.0960992 + 0.166449i
\(597\) −3.31309 + 14.8042i −0.135596 + 0.605897i
\(598\) −9.65174 3.22304i −0.394689 0.131800i
\(599\) −1.11601 0.644326i −0.0455988 0.0263265i 0.477027 0.878888i \(-0.341714\pi\)
−0.522626 + 0.852562i \(0.675048\pi\)
\(600\) 4.67892 5.08569i 0.191016 0.207623i
\(601\) 11.6473 + 6.72456i 0.475103 + 0.274301i 0.718373 0.695658i \(-0.244887\pi\)
−0.243271 + 0.969958i \(0.578220\pi\)
\(602\) 1.61067 + 2.75325i 0.0656460 + 0.112214i
\(603\) −16.4102 + 1.36961i −0.668273 + 0.0557748i
\(604\) 6.80898 + 3.93117i 0.277053 + 0.159957i
\(605\) 10.6686i 0.433741i
\(606\) 5.13005 + 16.3846i 0.208394 + 0.665578i
\(607\) 26.8707 + 15.5138i 1.09065 + 0.629685i 0.933748 0.357930i \(-0.116517\pi\)
0.156898 + 0.987615i \(0.449851\pi\)
\(608\) −2.16909 + 3.75697i −0.0879681 + 0.152365i
\(609\) 32.2246 + 29.3084i 1.30580 + 1.18763i
\(610\) 6.71606 0.271926
\(611\) −0.0368295 0.180473i −0.00148996 0.00730116i
\(612\) −0.930610 0.438489i −0.0376177 0.0177249i
\(613\) −16.9453 + 9.78339i −0.684416 + 0.395148i −0.801517 0.597972i \(-0.795973\pi\)
0.117101 + 0.993120i \(0.462640\pi\)
\(614\) 26.3002 1.06139
\(615\) 14.6615 + 3.28114i 0.591208 + 0.132308i
\(616\) −0.829127 1.41730i −0.0334065 0.0571045i
\(617\) −22.9771 39.7974i −0.925022 1.60218i −0.791526 0.611135i \(-0.790713\pi\)
−0.133495 0.991049i \(-0.542620\pi\)
\(618\) −17.0489 + 5.33806i −0.685808 + 0.214728i
\(619\) 8.61313 14.9184i 0.346191 0.599620i −0.639378 0.768892i \(-0.720808\pi\)
0.985569 + 0.169272i \(0.0541416\pi\)
\(620\) 2.51603i 0.101046i
\(621\) 8.99692 11.5805i 0.361034 0.464711i
\(622\) 6.89170 11.9368i 0.276332 0.478621i
\(623\) 0.0545118 + 9.52494i 0.00218397 + 0.381609i
\(624\) −3.22393 + 5.34849i −0.129060 + 0.214111i
\(625\) −5.43403 9.41201i −0.217361 0.376480i
\(626\) −7.93246 + 4.57981i −0.317045 + 0.183046i
\(627\) 4.55073 + 1.01842i 0.181739 + 0.0406718i
\(628\) −19.8931 11.4853i −0.793822 0.458314i
\(629\) 1.49134i 0.0594636i
\(630\) 7.94590 0.708986i 0.316572 0.0282467i
\(631\) −25.7893 + 14.8894i −1.02665 + 0.592739i −0.916024 0.401123i \(-0.868620\pi\)
−0.110630 + 0.993862i \(0.535287\pi\)
\(632\) −0.458065 0.793391i −0.0182208 0.0315594i
\(633\) 30.1542 32.7757i 1.19852 1.30272i
\(634\) 2.37076 + 4.10628i 0.0941549 + 0.163081i
\(635\) 5.60534i 0.222441i
\(636\) 6.11085 + 5.62208i 0.242311 + 0.222930i
\(637\) −7.71964 + 24.0293i −0.305863 + 0.952075i
\(638\) 5.89923i 0.233553i
\(639\) 0.310389 + 3.71896i 0.0122788 + 0.147120i
\(640\) 0.870413 0.502533i 0.0344061 0.0198644i
