Properties

Label 546.2.bg.a.467.9
Level $546$
Weight $2$
Character 546.467
Analytic conductor $4.360$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bg (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 467.9
Character \(\chi\) \(=\) 546.467
Dual form 546.2.bg.a.311.9

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.280988 + 1.70911i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.0759308 + 0.0438386i) q^{5} +(-1.33964 - 1.09790i) q^{6} +(2.62099 - 0.361112i) q^{7} +1.00000 q^{8} +(-2.84209 - 0.960476i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.280988 + 1.70911i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.0759308 + 0.0438386i) q^{5} +(-1.33964 - 1.09790i) q^{6} +(2.62099 - 0.361112i) q^{7} +1.00000 q^{8} +(-2.84209 - 0.960476i) q^{9} +(-0.0759308 + 0.0438386i) q^{10} +(2.83131 + 4.90398i) q^{11} +(1.62062 - 0.611211i) q^{12} +(2.43301 - 2.66091i) q^{13} +(-0.997764 + 2.45040i) q^{14} +(-0.0962606 + 0.117456i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(1.33566 + 2.31343i) q^{17} +(2.25284 - 1.98109i) q^{18} +(-3.32692 + 5.76239i) q^{19} -0.0876773i q^{20} +(-0.119288 + 4.58102i) q^{21} -5.66263 q^{22} +(1.06303 + 0.613739i) q^{23} +(-0.280988 + 1.70911i) q^{24} +(-2.49616 - 4.32347i) q^{25} +(1.08791 + 3.43751i) q^{26} +(2.44015 - 4.58756i) q^{27} +(-1.62323 - 2.08929i) q^{28} +5.84765i q^{29} +(-0.0535893 - 0.142092i) q^{30} +(0.441909 + 0.765409i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-9.17699 + 3.46106i) q^{33} -2.67132 q^{34} +(0.214845 + 0.0874812i) q^{35} +(0.589249 + 2.94156i) q^{36} +(-0.456219 - 0.263398i) q^{37} +(-3.32692 - 5.76239i) q^{38} +(3.86413 + 4.90596i) q^{39} +(0.0759308 + 0.0438386i) q^{40} -8.99352i q^{41} +(-3.90764 - 2.39382i) q^{42} -9.69720 q^{43} +(2.83131 - 4.90398i) q^{44} +(-0.173696 - 0.197523i) q^{45} +(-1.06303 + 0.613739i) q^{46} +(7.45201 + 4.30242i) q^{47} +(-1.33964 - 1.09790i) q^{48} +(6.73920 - 1.89294i) q^{49} +4.99231 q^{50} +(-4.32920 + 1.63274i) q^{51} +(-3.52092 - 0.776597i) q^{52} +(-12.1291 + 7.00275i) q^{53} +(2.75286 + 4.40701i) q^{54} +0.496484i q^{55} +(2.62099 - 0.361112i) q^{56} +(-8.91371 - 7.30522i) q^{57} +(-5.06421 - 2.92382i) q^{58} +(-3.11423 + 1.79800i) q^{59} +(0.149850 + 0.0246363i) q^{60} +(2.01240 + 1.16186i) q^{61} -0.883818 q^{62} +(-7.79594 - 1.49109i) q^{63} +1.00000 q^{64} +(0.301391 - 0.0953849i) q^{65} +(1.59113 - 9.67803i) q^{66} +(6.54039 - 3.77610i) q^{67} +(1.33566 - 2.31343i) q^{68} +(-1.34764 + 1.64437i) q^{69} +(-0.183183 + 0.142320i) q^{70} -2.65797 q^{71} +(-2.84209 - 0.960476i) q^{72} +(4.11174 + 7.12173i) q^{73} +(0.456219 - 0.263398i) q^{74} +(8.09066 - 3.05136i) q^{75} +6.65383 q^{76} +(9.19173 + 11.8309i) q^{77} +(-6.18076 + 0.893454i) q^{78} +(7.19370 - 12.4599i) q^{79} +(-0.0759308 + 0.0438386i) q^{80} +(7.15497 + 5.45952i) q^{81} +(7.78862 + 4.49676i) q^{82} +2.86138i q^{83} +(4.02693 - 2.18721i) q^{84} +0.234214i q^{85} +(4.84860 - 8.39803i) q^{86} +(-9.99425 - 1.64312i) q^{87} +(2.83131 + 4.90398i) q^{88} +(-2.93597 - 1.69508i) q^{89} +(0.257908 - 0.0516637i) q^{90} +(5.41602 - 7.85281i) q^{91} -1.22748i q^{92} +(-1.43234 + 0.540199i) q^{93} +(-7.45201 + 4.30242i) q^{94} +(-0.505231 + 0.291695i) q^{95} +(1.62062 - 0.611211i) q^{96} +10.4779 q^{97} +(-1.73026 + 6.78279i) q^{98} +(-3.33670 - 16.6570i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q - 18q^{2} - 18q^{4} + 36q^{8} + 4q^{9} + O(q^{10}) \) \( 36q - 18q^{2} - 18q^{4} + 36q^{8} + 4q^{9} - 14q^{15} - 18q^{16} + 4q^{18} + 23q^{21} + 14q^{25} - 6q^{26} + 7q^{30} - 18q^{32} + 24q^{33} - 8q^{36} - 10q^{39} - 16q^{42} - 16q^{43} - 9q^{45} + 72q^{47} + 12q^{49} - 28q^{50} - 3q^{51} + 6q^{52} + 9q^{54} - 8q^{57} + 24q^{59} + 7q^{60} - 36q^{61} - 39q^{63} + 36q^{64} + 18q^{65} - 24q^{66} - 72q^{71} + 4q^{72} + 54q^{75} + 20q^{78} + 20q^{79} - 20q^{81} - 24q^{82} - 7q^{84} + 8q^{86} - 24q^{87} - 72q^{89} - 2q^{91} - 14q^{93} - 72q^{94} - 12q^{98} + 72q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −0.280988 + 1.70911i −0.162228 + 0.986753i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.0759308 + 0.0438386i 0.0339573 + 0.0196052i 0.516883 0.856056i \(-0.327092\pi\)
−0.482925 + 0.875662i \(0.660426\pi\)
\(6\) −1.33964 1.09790i −0.546904 0.448214i
\(7\) 2.62099 0.361112i 0.990642 0.136488i
\(8\) 1.00000 0.353553
\(9\) −2.84209 0.960476i −0.947364 0.320159i
\(10\) −0.0759308 + 0.0438386i −0.0240114 + 0.0138630i
\(11\) 2.83131 + 4.90398i 0.853673 + 1.47860i 0.877871 + 0.478898i \(0.158964\pi\)
−0.0241978 + 0.999707i \(0.507703\pi\)
\(12\) 1.62062 0.611211i 0.467834 0.176441i
\(13\) 2.43301 2.66091i 0.674797 0.738004i
\(14\) −0.997764 + 2.45040i −0.266664 + 0.654897i
\(15\) −0.0962606 + 0.117456i −0.0248544 + 0.0303269i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.33566 + 2.31343i 0.323945 + 0.561089i 0.981298 0.192493i \(-0.0616574\pi\)
−0.657353 + 0.753583i \(0.728324\pi\)
\(18\) 2.25284 1.98109i 0.531000 0.466946i
\(19\) −3.32692 + 5.76239i −0.763247 + 1.32198i 0.177921 + 0.984045i \(0.443063\pi\)
−0.941168 + 0.337938i \(0.890271\pi\)
\(20\) 0.0876773i 0.0196052i
\(21\) −0.119288 + 4.58102i −0.0260307 + 0.999661i
\(22\) −5.66263 −1.20728
\(23\) 1.06303 + 0.613739i 0.221656 + 0.127973i 0.606717 0.794918i \(-0.292486\pi\)
−0.385061 + 0.922891i \(0.625819\pi\)
\(24\) −0.280988 + 1.70911i −0.0573564 + 0.348870i
\(25\) −2.49616 4.32347i −0.499231 0.864694i
\(26\) 1.08791 + 3.43751i 0.213356 + 0.674151i
\(27\) 2.44015 4.58756i 0.469607 0.882876i
\(28\) −1.62323 2.08929i −0.306761 0.394839i
\(29\) 5.84765i 1.08588i 0.839771 + 0.542940i \(0.182689\pi\)
−0.839771 + 0.542940i \(0.817311\pi\)
\(30\) −0.0535893 0.142092i −0.00978402 0.0259423i
\(31\) 0.441909 + 0.765409i 0.0793692 + 0.137471i 0.902978 0.429687i \(-0.141376\pi\)
−0.823609 + 0.567158i \(0.808043\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −9.17699 + 3.46106i −1.59751 + 0.602493i
\(34\) −2.67132 −0.458127
\(35\) 0.214845 + 0.0874812i 0.0363154 + 0.0147870i
\(36\) 0.589249 + 2.94156i 0.0982081 + 0.490260i
