Properties

Label 546.2.bg.a.467.3
Level $546$
Weight $2$
Character 546.467
Analytic conductor $4.360$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bg (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 467.3
Character \(\chi\) \(=\) 546.467
Dual form 546.2.bg.a.311.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-1.62062 - 0.611211i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.0759308 + 0.0438386i) q^{5} +(1.33964 - 1.09790i) q^{6} +(-2.62099 + 0.361112i) q^{7} +1.00000 q^{8} +(2.25284 + 1.98109i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(-1.62062 - 0.611211i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.0759308 + 0.0438386i) q^{5} +(1.33964 - 1.09790i) q^{6} +(-2.62099 + 0.361112i) q^{7} +1.00000 q^{8} +(2.25284 + 1.98109i) q^{9} +(-0.0759308 + 0.0438386i) q^{10} +(2.83131 + 4.90398i) q^{11} +(0.280988 + 1.70911i) q^{12} +(-2.43301 - 2.66091i) q^{13} +(0.997764 - 2.45040i) q^{14} +(-0.0962606 - 0.117456i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-1.33566 - 2.31343i) q^{17} +(-2.84209 + 0.960476i) q^{18} +(3.32692 - 5.76239i) q^{19} -0.0876773i q^{20} +(4.46836 + 1.01675i) q^{21} -5.66263 q^{22} +(-1.06303 - 0.613739i) q^{23} +(-1.62062 - 0.611211i) q^{24} +(-2.49616 - 4.32347i) q^{25} +(3.52092 - 0.776597i) q^{26} +(-2.44015 - 4.58756i) q^{27} +(1.62323 + 2.08929i) q^{28} -5.84765i q^{29} +(0.149850 - 0.0246363i) q^{30} +(-0.441909 - 0.765409i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-1.59113 - 9.67803i) q^{33} +2.67132 q^{34} +(-0.214845 - 0.0874812i) q^{35} +(0.589249 - 2.94156i) q^{36} +(0.456219 + 0.263398i) q^{37} +(3.32692 + 5.76239i) q^{38} +(2.31662 + 5.79942i) q^{39} +(0.0759308 + 0.0438386i) q^{40} -8.99352i q^{41} +(-3.11471 + 3.36134i) q^{42} -9.69720 q^{43} +(2.83131 - 4.90398i) q^{44} +(0.0842120 + 0.249187i) q^{45} +(1.06303 - 0.613739i) q^{46} +(7.45201 + 4.30242i) q^{47} +(1.33964 - 1.09790i) q^{48} +(6.73920 - 1.89294i) q^{49} +4.99231 q^{50} +(0.750608 + 4.56557i) q^{51} +(-1.08791 + 3.43751i) q^{52} +(12.1291 - 7.00275i) q^{53} +(5.19301 + 0.180546i) q^{54} +0.496484i q^{55} +(-2.62099 + 0.361112i) q^{56} +(-8.91371 + 7.30522i) q^{57} +(5.06421 + 2.92382i) q^{58} +(-3.11423 + 1.79800i) q^{59} +(-0.0535893 + 0.142092i) q^{60} +(2.01240 + 1.16186i) q^{61} +0.883818 q^{62} +(-6.62008 - 4.37888i) q^{63} +1.00000 q^{64} +(-0.0680900 - 0.308705i) q^{65} +(9.17699 + 3.46106i) q^{66} +(-6.54039 + 3.77610i) q^{67} +(-1.33566 + 2.31343i) q^{68} +(1.34764 + 1.64437i) q^{69} +(0.183183 - 0.142320i) q^{70} -2.65797 q^{71} +(2.25284 + 1.98109i) q^{72} +(-4.11174 - 7.12173i) q^{73} +(-0.456219 + 0.263398i) q^{74} +(1.40278 + 8.53240i) q^{75} -6.65383 q^{76} +(-9.19173 - 11.8309i) q^{77} +(-6.18076 - 0.893454i) q^{78} +(7.19370 - 12.4599i) q^{79} +(-0.0759308 + 0.0438386i) q^{80} +(1.15060 + 8.92615i) q^{81} +(7.78862 + 4.49676i) q^{82} +2.86138i q^{83} +(-1.35365 - 4.37809i) q^{84} -0.234214i q^{85} +(4.84860 - 8.39803i) q^{86} +(-3.57414 + 9.47684i) q^{87} +(2.83131 + 4.90398i) q^{88} +(-2.93597 - 1.69508i) q^{89} +(-0.257908 - 0.0516637i) q^{90} +(7.33780 + 6.09563i) q^{91} +1.22748i q^{92} +(0.248342 + 1.51054i) q^{93} +(-7.45201 + 4.30242i) q^{94} +(0.505231 - 0.291695i) q^{95} +(0.280988 + 1.70911i) q^{96} -10.4779 q^{97} +(-1.73026 + 6.78279i) q^{98} +(-3.33670 + 16.6570i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q - 18q^{2} - 18q^{4} + 36q^{8} + 4q^{9} + O(q^{10}) \) \( 36q - 18q^{2} - 18q^{4} + 36q^{8} + 4q^{9} - 14q^{15} - 18q^{16} + 4q^{18} + 23q^{21} + 14q^{25} - 6q^{26} + 7q^{30} - 18q^{32} + 24q^{33} - 8q^{36} - 10q^{39} - 16q^{42} - 16q^{43} - 9q^{45} + 72q^{47} + 12q^{49} - 28q^{50} - 3q^{51} + 6q^{52} + 9q^{54} - 8q^{57} + 24q^{59} + 7q^{60} - 36q^{61} - 39q^{63} + 36q^{64} + 18q^{65} - 24q^{66} - 72q^{71} + 4q^{72} + 54q^{75} + 20q^{78} + 20q^{79} - 20q^{81} - 24q^{82} - 7q^{84} + 8q^{86} - 24q^{87} - 72q^{89} - 2q^{91} - 14q^{93} - 72q^{94} - 12q^{98} + 72q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −1.62062 0.611211i −0.935668 0.352883i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.0759308 + 0.0438386i 0.0339573 + 0.0196052i 0.516883 0.856056i \(-0.327092\pi\)
−0.482925 + 0.875662i \(0.660426\pi\)
\(6\) 1.33964 1.09790i 0.546904 0.448214i
\(7\) −2.62099 + 0.361112i −0.990642 + 0.136488i
\(8\) 1.00000 0.353553
\(9\) 2.25284 + 1.98109i 0.750948 + 0.660362i
\(10\) −0.0759308 + 0.0438386i −0.0240114 + 0.0138630i
\(11\) 2.83131 + 4.90398i 0.853673 + 1.47860i 0.877871 + 0.478898i \(0.158964\pi\)
−0.0241978 + 0.999707i \(0.507703\pi\)
\(12\) 0.280988 + 1.70911i 0.0811142 + 0.493377i
\(13\) −2.43301 2.66091i −0.674797 0.738004i
\(14\) 0.997764 2.45040i 0.266664 0.654897i
\(15\) −0.0962606 0.117456i −0.0248544 0.0303269i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.33566 2.31343i −0.323945 0.561089i 0.657353 0.753583i \(-0.271676\pi\)
−0.981298 + 0.192493i \(0.938343\pi\)
\(18\) −2.84209 + 0.960476i −0.669887 + 0.226386i
\(19\) 3.32692 5.76239i 0.763247 1.32198i −0.177921 0.984045i \(-0.556937\pi\)
0.941168 0.337938i \(-0.109729\pi\)
\(20\) 0.0876773i 0.0196052i
\(21\) 4.46836 + 1.01675i 0.975075 + 0.221873i
\(22\) −5.66263 −1.20728
\(23\) −1.06303 0.613739i −0.221656 0.127973i 0.385061 0.922891i \(-0.374181\pi\)
−0.606717 + 0.794918i \(0.707514\pi\)
\(24\) −1.62062 0.611211i −0.330808 0.124763i
\(25\) −2.49616 4.32347i −0.499231 0.864694i
\(26\) 3.52092 0.776597i 0.690510 0.152303i
