Properties

Label 546.2.bi.e.17.15
Level $546$
Weight $2$
Character 546.17
Analytic conductor $4.360$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bi (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.15
Character \(\chi\) \(=\) 546.17
Dual form 546.2.bi.e.257.15

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +(1.66045 + 0.492861i) q^{3} +1.00000 q^{4} +(1.80315 - 1.04105i) q^{5} +(-1.66045 - 0.492861i) q^{6} +(-0.800654 - 2.52170i) q^{7} -1.00000 q^{8} +(2.51418 + 1.63674i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(1.66045 + 0.492861i) q^{3} +1.00000 q^{4} +(1.80315 - 1.04105i) q^{5} +(-1.66045 - 0.492861i) q^{6} +(-0.800654 - 2.52170i) q^{7} -1.00000 q^{8} +(2.51418 + 1.63674i) q^{9} +(-1.80315 + 1.04105i) q^{10} +(1.07812 + 1.86736i) q^{11} +(1.66045 + 0.492861i) q^{12} +(0.217235 - 3.59900i) q^{13} +(0.800654 + 2.52170i) q^{14} +(3.50713 - 0.839905i) q^{15} +1.00000 q^{16} -0.557271 q^{17} +(-2.51418 - 1.63674i) q^{18} +(1.94720 - 3.37265i) q^{19} +(1.80315 - 1.04105i) q^{20} +(-0.0865985 - 4.58176i) q^{21} +(-1.07812 - 1.86736i) q^{22} +2.07565i q^{23} +(-1.66045 - 0.492861i) q^{24} +(-0.332437 + 0.575798i) q^{25} +(-0.217235 + 3.59900i) q^{26} +(3.36797 + 3.95686i) q^{27} +(-0.800654 - 2.52170i) q^{28} +(-6.10476 - 3.52458i) q^{29} +(-3.50713 + 0.839905i) q^{30} +(3.21742 - 5.57273i) q^{31} -1.00000 q^{32} +(0.869816 + 3.63202i) q^{33} +0.557271 q^{34} +(-4.06891 - 3.71347i) q^{35} +(2.51418 + 1.63674i) q^{36} +8.31631i q^{37} +(-1.94720 + 3.37265i) q^{38} +(2.13451 - 5.86889i) q^{39} +(-1.80315 + 1.04105i) q^{40} +(-0.532863 - 0.307649i) q^{41} +(0.0865985 + 4.58176i) q^{42} +(4.33366 + 7.50612i) q^{43} +(1.07812 + 1.86736i) q^{44} +(6.23736 + 0.333908i) q^{45} -2.07565i q^{46} +(-0.507011 + 0.292723i) q^{47} +(1.66045 + 0.492861i) q^{48} +(-5.71791 + 4.03801i) q^{49} +(0.332437 - 0.575798i) q^{50} +(-0.925319 - 0.274657i) q^{51} +(0.217235 - 3.59900i) q^{52} +(6.68551 + 3.85988i) q^{53} +(-3.36797 - 3.95686i) q^{54} +(3.88803 + 2.24475i) q^{55} +(0.800654 + 2.52170i) q^{56} +(4.89547 - 4.64041i) q^{57} +(6.10476 + 3.52458i) q^{58} +1.56562i q^{59} +(3.50713 - 0.839905i) q^{60} +(-7.10333 - 4.10111i) q^{61} +(-3.21742 + 5.57273i) q^{62} +(2.11438 - 7.65045i) q^{63} +1.00000 q^{64} +(-3.35503 - 6.71569i) q^{65} +(-0.869816 - 3.63202i) q^{66} +(12.3495 - 7.12999i) q^{67} -0.557271 q^{68} +(-1.02301 + 3.44650i) q^{69} +(4.06891 + 3.71347i) q^{70} +(-6.52888 - 11.3084i) q^{71} +(-2.51418 - 1.63674i) q^{72} +(0.198890 - 0.344488i) q^{73} -8.31631i q^{74} +(-0.835783 + 0.792237i) q^{75} +(1.94720 - 3.37265i) q^{76} +(3.84572 - 4.21381i) q^{77} +(-2.13451 + 5.86889i) q^{78} +(5.73441 + 9.93228i) q^{79} +(1.80315 - 1.04105i) q^{80} +(3.64216 + 8.23011i) q^{81} +(0.532863 + 0.307649i) q^{82} +12.4455i q^{83} +(-0.0865985 - 4.58176i) q^{84} +(-1.00484 + 0.580146i) q^{85} +(-4.33366 - 7.50612i) q^{86} +(-8.39951 - 8.86119i) q^{87} +(-1.07812 - 1.86736i) q^{88} +8.70736i q^{89} +(-6.23736 - 0.333908i) q^{90} +(-9.24952 + 2.33375i) q^{91} +2.07565i q^{92} +(8.08894 - 7.66749i) q^{93} +(0.507011 - 0.292723i) q^{94} -8.10851i q^{95} +(-1.66045 - 0.492861i) q^{96} +(1.64731 + 2.85322i) q^{97} +(5.71791 - 4.03801i) q^{98} +(-0.345799 + 6.45949i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q - 34q^{2} + 3q^{3} + 34q^{4} - 9q^{5} - 3q^{6} + 4q^{7} - 34q^{8} - 11q^{9} + O(q^{10}) \) \( 34q - 34q^{2} + 3q^{3} + 34q^{4} - 9q^{5} - 3q^{6} + 4q^{7} - 34q^{8} - 11q^{9} + 9q^{10} - 9q^{11} + 3q^{12} + 8q^{13} - 4q^{14} - 4q^{15} + 34q^{16} - 12q^{17} + 11q^{18} - 5q^{19} - 9q^{20} + 4q^{21} + 9q^{22} - 3q^{24} + 16q^{25} - 8q^{26} + 18q^{27} + 4q^{28} - 27q^{29} + 4q^{30} - q^{31} - 34q^{32} + 21q^{33} + 12q^{34} + 3q^{35} - 11q^{36} + 5q^{38} + 7q^{39} + 9q^{40} + 3q^{41} - 4q^{42} - 3q^{43} - 9q^{44} + 9q^{45} + 27q^{47} + 3q^{48} - 2q^{49} - 16q^{50} + 24q^{51} + 8q^{52} + 21q^{53} - 18q^{54} - 57q^{55} - 4q^{56} + 17q^{57} + 27q^{58} - 4q^{60} - 51q^{61} + q^{62} + 3q^{63} + 34q^{64} + 21q^{65} - 21q^{66} - 21q^{67} - 12q^{68} + 42q^{69} - 3q^{70} + 15q^{71} + 11q^{72} - 19q^{73} + 54q^{75} - 5q^{76} - 9q^{77} - 7q^{78} - 9q^{79} - 9q^{80} - 23q^{81} - 3q^{82} + 4q^{84} - 42q^{85} + 3q^{86} + 81q^{87} + 9q^{88} - 9q^{90} - 72q^{91} + 17q^{93} - 27q^{94} - 3q^{96} + 19q^{97} + 2q^{98} + 27q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.66045 + 0.492861i 0.958660 + 0.284553i
\(4\) 1.00000 0.500000
\(5\) 1.80315 1.04105i 0.806393 0.465571i −0.0393090 0.999227i \(-0.512516\pi\)
0.845702 + 0.533656i \(0.179182\pi\)
\(6\) −1.66045 0.492861i −0.677875 0.201210i
\(7\) −0.800654 2.52170i −0.302619 0.953112i
\(8\) −1.00000 −0.353553
\(9\) 2.51418 + 1.63674i 0.838059 + 0.545580i
\(10\) −1.80315 + 1.04105i −0.570206 + 0.329208i
\(11\) 1.07812 + 1.86736i 0.325066 + 0.563031i 0.981526 0.191330i \(-0.0612801\pi\)
−0.656460 + 0.754361i \(0.727947\pi\)
\(12\) 1.66045 + 0.492861i 0.479330 + 0.142277i
\(13\) 0.217235 3.59900i 0.0602501 0.998183i
\(14\) 0.800654 + 2.52170i 0.213984 + 0.673952i
\(15\) 3.50713 0.839905i 0.905536 0.216863i
\(16\) 1.00000 0.250000
\(17\) −0.557271 −0.135158 −0.0675790 0.997714i \(-0.521527\pi\)
−0.0675790 + 0.997714i \(0.521527\pi\)
\(18\) −2.51418 1.63674i −0.592597 0.385783i
\(19\) 1.94720 3.37265i 0.446718 0.773738i −0.551452 0.834207i \(-0.685926\pi\)
0.998170 + 0.0604682i \(0.0192594\pi\)
\(20\) 1.80315 1.04105i 0.403196 0.232785i
\(21\) −0.0865985 4.58176i −0.0188973 0.999821i
\(22\) −1.07812 1.86736i −0.229856 0.398123i
\(23\) 2.07565i 0.432802i 0.976305 + 0.216401i \(0.0694319\pi\)
−0.976305 + 0.216401i \(0.930568\pi\)
\(24\) −1.66045 0.492861i −0.338938 0.100605i
\(25\) −0.332437 + 0.575798i −0.0664874 + 0.115160i
\(26\) −0.217235 + 3.59900i −0.0426033 + 0.705822i
\(27\) 3.36797 + 3.95686i 0.648167 + 0.761499i
\(28\) −0.800654 2.52170i −0.151309 0.476556i
\(29\) −6.10476 3.52458i −1.13363 0.654499i −0.188781 0.982019i \(-0.560454\pi\)
−0.944844 + 0.327520i \(0.893787\pi\)
\(30\) −3.50713 + 0.839905i −0.640311 + 0.153345i