\(641\) 41.3412i 1.63288i −0.577432 0.816439i \(-0.695945\pi\)
0.577432 0.816439i \(-0.304055\pi\)
\(642\) −5.56648 + 24.8733i −0.219691 + 0.981673i
\(643\) 16.2778 + 28.1940i 0.641934 + 1.11186i 0.985001 + 0.172551i \(0.0552009\pi\)
−0.343067 + 0.939311i \(0.611466\pi\)
\(644\) −0.0427328 7.46677i −0.00168391 0.294232i
\(645\) 1.54454 + 1.42100i 0.0608163 + 0.0559520i
\(646\) 0.743810 1.28832i 0.0292648 0.0506881i
\(647\) −2.13561 3.69899i −0.0839595 0.145422i 0.820988 0.570946i \(-0.193423\pi\)
−0.904947 + 0.425524i \(0.860090\pi\)
\(648\) −5.72977 6.94044i −0.225087 0.272646i
\(649\) 1.66059 0.958741i 0.0651838 0.0376339i
\(650\) 9.53858 + 10.7685i 0.374134 + 0.422375i
\(651\) −7.71867 + 8.48668i −0.302518 + 0.332619i
\(652\) −7.66125 4.42322i −0.300038 0.173227i
\(653\) 12.9710i 0.507595i 0.967257 + 0.253798i \(0.0816797\pi\)
−0.967257 + 0.253798i \(0.918320\pi\)
\(654\) 22.8947 + 21.0635i 0.895253 + 0.823647i
\(655\) 15.8901 + 9.17418i 0.620879 + 0.358465i
\(656\) −7.47421 4.31523i −0.291819 0.168482i
\(657\) −21.9893 + 15.2664i −0.857883 + 0.595599i
\(658\) 0.116664 0.0682490i 0.00454803 0.00266062i
\(659\) −31.7740 + 18.3447i −1.23774 + 0.714609i −0.968631 0.248502i \(-0.920062\pi\)
−0.269107 + 0.963110i \(0.586729\pi\)
\(660\) −0.795086 0.731492i −0.0309487 0.0284733i
\(661\) −3.58999 6.21804i −0.139634 0.241854i 0.787724 0.616028i \(-0.211259\pi\)
−0.927358 + 0.374175i \(0.877926\pi\)
\(662\) −21.1492 12.2105i −0.821986 0.474574i
\(663\) 1.10553 1.83407i 0.0429352 0.0712293i
\(664\) 13.2261i 0.513274i
\(665\) 0.0660194 + 11.5357i 0.00256012 + 0.447335i
\(666\) −5.56117 + 11.8025i −0.215491 + 0.457339i
\(667\) 13.4132 23.2323i 0.519360 0.899557i
\(668\) 3.95886 + 2.28565i 0.153173 + 0.0884343i
\(669\) −10.9697 + 11.9234i −0.424114 + 0.460986i
\(670\) −2.75844 + 4.77776i −0.106568 + 0.184581i
\(671\) 4.14711i 0.160097i
\(672\) −4.47761 0.975184i −0.172728 0.0376185i
\(673\) −2.07797 + 3.59915i −0.0800999 + 0.138737i −0.903293 0.429025i \(-0.858857\pi\)
0.823193 + 0.567762i \(0.192191\pi\)
\(674\) −1.88882 −0.0727546
\(675\) −19.2010 + 7.81871i −0.739045 + 0.300942i
\(676\) −10.3916 7.81124i −0.399675 0.300432i
\(677\) 5.94798 + 10.3022i 0.228599 + 0.395946i 0.957393 0.288787i \(-0.0932521\pi\)
−0.728794 + 0.684733i \(0.759919\pi\)
\(678\) 8.13450 2.54693i 0.312404 0.0978143i
\(679\) −13.6375 23.3117i −0.523359 0.894621i
\(680\) −0.298476 + 0.172325i −0.0114460 + 0.00660838i
\(681\) −4.46013 + 19.9297i −0.170913 + 0.763709i
\(682\) 1.55362 0.0594913
\(683\) 4.43181 0.169578 0.0847892 0.996399i \(-0.472978\pi\)