\(27\) −2.44015 4.58756i −0.469607 0.882876i
\(28\) 1.62323 + 2.08929i 0.306761 + 0.394839i
\(29\) 5.84765i 1.08588i −0.839771 0.542940i \(-0.817311\pi\)
0.839771 0.542940i \(-0.182689\pi\)
\(30\) 0.149850 0.0246363i 0.0273587 0.00449794i
\(31\) −0.441909 0.765409i −0.0793692 0.137471i 0.823609 0.567158i \(-0.191957\pi\)
−0.902978 + 0.429687i \(0.858624\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −1.59113 9.67803i −0.276980 1.68473i
\(34\) 2.67132 0.458127
\(35\) −0.214845 0.0874812i −0.0363154 0.0147870i
\(36\) 0.589249 2.94156i 0.0982081 0.490260i
\(37\) 0.456219 + 0.263398i 0.0750019 + 0.0433024i 0.537032 0.843562i \(-0.319545\pi\)
−0.462030 + 0.886864i \(0.652879\pi\)
\(38\) 3.32692 + 5.76239i 0.539697 + 0.934783i
\(39\) 2.31662 + 5.79942i 0.370957 + 0.928650i
\(40\) 0.0759308 + 0.0438386i 0.0120057 + 0.00693150i
\(41\) 8.99352i 1.40455i −0.711905 0.702276i \(-0.752167\pi\)
0.711905 0.702276i \(-0.247833\pi\)
\(42\) −3.11471 + 3.36134i −0.480610 + 0.518665i
\(43\) −9.69720 −1.47881 −0.739405 0.673261i \(-0.764893\pi\)
−0.739405 + 0.673261i \(0.764893\pi\)
\(44\) 2.83131 4.90398i 0.426836 0.739302i
\(45\) 0.0842120 + 0.249187i 0.0125536 + 0.0371466i
\(46\) 1.06303 0.613739i 0.156735 0.0904909i
\(47\) 7.45201 + 4.30242i 1.08699 + 0.627572i 0.932773 0.360465i \(-0.117382\pi\)
0.154215 + 0.988037i \(0.450715\pi\)
\(48\) 1.33964 1.09790i 0.193360 0.158468i
\(49\) 6.73920 1.89294i 0.962742 0.270420i
\(50\) 4.99231 0.706020
\(51\) 0.750608 + 4.56557i 0.105106 + 0.639307i
\(52\) −1.08791 + 3.43751i −0.150866 + 0.476696i
\(53\) 12.1291 7.00275i 1.66606 0.961902i 0.696334 0.717718i \(-0.254813\pi\)
0.969729 0.244184i \(-0.0785201\pi\)
\(54\) 5.19301 + 0.180546i 0.706680 + 0.0245692i
\(55\) 0.496484i 0.0669458i
\(56\) −2.62099 + 0.361112i −0.350245 + 0.0482556i
\(57\) −8.91371 + 7.30522i −1.18065 + 0.967600i
\(58\) 5.06421 + 2.92382i 0.664963 + 0.383917i
\(59\) −3.11423 + 1.79800i −0.405438 + 0.234080i −0.688828 0.724925i \(-0.741874\pi\)
0.283390 + 0.959005i \(0.408541\pi\)
\(60\) −0.0535893 + 0.142092i −0.00691835 + 0.0183440i
\(61\) 2.01240 + 1.16186i 0.257661 + 0.148761i 0.623267 0.782009i \(-0.285805\pi\)
−0.365606 + 0.930770i \(0.619138\pi\)
\(62\) 0.883818 0.112245
\(63\) −6.62008 4.37888i −0.834051 0.551687i
\(64\) 1.00000 0.125000
\(65\) −0.0680900 0.308705i −0.00844552 0.0382901i
\(66\) 9.17699 + 3.46106i 1.12961 + 0.426027i
\(67\) −6.54039 + 3.77610i −0.799036 + 0.461324i −0.843134 0.537704i \(-0.819292\pi\)
0.0440981 + 0.999027i \(0.485959\pi\)
\(68\) −1.33566 + 2.31343i −0.161972 + 0.280545i
\(69\) 1.34764 + 1.64437i 0.162237 + 0.197959i
\(70\) 0.183183 0.142320i 0.0218946 0.0170105i
\(71\) −2.65797 −0.315443 −0.157722 0.987484i \(-0.550415\pi\)