\(37\) −0.456219 0.263398i −0.0750019 0.0433024i 0.462030 0.886864i \(-0.347121\pi\)
−0.537032 + 0.843562i \(0.680455\pi\)
\(38\) −3.32692 5.76239i −0.539697 0.934783i
\(39\) 3.86413 + 4.90596i 0.618756 + 0.785583i
\(40\) 0.0759308 + 0.0438386i 0.0120057 + 0.00693150i
\(41\) 8.99352i 1.40455i −0.711905 0.702276i \(-0.752167\pi\)
0.711905 0.702276i \(-0.247833\pi\)
\(42\) −3.90764 2.39382i −0.602962 0.369374i
\(43\) −9.69720 −1.47881 −0.739405 0.673261i \(-0.764893\pi\)
−0.739405 + 0.673261i \(0.764893\pi\)
\(44\) 2.83131 4.90398i 0.426836 0.739302i
\(45\) −0.173696 0.197523i −0.0258931 0.0294450i
\(46\) −1.06303 + 0.613739i −0.156735 + 0.0904909i
\(47\) 7.45201 + 4.30242i 1.08699 + 0.627572i 0.932773 0.360465i \(-0.117382\pi\)
0.154215 + 0.988037i \(0.450715\pi\)
\(48\) −1.33964 1.09790i −0.193360 0.158468i
\(49\) 6.73920 1.89294i 0.962742 0.270420i
\(50\) 4.99231 0.706020
\(51\) −4.32920 + 1.63274i −0.606210 + 0.228629i
\(52\) −3.52092 0.776597i −0.488264 0.107695i
\(53\) −12.1291 + 7.00275i −1.66606 + 0.961902i −0.696334 + 0.717718i \(0.745187\pi\)
−0.969729 + 0.244184i \(0.921480\pi\)
\(54\) 2.75286 + 4.40701i 0.374617 + 0.599718i
\(55\) 0.496484i 0.0669458i
\(56\) 2.62099 0.361112i 0.350245 0.0482556i
\(57\) −8.91371 7.30522i −1.18065 0.967600i
\(58\) −5.06421 2.92382i −0.664963 0.383917i
\(59\) −3.11423 + 1.79800i −0.405438 + 0.234080i −0.688828 0.724925i \(-0.741874\pi\)
0.283390 + 0.959005i \(0.408541\pi\)
\(60\) 0.149850 + 0.0246363i 0.0193455 + 0.00318053i
\(61\) 2.01240 + 1.16186i 0.257661 + 0.148761i 0.623267 0.782009i \(-0.285805\pi\)
−0.365606 + 0.930770i \(0.619138\pi\)
\(62\) −0.883818 −0.112245
\(63\) −7.79594 1.49109i −0.982196 0.187859i
\(64\) 1.00000 0.125000
\(65\) 0.301391 0.0953849i 0.0373830 0.0118310i
\(66\) 1.59113 9.67803i 0.195854 1.19128i
\(67\) 6.54039 3.77610i 0.799036 0.461324i −0.0440981 0.999027i \(-0.514041\pi\)
0.843134 + 0.537704i \(0.180708\pi\)
\(68\) 1.33566 2.31343i 0.161972 0.280545i
\(69\) −1.34764 + 1.64437i −0.162237 + 0.197959i
\(70\) −0.183183 + 0.142320i −0.0218946 + 0.0170105i
\(71\) −2.65797 −0.315443 −0.157722 0.987484i \(-0.550415\pi\)
−0.157722 + 0.987484i \(0.550415\pi\)
\(72\) −2.84209 0.960476i −0.334944 0.113193i
\(73\) 4.11174 + 7.12173i 0.481242 + 0.833536i 0.999768 0.0215258i \(-0.00685242\pi\)
−0.518526 + 0.855062i \(0.673519\pi\)
\(74\) 0.456219 0.263398i 0.0530343 0.0306194i
\(75\) 8.09066 3.05136i 0.934229 0.352340i
\(76\) 6.65383 0.763247
\(77\) 9.19173 + 11.8309i 1.04750 + 1.34825i
\(78\) −6.18076 + 0.893454i −0.699833 + 0.101164i
\(79\) 7.19370 12.4599i 0.809355 1.40184i −0.103957 0.994582i \(-0.533150\pi\)
0.913312 0.407261i \(-0.133516\pi\)
\(80\) −0.0759308 + 0.0438386i −0.00848932 + 0.00490131i
\(81\) 7.15497 + 5.45952i 0.794997 + 0.606614i
\(82\) 7.78862 + 4.49676i 0.860109 + 0.496584i
\(83\) 2.86138i 0.314077i 0.987592 + 0.157039i \(0.0501947\pi\)
−0.987592 + 0.157039i \(0.949805\pi\)
\(84\) 4.02693 2.18721i 0.439374 0.238644i
\(85\) 0.234214i 0.0254041i
\(86\) 4.84860 8.39803i 0.522838 0.905582i
\(87\) −9.99425 1.64312i −1.07150 0.176161i
\(88\) 2.83131 + 4.90398i 0.301819 + 0.522766i
\(89\) −2.93597 1.69508i −0.311212 0.179678i 0.336257 0.941770i \(-0.390839\pi\)
−0.647469 + 0.762092i \(0.724172\pi\)
\(90\) 0.257908 0.0516637i 0.0271859 0.00544584i
\(91\) 5.41602 7.85281i 0.567754 0.823199i
\(92\) 1.22748i 0.127973i
\(93\) −1.43234 + 0.540199i −0.148526 + 0.0560160i
\(94\) −7.45201 + 4.30242i −0.768616 + 0.443761i
\(95\) −0.505231 + 0.291695i −0.0518356 + 0.0299273i
\(96\) 1.62062 0.611211i 0.165404 0.0623814i
\(97\) 10.4779 1.06387 0.531934 0.846786i \(-0.321465\pi\)
0.531934 + 0.846786i \(0.321465\pi\)
\(98\) −1.73026 + 6.78279i −0.174783 + 0.685165i
\(99\) −3.33670 16.6570i −0.335350 1.67409i
\(100\) −2.49616 + 4.32347i −0.249616 + 0.432347i
\(101\) 1.67265 + 2.89711i 0.166435 + 0.288273i 0.937164 0.348890i \(-0.113441\pi\)
−0.770729 + 0.637163i \(0.780108\pi\)
\(102\) 0.750608 4.56557i 0.0743213 0.452059i
\(103\) 10.7681 + 6.21697i 1.06101 + 0.612577i 0.925713 0.378228i \(-0.123466\pi\)
0.135301 + 0.990804i \(0.456800\pi\)
\(104\) 2.43301 2.66091i 0.238577 0.260924i
\(105\) −0.209883 + 0.342611i −0.0204825 + 0.0334354i
\(106\) 14.0055i 1.36033i
\(107\) 2.33402 + 1.34755i 0.225639 + 0.130272i 0.608558 0.793509i \(-0.291748\pi\)
−0.382920 + 0.923782i \(0.625081\pi\)
\(108\) −5.19301 + 0.180546i −0.499698 + 0.0173730i
\(109\) −6.64244 + 3.83502i −0.636231 + 0.367328i −0.783161 0.621819i \(-0.786394\pi\)
0.146930 + 0.989147i \(0.453061\pi\)
\(110\) −0.429968 0.248242i −0.0409958 0.0236689i
\(111\) 0.578367 0.705715i 0.0548962 0.0669835i
\(112\) −0.997764 + 2.45040i −0.0942798 + 0.231541i
\(113\) 7.92944i 0.745939i −0.927844 0.372970i \(-0.878340\pi\)
0.927844 0.372970i \(-0.121660\pi\)
\(114\) 10.7834 4.06689i 1.00995 0.380900i
\(115\) 0.0538110 + 0.0932033i 0.00501790 + 0.00869126i
\(116\) 5.06421 2.92382i 0.470200 0.271470i
\(117\) −9.47059 + 5.22570i −0.875556 + 0.483116i
\(118\) 3.59600i 0.331039i
\(119\) 4.33616 + 5.58116i 0.397495 + 0.511624i
\(120\) −0.0962606 + 0.117456i −0.00878735 + 0.0107222i
\(121\) −10.5327 + 18.2431i −0.957515 + 1.65846i
\(122\) −2.01240 + 1.16186i −0.182194 + 0.105190i
\(123\) 15.3709 + 2.52707i 1.38595 + 0.227858i
\(124\) 0.441909 0.765409i 0.0396846 0.0687357i
\(125\) 0.876099i 0.0783607i
\(126\) 5.18929 6.00594i 0.462299 0.535051i
\(127\) 4.80829 0.426667 0.213334 0.976979i \(-0.431568\pi\)
0.213334 + 0.976979i \(0.431568\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 2.72480 16.5736i 0.239905 1.45922i
\(130\) −0.0680900 + 0.308705i −0.00597188 + 0.0270752i
\(131\) 9.89815 17.1441i 0.864805 1.49789i −0.00243479 0.999997i \(-0.500775\pi\)
0.867240 0.497890i \(-0.165892\pi\)
\(132\) 7.58586 + 6.21697i 0.660264 + 0.541118i
\(133\) −6.63895 + 16.3046i −0.575670 + 1.41379i
\(134\) 7.55219i 0.652410i
\(135\) 0.386395 0.241364i 0.0332556 0.0207733i
\(136\) 1.33566 + 2.31343i 0.114532 + 0.198375i
\(137\) −6.29121 10.8967i −0.537495 0.930968i −0.999038 0.0438504i \(-0.986037\pi\)
0.461543 0.887118i \(-0.347296\pi\)