\(31\) 3.21742 5.57273i 0.577865 1.00089i −0.417859 0.908512i \(-0.637219\pi\)
0.995724 0.0923797i \(-0.0294474\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0.869816 + 3.63202i 0.151415 + 0.632254i
\(34\) 0.557271 0.0955711
\(35\) −4.06891 3.71347i −0.687771 0.627692i
\(36\) 2.51418 + 1.63674i 0.419029 + 0.272790i
\(37\) 8.31631i 1.36719i 0.729860 + 0.683596i \(0.239585\pi\)
−0.729860 + 0.683596i \(0.760415\pi\)
\(38\) −1.94720 + 3.37265i −0.315877 + 0.547116i
\(39\) 2.13451 5.86889i 0.341796 0.939774i
\(40\) −1.80315 + 1.04105i −0.285103 + 0.164604i
\(41\) −0.532863 0.307649i −0.0832192 0.0480466i 0.457813 0.889049i \(-0.348633\pi\)
−0.541032 + 0.841002i \(0.681966\pi\)
\(42\) 0.0865985 + 4.58176i 0.0133624 + 0.706981i
\(43\) 4.33366 + 7.50612i 0.660877 + 1.14467i 0.980386 + 0.197089i \(0.0631487\pi\)
−0.319509 + 0.947583i \(0.603518\pi\)
\(44\) 1.07812 + 1.86736i 0.162533 + 0.281516i
\(45\) 6.23736 + 0.333908i 0.929810 + 0.0497761i
\(46\) 2.07565i 0.306037i
\(47\) −0.507011 + 0.292723i −0.0739551 + 0.0426980i −0.536522 0.843887i \(-0.680262\pi\)
0.462566 + 0.886585i \(0.346929\pi\)
\(48\) 1.66045 + 0.492861i 0.239665 + 0.0711384i
\(49\) −5.71791 + 4.03801i −0.816844 + 0.576859i
\(50\) 0.332437 0.575798i 0.0470137 0.0814301i
\(51\) −0.925319 0.274657i −0.129571 0.0384597i
\(52\) 0.217235 3.59900i 0.0301251 0.499092i
\(53\) 6.68551 + 3.85988i 0.918325 + 0.530195i 0.883100 0.469184i \(-0.155452\pi\)
0.0352249 + 0.999379i \(0.488785\pi\)
\(54\) −3.36797 3.95686i −0.458323 0.538461i
\(55\) 3.88803 + 2.24475i 0.524262 + 0.302683i
\(56\) 0.800654 + 2.52170i 0.106992 + 0.336976i
\(57\) 4.89547 4.64041i 0.648421 0.614637i
\(58\) 6.10476 + 3.52458i 0.801594 + 0.462801i
\(59\) 1.56562i 0.203827i 0.994793 + 0.101913i \(0.0324965\pi\)
−0.994793 + 0.101913i \(0.967504\pi\)
\(60\) 3.50713 0.839905i 0.452768 0.108431i
\(61\) −7.10333 4.10111i −0.909488 0.525093i −0.0292218 0.999573i \(-0.509303\pi\)
−0.880266 + 0.474480i \(0.842636\pi\)
\(62\) −3.21742 + 5.57273i −0.408612 + 0.707737i
\(63\) 2.11438 7.65045i 0.266387 0.963866i
\(64\) 1.00000 0.125000
\(65\) −3.35503 6.71569i −0.416140 0.832978i
\(66\) −0.869816 3.63202i −0.107067 0.447071i
\(67\) 12.3495 7.12999i 1.50873 0.871067i 0.508784 0.860894i \(-0.330095\pi\)
0.999948 0.0101724i \(-0.00323804\pi\)
\(68\) −0.557271 −0.0675790
\(69\) −1.02301 + 3.44650i −0.123155 + 0.414910i
\(70\) 4.06891 + 3.71347i 0.486327 + 0.443845i
\(71\) −6.52888 11.3084i −0.774836 1.34206i −0.934887 0.354946i \(-0.884499\pi\)
0.160051 0.987109i \(-0.448834\pi\)
\(72\) −2.51418 1.63674i −0.296298 0.192892i
\(73\) 0.198890 0.344488i 0.0232783 0.0403192i −0.854152 0.520024i \(-0.825923\pi\)
0.877430 + 0.479705i \(0.159256\pi\)
\(74\) 8.31631i 0.966751i
\(75\) −0.835783 + 0.792237i −0.0965079 + 0.0914796i
\(76\) 1.94720 3.37265i 0.223359 0.386869i
\(77\) 3.84572 4.21381i 0.438260 0.480208i
\(78\) −2.13451 + 5.86889i −0.241686 + 0.664521i
\(79\) 5.73441 + 9.93228i 0.645171 + 1.11747i 0.984262 + 0.176715i \(0.0565472\pi\)
−0.339091 + 0.940754i \(0.610119\pi\)
\(80\) 1.80315 1.04105i 0.201598 0.116393i
\(81\) 3.64216 + 8.23011i 0.404684 + 0.914456i
\(82\) 0.532863 + 0.307649i 0.0588449 + 0.0339741i
\(83\) 12.4455i 1.36607i 0.730385 + 0.683035i \(0.239340\pi\)
−0.730385 + 0.683035i \(0.760660\pi\)
\(84\) −0.0865985 4.58176i −0.00944867 0.499911i
\(85\) −1.00484 + 0.580146i −0.108990 + 0.0629256i
\(86\) −4.33366 7.50612i −0.467310 0.809405i
\(87\) −8.39951 8.86119i −0.900522 0.950019i
\(88\) −1.07812 1.86736i −0.114928 0.199062i
\(89\) 8.70736i 0.922978i 0.887146 + 0.461489i \(0.152685\pi\)
−0.887146 + 0.461489i \(0.847315\pi\)
\(90\) −6.23736 0.333908i −0.657475 0.0351970i
\(91\) −9.24952 + 2.33375i −0.969613 + 0.244644i
\(92\) 2.07565i 0.216401i
\(93\) 8.08894 7.66749i 0.838783 0.795081i
\(94\) 0.507011 0.292723i 0.0522942 0.0301921i
\(95\) 8.10851i 0.831916i
\(96\) −1.66045 0.492861i −0.169469 0.0503024i
\(97\) 1.64731 + 2.85322i 0.167259 + 0.289701i 0.937455 0.348106i \(-0.113175\pi\)
−0.770196 + 0.637807i \(0.779842\pi\)
\(98\) 5.71791 4.03801i 0.577596 0.407901i
\(99\) −0.345799 + 6.45949i −0.0347541 + 0.649203i
\(100\) −0.332437 + 0.575798i −0.0332437 + 0.0575798i
\(101\) −7.94537 13.7618i −0.790594 1.36935i −0.925599 0.378505i \(-0.876438\pi\)
0.135005 0.990845i \(-0.456895\pi\)
\(102\) 0.925319 + 0.274657i 0.0916202 + 0.0271951i
\(103\) −2.32058 + 1.33979i −0.228653 + 0.132013i −0.609951 0.792439i \(-0.708811\pi\)
0.381297 + 0.924452i \(0.375477\pi\)
\(104\) −0.217235 + 3.59900i −0.0213016 + 0.352911i
\(105\) −4.92598 8.17144i −0.480726 0.797450i
\(106\) −6.68551 3.85988i −0.649354 0.374905i
\(107\) 13.7207i 1.32643i 0.748427 + 0.663217i \(0.230809\pi\)
−0.748427 + 0.663217i \(0.769191\pi\)
\(108\) 3.36797 + 3.95686i 0.324083 + 0.380749i
\(109\) −2.51915 1.45443i −0.241291 0.139309i 0.374479 0.927235i \(-0.377822\pi\)
−0.615770 + 0.787926i \(0.711155\pi\)
\(110\) −3.88803 2.24475i −0.370709 0.214029i
\(111\) −4.09879 + 13.8088i −0.389040 + 1.31067i
\(112\) −0.800654 2.52170i −0.0756547 0.238278i
\(113\) −17.2893 + 9.98197i −1.62644 + 0.939025i −0.641295 + 0.767295i \(0.721602\pi\)
−0.985144 + 0.171730i \(0.945064\pi\)
\(114\) −4.89547 + 4.64041i −0.458503 + 0.434614i
\(115\) 2.16085 + 3.74270i 0.201500 + 0.349008i
\(116\) −6.10476 3.52458i −0.566813 0.327249i
\(117\) 6.43680 8.69296i 0.595082 0.803665i
\(118\) 1.56562i 0.144127i
\(119\) 0.446181 + 1.40527i 0.0409014 + 0.128821i
\(120\) −3.50713 + 0.839905i −0.320155 + 0.0766725i
\(121\) 3.17530 5.49979i 0.288664 0.499981i
\(122\) 7.10333 + 4.10111i 0.643105 + 0.371297i
\(123\) −0.733163 0.773462i −0.0661071 0.0697407i
\(124\) 3.21742 5.57273i 0.288933 0.500446i
\(125\) 11.7948i 1.05496i
\(126\) −2.11438 + 7.65045i −0.188364 + 0.681556i
\(127\) −7.35797 + 12.7444i −0.652915 + 1.13088i 0.329498 + 0.944156i \(0.393121\pi\)
−0.982412 + 0.186725i \(0.940213\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 3.49634 + 14.5994i 0.307836 + 1.28541i
\(130\) 3.35503 + 6.71569i 0.294255 + 0.589005i
\(131\) −2.82161 4.88718i −0.246526 0.426995i 0.716034 0.698066i \(-0.245956\pi\)