0.0847892 + 0.996399i \(0.472978\pi\)
\(684\) 10.6906 7.42214i 0.408767 0.283793i
\(685\) 7.05567 4.07359i 0.269583 0.155644i
\(686\) −18.5175 + 0.317958i −0.707003 + 0.0121397i
\(687\) −5.66523 18.0939i −0.216142 0.690324i
\(688\) −0.602811 1.04410i −0.0229819 0.0398059i
\(689\) −12.9392 + 11.4613i −0.492943 + 0.436642i
\(690\) −1.46800 4.68855i −0.0558856 0.178490i
\(691\) −33.6142 −1.27874 −0.639372 0.768897i \(-0.720806\pi\)
−0.639372 + 0.768897i \(0.720806\pi\)
\(692\) −6.56172 + 11.3652i −0.249439 + 0.432041i
\(693\) 0.437793 + 4.90652i 0.0166304 + 0.186383i
\(694\) 34.7424i 1.31880i
\(695\) 9.59174 16.6134i 0.363835 0.630181i
\(696\) −12.1161 11.1470i −0.459261 0.422527i
\(697\) 2.56301 + 1.47975i 0.0970808 + 0.0560496i
\(698\) −4.20668 + 7.28618i −0.159225 + 0.275786i
\(699\) −10.3155 + 3.22980i −0.390167 + 0.122162i
\(700\) −5.22566 + 9.17193i −0.197511 + 0.346667i
\(701\) 37.0012i 1.39751i −0.715359 0.698757i \(-0.753737\pi\)
0.715359 0.698757i \(-0.246263\pi\)
\(702\) 15.5884 10.3924i 0.588346 0.392236i
\(703\) −16.3392 9.43342i −0.616243 0.355788i
\(704\) 0.310310 + 0.537472i 0.0116952 + 0.0202567i
\(705\) 0.0602123 0.0654470i 0.00226772 0.00246488i
\(706\) 17.1652 9.91033i 0.646021 0.372980i
\(707\) −13.2427 22.6369i −0.498044 0.851349i
\(708\) 1.16870 5.22222i 0.0439223 0.196263i
\(709\) −38.2116 22.0615i −1.43507 0.828537i −0.437567 0.899186i \(-0.644160\pi\)
−0.997501 + 0.0706486i \(0.977493\pi\)
\(710\) 1.08276 + 0.625133i 0.0406354 + 0.0234608i
\(711\) 0.228589 + 2.73886i 0.00857274 + 0.102715i
\(712\) 3.60015i 0.134921i
\(713\) 6.11846 + 3.53250i 0.229138 + 0.132293i
\(714\) 1.53543 + 0.334404i 0.0574622 + 0.0125148i
\(715\) 1.68352 1.49124i 0.0629602 0.0557693i
\(716\) −16.9504 + 9.78634i −0.633467 + 0.365733i
\(717\) 51.4888 + 11.5228i 1.92289 + 0.430328i
\(718\) 0.111157 + 0.192530i 0.00414836 + 0.00718517i
\(719\) 9.72356 16.8417i 0.362627 0.628089i −0.625765 0.780012i \(-0.715213\pi\)
0.988392 + 0.151923i \(0.0485464\pi\)
\(720\) −3.00475 + 0.250780i −0.111980 + 0.00934601i
\(721\) 23.5548 13.7797i 0.877226 0.513183i
\(722\) −0.0901205 0.156093i −0.00335394 0.00580919i
\(723\) 9.62578 + 2.15418i 0.357987 + 0.0801149i
\(724\) 22.4310i 0.833642i
\(725\) −32.8440 + 18.9625i −1.21980 + 0.704250i
\(726\) −12.4481 + 13.5303i −0.461992 + 0.502157i
\(727\) 17.7877i 0.659708i 0.944032 + 0.329854i \(0.107000\pi\)
−0.944032 + 0.329854i \(0.893000\pi\)
\(728\) 2.96968 9.06537i 0.110064 0.335985i
\(729\) 6.67478 + 26.1619i 0.247214 + 0.968961i
\(730\) 8.96828i 0.331931i