\(138\) −0.750248 1.98928i −0.0638653 0.169339i
\(139\) 19.6014i 1.66257i −0.555848 0.831284i \(-0.687606\pi\)
0.555848 0.831284i \(-0.312394\pi\)
\(140\) −0.0316613 0.229801i −0.00267587 0.0194218i
\(141\) −9.44722 + 11.5274i −0.795599 + 0.970778i
\(142\) 1.32899 2.30187i 0.111526 0.193169i
\(143\) 19.9377 + 4.39758i 1.66727 + 0.367744i
\(144\) 2.25284 1.98109i 0.187737 0.165090i
\(145\) −0.256353 + 0.444016i −0.0212890 + 0.0368735i
\(146\) −8.22347 −0.680579
\(147\) 1.34161 + 12.0499i 0.110654 + 0.993859i
\(148\) 0.526796i 0.0433024i
\(149\) −6.40667 + 11.0967i −0.524855 + 0.909076i 0.474726 + 0.880134i \(0.342547\pi\)
−0.999581 + 0.0289419i \(0.990786\pi\)
\(150\) −1.40278 + 8.53240i −0.114536 + 0.696667i
\(151\) 3.56296 2.05707i 0.289949 0.167402i −0.347970 0.937506i \(-0.613129\pi\)
0.637919 + 0.770104i \(0.279795\pi\)
\(152\) −3.32692 + 5.76239i −0.269849 + 0.467391i
\(153\) −1.57407 7.85785i −0.127256 0.635269i
\(154\) −14.8417 + 2.04484i −1.19598 + 0.164778i
\(155\) 0.0774908i 0.00622421i
\(156\) 2.31662 5.79942i 0.185478 0.464325i
\(157\) 16.7506 9.67095i 1.33684 0.771826i 0.350504 0.936561i \(-0.386010\pi\)
0.986338 + 0.164736i \(0.0526771\pi\)
\(158\) 7.19370 + 12.4599i 0.572300 + 0.991253i
\(159\) −8.56031 22.6977i −0.678877 1.80004i
\(160\) 0.0876773i 0.00693150i
\(161\) 3.00781 + 1.22473i 0.237049 + 0.0965225i
\(162\) −8.30557 + 3.46662i −0.652547 + 0.272364i
\(163\) 15.2764 + 8.81983i 1.19654 + 0.690823i 0.959782 0.280746i \(-0.0905819\pi\)
0.236758 + 0.971569i \(0.423915\pi\)
\(164\) −7.78862 + 4.49676i −0.608189 + 0.351138i
\(165\) −0.848544 0.139506i −0.0660590 0.0108605i
\(166\) −2.47803 1.43069i −0.192332 0.111043i
\(167\) 15.5348i 1.20212i −0.799205 0.601058i \(-0.794746\pi\)
0.799205 0.601058i \(-0.205254\pi\)
\(168\) −0.119288 + 4.58102i −0.00920326 + 0.353434i
\(169\) −1.16088 12.9481i −0.0892987 0.996005i
\(170\) −0.202835 0.117107i −0.0155568 0.00898170i
\(171\) 14.9900 13.1818i 1.14632 1.00804i
\(172\) 4.84860 + 8.39803i 0.369702 + 0.640343i
\(173\) 8.15099 14.1179i 0.619708 1.07337i −0.369831 0.929099i \(-0.620584\pi\)
0.989539 0.144267i \(-0.0460823\pi\)
\(174\) 6.42011 7.83372i 0.486707 0.593873i
\(175\) −8.10366 10.4304i −0.612579 0.788463i
\(176\) −5.66263 −0.426836
\(177\) −2.19792 5.82777i −0.165206 0.438042i
\(178\) 2.93597 1.69508i 0.220060 0.127052i
\(179\) 7.78809 4.49646i 0.582109 0.336081i −0.179862 0.983692i \(-0.557565\pi\)
0.761971 + 0.647611i \(0.224232\pi\)
\(180\) −0.0842120 + 0.249187i −0.00627679 + 0.0185733i
\(181\) 7.10802i 0.528335i −0.964477 0.264167i \(-0.914903\pi\)
0.964477 0.264167i \(-0.0850972\pi\)
\(182\) 4.09272 + 8.61682i 0.303373 + 0.638721i
\(183\) −2.55120 + 3.11293i −0.188590 + 0.230115i
\(184\) 1.06303 + 0.613739i 0.0783674 + 0.0452454i
\(185\) −0.0230940 0.0400000i −0.00169791 0.00294086i
\(186\) 0.248342 1.51054i 0.0182093 0.110758i
\(187\) −7.56334 + 13.1001i −0.553086 + 0.957973i
\(188\) 8.60484i 0.627572i
\(189\) 4.73899 12.9051i 0.344711 0.938709i
\(190\) 0.583390i 0.0423236i
\(191\) −12.3294 7.11841i −0.892127 0.515070i −0.0174894 0.999847i \(-0.505567\pi\)
−0.874638 + 0.484777i \(0.838901\pi\)
\(192\) −0.280988 + 1.70911i −0.0202786 + 0.123344i
\(193\) −12.9152 + 7.45659i −0.929656 + 0.536737i −0.886703 0.462340i \(-0.847010\pi\)
−0.0429533 + 0.999077i \(0.513677\pi\)
\(194\) −5.23894 + 9.07411i −0.376134 + 0.651483i
\(195\) 0.0783356 + 0.541912i 0.00560973 + 0.0388071i
\(196\) −5.00894 4.88984i −0.357781 0.349275i
\(197\) −5.59743 −0.398800 −0.199400 0.979918i \(-0.563899\pi\)
−0.199400 + 0.979918i \(0.563899\pi\)
\(198\) 16.0937 + 5.43882i 1.14373 + 0.386520i
\(199\) 0.509204 0.293989i 0.0360965 0.0208403i −0.481843 0.876257i \(-0.660032\pi\)
0.517940 + 0.855417i \(0.326699\pi\)
\(200\) −2.49616 4.32347i −0.176505 0.305715i
\(201\) 4.61598 + 12.2393i 0.325586 + 0.863291i
\(202\) −3.34530 −0.235374
\(203\) 2.11166 + 15.3266i 0.148209 + 1.07572i
\(204\) 3.57859 + 2.93283i 0.250552 + 0.205339i
\(205\) 0.394264 0.682885i 0.0275366 0.0476948i
\(206\) −10.7681 + 6.21697i −0.750250 + 0.433157i
\(207\) −2.43174 2.76531i −0.169018 0.192203i
\(208\) 1.08791 + 3.43751i 0.0754329 + 0.238348i
\(209\) −37.6782 −2.60625
\(210\) −0.191768 0.353070i −0.0132333 0.0243641i
\(211\) −16.2218 −1.11676 −0.558379 0.829586i \(-0.688577\pi\)
−0.558379 + 0.829586i \(0.688577\pi\)
\(212\) 12.1291 + 7.00275i 0.833031 + 0.480951i
\(213\) 0.746857 4.54276i 0.0511738 0.311264i
\(214\) −2.33402 + 1.34755i −0.159551 + 0.0921166i
\(215\) −0.736316 0.425112i −0.0502163 0.0289924i
\(216\) 2.44015 4.58756i 0.166031 0.312144i
\(217\) 1.43464 + 1.84655i 0.0973896 + 0.125352i
\(218\) 7.67003i 0.519480i
\(219\) −13.3272 + 5.02627i −0.900565 + 0.339644i
\(220\) 0.429968 0.248242i 0.0289884 0.0167365i
\(221\) 9.40551 + 2.07454i 0.632683 + 0.139549i
\(222\) 0.321983 + 0.853738i 0.0216101 + 0.0572991i
\(223\) −18.4233 −1.23371 −0.616856 0.787076i \(-0.711594\pi\)
−0.616856 + 0.787076i \(0.711594\pi\)
\(224\) −1.62323 2.08929i −0.108456 0.139597i
\(225\) 2.94171 + 14.6852i 0.196114 + 0.979013i
\(226\) 6.86710 + 3.96472i 0.456793 + 0.263729i
\(227\) −3.73888 + 2.15864i −0.248158 + 0.143274i −0.618921 0.785454i \(-0.712430\pi\)
0.370762 + 0.928728i \(0.379096\pi\)
\(228\) −1.86965 + 11.3721i −0.123820 + 0.753137i
\(229\) 6.51189 11.2789i 0.430317 0.745332i −0.566583 0.824005i \(-0.691735\pi\)
0.996900 + 0.0786729i \(0.0250683\pi\)
\(230\) −0.107622 −0.00709638
\(231\) −22.8030 + 12.3853i −1.50033 + 0.814894i
\(232\) 5.84765i 0.383917i
\(233\) −14.2073 8.20260i −0.930753 0.537370i −0.0437031 0.999045i \(-0.513916\pi\)
−0.887050 + 0.461674i \(0.847249\pi\)
\(234\) 0.209709 10.8146i 0.0137091 0.706974i
\(235\) 0.377225 + 0.653372i 0.0246074 + 0.0426213i
\(236\) 3.11423 + 1.79800i 0.202719 + 0.117040i
\(237\) 19.2739 + 15.7959i 1.25197 + 1.02605i
\(238\) −7.00150 + 0.964645i −0.453840 + 0.0625287i
\(239\) 15.3927 0.995673 0.497836 0.867271i \(-0.334128\pi\)
0.497836 + 0.867271i \(0.334128\pi\)
\(240\) −0.0535893 0.142092i −0.00345917 0.00917199i