−0.962559 + 0.271071i \(0.912622\pi\)
\(132\) 0.869816 + 3.63202i 0.0757077 + 0.316127i
\(133\) −10.0638 2.20992i −0.872644 0.191624i
\(134\) −12.3495 + 7.12999i −1.06683 + 0.615937i
\(135\) 10.1922 + 3.62859i 0.877208 + 0.312299i
\(136\) 0.557271 0.0477856
\(137\) −12.8200 −1.09528 −0.547642 0.836713i \(-0.684474\pi\)
−0.547642 + 0.836713i \(0.684474\pi\)
\(138\) 1.02301 3.44650i 0.0870840 0.293386i
\(139\) −3.54239 + 2.04520i −0.300462 + 0.173472i −0.642650 0.766160i \(-0.722165\pi\)
0.342189 + 0.939631i \(0.388832\pi\)
\(140\) −4.06891 3.71347i −0.343885 0.313846i
\(141\) −0.986137 + 0.236165i −0.0830477 + 0.0198887i
\(142\) 6.52888 + 11.3084i 0.547892 + 0.948976i
\(143\) 6.95485 3.47451i 0.581593 0.290553i
\(144\) 2.51418 + 1.63674i 0.209515 + 0.136395i
\(145\) −14.6771 −1.21886
\(146\) −0.198890 + 0.344488i −0.0164603 + 0.0285100i
\(147\) −11.4845 + 3.88678i −0.947223 + 0.320576i
\(148\) 8.31631i 0.683596i
\(149\) 0.573527 0.993378i 0.0469852 0.0813807i −0.841576 0.540138i \(-0.818372\pi\)
0.888562 + 0.458757i \(0.151705\pi\)
\(150\) 0.835783 0.792237i 0.0682414 0.0646859i
\(151\) −4.15879 2.40108i −0.338438 0.195397i 0.321143 0.947031i \(-0.395933\pi\)
−0.659581 + 0.751633i \(0.729266\pi\)
\(152\) −1.94720 + 3.37265i −0.157939 + 0.273558i
\(153\) −1.40108 0.912108i −0.113270 0.0737395i
\(154\) −3.84572 + 4.21381i −0.309897 + 0.339558i
\(155\) 13.3979i 1.07615i
\(156\) 2.13451 5.86889i 0.170898 0.469887i
\(157\) −6.04701 3.49124i −0.482604 0.278631i 0.238897 0.971045i \(-0.423214\pi\)
−0.721501 + 0.692414i \(0.756547\pi\)
\(158\) −5.73441 9.93228i −0.456205 0.790170i
\(159\) 9.19856 + 9.70416i 0.729493 + 0.769590i
\(160\) −1.80315 + 1.04105i −0.142551 + 0.0823021i
\(161\) 5.23415 1.66187i 0.412509 0.130974i
\(162\) −3.64216 8.23011i −0.286155 0.646618i
\(163\) −17.0431 9.83983i −1.33492 0.770715i −0.348869 0.937171i \(-0.613434\pi\)
−0.986049 + 0.166456i \(0.946768\pi\)
\(164\) −0.532863 0.307649i −0.0416096 0.0240233i
\(165\) 5.34952 + 5.64356i 0.416459 + 0.439350i
\(166\) 12.4455i 0.965958i
\(167\) −11.1356 6.42913i −0.861698 0.497501i 0.00288283 0.999996i \(-0.499082\pi\)
−0.864580 + 0.502495i \(0.832416\pi\)
\(168\) 0.0865985 + 4.58176i 0.00668122 + 0.353490i
\(169\) −12.9056 1.56366i −0.992740 0.120281i
\(170\) 1.00484 0.580146i 0.0770679 0.0444951i
\(171\) 10.4157 5.29237i 0.796512 0.404718i
\(172\) 4.33366 + 7.50612i 0.330438 + 0.572336i
\(173\) 2.21541 3.83719i 0.168434 0.291736i −0.769435 0.638725i \(-0.779462\pi\)
0.937869 + 0.346988i \(0.112796\pi\)
\(174\) 8.39951 + 8.86119i 0.636765 + 0.671765i
\(175\) 1.71815 + 0.377290i 0.129880 + 0.0285205i
\(176\) 1.07812 + 1.86736i 0.0812665 + 0.140758i
\(177\) −0.771635 + 2.59964i −0.0579997 + 0.195401i
\(178\) 8.70736i 0.652644i
\(179\) 19.6844 11.3648i 1.47128 0.849443i 0.471799 0.881706i \(-0.343605\pi\)
0.999479 + 0.0322629i \(0.0102714\pi\)
\(180\) 6.23736 + 0.333908i 0.464905 + 0.0248880i
\(181\) 10.2663i 0.763090i 0.924350 + 0.381545i \(0.124608\pi\)
−0.924350 + 0.381545i \(0.875392\pi\)
\(182\) 9.24952 2.33375i 0.685620 0.172989i
\(183\) −9.77343 10.3106i −0.722473 0.762184i
\(184\) 2.07565i 0.153019i
\(185\) 8.65768 + 14.9955i 0.636525 + 1.10249i
\(186\) −8.08894 + 7.66749i −0.593109 + 0.562208i
\(187\) −0.600806 1.04063i −0.0439353 0.0760982i
\(188\) −0.507011 + 0.292723i −0.0369776 + 0.0213490i
\(189\) 7.28142 11.6611i 0.529646 0.848219i
\(190\) 8.10851i 0.588253i
\(191\) −3.37227 1.94698i −0.244009 0.140879i 0.373009 0.927828i \(-0.378326\pi\)
−0.617018 + 0.786949i \(0.711659\pi\)
\(192\) 1.66045 + 0.492861i 0.119833 + 0.0355692i
\(193\) −3.11672 + 1.79944i −0.224346 + 0.129526i −0.607961 0.793967i \(-0.708012\pi\)
0.383615 + 0.923493i \(0.374679\pi\)
\(194\) −1.64731 2.85322i −0.118270 0.204849i
\(195\) −2.26095 12.8046i −0.161910 0.916957i
\(196\) −5.71791 + 4.03801i −0.408422 + 0.288430i
\(197\) −5.48497 + 9.50024i −0.390788 + 0.676864i −0.992554 0.121808i \(-0.961131\pi\)
0.601766 + 0.798673i \(0.294464\pi\)
\(198\) 0.345799 6.45949i 0.0245749 0.459056i
\(199\) 20.2743i 1.43721i 0.695421 + 0.718603i \(0.255218\pi\)
−0.695421 + 0.718603i \(0.744782\pi\)
\(200\) 0.332437 0.575798i 0.0235068 0.0407150i
\(201\) 24.0198 5.75239i 1.69423 0.405742i
\(202\) 7.94537 + 13.7618i 0.559035 + 0.968276i
\(203\) −4.00013 + 18.2163i −0.280754 + 1.27854i
\(204\) −0.925319 0.274657i −0.0647853 0.0192298i
\(205\) −1.28111 −0.0894765
\(206\) 2.32058 1.33979i 0.161682 0.0933474i
\(207\) −3.39729 + 5.21854i −0.236128 + 0.362714i
\(208\) 0.217235 3.59900i 0.0150625 0.249546i
\(209\) 8.39727 0.580852
\(210\) 4.92598 + 8.17144i 0.339925 + 0.563883i
\(211\) 6.39897 11.0833i 0.440523 0.763009i −0.557205 0.830375i \(-0.688126\pi\)
0.997728 + 0.0673662i \(0.0214596\pi\)
\(212\) 6.68551 + 3.85988i 0.459163 + 0.265098i
\(213\) −5.26742 21.9948i −0.360918 1.50706i
\(214\) 13.7207i 0.937930i
\(215\) 15.6285 + 9.02310i 1.06585 + 0.615370i
\(216\) −3.36797 3.95686i −0.229162 0.269230i
\(217\) −16.6288 3.65152i −1.12883 0.247881i
\(218\) 2.51915 + 1.45443i 0.170618 + 0.0985065i
\(219\) 0.500031 0.473979i 0.0337890 0.0320285i
\(220\) 3.88803 + 2.24475i 0.262131 + 0.151341i
\(221\) −0.121059 + 2.00562i −0.00814328 + 0.134912i
\(222\) 4.09879 13.8088i 0.275092 0.926786i
\(223\) 6.84088 11.8488i 0.458099 0.793451i −0.540761 0.841176i \(-0.681864\pi\)
0.998861 + 0.0477249i \(0.0151971\pi\)
\(224\) 0.800654 + 2.52170i 0.0534960 + 0.168488i
\(225\) −1.77824 + 0.903544i −0.118549 + 0.0602362i
\(226\) 17.2893 9.98197i 1.15007 0.663991i
\(227\) 3.74358i 0.248470i −0.992253 0.124235i \(-0.960352\pi\)
0.992253 0.124235i \(-0.0396477\pi\)
\(228\) 4.89547 4.64041i 0.324210 0.307318i
\(229\) −4.38767 7.59967i −0.289946 0.502201i 0.683851 0.729622i \(-0.260304\pi\)
−0.973796 + 0.227421i \(0.926971\pi\)
\(230\) −2.16085 3.74270i −0.142482 0.246786i
\(231\) 8.46244 5.10141i 0.556788 0.335648i
\(232\) 6.10476 + 3.52458i 0.400797 + 0.231400i
\(233\) −19.0891 + 11.0211i −1.25057 + 0.722017i −0.971223 0.238173i \(-0.923451\pi\)
−0.279347 + 0.960190i \(0.590118\pi\)