−0.157722 + 0.987484i \(0.550415\pi\)
\(72\) 2.25284 + 1.98109i 0.265500 + 0.233473i
\(73\) −4.11174 7.12173i −0.481242 0.833536i 0.518526 0.855062i \(-0.326481\pi\)
−0.999768 + 0.0215258i \(0.993148\pi\)
\(74\) −0.456219 + 0.263398i −0.0530343 + 0.0306194i
\(75\) 1.40278 + 8.53240i 0.161979 + 0.985236i
\(76\) −6.65383 −0.763247
\(77\) −9.19173 11.8309i −1.04750 1.34825i
\(78\) −6.18076 0.893454i −0.699833 0.101164i
\(79\) 7.19370 12.4599i 0.809355 1.40184i −0.103957 0.994582i \(-0.533150\pi\)
0.913312 0.407261i \(-0.133516\pi\)
\(80\) −0.0759308 + 0.0438386i −0.00848932 + 0.00490131i
\(81\) 1.15060 + 8.92615i 0.127845 + 0.991794i
\(82\) 7.78862 + 4.49676i 0.860109 + 0.496584i
\(83\) 2.86138i 0.314077i 0.987592 + 0.157039i \(0.0501947\pi\)
−0.987592 + 0.157039i \(0.949805\pi\)
\(84\) −1.35365 4.37809i −0.147695 0.477688i
\(85\) 0.234214i 0.0254041i
\(86\) 4.84860 8.39803i 0.522838 0.905582i
\(87\) −3.57414 + 9.47684i −0.383189 + 1.01602i
\(88\) 2.83131 + 4.90398i 0.301819 + 0.522766i
\(89\) −2.93597 1.69508i −0.311212 0.179678i 0.336257 0.941770i \(-0.390839\pi\)
−0.647469 + 0.762092i \(0.724172\pi\)
\(90\) −0.257908 0.0516637i −0.0271859 0.00544584i
\(91\) 7.33780 + 6.09563i 0.769210 + 0.638996i
\(92\) 1.22748i 0.127973i
\(93\) 0.248342 + 1.51054i 0.0257519 + 0.156636i
\(94\) −7.45201 + 4.30242i −0.768616 + 0.443761i
\(95\) 0.505231 0.291695i 0.0518356 0.0299273i
\(96\) 0.280988 + 1.70911i 0.0286782 + 0.174435i
\(97\) −10.4779 −1.06387 −0.531934 0.846786i \(-0.678535\pi\)
−0.531934 + 0.846786i \(0.678535\pi\)
\(98\) −1.73026 + 6.78279i −0.174783 + 0.685165i
\(99\) −3.33670 + 16.6570i −0.335350 + 1.67409i
\(100\) −2.49616 + 4.32347i −0.249616 + 0.432347i
\(101\) −1.67265 2.89711i −0.166435 0.288273i 0.770729 0.637163i \(-0.219892\pi\)
−0.937164 + 0.348890i \(0.886559\pi\)
\(102\) −4.32920 1.63274i −0.428655 0.161665i
\(103\) 10.7681 + 6.21697i 1.06101 + 0.612577i 0.925713 0.378228i \(-0.123466\pi\)
0.135301 + 0.990804i \(0.456800\pi\)
\(104\) −2.43301 2.66091i −0.238577 0.260924i
\(105\) 0.294713 + 0.273089i 0.0287610 + 0.0266508i
\(106\) 14.0055i 1.36033i
\(107\) −2.33402 1.34755i −0.225639 0.130272i 0.382920 0.923782i \(-0.374919\pi\)
−0.608558 + 0.793509i \(0.708252\pi\)
\(108\) −2.75286 + 4.40701i −0.264895 + 0.424065i
\(109\) 6.64244 3.83502i 0.636231 0.367328i −0.146930 0.989147i \(-0.546939\pi\)
0.783161 + 0.621819i \(0.213606\pi\)
\(110\) −0.429968 0.248242i −0.0409958 0.0236689i
\(111\) −0.578367 0.705715i −0.0548962 0.0669835i
\(112\) 0.997764 2.45040i 0.0942798 0.231541i
\(113\) 7.92944i 0.745939i 0.927844 + 0.372970i \(0.121660\pi\)
−0.927844 + 0.372970i \(0.878340\pi\)
\(114\) −1.86965 11.3721i −0.175108 1.06510i
\(115\) −0.0538110 0.0932033i −0.00501790 0.00869126i