\(731\) 0.206712 + 0.358036i 0.00764552 + 0.0132424i
\(732\) 8.51755 + 7.83628i 0.314818 + 0.289637i
\(733\) −20.9177 36.2305i −0.772613 1.33820i −0.936126 0.351664i \(-0.885616\pi\)
0.163513 0.986541i \(-0.447717\pi\)
\(734\) 11.6056 6.70049i 0.428370 0.247319i
\(735\) −11.5866 + 3.77396i −0.427380 + 0.139205i
\(736\) 2.82222i 0.104028i
\(737\) −2.95022 1.70331i −0.108673 0.0627423i
\(738\) 14.7658 + 21.2682i 0.543536 + 0.782894i
\(739\) 15.7822 9.11186i 0.580558 0.335185i −0.180797 0.983520i \(-0.557868\pi\)
0.761355 + 0.648335i \(0.224534\pi\)
\(740\) 2.18553 + 3.78545i 0.0803416 + 0.139156i
\(741\) 13.1011 + 23.7135i 0.481282 + 0.871138i
\(742\) −11.0208 6.27904i −0.404586 0.230511i
\(743\) −16.0336 + 27.7710i −0.588216 + 1.01882i 0.406250 + 0.913762i \(0.366836\pi\)
−0.994466 + 0.105058i \(0.966497\pi\)
\(744\) 2.93569 3.19091i 0.107628 0.116985i
\(745\) 4.71593i 0.172778i
\(746\) −3.97778 + 6.88972i −0.145637 + 0.252251i
\(747\) 16.9125 35.8935i 0.618795 1.31328i
\(748\) −0.106409 0.184307i −0.00389071 0.00673891i
\(749\) −0.222821 38.9338i −0.00814169 1.42261i
\(750\) −3.41776 + 15.2720i −0.124799 + 0.557654i
\(751\) 26.9689 0.984110 0.492055 0.870564i \(-0.336246\pi\)
0.492055 + 0.870564i \(0.336246\pi\)
\(752\) −0.0442417 + 0.0255429i −0.00161333 + 0.000931455i
\(753\) 12.4507 + 39.7656i 0.453729 + 1.44914i
\(754\) 25.6548 22.7247i 0.934294 0.827585i
\(755\) −7.90216 −0.287589
\(756\) 10.9045 + 8.37208i 0.396593 + 0.304490i
\(757\) −15.4821 + 26.8158i −0.562706 + 0.974635i 0.434553 + 0.900646i \(0.356906\pi\)
−0.997259 + 0.0739889i \(0.976427\pi\)
\(758\) 4.29409 + 2.47919i 0.155968 + 0.0900483i
\(759\) 2.89514 0.906474i 0.105087 0.0329029i
\(760\) 4.36015i 0.158159i
\(761\) 2.09713 + 1.21078i 0.0760207 + 0.0438906i 0.537529 0.843246i \(-0.319358\pi\)
−0.461508 + 0.887136i \(0.652691\pi\)
\(762\) 6.54028 7.10888i 0.236930 0.257528i
\(763\) −41.2901 23.5248i −1.49480 0.851654i
\(764\) 11.3808 + 6.57071i 0.411743 + 0.237720i
\(765\) 1.03037 0.0859958i 0.0372531 0.00310918i
\(766\) 9.40956 + 5.43261i 0.339981 + 0.196288i
\(767\) 10.5662 + 3.52843i 0.381525 + 0.127404i
\(768\) 1.69024 + 0.378264i 0.0609913 + 0.0136494i
\(769\) 4.75805 8.24119i 0.171580 0.297185i −0.767393 0.641177i \(-0.778446\pi\)
0.938972 + 0.343993i \(0.111780\pi\)
\(770\) 1.43392 + 0.816968i 0.0516749 + 0.0294415i
\(771\) −49.9222 11.1722i −1.79790 0.402359i
\(772\) 10.9286 6.30961i 0.393328 0.227088i
\(773\) 34.8889i 1.25487i 0.778671 + 0.627433i \(0.215894\pi\)
−0.778671 + 0.627433i \(0.784106\pi\)