\(234\) −6.43680 + 8.69296i −0.420787 + 0.568277i
\(235\) −0.609477 + 1.05565i −0.0397579 + 0.0688627i
\(236\) 1.56562i 0.101913i
\(237\) 4.62645 + 19.3183i 0.300520 + 1.25486i
\(238\) −0.446181 1.40527i −0.0289216 0.0910900i
\(239\) 12.3469 0.798656 0.399328 0.916808i \(-0.369243\pi\)
0.399328 + 0.916808i \(0.369243\pi\)
\(240\) 3.50713 0.839905i 0.226384 0.0542156i
\(241\) −1.22458 −0.0788821 −0.0394410 0.999222i \(-0.512558\pi\)
−0.0394410 + 0.999222i \(0.512558\pi\)
\(242\) −3.17530 + 5.49979i −0.204116 + 0.353540i
\(243\) 1.99132 + 15.4607i 0.127743 + 0.991807i
\(244\) −7.10333 4.10111i −0.454744 0.262547i
\(245\) −6.10647 + 13.2338i −0.390128 + 0.845474i
\(246\) 0.733163 + 0.773462i 0.0467448 + 0.0493141i
\(247\) −11.7152 7.74063i −0.745418 0.492524i
\(248\) −3.21742 + 5.57273i −0.204306 + 0.353869i
\(249\) −6.13390 + 20.6651i −0.388720 + 1.30960i
\(250\) 11.7948i 0.745970i
\(251\) −6.93362 12.0094i −0.437646 0.758026i 0.559861 0.828586i \(-0.310854\pi\)
−0.997507 + 0.0705608i \(0.977521\pi\)
\(252\) 2.11438 7.65045i 0.133193 0.481933i
\(253\) −3.87598 + 2.23780i −0.243681 + 0.140689i
\(254\) 7.35797 12.7444i 0.461680 0.799654i
\(255\) −1.95442 + 0.468054i −0.122390 + 0.0293107i
\(256\) 1.00000 0.0625000
\(257\) 10.6560 0.664703 0.332351 0.943156i \(-0.392158\pi\)
0.332351 + 0.943156i \(0.392158\pi\)
\(258\) −3.49634 14.5994i −0.217673 0.908920i
\(259\) 20.9712 6.65849i 1.30309 0.413738i
\(260\) −3.35503 6.71569i −0.208070 0.416489i
\(261\) −9.57961 18.8533i −0.592963 1.16699i
\(262\) 2.82161 + 4.88718i 0.174320 + 0.301931i
\(263\) 21.1985 12.2389i 1.30715 0.754686i 0.325534 0.945530i \(-0.394456\pi\)
0.981620 + 0.190844i \(0.0611226\pi\)
\(264\) −0.869816 3.63202i −0.0535335 0.223536i
\(265\) 16.0733 0.987374
\(266\) 10.0638 + 2.20992i 0.617053 + 0.135499i
\(267\) −4.29152 + 14.4581i −0.262637 + 0.884823i
\(268\) 12.3495 7.12999i 0.754366 0.435533i
\(269\) 11.0410 0.673182 0.336591 0.941651i \(-0.390726\pi\)
0.336591 + 0.941651i \(0.390726\pi\)
\(270\) −10.1922 3.62859i −0.620280 0.220829i
\(271\) 14.2522 0.865757 0.432879 0.901452i \(-0.357498\pi\)
0.432879 + 0.901452i \(0.357498\pi\)
\(272\) −0.557271 −0.0337895
\(273\) −16.5086 0.683649i −0.999144 0.0413763i
\(274\) 12.8200 0.774483
\(275\) −1.43363 −0.0864512
\(276\) −1.02301 + 3.44650i −0.0615777 + 0.207455i
\(277\) −9.76756 −0.586876 −0.293438 0.955978i \(-0.594799\pi\)
−0.293438 + 0.955978i \(0.594799\pi\)
\(278\) 3.54239 2.04520i 0.212459 0.122663i
\(279\) 17.2103 8.74474i 1.03035 0.523534i
\(280\) 4.06891 + 3.71347i 0.243164 + 0.221922i
\(281\) 0.791501 0.0472170 0.0236085 0.999721i \(-0.492484\pi\)
0.0236085 + 0.999721i \(0.492484\pi\)
\(282\) 0.986137 0.236165i 0.0587236 0.0140634i
\(283\) 10.1855 5.88059i 0.605464 0.349565i −0.165724 0.986172i \(-0.552996\pi\)
0.771188 + 0.636607i \(0.219663\pi\)
\(284\) −6.52888 11.3084i −0.387418 0.671028i
\(285\) 3.99637 13.4638i 0.236725 0.797524i
\(286\) −6.95485 + 3.47451i −0.411249 + 0.205452i
\(287\) −0.349157 + 1.59004i −0.0206101 + 0.0938570i
\(288\) −2.51418 1.63674i −0.148149 0.0964459i
\(289\) −16.6894 −0.981732
\(290\) 14.6771 0.861866
\(291\) 1.32903 + 5.54952i 0.0779090 + 0.325319i
\(292\) 0.198890 0.344488i 0.0116392 0.0201596i
\(293\) 6.68038 3.85692i 0.390272 0.225324i −0.292006 0.956416i \(-0.594323\pi\)
0.682278 + 0.731093i \(0.260989\pi\)
\(294\) 11.4845 3.88678i 0.669788 0.226681i
\(295\) 1.62989 + 2.82305i 0.0948959 + 0.164364i
\(296\) 8.31631i 0.483376i
\(297\) −3.75781 + 10.5552i −0.218050 + 0.612475i
\(298\) −0.573527 + 0.993378i −0.0332235 + 0.0575449i
\(299\) 7.47025 + 0.450903i 0.432016 + 0.0260764i
\(300\) −0.835783 + 0.792237i −0.0482539 + 0.0457398i
\(301\) 15.4584 16.9380i 0.891007 0.976289i
\(302\) 4.15879 + 2.40108i 0.239312 + 0.138167i
\(303\) −6.41023 26.7667i −0.368258 1.53771i
\(304\) 1.94720 3.37265i 0.111680 0.193435i
\(305\) −17.0778 −0.977873
\(306\) 1.40108 + 0.912108i 0.0800942 + 0.0521417i
\(307\) 22.5567 1.28738 0.643689 0.765287i \(-0.277403\pi\)
0.643689 + 0.765287i \(0.277403\pi\)
\(308\) 3.84572 4.21381i 0.219130 0.240104i
\(309\) −4.51353 + 1.08092i −0.256766 + 0.0614916i
\(310\) 13.3979i 0.760952i
\(311\) −6.64375 + 11.5073i −0.376733 + 0.652520i −0.990585 0.136901i \(-0.956286\pi\)
0.613852 + 0.789421i \(0.289619\pi\)
\(312\) −2.13451 + 5.86889i −0.120843 + 0.332260i
\(313\) 14.7574 8.52018i 0.834137 0.481589i −0.0211303 0.999777i \(-0.506726\pi\)
0.855267 + 0.518188i \(0.173393\pi\)
\(314\) 6.04701 + 3.49124i 0.341252 + 0.197022i
\(315\) −4.15195 15.9961i −0.233936 0.901276i
\(316\) 5.73441 + 9.93228i 0.322585 + 0.558734i
\(317\) 7.60593 + 13.1739i 0.427192 + 0.739918i 0.996622 0.0821217i \(-0.0261696\pi\)
−0.569431 + 0.822039i \(0.692836\pi\)
\(318\) −9.19856 9.70416i −0.515829 0.544182i
\(319\) 15.1997i 0.851022i
\(320\) 1.80315 1.04105i 0.100799 0.0581964i
\(321\) −6.76242 + 22.7826i −0.377441 + 1.27160i
\(322\) −5.23415 + 1.66187i −0.291688 + 0.0926126i
\(323\) −1.08512 + 1.87948i −0.0603775 + 0.104577i
\(324\) 3.64216 + 8.23011i 0.202342 + 0.457228i
\(325\) 2.00008 + 1.32152i 0.110944 + 0.0733050i
\(326\) 17.0431 + 9.83983i 0.943929 + 0.544978i
\(327\) −3.46608 3.65660i −0.191675 0.202210i
\(328\) 0.532863 + 0.307649i 0.0294224 + 0.0169871i
\(329\) 1.14410 + 1.04416i 0.0630762 + 0.0575663i
\(330\) −5.34952 5.64356i −0.294481 0.310668i
\(331\) −9.89667 5.71384i −0.543970 0.314061i 0.202716 0.979238i \(-0.435023\pi\)
−0.746686 + 0.665176i \(0.768356\pi\)
\(332\) 12.4455i 0.683035i
\(333\) −13.6116 + 20.9087i −0.745913 + 1.14579i
\(334\) 11.1356 + 6.42913i 0.609312 + 0.351787i
\(335\) 14.8453 25.7129i 0.811087 1.40484i
\(336\) −0.0865985 4.58176i −0.00472434 0.249955i
\(337\) 0.692991 0.0377496 0.0188748 0.999822i \(-0.493992\pi\)
0.0188748 + 0.999822i \(0.493992\pi\)
\(338\) 12.9056 + 1.56366i 0.701973 + 0.0850517i
\(339\) −33.6277 + 8.05333i −1.82640 + 0.437397i
\(340\) −1.00484 + 0.580146i −0.0544952 + 0.0314628i
\(341\) 13.8751 0.751377
\(342\) −10.4157 + 5.29237i −0.563219 + 0.286179i
\(343\) 14.7607 + 11.1858i 0.797003 + 0.603975i
\(344\) −4.33366 7.50612i −0.233655 0.404703i