\(241\) 3.89705 + 6.74990i 0.251031 + 0.434799i 0.963810 0.266590i \(-0.0858969\pi\)
−0.712779 + 0.701389i \(0.752564\pi\)
\(242\) −10.5327 18.2431i −0.677065 1.17271i
\(243\) −11.3414 + 10.6945i −0.727549 + 0.686056i
\(244\) 2.32372i 0.148761i
\(245\) 0.594696 + 0.151705i 0.0379938 + 0.00969205i
\(246\) −9.87395 + 12.0480i −0.629540 + 0.768155i
\(247\) 7.23876 + 22.8726i 0.460591 + 1.45535i
\(248\) 0.441909 + 0.765409i 0.0280613 + 0.0486035i
\(249\) −4.89040 0.804013i −0.309917 0.0509522i
\(250\) 0.758724 + 0.438049i 0.0479859 + 0.0277047i
\(251\) 7.91930 0.499862 0.249931 0.968264i \(-0.419592\pi\)
0.249931 + 0.968264i \(0.419592\pi\)
\(252\) 2.60665 + 7.49702i 0.164203 + 0.472268i
\(253\) 6.95075i 0.436990i
\(254\) −2.40415 + 4.16411i −0.150850 + 0.261279i
\(255\) −0.400297 0.0658113i −0.0250676 0.00412126i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −4.92741 + 8.53452i −0.307363 + 0.532369i −0.977785 0.209612i \(-0.932780\pi\)
0.670421 + 0.741981i \(0.266113\pi\)
\(258\) 12.9907 + 10.6465i 0.808767 + 0.662823i
\(259\) −1.29086 0.525618i −0.0802102 0.0326603i
\(260\) −0.233301 0.213320i −0.0144687 0.0132296i
\(261\) 5.61653 16.6195i 0.347654 1.02872i
\(262\) 9.89815 + 17.1441i 0.611510 + 1.05917i
\(263\) −20.2604 + 11.6974i −1.24931 + 0.721290i −0.970972 0.239192i \(-0.923117\pi\)
−0.278340 + 0.960483i \(0.589784\pi\)
\(264\) −9.17699 + 3.46106i −0.564804 + 0.213013i
\(265\) −1.22796 −0.0754333
\(266\) −10.8007 13.9018i −0.662233 0.852373i
\(267\) 3.72205 4.54159i 0.227786 0.277941i
\(268\) −6.54039 3.77610i −0.399518 0.230662i
\(269\) 0.859882 + 1.48936i 0.0524279 + 0.0908078i 0.891048 0.453908i \(-0.149971\pi\)
−0.838620 + 0.544716i \(0.816637\pi\)
\(270\) 0.0158298 + 0.455310i 0.000963370 + 0.0277093i
\(271\) 8.00242 13.8606i 0.486113 0.841972i −0.513760 0.857934i \(-0.671748\pi\)
0.999873 + 0.0159623i \(0.00508117\pi\)
\(272\) −2.67132 −0.161972
\(273\) 11.8995 + 11.4631i 0.720188 + 0.693779i
\(274\) 12.5824 0.760132
\(275\) 14.1348 24.4822i 0.852360 1.47633i
\(276\) 2.09789 + 0.344906i 0.126278 + 0.0207609i
\(277\) 6.12127 + 10.6023i 0.367791 + 0.637033i 0.989220 0.146438i \(-0.0467808\pi\)
−0.621429 + 0.783471i \(0.713447\pi\)
\(278\) 16.9753 + 9.80069i 1.01811 + 0.587806i
\(279\) −0.520789 2.59981i −0.0311788 0.155646i
\(280\) 0.214845 + 0.0874812i 0.0128394 + 0.00522800i
\(281\) 8.09237 0.482751 0.241375 0.970432i \(-0.422402\pi\)
0.241375 + 0.970432i \(0.422402\pi\)
\(282\) −5.25937 13.9452i −0.313191 0.830425i
\(283\) −2.90561 + 1.67755i −0.172721 + 0.0997203i −0.583868 0.811849i \(-0.698461\pi\)
0.411147 + 0.911569i \(0.365128\pi\)
\(284\) 1.32899 + 2.30187i 0.0788608 + 0.136591i
\(285\) −0.356574 0.945456i −0.0211216 0.0560040i
\(286\) −13.7772 + 15.0677i −0.814666 + 0.890974i
\(287\) −3.24767 23.5719i −0.191704 1.39141i
\(288\) 0.589249 + 2.94156i 0.0347218 + 0.173333i
\(289\) 4.93203 8.54252i 0.290119 0.502501i
\(290\) −0.256353 0.444016i −0.0150536 0.0260735i
\(291\) −2.94416 + 17.9078i −0.172590 + 1.04978i
\(292\) 4.11174 7.12173i 0.240621 0.416768i
\(293\) 21.2050i 1.23881i −0.785072 0.619404i \(-0.787374\pi\)
0.785072 0.619404i \(-0.212626\pi\)
\(294\) −11.1063 4.86308i −0.647734 0.283621i
\(295\) −0.315288 −0.0183568
\(296\) −0.456219 0.263398i −0.0265172 0.0153097i
\(297\) 29.4061 1.02236i 1.70631 0.0593236i
\(298\) −6.40667 11.0967i −0.371129 0.642813i
\(299\) 4.21946 1.33538i 0.244018 0.0772272i
\(300\) −6.68788 5.48104i −0.386125 0.316448i
\(301\) −25.4163 + 3.50178i −1.46497 + 0.201839i
\(302\) 4.11415i 0.236743i
\(303\) −5.42147 + 2.04468i −0.311455 + 0.117464i
\(304\) −3.32692 5.76239i −0.190812 0.330496i
\(305\) 0.101869 + 0.176442i 0.00583298 + 0.0101030i
\(306\) 7.59213 + 2.56574i 0.434013 + 0.146674i
\(307\) 19.0700 1.08838 0.544192 0.838961i \(-0.316836\pi\)
0.544192 + 0.838961i \(0.316836\pi\)
\(308\) 5.64996 13.8757i 0.321936 0.790642i
\(309\) −13.6512 + 16.6570i −0.776589 + 0.947582i
\(310\) −0.0671090 0.0387454i −0.00381153 0.00220059i
\(311\) 1.91162 + 3.31103i 0.108398 + 0.187751i 0.915121 0.403178i \(-0.132095\pi\)
−0.806723 + 0.590929i \(0.798761\pi\)
\(312\) 3.86413 + 4.90596i 0.218763 + 0.277746i
\(313\) −16.6808 9.63067i −0.942855 0.544358i −0.0520010 0.998647i \(-0.516560\pi\)
−0.890854 + 0.454289i \(0.849893\pi\)
\(314\) 19.3419i 1.09153i
\(315\) −0.526584 0.454983i −0.0296697 0.0256354i
\(316\) −14.3874 −0.809355
\(317\) −12.3152 + 21.3306i −0.691692 + 1.19805i 0.279591 + 0.960119i \(0.409801\pi\)
−0.971283 + 0.237927i \(0.923532\pi\)
\(318\) 23.9369 + 3.93538i 1.34231 + 0.220685i
\(319\) −28.6767 + 16.5565i −1.60559 + 0.926987i
\(320\) 0.0759308 + 0.0438386i 0.00424466 + 0.00245065i
\(321\) −2.95894 + 3.61045i −0.165152 + 0.201516i
\(322\) −2.56456 + 1.99248i −0.142917 + 0.111036i
\(323\) −17.7745 −0.989000
\(324\) 1.15060 8.92615i 0.0639223 0.495897i
\(325\) −17.5775 3.87702i −0.975027 0.215058i
\(326\) −15.2764 + 8.81983i −0.846081 + 0.488485i
\(327\) −4.68801 12.4302i −0.259247 0.687394i
\(328\) 8.99352i 0.496584i
\(329\) 21.0853 + 8.58560i 1.16247 + 0.473339i
\(330\) 0.545087 0.665107i 0.0300061 0.0366130i
\(331\) −3.59847 2.07757i −0.197790 0.114194i 0.397834 0.917457i \(-0.369762\pi\)
−0.595624 + 0.803263i \(0.703095\pi\)
\(332\) 2.47803 1.43069i 0.135999 0.0785193i
\(333\) 1.04363 + 1.18679i 0.0571904 + 0.0650356i
\(334\) 13.4535 + 7.76738i 0.736143 + 0.425012i
\(335\) 0.662156 0.0361774
\(336\) −3.90764 2.39382i −0.213179 0.130593i
\(337\) −1.62397 −0.0884634 −0.0442317 0.999021i \(-0.514084\pi\)
−0.0442317 + 0.999021i \(0.514084\pi\)
\(338\) 11.7938 + 5.46868i 0.641498 + 0.297457i
\(339\) 13.5523 + 2.22808i 0.736058 + 0.121013i
\(340\) 0.202835 0.117107i 0.0110003 0.00635102i
\(341\) −2.50237 + 4.33422i −0.135511 + 0.234711i
\(342\) 3.92076 + 19.5727i 0.212011 + 1.05837i
\(343\) 16.9798 7.39499i 0.916824 0.399292i
\(344\) −9.69720 −0.522838
\(345\) −0.174415 + 0.0657797i −0.00939017 + 0.00354146i
\(346\) 8.15099 + 14.1179i 0.438200 + 0.758984i
\(347\) −4.31492 + 2.49122i −0.231637 + 0.133736i −0.611327 0.791378i \(-0.709364\pi\)