\(116\) −5.06421 + 2.92382i −0.470200 + 0.271470i
\(117\) −0.209709 10.8146i −0.0193876 0.999812i
\(118\) 3.59600i 0.331039i
\(119\) 4.33616 + 5.58116i 0.397495 + 0.511624i
\(120\) −0.0962606 0.117456i −0.00878735 0.0107222i
\(121\) −10.5327 + 18.2431i −0.957515 + 1.65846i
\(122\) −2.01240 + 1.16186i −0.182194 + 0.105190i
\(123\) −5.49694 + 14.5751i −0.495642 + 1.31419i
\(124\) −0.441909 + 0.765409i −0.0396846 + 0.0687357i
\(125\) 0.876099i 0.0783607i
\(126\) 7.10226 3.54371i 0.632720 0.315699i
\(127\) 4.80829 0.426667 0.213334 0.976979i \(-0.431568\pi\)
0.213334 + 0.976979i \(0.431568\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 15.7155 + 5.92704i 1.38367 + 0.521846i
\(130\) 0.301391 + 0.0953849i 0.0264338 + 0.00836581i
\(131\) −9.89815 + 17.1441i −0.864805 + 1.49789i 0.00243479 + 0.999997i \(0.499225\pi\)
−0.867240 + 0.497890i \(0.834108\pi\)
\(132\) −7.58586 + 6.21697i −0.660264 + 0.541118i
\(133\) −6.63895 + 16.3046i −0.575670 + 1.41379i
\(134\) 7.55219i 0.652410i
\(135\) 0.0158298 0.455310i 0.00136241 0.0391868i
\(136\) −1.33566 2.31343i −0.114532 0.198375i
\(137\) −6.29121 10.8967i −0.537495 0.930968i −0.999038 0.0438504i \(-0.986037\pi\)
0.461543 0.887118i \(-0.347296\pi\)
\(138\) −2.09789 + 0.344906i −0.178584 + 0.0293604i
\(139\) 19.6014i 1.66257i −0.555848 0.831284i \(-0.687606\pi\)
0.555848 0.831284i \(-0.312394\pi\)
\(140\) 0.0316613 + 0.229801i 0.00267587 + 0.0194218i
\(141\) −9.44722 11.5274i −0.795599 0.970778i
\(142\) 1.32899 2.30187i 0.111526 0.193169i
\(143\) 6.16042 19.4653i 0.515160 1.62777i
\(144\) −2.84209 + 0.960476i −0.236841 + 0.0800397i
\(145\) 0.256353 0.444016i 0.0212890 0.0368735i
\(146\) 8.22347 0.680579
\(147\) −12.0787 1.05132i −0.996233 0.0867114i
\(148\) 0.526796i 0.0433024i
\(149\) −6.40667 + 11.0967i −0.524855 + 0.909076i 0.474726 + 0.880134i \(0.342547\pi\)
−0.999581 + 0.0289419i \(0.990786\pi\)
\(150\) −8.09066 3.05136i −0.660600 0.249142i
\(151\) −3.56296 + 2.05707i −0.289949 + 0.167402i −0.637919 0.770104i \(-0.720205\pi\)
0.347970 + 0.937506i \(0.386871\pi\)
\(152\) 3.32692 5.76239i 0.269849 0.467391i
\(153\) 1.57407 7.85785i 0.127256 0.635269i
\(154\) 14.8417 2.04484i 1.19598 0.164778i
\(155\) 0.0774908i 0.00622421i
\(156\) 3.86413 4.90596i 0.309378 0.392792i
\(157\) 16.7506 9.67095i 1.33684 0.771826i 0.350504 0.936561i \(-0.386010\pi\)
0.986338 + 0.164736i \(0.0526771\pi\)
\(158\) 7.19370 + 12.4599i 0.572300 + 0.991253i
\(159\) −23.9369 + 3.93538i −1.89832 + 0.312096i
\(160\) 0.0876773i 0.00693150i
\(161\) 3.00781 + 1.22473i 0.237049 + 0.0965225i
\(162\) −8.30557 3.46662i −0.652547 0.272364i
\(163\) −15.2764 8.81983i −1.19654 0.690823i −0.236758 0.971569i \(-0.576085\pi\)