\(345\) 1.74335 + 7.27955i 0.0938585 + 0.391918i
\(346\) −2.21541 + 3.83719i −0.119101 + 0.206289i
\(347\) 14.8415i 0.796733i −0.917226 0.398366i \(-0.869577\pi\)
0.917226 0.398366i \(-0.130423\pi\)
\(348\) −8.39951 8.86119i −0.450261 0.475010i
\(349\) −9.35756 + 16.2078i −0.500899 + 0.867582i 0.499101 + 0.866544i \(0.333664\pi\)
−0.999999 + 0.00103797i \(0.999670\pi\)
\(350\) −1.71815 0.377290i −0.0918392 0.0201670i
\(351\) 14.9724 11.2618i 0.799167 0.601109i
\(352\) −1.07812 1.86736i −0.0574641 0.0995308i
\(353\) 21.1090 12.1873i 1.12352 0.648664i 0.181222 0.983442i \(-0.441995\pi\)
0.942297 + 0.334778i \(0.108661\pi\)
\(354\) 0.771635 2.59964i 0.0410120 0.138169i
\(355\) −23.5451 13.5938i −1.24964 0.721482i
\(356\) 8.70736i 0.461489i
\(357\) 0.0482588 + 2.55328i 0.00255413 + 0.135134i
\(358\) −19.6844 + 11.3648i −1.04035 + 0.600647i
\(359\) 2.79005 + 4.83250i 0.147253 + 0.255050i 0.930211 0.367025i \(-0.119623\pi\)
−0.782958 + 0.622074i \(0.786290\pi\)
\(360\) −6.23736 0.333908i −0.328738 0.0175985i
\(361\) 1.91683 + 3.32005i 0.100886 + 0.174740i
\(362\) 10.2663i 0.539586i
\(363\) 7.98306 7.56713i 0.419002 0.397171i
\(364\) −9.24952 + 2.33375i −0.484806 + 0.122322i
\(365\) 0.828216i 0.0433508i
\(366\) 9.77343 + 10.3106i 0.510866 + 0.538946i
\(367\) 28.5675 16.4934i 1.49121 0.860951i 0.491261 0.871013i \(-0.336536\pi\)
0.999949 + 0.0100621i \(0.00320291\pi\)
\(368\) 2.07565i 0.108201i
\(369\) −0.836170 1.64564i −0.0435293 0.0856687i
\(370\) −8.65768 14.9955i −0.450091 0.779581i
\(371\) 4.38067 19.9493i 0.227433 1.03571i
\(372\) 8.08894 7.66749i 0.419392 0.397541i
\(373\) −9.62708 + 16.6746i −0.498471 + 0.863378i −0.999998 0.00176408i \(-0.999438\pi\)
0.501527 + 0.865142i \(0.332772\pi\)
\(374\) 0.600806 + 1.04063i 0.0310669 + 0.0538095i
\(375\) −5.81321 + 19.5847i −0.300193 + 1.01135i
\(376\) 0.507011 0.292723i 0.0261471 0.0150960i
\(377\) −14.0112 + 21.2054i −0.721611 + 1.09213i
\(378\) −7.28142 + 11.6611i −0.374516 + 0.599781i
\(379\) 10.8971 + 6.29144i 0.559746 + 0.323169i 0.753043 0.657971i \(-0.228585\pi\)
−0.193298 + 0.981140i \(0.561918\pi\)
\(380\) 8.10851i 0.415958i
\(381\) −18.4987 + 17.5349i −0.947720 + 0.898342i
\(382\) 3.37227 + 1.94698i 0.172541 + 0.0996163i
\(383\) −1.03501 0.597562i −0.0528864 0.0305340i 0.473324 0.880889i \(-0.343054\pi\)
−0.526210 + 0.850355i \(0.676387\pi\)
\(384\) −1.66045 0.492861i −0.0847344 0.0251512i
\(385\) 2.54762 11.6017i 0.129839 0.591278i
\(386\) 3.11672 1.79944i 0.158637 0.0915890i
\(387\) −1.38999 + 25.9648i −0.0706570 + 1.31986i
\(388\) 1.64731 + 2.85322i 0.0836294 + 0.144850i
\(389\) 13.1871 + 7.61359i 0.668614 + 0.386024i 0.795551 0.605886i \(-0.207181\pi\)
−0.126937 + 0.991911i \(0.540515\pi\)
\(390\) 2.26095 + 12.8046i 0.114488 + 0.648387i
\(391\) 1.15670i 0.0584967i
\(392\) 5.71791 4.03801i 0.288798 0.203950i
\(393\) −2.27644 9.50557i −0.114831 0.479493i
\(394\) 5.48497 9.50024i 0.276329 0.478615i
\(395\) 20.6800 + 11.9396i 1.04052 + 0.600746i
\(396\) −0.345799 + 6.45949i −0.0173771 + 0.324601i
\(397\) −13.0144 + 22.5415i −0.653172 + 1.13133i 0.329177 + 0.944268i \(0.393229\pi\)
−0.982349 + 0.187058i \(0.940105\pi\)
\(398\) 20.2743i 1.01626i
\(399\) −15.6213 8.62953i −0.782042 0.432017i
\(400\) −0.332437 + 0.575798i −0.0166218 + 0.0287899i
\(401\) −36.6997 −1.83269 −0.916347 0.400385i \(-0.868876\pi\)
−0.916347 + 0.400385i \(0.868876\pi\)
\(402\) −24.0198 + 5.75239i −1.19800 + 0.286903i
\(403\) −19.3573 12.7901i −0.964257 0.637119i
\(404\) −7.94537 13.7618i −0.395297 0.684675i
\(405\) 15.1353 + 11.0484i 0.752079 + 0.549001i
\(406\) 4.00013 18.2163i 0.198523 0.904061i
\(407\) −15.5296 + 8.96600i −0.769772 + 0.444428i
\(408\) 0.925319 + 0.274657i 0.0458101 + 0.0135976i
\(409\) −29.3160 −1.44958 −0.724791 0.688969i \(-0.758064\pi\)
−0.724791 + 0.688969i \(0.758064\pi\)
\(410\) 1.28111 0.0632694
\(411\) −21.2869 6.31846i −1.05001 0.311667i
\(412\) −2.32058 + 1.33979i −0.114327 + 0.0660065i
\(413\) 3.94803 1.25352i 0.194270 0.0616819i
\(414\) 3.39729 5.21854i 0.166968 0.256477i
\(415\) 12.9564 + 22.4411i 0.636003 + 1.10159i
\(416\) −0.217235 + 3.59900i −0.0106508 + 0.176456i
\(417\) −6.88996 + 1.65004i −0.337403 + 0.0808030i
\(418\) −8.39727 −0.410724
\(419\) −18.5356 + 32.1046i −0.905523 + 1.56841i −0.0853087 + 0.996355i \(0.527188\pi\)
−0.820214 + 0.572057i \(0.806146\pi\)
\(420\) −4.92598 8.17144i −0.240363 0.398725i
\(421\) 15.9315i 0.776451i −0.921564 0.388226i \(-0.873088\pi\)
0.921564 0.388226i \(-0.126912\pi\)
\(422\) −6.39897 + 11.0833i −0.311497 + 0.539529i
\(423\) −1.75383 0.0938885i −0.0852739 0.00456502i
\(424\) −6.68551 3.85988i −0.324677 0.187452i
\(425\) 0.185257 0.320875i 0.00898630 0.0155647i
\(426\) 5.26742 + 21.9948i 0.255207 + 1.06565i
\(427\) −4.65444 + 21.1960i −0.225244 + 1.02575i
\(428\) 13.7207i 0.663217i
\(429\) 13.2606 2.34147i 0.640228 0.113047i
\(430\) −15.6285 9.02310i −0.753671 0.435132i
\(431\) −14.0904 24.4053i −0.678710 1.17556i −0.975370 0.220576i \(-0.929206\pi\)
0.296660 0.954983i \(-0.404127\pi\)
\(432\) 3.36797 + 3.95686i 0.162042 + 0.190375i
\(433\) 10.7990 6.23481i 0.518967 0.299626i −0.217545 0.976050i \(-0.569805\pi\)
0.736512 + 0.676425i \(0.236472\pi\)
\(434\) 16.6288 + 3.65152i 0.798206 + 0.175279i
\(435\) −24.3705 7.23375i −1.16848 0.346832i
\(436\) −2.51915 1.45443i −0.120645 0.0696546i
\(437\) 7.00042 + 4.04170i 0.334876 + 0.193341i
\(438\) −0.500031 + 0.473979i −0.0238924 + 0.0226476i
\(439\) 36.4164i 1.73806i 0.494761 + 0.869029i \(0.335256\pi\)
−0.494761 + 0.869029i \(0.664744\pi\)
\(440\) −3.88803 2.24475i −0.185355 0.107014i
\(441\) −20.9850 + 0.793547i −0.999286 + 0.0377879i
\(442\) 0.121059 2.00562i 0.00575817 0.0953975i
\(443\) 11.6506 6.72648i 0.553537 0.319585i −0.197011 0.980401i \(-0.563123\pi\)
0.750547 + 0.660817i \(0.229790\pi\)
\(444\) −4.09879 + 13.8088i −0.194520 + 0.655337i
\(445\) 9.06478 + 15.7007i 0.429712 + 0.744283i
\(446\) −6.84088 + 11.8488i −0.323925 + 0.561055i
\(447\) 1.44191 1.36678i 0.0682000 0.0646467i
\(448\) −0.800654 2.52170i −0.0378274 0.119139i