0.379690 + 0.925114i \(0.376031\pi\)
\(348\) 3.57414 + 9.47684i 0.191594 + 0.508012i
\(349\) 18.4655 0.988437 0.494218 0.869338i \(-0.335454\pi\)
0.494218 + 0.869338i \(0.335454\pi\)
\(350\) 13.0848 1.80278i 0.699413 0.0963629i
\(351\) −6.27015 17.6546i −0.334676 0.942333i
\(352\) 2.83131 4.90398i 0.150909 0.261383i
\(353\) −17.6657 + 10.1993i −0.940249 + 0.542853i −0.890038 0.455885i \(-0.849323\pi\)
−0.0502108 + 0.998739i \(0.515989\pi\)
\(354\) 6.14595 + 1.01043i 0.326654 + 0.0537039i
\(355\) −0.201822 0.116522i −0.0107116 0.00618434i
\(356\) 3.39016i 0.179678i
\(357\) −10.7572 + 5.84272i −0.569332 + 0.309230i
\(358\) 8.99291i 0.475290i
\(359\) −1.49774 + 2.59416i −0.0790477 + 0.136915i −0.902839 0.429978i \(-0.858521\pi\)
0.823792 + 0.566893i \(0.191855\pi\)
\(360\) −0.173696 0.197523i −0.00915459 0.0104104i
\(361\) −12.6368 21.8875i −0.665092 1.15197i
\(362\) 6.15572 + 3.55401i 0.323538 + 0.186795i
\(363\) −28.2199 23.1275i −1.48116 1.21388i
\(364\) −9.50875 0.764008i −0.498394 0.0400449i
\(365\) 0.721012i 0.0377395i
\(366\) −1.42028 3.76587i −0.0742393 0.196845i
\(367\) 0.373545 0.215666i 0.0194989 0.0112577i −0.490219 0.871599i \(-0.663083\pi\)
0.509718 + 0.860342i \(0.329750\pi\)
\(368\) −1.06303 + 0.613739i −0.0554141 + 0.0319934i
\(369\) −8.63807 + 25.5604i −0.449680 + 1.33062i
\(370\) 0.0461880 0.00240120
\(371\) −29.2615 + 22.7341i −1.51918 + 1.18030i
\(372\) 1.18399 + 0.970340i 0.0613872 + 0.0503098i
\(373\) 5.60905 9.71516i 0.290425 0.503032i −0.683485 0.729965i \(-0.739536\pi\)
0.973910 + 0.226933i \(0.0728698\pi\)
\(374\) −7.56334 13.1001i −0.391091 0.677389i
\(375\) 1.49735 + 0.246173i 0.0773226 + 0.0127123i
\(376\) 7.45201 + 4.30242i 0.384308 + 0.221880i
\(377\) 15.5601 + 14.2274i 0.801384 + 0.732749i
\(378\) 8.80666 + 10.5566i 0.452966 + 0.542975i
\(379\) 11.4767i 0.589518i 0.955572 + 0.294759i \(0.0952393\pi\)
−0.955572 + 0.294759i \(0.904761\pi\)
\(380\) 0.505231 + 0.291695i 0.0259178 + 0.0149636i
\(381\) −1.35107 + 8.21789i −0.0692175 + 0.421015i
\(382\) 12.3294 7.11841i 0.630829 0.364209i
\(383\) 0.325127 + 0.187712i 0.0166132 + 0.00959165i 0.508284 0.861190i \(-0.330280\pi\)
−0.491670 + 0.870781i \(0.663614\pi\)
\(384\) −1.33964 1.09790i −0.0683630 0.0560268i
\(385\) 0.179286 + 1.30128i 0.00913727 + 0.0663194i
\(386\) 14.9132i 0.759061i
\(387\) 27.5603 + 9.31394i 1.40097 + 0.473454i
\(388\) −5.23894 9.07411i −0.265967 0.460668i
\(389\) 28.3112 16.3455i 1.43544 0.828750i 0.437909 0.899019i \(-0.355719\pi\)
0.997528 + 0.0702694i \(0.0223859\pi\)
\(390\) −0.508477 0.203115i −0.0257477 0.0102851i
\(391\) 3.27898i 0.165825i
\(392\) 6.73920 1.89294i 0.340381 0.0956081i
\(393\) 26.5198 + 21.7343i 1.33775 + 1.09635i
\(394\) 2.79871 4.84751i 0.140997 0.244214i
\(395\) 1.09245 0.630724i 0.0549669 0.0317352i
\(396\) −12.7570 + 11.2181i −0.641064 + 0.563733i
\(397\) −9.57692 + 16.5877i −0.480652 + 0.832514i −0.999754 0.0221990i \(-0.992933\pi\)
0.519102 + 0.854713i \(0.326267\pi\)
\(398\) 0.587979i 0.0294727i
\(399\) −26.0008 15.9281i −1.30167 0.797401i
\(400\) 4.99231 0.249616
\(401\) 2.06325 3.57365i 0.103034 0.178459i −0.809900 0.586569i \(-0.800478\pi\)
0.912933 + 0.408109i \(0.133812\pi\)
\(402\) −12.9075 2.12207i −0.643768 0.105839i
\(403\) 3.11185 + 0.686371i 0.155013 + 0.0341906i
\(404\) 1.67265 2.89711i 0.0832174 0.144137i
\(405\) 0.303944 + 0.728210i 0.0151031 + 0.0361850i
\(406\) −14.3291 5.83457i −0.711140 0.289565i
\(407\) 2.98305i 0.147864i
\(408\) −4.32920 + 1.63274i −0.214327 + 0.0808326i
\(409\) −16.1361 27.9486i −0.797879 1.38197i −0.920995 0.389575i \(-0.872622\pi\)
0.123116 0.992392i \(-0.460711\pi\)
\(410\) 0.394264 + 0.682885i 0.0194713 + 0.0337253i
\(411\) 20.3914 7.69051i 1.00583 0.379345i
\(412\) 12.4339i 0.612577i
\(413\) −7.51309 + 5.83713i −0.369695 + 0.287227i
\(414\) 3.61070 0.723290i 0.177456 0.0355478i
\(415\) −0.125439 + 0.217267i −0.00615756 + 0.0106652i
\(416\) −3.52092 0.776597i −0.172627 0.0380758i
\(417\) 33.5009 + 5.50775i 1.64054 + 0.269716i
\(418\) 18.8391 32.6303i 0.921450 1.59600i
\(419\) 4.72613 0.230886 0.115443 0.993314i \(-0.463171\pi\)
0.115443 + 0.993314i \(0.463171\pi\)
\(420\) 0.401652 + 0.0104588i 0.0195986 + 0.000510339i
\(421\) 28.1593i 1.37240i −0.727413 0.686200i \(-0.759277\pi\)
0.727413 0.686200i \(-0.240723\pi\)
\(422\) 8.11092 14.0485i 0.394834 0.683872i
\(423\) −17.0469 19.3854i −0.828850 0.942548i
\(424\) −12.1291 + 7.00275i −0.589042 + 0.340084i
\(425\) 6.66803 11.5494i 0.323447 0.560226i
\(426\) 3.56071 + 2.91818i 0.172517 + 0.141386i
\(427\) 5.69404 + 2.31852i 0.275554 + 0.112201i
\(428\) 2.69510i 0.130272i
\(429\) −13.1182 + 32.8399i −0.633351 + 1.58553i
\(430\) 0.736316 0.425112i 0.0355083 0.0205007i
\(431\) −18.2440 31.5996i −0.878783 1.52210i −0.852677 0.522438i \(-0.825022\pi\)
−0.0261063 0.999659i \(-0.508311\pi\)
\(432\) 2.75286 + 4.40701i 0.132447 + 0.212032i
\(433\) 4.54367i 0.218355i 0.994022 + 0.109177i \(0.0348216\pi\)
−0.994022 + 0.109177i \(0.965178\pi\)
\(434\) −2.31648 + 0.319157i −0.111195 + 0.0153200i
\(435\) −0.686839 0.562898i −0.0329314 0.0269889i
\(436\) 6.64244 + 3.83502i 0.318115 + 0.183664i
\(437\) −7.07321 + 4.08372i −0.338357 + 0.195351i
\(438\) 2.31070 14.0548i 0.110409 0.671564i
\(439\) −19.3010 11.1434i −0.921185 0.531847i −0.0371724 0.999309i \(-0.511835\pi\)
−0.884013 + 0.467462i \(0.845168\pi\)
\(440\) 0.496484i 0.0236689i
\(441\) −20.9715 1.09292i −0.998645 0.0520438i
\(442\) −6.49936 + 7.10814i −0.309143 + 0.338100i
\(443\) −22.9471 13.2485i −1.09025 0.629457i −0.156608 0.987661i \(-0.550056\pi\)
−0.933643 + 0.358204i \(0.883389\pi\)
\(444\) −0.900351 0.148023i −0.0427287 0.00702487i
\(445\) −0.148620 0.257418i −0.00704527 0.0122028i
\(446\) 9.21163 15.9550i 0.436183 0.755491i
\(447\) −17.1652 14.0677i −0.811887 0.665380i
\(448\) 2.62099 0.361112i 0.123830 0.0170609i
\(449\) 41.7613 1.97084 0.985420 0.170141i \(-0.0544222\pi\)
0.985420 + 0.170141i \(0.0544222\pi\)
\(450\) −14.1886 4.79500i −0.668857 0.226038i
\(451\) 44.1040 25.4635i 2.07678 1.19903i
\(452\) −6.86710 + 3.96472i −0.323001 + 0.186485i