\(449\) −10.8390 18.7736i −0.511522 0.885982i −0.999911 0.0133556i \(-0.995749\pi\)
0.488389 0.872626i \(-0.337585\pi\)
\(450\) 1.77824 0.903544i 0.0838269 0.0425935i
\(451\) 1.32673i 0.0624733i
\(452\) −17.2893 + 9.98197i −0.813219 + 0.469512i
\(453\) −5.72206 6.03658i −0.268846 0.283623i
\(454\) 3.74358i 0.175695i
\(455\) −14.2487 + 13.8373i −0.667990 + 0.648703i
\(456\) −4.89547 + 4.64041i −0.229251 + 0.217307i
\(457\) 14.4590i 0.676366i −0.941080 0.338183i \(-0.890188\pi\)
0.941080 0.338183i \(-0.109812\pi\)
\(458\) 4.38767 + 7.59967i 0.205023 + 0.355109i
\(459\) −1.87687 2.20504i −0.0876049 0.102923i
\(460\) 2.16085 + 3.74270i 0.100750 + 0.174504i
\(461\) 29.7738 17.1899i 1.38670 0.800614i 0.393762 0.919212i \(-0.371173\pi\)
0.992942 + 0.118598i \(0.0378400\pi\)
\(462\) −8.46244 + 5.10141i −0.393708 + 0.237339i
\(463\) 3.55647i 0.165283i 0.996579 + 0.0826415i \(0.0263357\pi\)
−0.996579 + 0.0826415i \(0.973664\pi\)
\(464\) −6.10476 3.52458i −0.283406 0.163625i
\(465\) 6.60333 22.2466i 0.306222 1.03166i
\(466\) 19.0891 11.0211i 0.884286 0.510543i
\(467\) −0.408159 0.706953i −0.0188874 0.0327139i 0.856427 0.516268i \(-0.172679\pi\)
−0.875315 + 0.483554i \(0.839346\pi\)
\(468\) 6.43680 8.69296i 0.297541 0.401832i
\(469\) −27.8673 25.4330i −1.28679 1.17439i
\(470\) 0.609477 1.05565i 0.0281131 0.0486933i
\(471\) −8.32004 8.77736i −0.383367 0.404439i
\(472\) 1.56562i 0.0720637i
\(473\) −9.34443 + 16.1850i −0.429657 + 0.744188i
\(474\) −4.62645 19.3183i −0.212500 0.887319i
\(475\) 1.29464 + 2.24239i 0.0594022 + 0.102888i
\(476\) 0.446181 + 1.40527i 0.0204507 + 0.0644103i
\(477\) 10.4909 + 20.6469i 0.480346 + 0.945355i
\(478\) −12.3469 −0.564735
\(479\) 32.0593 18.5095i 1.46483 0.845719i 0.465600 0.884995i \(-0.345838\pi\)
0.999228 + 0.0392758i \(0.0125051\pi\)
\(480\) −3.50713 + 0.839905i −0.160078 + 0.0383362i
\(481\) 29.9304 + 1.80659i 1.36471 + 0.0823735i
\(482\) 1.22458 0.0557781
\(483\) 9.51011 0.179748i 0.432725 0.00817881i
\(484\) 3.17530 5.49979i 0.144332 0.249990i
\(485\) 5.94069 + 3.42986i 0.269753 + 0.155742i
\(486\) −1.99132 15.4607i −0.0903280 0.701314i
\(487\) 21.7586i 0.985977i 0.870036 + 0.492989i \(0.164096\pi\)
−0.870036 + 0.492989i \(0.835904\pi\)
\(488\) 7.10333 + 4.10111i 0.321553 + 0.185649i
\(489\) −23.4495 24.7384i −1.06042 1.11871i
\(490\) 6.10647 13.2338i 0.275862 0.597840i
\(491\) 25.7673 + 14.8768i 1.16286 + 0.671379i 0.951989 0.306134i \(-0.0990354\pi\)
0.210875 + 0.977513i \(0.432369\pi\)
\(492\) −0.733163 0.773462i −0.0330536 0.0348704i
\(493\) 3.40200 + 1.96415i 0.153219 + 0.0884608i
\(494\) 11.7152 + 7.74063i 0.527090 + 0.348267i
\(495\) 6.10111 + 12.0074i 0.274224 + 0.539693i
\(496\) 3.21742 5.57273i 0.144466 0.250223i
\(497\) −23.2889 + 25.5179i −1.04465 + 1.14464i
\(498\) 6.13390 20.6651i 0.274867 0.926025i
\(499\) −9.70337 + 5.60224i −0.434383 + 0.250791i −0.701212 0.712953i \(-0.747357\pi\)
0.266829 + 0.963744i \(0.414024\pi\)
\(500\) 11.7948i 0.527480i
\(501\) −15.3214 16.1635i −0.684509 0.722134i
\(502\) 6.93362 + 12.0094i 0.309463 + 0.536005i
\(503\) −13.0943 22.6800i −0.583847 1.01125i −0.995018 0.0996945i \(-0.968213\pi\)
0.411171 0.911558i \(-0.365120\pi\)
\(504\) −2.11438 + 7.65045i −0.0941819 + 0.340778i
\(505\) −28.6534 16.5430i −1.27506 0.736155i
\(506\) 3.87598 2.23780i 0.172309 0.0994824i
\(507\) −20.6584 8.95705i −0.917474 0.397796i
\(508\) −7.35797 + 12.7444i −0.326457 + 0.565441i
\(509\) 10.3138i 0.457151i −0.973526 0.228576i \(-0.926593\pi\)
0.973526 0.228576i \(-0.0734068\pi\)
\(510\) 1.95442 0.468054i 0.0865431 0.0207258i
\(511\) −1.02794 0.225725i −0.0454732 0.00998548i
\(512\) −1.00000 −0.0441942
\(513\) 19.9032 3.65419i 0.878748 0.161336i
\(514\) −10.6560 −0.470016
\(515\) −2.78957 + 4.83167i −0.122923 + 0.212909i
\(516\) 3.49634 + 14.5994i 0.153918 + 0.642703i
\(517\) −1.09324 0.631182i −0.0480806 0.0277594i
\(518\) −20.9712 + 6.65849i −0.921422 + 0.292557i
\(519\) 5.56977 5.27958i 0.244486 0.231748i
\(520\) 3.35503 + 6.71569i 0.147128 + 0.294502i
\(521\) 17.8124 30.8520i 0.780376 1.35165i −0.151346 0.988481i \(-0.548361\pi\)
0.931723 0.363171i \(-0.118306\pi\)
\(522\) 9.57961 + 18.8533i 0.419288 + 0.825188i
\(523\) 11.1120i 0.485894i 0.970040 + 0.242947i \(0.0781141\pi\)
−0.970040 + 0.242947i \(0.921886\pi\)
\(524\) −2.82161 4.88718i −0.123263 0.213497i
\(525\) 2.66695 + 1.47328i 0.116395 + 0.0642993i
\(526\) −21.1985 + 12.2389i −0.924298 + 0.533644i
\(527\) −1.79297 + 3.10552i −0.0781031 + 0.135279i
\(528\) 0.869816 + 3.63202i 0.0378539 + 0.158064i
\(529\) 18.6917 0.812682
\(530\) −16.0733 −0.698179
\(531\) −2.56252 + 3.93625i −0.111204 + 0.170819i
\(532\) −10.0638 2.20992i −0.436322 0.0958122i
\(533\) −1.22298 + 1.85094i −0.0529733 + 0.0801732i
\(534\) 4.29152 14.4581i 0.185712 0.625664i
\(535\) 14.2840 + 24.7405i 0.617549 + 1.06963i
\(536\) −12.3495 + 7.12999i −0.533417 + 0.307969i
\(537\) 38.2861 9.16896i 1.65217 0.395670i
\(538\) −11.0410 −0.476012
\(539\) −13.7050 6.32393i −0.590318 0.272391i
\(540\) 10.1922 + 3.62859i 0.438604 + 0.156150i
\(541\) 14.2432 8.22331i 0.612363 0.353548i −0.161527 0.986868i \(-0.551642\pi\)
0.773890 + 0.633320i \(0.218308\pi\)
\(542\) −14.2522 −0.612183
\(543\) −5.05987 + 17.0467i −0.217140 + 0.731544i
\(544\) 0.557271 0.0238928
\(545\) −6.05653 −0.259433
\(546\) 16.5086 + 0.683649i 0.706501 + 0.0292575i
\(547\) 38.7499 1.65683 0.828414 0.560116i \(-0.189243\pi\)
0.828414 + 0.560116i \(0.189243\pi\)
\(548\) −12.8200 −0.547642
\(549\) −11.1466 21.9372i −0.475724 0.936258i
\(550\) 1.43363 0.0611302
\(551\) −23.7744 + 13.7261i −1.01282 + 0.584753i
\(552\) 1.02301 3.44650i 0.0435420 0.146693i
\(553\) 20.4549 22.4128i 0.869832 0.953087i
\(554\) 9.76756 0.414984
\(555\) 6.98491 + 29.1664i 0.296493 + 1.23804i
\(556\) −3.54239 + 2.04520i −0.150231 + 0.0867359i
\(557\) −13.1455 22.7686i −0.556992 0.964738i −0.997746 0.0671098i \(-0.978622\pi\)
0.440754 0.897628i \(-0.354711\pi\)
\(558\) −17.2103 + 8.74474i −0.728569 + 0.370195i
\(559\) 27.9559 13.9663i 1.18241 0.590710i
\(560\) −4.06891 3.71347i −0.171943 0.156923i