\(453\) 2.51461 + 6.66748i 0.118147 + 0.313266i
\(454\) 4.31729i 0.202620i
\(455\) 0.755500 0.358839i 0.0354184 0.0168226i
\(456\) −8.91371 7.30522i −0.417423 0.342098i
\(457\) 17.3505 + 10.0173i 0.811621 + 0.468590i 0.847519 0.530766i \(-0.178096\pi\)
−0.0358974 + 0.999355i \(0.511429\pi\)
\(458\) 6.51189 + 11.2789i 0.304280 + 0.527029i
\(459\) 13.8722 0.482296i 0.647499 0.0225116i
\(460\) 0.0538110 0.0932033i 0.00250895 0.00434563i
\(461\) 8.77765i 0.408816i 0.978886 + 0.204408i \(0.0655269\pi\)
−0.978886 + 0.204408i \(0.934473\pi\)
\(462\) 0.675482 25.9406i 0.0314263 1.20687i
\(463\) 17.9312i 0.833334i 0.909059 + 0.416667i \(0.136802\pi\)
−0.909059 + 0.416667i \(0.863198\pi\)
\(464\) −5.06421 2.92382i −0.235100 0.135735i
\(465\) −0.132440 0.0217740i −0.00614176 0.00100974i
\(466\) 14.2073 8.20260i 0.658142 0.379978i
\(467\) 8.47219 14.6743i 0.392046 0.679044i −0.600673 0.799495i \(-0.705101\pi\)
0.992719 + 0.120451i \(0.0384339\pi\)
\(468\) 9.26088 + 5.58892i 0.428084 + 0.258348i
\(469\) 15.7787 12.2589i 0.728593 0.566065i
\(470\) −0.754449 −0.0348001
\(471\) 11.8220 + 31.3459i 0.544728 + 1.44434i
\(472\) −3.11423 + 1.79800i −0.143344 + 0.0827597i
\(473\) −27.4558 47.5549i −1.26242 2.18658i
\(474\) −23.3166 + 8.79373i −1.07097 + 0.403910i
\(475\) 33.2180 1.52415
\(476\) 2.66534 6.54580i 0.122166 0.300026i
\(477\) 41.1981 8.25273i 1.88633 0.377866i
\(478\) −7.69636 + 13.3305i −0.352023 + 0.609723i
\(479\) −7.22604 + 4.17195i −0.330166 + 0.190621i −0.655915 0.754835i \(-0.727717\pi\)
0.325749 + 0.945456i \(0.394384\pi\)
\(480\) 0.149850 + 0.0246363i 0.00683968 + 0.00112449i
\(481\) −1.81086 + 0.573106i −0.0825683 + 0.0261314i
\(482\) −7.79411 −0.355012
\(483\) −2.93836 + 4.79654i −0.133700 + 0.218250i
\(484\) 21.0653 0.957515
\(485\) 0.795594 + 0.459336i 0.0361260 + 0.0208574i
\(486\) −3.59106 15.1692i −0.162894 0.688088i
\(487\) 12.4028 7.16075i 0.562023 0.324484i −0.191934 0.981408i \(-0.561476\pi\)
0.753957 + 0.656924i \(0.228143\pi\)
\(488\) 2.01240 + 1.16186i 0.0910970 + 0.0525949i
\(489\) −19.3665 + 23.6307i −0.875784 + 1.06862i
\(490\) −0.428728 + 0.439170i −0.0193680 + 0.0198397i
\(491\) 7.65264i 0.345359i −0.984978 0.172679i \(-0.944758\pi\)
0.984978 0.172679i \(-0.0552424\pi\)
\(492\) −5.49694 14.5751i −0.247821 0.657097i
\(493\) −13.5281 + 7.81046i −0.609276 + 0.351766i
\(494\) −23.4276 5.16735i −1.05406 0.232490i
\(495\) 0.476861 1.41105i 0.0214333 0.0634221i
\(496\) −0.883818 −0.0396846
\(497\) −6.96652 + 0.959825i −0.312491 + 0.0430540i
\(498\) 3.14150 3.83321i 0.140774 0.171770i
\(499\) 23.5183 + 13.5783i 1.05283 + 0.607849i 0.923439 0.383745i \(-0.125366\pi\)
0.129386 + 0.991594i \(0.458699\pi\)
\(500\) −0.758724 + 0.438049i −0.0339312 + 0.0195902i
\(501\) 26.5506 + 4.36508i 1.18619 + 0.195017i
\(502\) −3.95965 + 6.85831i −0.176728 + 0.306101i
\(503\) 27.6274 1.23185 0.615923 0.787806i \(-0.288783\pi\)
0.615923 + 0.787806i \(0.288783\pi\)
\(504\) −7.79594 1.49109i −0.347259 0.0664183i
\(505\) 0.293307i 0.0130520i
\(506\) −6.01952 3.47537i −0.267600 0.154499i
\(507\) 22.4558 + 1.65418i 0.997298 + 0.0734646i
\(508\) −2.40415 4.16411i −0.106667 0.184752i
\(509\) −12.2242 7.05762i −0.541826 0.312823i 0.203993 0.978972i \(-0.434608\pi\)
−0.745819 + 0.666149i \(0.767942\pi\)
\(510\) 0.257143 0.313761i 0.0113865 0.0138936i
\(511\) 13.3486 + 17.1812i 0.590506 + 0.760052i
\(512\) 1.00000 0.0441942
\(513\) 18.3171 + 29.3235i 0.808720 + 1.29466i
\(514\) −4.92741 8.53452i −0.217339 0.376442i
\(515\) 0.545087 + 0.944119i 0.0240194 + 0.0416029i
\(516\) −15.7155 + 5.92704i −0.691837 + 0.260923i
\(517\) 48.7260i 2.14297i
\(518\) 1.10063 0.855110i 0.0483589 0.0375714i
\(519\) 21.8387 + 17.8979i 0.958613 + 0.785629i
\(520\) 0.301391 0.0953849i 0.0132169 0.00418290i
\(521\) 3.15726 + 5.46854i 0.138322 + 0.239581i 0.926862 0.375403i \(-0.122496\pi\)
−0.788539 + 0.614984i \(0.789162\pi\)
\(522\) 11.5847 + 13.1738i 0.507048 + 0.576603i
\(523\) 29.7281 + 17.1636i 1.29992 + 0.750510i 0.980390 0.197066i \(-0.0631414\pi\)
0.319531 + 0.947576i \(0.396475\pi\)
\(524\) −19.7963 −0.864805
\(525\) 20.1037 10.9192i 0.877396 0.476553i
\(526\) 23.3947i 1.02006i
\(527\) −1.18048 + 2.04465i −0.0514225 + 0.0890664i
\(528\) 1.59113 9.67803i 0.0692450 0.421182i
\(529\) −10.7466 18.6137i −0.467246 0.809293i
\(530\) 0.613982 1.06345i 0.0266697 0.0461933i
\(531\) 10.5779 2.11894i 0.459040 0.0919542i
\(532\) 17.4396 2.40278i 0.756104 0.104174i
\(533\) −23.9310 21.8814i −1.03656 0.947787i
\(534\) 2.07210 + 5.49418i 0.0896688 + 0.237756i
\(535\) 0.118149 + 0.204641i 0.00510805 + 0.00884740i
\(536\) 6.54039 3.77610i 0.282502 0.163103i
\(537\) 5.49657 + 14.5741i 0.237194 + 0.628920i
\(538\) −1.71976 −0.0741443
\(539\) 28.3637 + 27.6894i 1.22171 + 1.19266i
\(540\) −0.402224 0.213946i −0.0173090 0.00920676i
\(541\) −8.13741 4.69814i −0.349855 0.201989i 0.314767 0.949169i \(-0.398074\pi\)
−0.664621 + 0.747180i \(0.731407\pi\)
\(542\) 8.00242 + 13.8606i 0.343733 + 0.595364i
\(543\) 12.1484 + 1.99727i 0.521336 + 0.0857109i
\(544\) 1.33566 2.31343i 0.0572659 0.0991875i
\(545\) −0.672488 −0.0288062
\(546\) −15.8771 + 4.57368i −0.679476 + 0.195735i
\(547\) −11.4919 −0.491360 −0.245680 0.969351i \(-0.579011\pi\)
−0.245680 + 0.969351i \(0.579011\pi\)
\(548\) −6.29121 + 10.8967i −0.268747 + 0.465484i
\(549\) −4.60348 5.23497i −0.196472 0.223423i
\(550\) 14.1348 + 24.4822i 0.602710 + 1.04392i
\(551\) −33.6964 19.4546i −1.43552 0.828795i
\(552\) −1.34764 + 1.64437i −0.0573595 + 0.0699892i
\(553\) 14.3552 35.2549i 0.610446 1.49919i
\(554\) −12.2425 −0.520135
\(555\) 0.0748534 0.0282306i 0.00317735 0.00119832i
\(556\) −16.9753 + 9.80069i −0.719913 + 0.415642i
\(557\) 3.51222 + 6.08334i 0.148818 + 0.257760i 0.930791 0.365553i \(-0.119120\pi\)
−0.781973 + 0.623312i \(0.785787\pi\)
\(558\) 2.51189 + 0.848886i 0.106337 + 0.0359362i
\(559\) −23.5934 + 25.8034i −0.997896 + 1.09137i
\(560\) −0.183183 + 0.142320i −0.00774091 + 0.00601413i
\(561\) −20.2642 16.6075i −0.855557 0.701170i
\(562\) −4.04619 + 7.00820i −0.170678 + 0.295623i
\(563\) 19.9568 + 34.5661i 0.841078 + 1.45679i 0.888985 + 0.457937i \(0.151412\pi\)
−0.0479070 + 0.998852i \(0.515255\pi\)
\(564\) 14.7066 + 2.41786i 0.619259 + 0.101810i
\(565\) 0.347616 0.602089i 0.0146243 0.0253301i
\(566\) 3.35511i 0.141026i
\(567\) 20.7246 + 11.7256i 0.870352 + 0.492430i
\(568\) −2.65797 −0.111526
\(569\) −31.7330 18.3210i −1.33032 0.768058i −0.344968 0.938615i \(-0.612110\pi\)
−0.985348 + 0.170557i \(0.945443\pi\)
\(570\) 0.997076 + 0.163926i 0.0417629 + 0.00686609i
\(571\) −2.72588 4.72136i −0.114075 0.197583i 0.803335 0.595528i \(-0.203057\pi\)
−0.917409 + 0.397945i \(0.869724\pi\)
\(572\) −6.16042 19.4653i −0.257580 0.813886i
\(573\) 15.6305 19.0721i 0.652975 0.796750i
\(574\) 22.0377 + 8.97341i 0.919837 + 0.374543i
\(575\) 6.12795i 0.255553i
\(576\) −2.84209 0.960476i −0.118420 0.0400199i
\(577\) −12.5609 21.7561i −0.522917 0.905719i −0.999644 0.0266678i \(-0.991510\pi\)
0.476727 0.879051i \(-0.341823\pi\)
\(578\) 4.93203 + 8.54252i 0.205145 + 0.355322i
\(579\) −9.11510 24.1687i −0.378811 1.00442i
\(580\) 0.512706 0.0212890
\(581\) 1.03328 + 7.49965i 0.0428676 + 0.311138i
\(582\) −14.0365 11.5036i −0.581834 0.476841i
\(583\) −68.6827 39.6540i −2.84455 1.64230i
\(584\) 4.11174 + 7.12173i 0.170145 + 0.294699i
\(585\) −0.948197 0.0183868i −0.0392031 0.000760199i
\(586\) 18.3641 + 10.6025i 0.758612 + 0.437985i
\(587\) 22.1376i 0.913717i 0.889539 + 0.456859i \(0.151025\pi\)
−0.889539 + 0.456859i \(0.848975\pi\)
\(588\) 9.76471 7.18682i 0.402690 0.296379i
\(589\) −5.88078 −0.242313
\(590\) 0.157644 0.273047i 0.00649010 0.0112412i
\(591\) 1.57281 9.56660i 0.0646967 0.393517i
\(592\) 0.456219 0.263398i 0.0187505 0.0108256i
\(593\) 6.33623 + 3.65823i 0.260198 + 0.150225i 0.624425 0.781085i \(-0.285333\pi\)
−0.364227 + 0.931310i \(0.618667\pi\)
\(594\) −13.8177 + 25.9776i −0.566945 + 1.06587i
\(595\) 0.0845775 + 0.613873i 0.00346734 + 0.0251663i
\(596\) 12.8133 0.524855
\(597\) 0.359379 + 0.952892i 0.0147084 + 0.0389993i
\(598\) −0.953256 + 4.32185i −0.0389815 + 0.176734i
\(599\) −35.3925 + 20.4339i −1.44610 + 0.834906i −0.998246 0.0592009i \(-0.981145\pi\)
−0.447854 + 0.894107i \(0.647811\pi\)
\(600\) 8.09066 3.05136i 0.330300 0.124571i
\(601\) 6.67453i 0.272260i −0.990691 0.136130i \(-0.956534\pi\)
0.990691 0.136130i \(-0.0434664\pi\)
\(602\) 9.67552 23.7620i 0.394345 0.968469i
\(603\) −22.2152 + 4.45012i −0.904674 + 0.181223i
\(604\) −3.56296 2.05707i −0.144975 0.0837011i
\(605\) −1.59951 + 0.923476i −0.0650292 + 0.0375446i
\(606\) 0.939988 5.71747i 0.0381844 0.232256i
\(607\) 19.4541 + 11.2318i 0.789617 + 0.455886i 0.839828 0.542853i \(-0.182656\pi\)
−0.0502106 + 0.998739i \(0.515989\pi\)
\(608\) 6.65383 0.269849
\(609\) −26.7882 0.697553i −1.08551 0.0282663i
\(610\) −0.203737 −0.00824908
\(611\) 29.5792 9.36128i 1.19665 0.378717i
\(612\) −6.01806 + 5.29211i −0.243266 + 0.213921i
\(613\) −7.57215 + 4.37178i −0.305836 + 0.176575i −0.645062 0.764130i \(-0.723168\pi\)
0.339225 + 0.940705i \(0.389835\pi\)
\(614\) −9.53501 + 16.5151i −0.384802 + 0.666496i
\(615\) 1.05634 + 0.865721i 0.0425957 + 0.0349093i
\(616\) 9.19173 + 11.8309i 0.370345 + 0.476679i
\(617\) 33.2275 1.33769 0.668845 0.743402i \(-0.266789\pi\)
0.668845 + 0.743402i \(0.266789\pi\)
\(618\) −7.59976 20.1508i −0.305707 0.810582i
\(619\) 9.75542 + 16.8969i 0.392103 + 0.679143i 0.992727 0.120389i \(-0.0384142\pi\)
−0.600623 + 0.799532i \(0.705081\pi\)
\(620\) 0.0671090 0.0387454i 0.00269516 0.00155605i
\(621\) 5.40951 3.37908i 0.217076 0.135598i
\(622\) −3.82324 −0.153298
\(623\) −8.30726 3.38258i −0.332824 0.135520i
\(624\) −6.18076 + 0.893454i −0.247428 + 0.0357668i
\(625\) −12.4424 + 21.5508i −0.497695 + 0.862033i
\(626\) 16.6808 9.63067i 0.666699 0.384919i
\(627\) 10.5871 64.3960i 0.422808 2.57173i
\(628\) −16.7506 9.67095i −0.668421 0.385913i
\(629\) 1.40724i 0.0561103i
\(630\) 0.657319 0.228544i 0.0261882 0.00910541i
\(631\) 44.3163i 1.76421i 0.471057 + 0.882103i \(0.343872\pi\)
−0.471057 + 0.882103i \(0.656128\pi\)
\(632\) 7.19370 12.4599i 0.286150 0.495626i
\(633\) 4.55814 27.7249i 0.181170 1.10196i
\(634\) −12.3152 21.3306i −0.489100 0.847147i
\(635\) 0.365098 + 0.210789i 0.0144885 + 0.00836491i
\(636\) −15.3766 + 18.7623i −0.609721 + 0.743973i
\(637\) 11.3596 22.5380i 0.450084 0.892986i
\(638\) 33.1130i 1.31096i
\(639\) 7.55420 + 2.55292i 0.298839 + 0.100992i
\(640\) −0.0759308 + 0.0438386i −0.00300143 + 0.00173287i
\(641\) 5.36714 3.09872i 0.211989 0.122392i −0.390246 0.920711i \(-0.627610\pi\)
0.602236 + 0.798318i \(0.294277\pi\)
\(642\) −1.64727 4.36774i −0.0650127 0.172381i
\(643\) −21.2665 −0.838669 −0.419334 0.907832i \(-0.637737\pi\)
−0.419334 + 0.907832i \(0.637737\pi\)
\(644\) −0.443257 3.21721i −0.0174668 0.126776i
\(645\) 0.933458 1.13899i 0.0367549 0.0448477i
\(646\) 8.88725 15.3932i 0.349664 0.605636i
\(647\) −3.77674 6.54151i −0.148479 0.257173i 0.782186 0.623044i \(-0.214104\pi\)
−0.930666 + 0.365871i \(0.880771\pi\)
\(648\) 7.15497 + 5.45952i 0.281074 + 0.214470i
\(649\) −17.6347 10.1814i −0.692223 0.399655i
\(650\) 12.1464 13.2841i 0.476420 0.521045i
\(651\) −3.55907 + 1.93309i −0.139491 + 0.0757638i
\(652\) 17.6397i 0.690823i
\(653\) −27.7842 16.0412i −1.08728 0.627742i −0.154430 0.988004i \(-0.549354\pi\)
−0.932851 + 0.360262i \(0.882687\pi\)
\(654\) 13.1089 + 2.15519i 0.512599 + 0.0842744i
\(655\) 1.50315 0.867843i 0.0587329 0.0339094i
\(656\) 7.78862 + 4.49676i 0.304094 + 0.175569i
\(657\) −4.84567 24.1898i −0.189048 0.943736i
\(658\) −17.9780 + 13.9676i −0.700855 + 0.544514i
\(659\) 8.17705i 0.318533i −0.987236 0.159266i \(-0.949087\pi\)
0.987236 0.159266i \(-0.0509128\pi\)
\(660\) 0.303456 + 0.804613i 0.0118120 + 0.0313195i
\(661\) 13.8904 + 24.0589i 0.540274 + 0.935782i 0.998888 + 0.0471464i \(0.0150127\pi\)
−0.458614 + 0.888636i \(0.651654\pi\)
\(662\) 3.59847 2.07757i 0.139858 0.0807472i
\(663\) −6.18844 + 15.4921i −0.240339 + 0.601663i
\(664\) 2.86138i 0.111043i
\(665\) −1.21887 + 0.946975i −0.0472658 + 0.0367221i
\(666\) −1.54960 + 0.310414i −0.0600459 + 0.0120283i