\(561\) −0.484723 2.02402i −0.0204650 0.0854542i
\(562\) −0.791501 −0.0333875
\(563\) 18.8788 0.795646 0.397823 0.917462i \(-0.369766\pi\)
0.397823 + 0.917462i \(0.369766\pi\)
\(564\) −0.986137 + 0.236165i −0.0415239 + 0.00994435i
\(565\) −20.7834 + 35.9979i −0.874365 + 1.51445i
\(566\) −10.1855 + 5.88059i −0.428128 + 0.247180i
\(567\) 17.8377 15.7739i 0.749114 0.662441i
\(568\) 6.52888 + 11.3084i 0.273946 + 0.474488i
\(569\) 41.9057i 1.75678i −0.477947 0.878388i \(-0.658619\pi\)
0.477947 0.878388i \(-0.341381\pi\)
\(570\) −3.99637 + 13.4638i −0.167390 + 0.563935i
\(571\) 3.92765 6.80288i 0.164367 0.284692i −0.772063 0.635546i \(-0.780775\pi\)
0.936430 + 0.350854i \(0.114109\pi\)
\(572\) 6.95485 3.47451i 0.290797 0.145276i
\(573\) −4.63989 4.89493i −0.193834 0.204488i
\(574\) 0.349157 1.59004i 0.0145736 0.0663669i
\(575\) −1.19515 0.690021i −0.0498413 0.0287759i
\(576\) 2.51418 + 1.63674i 0.104757 + 0.0681975i
\(577\) −11.6409 + 20.1626i −0.484617 + 0.839381i −0.999844 0.0176727i \(-0.994374\pi\)
0.515227 + 0.857054i \(0.327708\pi\)
\(578\) 16.6894 0.694190
\(579\) −6.06202 + 1.45176i −0.251929 + 0.0603333i
\(580\) −14.6771 −0.609431
\(581\) 31.3838 9.96454i 1.30202 0.413399i
\(582\) −1.32903 5.54952i −0.0550900 0.230035i
\(583\) 16.6457i 0.689394i
\(584\) −0.198890 + 0.344488i −0.00823013 + 0.0142550i
\(585\) 2.55671 22.3757i 0.105707 0.925122i
\(586\) −6.68038 + 3.85692i −0.275964 + 0.159328i
\(587\) −20.2618 11.6981i −0.836294 0.482834i 0.0197091 0.999806i \(-0.493726\pi\)
−0.856003 + 0.516971i \(0.827059\pi\)
\(588\) −11.4845 + 3.88678i −0.473611 + 0.160288i
\(589\) −12.5299 21.7024i −0.516286 0.894233i
\(590\) −1.62989 2.82305i −0.0671015 0.116223i
\(591\) −13.7898 + 13.0713i −0.567237 + 0.537683i
\(592\) 8.31631i 0.341798i
\(593\) 4.32543 2.49729i 0.177624 0.102551i −0.408552 0.912735i \(-0.633966\pi\)
0.586176 + 0.810184i \(0.300633\pi\)
\(594\) 3.75781 10.5552i 0.154185 0.433085i
\(595\) 2.26748 + 2.06941i 0.0929577 + 0.0848375i
\(596\) 0.573527 0.993378i 0.0234926 0.0406904i
\(597\) −9.99240 + 33.6644i −0.408962 + 1.37779i
\(598\) −7.47025 0.450903i −0.305481 0.0184388i
\(599\) 7.43793 + 4.29429i 0.303905 + 0.175460i 0.644196 0.764860i \(-0.277192\pi\)
−0.340291 + 0.940320i \(0.610525\pi\)
\(600\) 0.835783 0.792237i 0.0341207 0.0323429i
\(601\) 42.0105 + 24.2548i 1.71364 + 0.989373i 0.929523 + 0.368765i \(0.120219\pi\)
0.784121 + 0.620608i \(0.213114\pi\)
\(602\) −15.4584 + 16.9380i −0.630037 + 0.690340i
\(603\) 42.7188 + 2.28689i 1.73964 + 0.0931292i
\(604\) −4.15879 2.40108i −0.169219 0.0976986i
\(605\) 13.2226i 0.537574i
\(606\) 6.41023 + 26.7667i 0.260398 + 1.08732i
\(607\) −7.02087 4.05350i −0.284968 0.164527i 0.350702 0.936487i \(-0.385943\pi\)
−0.635670 + 0.771961i \(0.719276\pi\)
\(608\) −1.94720 + 3.37265i −0.0789693 + 0.136779i
\(609\) −15.6201 + 28.2758i −0.632960 + 1.14579i
\(610\) 17.0778 0.691460
\(611\) 0.943369 + 1.88832i 0.0381646 + 0.0763933i
\(612\) −1.40108 0.912108i −0.0566352 0.0368698i
\(613\) −0.439299 + 0.253629i −0.0177431 + 0.0102440i −0.508845 0.860858i \(-0.669927\pi\)
0.491102 + 0.871102i \(0.336594\pi\)
\(614\) −22.5567 −0.910314
\(615\) −2.12721 0.631408i −0.0857775 0.0254608i
\(616\) −3.84572 + 4.21381i −0.154948 + 0.169779i
\(617\) 14.0828 + 24.3922i 0.566954 + 0.981993i 0.996865 + 0.0791221i \(0.0252117\pi\)
−0.429911 + 0.902871i \(0.641455\pi\)
\(618\) 4.51353 1.08092i 0.181561 0.0434811i
\(619\) 12.3365 21.3674i 0.495846 0.858830i −0.504143 0.863620i \(-0.668191\pi\)
0.999989 + 0.00479018i \(0.00152477\pi\)
\(620\) 13.3979i 0.538074i
\(621\) −8.21305 + 6.99072i −0.329578 + 0.280528i
\(622\) 6.64375 11.5073i 0.266390 0.461401i
\(623\) 21.9573 6.97158i 0.879702 0.279311i
\(624\) 2.13451 5.86889i 0.0854490 0.234944i
\(625\) 10.6168 + 18.3888i 0.424671 + 0.735553i
\(626\) −14.7574 + 8.52018i −0.589824 + 0.340535i
\(627\) 13.9432 + 4.13869i 0.556839 + 0.165283i
\(628\) −6.04701 3.49124i −0.241302 0.139316i
\(629\) 4.63444i 0.184787i
\(630\) 4.15195 + 15.9961i 0.165418 + 0.637299i
\(631\) 35.8457 20.6955i 1.42699 0.823875i 0.430111 0.902776i \(-0.358474\pi\)
0.996882 + 0.0789008i \(0.0251410\pi\)
\(632\) −5.73441 9.93228i −0.228102 0.395085i
\(633\) 16.0877 15.2495i 0.639429 0.606114i
\(634\) −7.60593 13.1739i −0.302070 0.523201i
\(635\) 30.6400i 1.21591i
\(636\) 9.19856 + 9.70416i 0.364746 + 0.384795i
\(637\) 13.2907 + 21.4559i 0.526596 + 0.850116i
\(638\) 15.1997i 0.601763i
\(639\) 2.09409 39.1173i 0.0828408 1.54746i
\(640\) −1.80315 + 1.04105i −0.0712757 + 0.0411510i
\(641\) 26.7161i 1.05522i −0.849486 0.527612i \(-0.823088\pi\)
0.849486 0.527612i \(-0.176912\pi\)
\(642\) 6.76242 22.7826i 0.266891 0.899156i
\(643\) −22.0044 38.1127i −0.867769 1.50302i −0.864272 0.503025i \(-0.832220\pi\)
−0.00349687 0.999994i \(-0.501113\pi\)
\(644\) 5.23415 1.66187i 0.206254 0.0654870i
\(645\) 21.5031 + 22.6850i 0.846684 + 0.893223i
\(646\) 1.08512 1.87948i 0.0426934 0.0739471i
\(647\) −7.77334 13.4638i −0.305601 0.529317i 0.671794 0.740738i \(-0.265524\pi\)
−0.977395 + 0.211421i \(0.932191\pi\)
\(648\) −3.64216 8.23011i −0.143078 0.323309i
\(649\) −2.92359 + 1.68793i −0.114761 + 0.0662572i
\(650\) −2.00008 1.32152i −0.0784496 0.0518344i
\(651\) −25.8115 14.2588i −1.01163 0.558848i
\(652\) −17.0431 9.83983i −0.667459 0.385358i
\(653\) 27.8448i 1.08965i −0.838549 0.544826i \(-0.816596\pi\)
0.838549 0.544826i \(-0.183404\pi\)
\(654\) 3.46608 + 3.65660i 0.135535 + 0.142984i
\(655\) −10.1756 5.87487i −0.397593 0.229550i
\(656\) −0.532863 0.307649i −0.0208048 0.0120117i
\(657\) 1.06388 0.540571i 0.0415060 0.0210897i
\(658\) −1.14410 1.04416i −0.0446016 0.0407055i
\(659\) −37.5062 + 21.6542i −1.46103 + 0.843528i −0.999059 0.0433655i \(-0.986192\pi\)
−0.461974 + 0.886893i \(0.652859\pi\)
\(660\) 5.34952 + 5.64356i 0.208230 + 0.219675i
\(661\) 9.67024 + 16.7493i 0.376129 + 0.651474i 0.990495 0.137547i \(-0.0439218\pi\)
−0.614367 + 0.789021i \(0.710588\pi\)
\(662\) 9.89667 + 5.71384i 0.384645 + 0.222075i
\(663\) −1.18950 + 3.27056i −0.0461965 + 0.127018i
\(664\) 12.4455i 0.482979i
\(665\) −20.4472 + 6.49211i −0.792909 + 0.251753i