\(667\) −3.58893 + 6.21621i −0.138964 + 0.240693i
\(668\) −13.4535 + 7.76738i −0.520532 + 0.300529i
\(669\) 5.17671 31.4873i 0.200143 1.21737i
\(670\) −0.331078 + 0.573444i −0.0127907 + 0.0221541i
\(671\) 13.1583i 0.507972i
\(672\) 4.02693 2.18721i 0.155342 0.0843733i
\(673\) 36.4941 1.40674 0.703372 0.710822i \(-0.251677\pi\)
0.703372 + 0.710822i \(0.251677\pi\)
\(674\) 0.811986 1.40640i 0.0312765 0.0541725i
\(675\) −25.9252 + 0.901342i −0.997860 + 0.0346927i
\(676\) −10.6329 + 7.47939i −0.408958 + 0.287669i
\(677\) −7.78434 + 13.4829i −0.299176 + 0.518189i −0.975948 0.218004i \(-0.930045\pi\)
0.676771 + 0.736193i \(0.263379\pi\)
\(678\) −8.70570 + 10.6226i −0.334340 + 0.407957i
\(679\) 27.4624 3.78369i 1.05391 0.145205i
\(680\) 0.234214i 0.00898170i
\(681\) −2.63877 6.99670i −0.101118 0.268114i
\(682\) −2.50237 4.33422i −0.0958205 0.165966i
\(683\) 6.05165 + 10.4818i 0.231560 + 0.401074i 0.958267 0.285873i \(-0.0922837\pi\)
−0.726707 + 0.686947i \(0.758950\pi\)
\(684\) −18.9108 6.39085i −0.723073 0.244360i
\(685\) 1.10319i 0.0421508i
\(686\) −2.08565 + 18.4024i −0.0796306 + 0.702609i
\(687\) 17.4471 + 14.2987i 0.665649 + 0.545531i
\(688\) 4.84860 8.39803i 0.184851 0.320172i
\(689\) −10.8766 + 49.3123i −0.414367 + 1.87865i
\(690\) 0.0302405 0.183937i 0.00115123 0.00700238i
\(691\) −7.19903 + 12.4691i −0.273864 + 0.474347i −0.969848 0.243711i \(-0.921635\pi\)
0.695984 + 0.718057i \(0.254969\pi\)
\(692\) −16.3020 −0.619708
\(693\) −14.7605 42.4528i −0.560704 1.61265i
\(694\) 4.98244i 0.189131i
\(695\) 0.859298 1.48835i 0.0325950 0.0564563i
\(696\) −9.99425 1.64312i −0.378831 0.0622822i
\(697\) 20.8059 12.0123i 0.788079 0.454998i
\(698\) −9.23276 + 15.9916i −0.349465 + 0.605291i
\(699\) 18.0112 21.9770i 0.681246 0.831246i
\(700\) −4.98115 + 12.2332i −0.188270 + 0.462370i
\(701\) 33.4107i 1.26190i 0.775822 + 0.630952i \(0.217335\pi\)
−0.775822 + 0.630952i \(0.782665\pi\)
\(702\) 18.4244 + 3.39719i 0.695385 + 0.128219i
\(703\) 3.03560 1.75261i 0.114490 0.0661008i
\(704\) 2.83131 + 4.90398i 0.106709 + 0.184826i
\(705\) −1.22268 + 0.461127i −0.0460487 + 0.0173671i
\(706\) 20.3986i 0.767710i
\(707\) 5.43018 + 6.98929i 0.204223 + 0.262859i
\(708\) −3.94804 + 4.81734i −0.148376 + 0.181047i
\(709\) −25.6450 14.8062i −0.963119 0.556057i −0.0659873 0.997820i \(-0.521020\pi\)
−0.897132 + 0.441764i \(0.854353\pi\)
\(710\) 0.201822 0.116522i 0.00757424 0.00437299i
\(711\) −32.4126 + 28.5027i −1.21557 + 1.06893i
\(712\) −2.93597 1.69508i −0.110030 0.0635259i
\(713\) 1.08487i 0.0406286i
\(714\) 0.318656 12.2374i 0.0119254 0.457972i
\(715\) 1.32110 + 1.20795i 0.0494063 + 0.0451748i
\(716\) −7.78809 4.49646i −0.291055 0.168041i
\(717\) −4.32517 + 26.3078i −0.161526 + 0.982483i
\(718\) −1.49774 2.59416i −0.0558952 0.0968133i
\(719\) −14.5300 + 25.1667i −0.541877 + 0.938558i 0.456919 + 0.889508i \(0.348953\pi\)
−0.998796 + 0.0490503i \(0.984381\pi\)
\(720\) 0.257908 0.0516637i 0.00961167 0.00192539i
\(721\) 30.4682 + 12.4061i 1.13469 + 0.462029i
\(722\) 25.2735 0.940583
\(723\) −12.6313 + 4.76384i −0.469764 + 0.177169i
\(724\) −6.15572 + 3.55401i −0.228776 + 0.132084i
\(725\) 25.2821 14.5966i 0.938955 0.542106i
\(726\) 34.1390 12.8754i 1.26702 0.477849i
\(727\) 10.8801i 0.403521i 0.979435 + 0.201761i \(0.0646663\pi\)
−0.979435 + 0.201761i \(0.935334\pi\)
\(728\) 5.41602 7.85281i 0.200731 0.291045i
\(729\) −15.0913 22.3886i −0.558938 0.829209i
\(730\) −0.624414 0.360506i −0.0231106 0.0133429i
\(731\) −12.9522 22.4338i −0.479053 0.829744i
\(732\) 3.97148 + 0.652936i 0.146790 + 0.0241332i
\(733\) −25.2212 + 43.6845i −0.931568 + 1.61352i −0.150925 + 0.988545i \(0.548225\pi\)
−0.780643 + 0.624978i \(0.785108\pi\)
\(734\) 0.431332i 0.0159208i
\(735\) −0.426382 + 0.973772i −0.0157273 + 0.0359181i
\(736\) 1.22748i 0.0452454i
\(737\) 37.0358 + 21.3826i 1.36423 + 0.787639i
\(738\) −17.8169 20.2610i −0.655850 0.745817i
\(739\) 4.88879 2.82254i 0.179837 0.103829i −0.407379 0.913259i \(-0.633557\pi\)
0.587216 + 0.809430i \(0.300224\pi\)
\(740\) −0.0230940 + 0.0400000i −0.000848953 + 0.00147043i
\(741\) −41.1257 + 5.94489i −1.51079 + 0.218391i
\(742\) −5.05756 36.7083i −0.185669 1.34760i
\(743\) 12.6489 0.464041 0.232021 0.972711i \(-0.425466\pi\)
0.232021 + 0.972711i \(0.425466\pi\)
\(744\) −1.43234 + 0.540199i −0.0525120 + 0.0198047i
\(745\) −0.972927 + 0.561720i −0.0356453 + 0.0205798i
\(746\) 5.60905 + 9.71516i 0.205362 + 0.355697i
\(747\) 2.74829 8.13230i 0.100555 0.297545i
\(748\) 15.1267 0.553086
\(749\) 6.60407 + 2.68907i 0.241308 + 0.0982565i
\(750\) −0.961866 + 1.17365i −0.0351224 + 0.0428558i
\(751\) −0.800219 + 1.38602i −0.0292004 + 0.0505766i −0.880256 0.474498i \(-0.842629\pi\)
0.851056 + 0.525075i \(0.175963\pi\)
\(752\) −7.45201 + 4.30242i −0.271747 + 0.156893i
\(753\) −2.22523 + 13.5349i −0.0810918 + 0.493240i
\(754\) −20.1013 + 6.36170i −0.732047 + 0.231680i
\(755\) 0.360717 0.0131278
\(756\) −13.5457 + 2.34847i −0.492651 + 0.0854130i
\(757\) −46.2341 −1.68041 −0.840203 0.542272i \(-0.817564\pi\)
−0.840203 + 0.542272i \(0.817564\pi\)
\(758\) −9.93910 5.73834i −0.361004 0.208426i
\(759\) −11.8796 1.95308i −0.431201 0.0708922i
\(760\) −0.505231 + 0.291695i −0.0183266 + 0.0105809i
\(761\) 29.1876 + 16.8515i 1.05805 + 0.610865i 0.924892 0.380230i \(-0.124155\pi\)
0.133157 + 0.991095i \(0.457488\pi\)
\(762\) −6.44136 5.27901i −0.233346 0.191238i
\(763\) −16.0249 + 12.4502i −0.580141 + 0.450728i
\(764\) 14.2368i 0.515070i
\(765\) 0.224957 0.665658i 0.00813334 0.0240669i
\(766\) −0.325127 + 0.187712i −0.0117473 + 0.00678232i
\(767\) −2.79265 + 12.6613i −0.100837 + 0.457171i
\(768\) 1.62062 0.611211i 0.0584792 0.0220552i
\(769\) −22.1719 −0.799539 −0.399769 0.916616i \(-0.630910\pi\)
−0.399769 + 0.916616i \(0.630910\pi\)
\(770\) −1.21658 0.495373i −0.0438427 0.0178520i
\(771\) −13.2019 10.8196i −0.475454 0.389657i
\(772\) 12.9152 + 7.45659i 0.464828 + 0.268369i
\(773\) −1.94637 + 1.12374i −0.0700061 + 0.0404181i −0.534595 0.845109i \(-0.679536\pi\)
0.464588 + 0.885527i \(0.346202\pi\)
\(774\) −21.8463 + 19.2110i −0.785248 + 0.690525i