\(666\) 13.6116 20.9087i 0.527440 0.810194i
\(667\) 7.31579 12.6713i 0.283269 0.490635i
\(668\) −11.1356 6.42913i −0.430849 0.248751i
\(669\) 17.1987 16.3026i 0.664941 0.630296i
\(670\) −14.8453 + 25.7129i −0.573525 + 0.993374i
\(671\) 17.6860i 0.682760i
\(672\) 0.0865985 + 4.58176i 0.00334061 + 0.176745i
\(673\) 11.4777 19.8800i 0.442434 0.766319i −0.555435 0.831560i \(-0.687448\pi\)
0.997870 + 0.0652410i \(0.0207816\pi\)
\(674\) −0.692991 −0.0266930
\(675\) −3.39799 + 0.623864i −0.130789 + 0.0240125i
\(676\) −12.9056 1.56366i −0.496370 0.0601407i
\(677\) 1.50584 + 2.60819i 0.0578740 + 0.100241i 0.893511 0.449042i \(-0.148234\pi\)
−0.835637 + 0.549282i \(0.814901\pi\)
\(678\) 33.6277 8.05333i 1.29146 0.309286i
\(679\) 5.87604 6.43846i 0.225502 0.247085i
\(680\) 1.00484 0.580146i 0.0385339 0.0222476i
\(681\) 1.84507 6.21602i 0.0707031 0.238199i
\(682\) −13.8751 −0.531304
\(683\) −31.1190 −1.19074 −0.595368 0.803453i \(-0.702994\pi\)
−0.595368 + 0.803453i \(0.702994\pi\)
\(684\) 10.4157 5.29237i 0.398256 0.202359i
\(685\) −23.1163 + 13.3462i −0.883229 + 0.509932i
\(686\) −14.7607 11.1858i −0.563566 0.427075i
\(687\) −3.53992 14.7814i −0.135056 0.563945i
\(688\) 4.33366 + 7.50612i 0.165219 + 0.286168i
\(689\) 15.3440 23.2227i 0.584561 0.884713i
\(690\) −1.74335 7.27955i −0.0663680 0.277128i
\(691\) −46.8665 −1.78288 −0.891442 0.453134i \(-0.850306\pi\)
−0.891442 + 0.453134i \(0.850306\pi\)
\(692\) 2.21541 3.83719i 0.0842171 0.145868i
\(693\) 16.5657 4.29981i 0.629280 0.163336i
\(694\) 14.8415i 0.563375i
\(695\) −4.25831 + 7.37560i −0.161527 + 0.279773i
\(696\) 8.39951 + 8.86119i 0.318382 + 0.335882i
\(697\) 0.296949 + 0.171444i 0.0112477 + 0.00649389i
\(698\) 9.35756 16.2078i 0.354189 0.613473i
\(699\) −37.1284 + 8.89169i −1.40432 + 0.336315i
\(700\) 1.71815 + 0.377290i 0.0649401 + 0.0142602i
\(701\) 27.7719i 1.04893i 0.851433 + 0.524464i \(0.175734\pi\)
−0.851433 + 0.524464i \(0.824266\pi\)
\(702\) −14.9724 + 11.2618i −0.565097 + 0.425048i
\(703\) 28.0480 + 16.1935i 1.05785 + 0.610750i
\(704\) 1.07812 + 1.86736i 0.0406333 + 0.0703789i
\(705\) −1.53229 + 1.45246i −0.0577094 + 0.0547027i
\(706\) −21.1090 + 12.1873i −0.794448 + 0.458675i
\(707\) −28.3416 + 31.0543i −1.06589 + 1.16792i
\(708\) −0.771635 + 2.59964i −0.0289998 + 0.0977004i
\(709\) −27.8176 16.0605i −1.04471 0.603165i −0.123548 0.992339i \(-0.539427\pi\)
−0.921164 + 0.389174i \(0.872761\pi\)
\(710\) 23.5451 + 13.5938i 0.883632 + 0.510165i
\(711\) −1.83926 + 34.3572i −0.0689778 + 1.28850i
\(712\) 8.70736i 0.326322i
\(713\) 11.5670 + 6.67822i 0.433188 + 0.250101i
\(714\) −0.0482588 2.55328i −0.00180604 0.0955541i
\(715\) 8.92349 13.5054i 0.333720 0.505073i
\(716\) 19.6844 11.3648i 0.735639 0.424722i
\(717\) 20.5014 + 6.08532i 0.765640 + 0.227260i
\(718\) −2.79005 4.83250i −0.104124 0.180347i
\(719\) −18.5249 + 32.0860i −0.690861 + 1.19661i 0.280695 + 0.959797i \(0.409435\pi\)
−0.971556 + 0.236810i \(0.923898\pi\)
\(720\) 6.23736 + 0.333908i 0.232453 + 0.0124440i
\(721\) 5.23652 + 4.77909i 0.195018 + 0.177983i
\(722\) −1.91683 3.32005i −0.0713372 0.123560i
\(723\) −2.03335 0.603548i −0.0756211 0.0224462i
\(724\) 10.2663i 0.381545i
\(725\) 4.05890 2.34340i 0.150744 0.0870318i
\(726\) −7.98306 + 7.56713i −0.296279 + 0.280842i
\(727\) 8.65396i 0.320957i 0.987039 + 0.160479i \(0.0513038\pi\)
−0.987039 + 0.160479i \(0.948696\pi\)
\(728\) 9.24952 2.33375i 0.342810 0.0864947i
\(729\) −4.31352 + 26.6532i −0.159760 + 0.987156i
\(730\) 0.828216i 0.0306537i
\(731\) −2.41502 4.18294i −0.0893228 0.154712i
\(732\) −9.77343 10.3106i −0.361237 0.381092i
\(733\) −11.2469 19.4802i −0.415413 0.719516i 0.580059 0.814574i \(-0.303029\pi\)
−0.995472 + 0.0950586i \(0.969696\pi\)
\(734\) −28.5675 + 16.4934i −1.05444 + 0.608784i
\(735\) −16.6619 + 18.9643i −0.614582 + 0.699510i
\(736\) 2.07565i 0.0765093i
\(737\) 26.6286 + 15.3740i 0.980875 + 0.566309i
\(738\) 0.836170 + 1.64564i 0.0307799 + 0.0605769i
\(739\) −19.7692 + 11.4138i −0.727223 + 0.419862i −0.817405 0.576063i \(-0.804588\pi\)
0.0901827 + 0.995925i \(0.471255\pi\)
\(740\) 8.65768 + 14.9955i 0.318263 + 0.551247i
\(741\) −15.6374 18.6269i −0.574453 0.684275i
\(742\) −4.38067 + 19.9493i −0.160819 + 0.732360i
\(743\) 5.89495 10.2104i 0.216265 0.374582i −0.737398 0.675458i \(-0.763946\pi\)
0.953663 + 0.300877i \(0.0972792\pi\)
\(744\) −8.08894 + 7.66749i −0.296555 + 0.281104i
\(745\) 2.38828i 0.0874997i
\(746\) 9.62708 16.6746i 0.352473 0.610500i
\(747\) −20.3700 + 31.2902i −0.745301 + 1.14485i
\(748\) −0.600806 1.04063i −0.0219676 0.0380491i
\(749\) 34.5995 10.9856i 1.26424 0.401404i
\(750\) 5.81321 19.5847i 0.212268 0.715131i
\(751\) 4.14828 0.151373 0.0756864 0.997132i \(-0.475885\pi\)
0.0756864 + 0.997132i \(0.475885\pi\)
\(752\) −0.507011 + 0.292723i −0.0184888 + 0.0106745i
\(753\) −5.59396 23.3583i −0.203855 0.851223i
\(754\) 14.0112 21.2054i 0.510256 0.772254i
\(755\) −9.99856 −0.363885
\(756\) 7.28142 11.6611i 0.264823 0.424109i
\(757\) 16.7609 29.0308i 0.609186 1.05514i −0.382189 0.924084i \(-0.624830\pi\)
0.991375 0.131057i \(-0.0418372\pi\)
\(758\) −10.8971 6.29144i −0.395800 0.228515i
\(759\) −7.53880 + 1.80543i −0.273641 + 0.0655329i
\(760\) 8.10851i 0.294127i
\(761\) −6.12517 3.53637i −0.222037 0.128193i 0.384856 0.922977i \(-0.374251\pi\)
−0.606893 + 0.794783i \(0.707584\pi\)
\(762\) 18.4987 17.5349i 0.670139 0.635224i
\(763\) −1.65067 + 7.51702i −0.0597581 + 0.272134i
\(764\) −3.37227 1.94698i −0.122005 0.0704394i
\(765\) −3.47590 0.186077i −0.125671 0.00672763i
\(766\) 1.03501 + 0.597562i 0.0373964 + 0.0215908i
\(767\) 5.63468 + 0.340108i 0.203457 + 0.0122806i
\(768\) 1.66045 + 0.492861i 0.0599163 + 0.0177846i
\(769\) −3.05595 + 5.29306i −0.110200 + 0.190872i −0.915851 0.401518i \(-0.868483\pi\)
0.805651 + 0.592391i \(0.201816\pi\)
\(770\) −2.54762 + 11.6017i −0.0918100 + 0.418096i
\(771\) 17.6937 + 5.25193i 0.637224 + 0.189144i
\(772\) −3.11672 + 1.79944i −0.112173 + 0.0647632i
\(773\) 38.6084i 1.38865i 0.719662 + 0.694324i \(0.244297\pi\)
−0.719662 + 0.694324i \(0.755703\pi\)