−0.959782 + 0.280746i \(0.909418\pi\)
\(164\) −7.78862 + 4.49676i −0.608189 + 0.351138i
\(165\) 0.303456 0.804613i 0.0236240 0.0626391i
\(166\) −2.47803 1.43069i −0.192332 0.111043i
\(167\) 15.5348i 1.20212i −0.799205 0.601058i \(-0.794746\pi\)
0.799205 0.601058i \(-0.205254\pi\)
\(168\) 4.46836 + 1.01675i 0.344741 + 0.0784441i
\(169\) −1.16088 + 12.9481i −0.0892987 + 0.996005i
\(170\) 0.202835 + 0.117107i 0.0155568 + 0.00898170i
\(171\) 18.9108 6.39085i 1.44615 0.488721i
\(172\) 4.84860 + 8.39803i 0.369702 + 0.640343i
\(173\) −8.15099 + 14.1179i −0.619708 + 1.07337i 0.369831 + 0.929099i \(0.379416\pi\)
−0.989539 + 0.144267i \(0.953918\pi\)
\(174\) −6.42011 7.83372i −0.486707 0.593873i
\(175\) 8.10366 + 10.4304i 0.612579 + 0.788463i
\(176\) −5.66263 −0.426836
\(177\) 6.14595 1.01043i 0.461958 0.0759488i
\(178\) 2.93597 1.69508i 0.220060 0.127052i
\(179\) −7.78809 + 4.49646i −0.582109 + 0.336081i −0.761971 0.647611i \(-0.775768\pi\)
0.179862 + 0.983692i \(0.442435\pi\)
\(180\) 0.173696 0.197523i 0.0129466 0.0147225i
\(181\) 7.10802i 0.528335i −0.964477 0.264167i \(-0.914903\pi\)
0.964477 0.264167i \(-0.0850972\pi\)
\(182\) −8.94787 + 3.30690i −0.663260 + 0.245124i
\(183\) −2.55120 3.11293i −0.188590 0.230115i
\(184\) −1.06303 0.613739i −0.0783674 0.0452454i
\(185\) 0.0230940 + 0.0400000i 0.00169791 + 0.00294086i
\(186\) −1.43234 0.540199i −0.105024 0.0396093i
\(187\) 7.56334 13.1001i 0.553086 0.957973i
\(188\) 8.60484i 0.627572i
\(189\) 8.05223 + 11.1428i 0.585714 + 0.810518i
\(190\) 0.583390i 0.0423236i
\(191\) 12.3294 + 7.11841i 0.892127 + 0.515070i 0.874638 0.484777i \(-0.161099\pi\)
0.0174894 + 0.999847i \(0.494433\pi\)
\(192\) −1.62062 0.611211i −0.116958 0.0441103i
\(193\) 12.9152 7.45659i 0.929656 0.536737i 0.0429533 0.999077i \(-0.486323\pi\)
0.886703 + 0.462340i \(0.152990\pi\)
\(194\) 5.23894 9.07411i 0.376134 0.651483i
\(195\) −0.0783356 + 0.541912i −0.00560973 + 0.0388071i
\(196\) −5.00894 4.88984i −0.357781 0.349275i
\(197\) −5.59743 −0.398800 −0.199400 0.979918i \(-0.563899\pi\)
−0.199400 + 0.979918i \(0.563899\pi\)
\(198\) −12.7570 11.2181i −0.906601 0.797239i
\(199\) 0.509204 0.293989i 0.0360965 0.0208403i −0.481843 0.876257i \(-0.660032\pi\)
0.517940 + 0.855417i \(0.326699\pi\)
\(200\) −2.49616 4.32347i −0.176505 0.305715i
\(201\) 12.9075 2.12207i 0.910425 0.149680i
\(202\) 3.34530 0.235374
\(203\) 2.11166 + 15.3266i 0.148209 + 1.07572i
\(204\) 3.57859 2.93283i 0.250552 0.205339i
\(205\) 0.394264 0.682885i 0.0275366 0.0476948i
\(206\) −10.7681 + 6.21697i −0.750250 + 0.433157i
\(207\) −1.17896 3.48860i −0.0819436 0.242475i
\(208\) 3.52092 0.776597i 0.244132 0.0538473i
\(209\) 37.6782 2.60625
\(210\) −0.383859 + 0.118684i −0.0264888 + 0.00818998i
\(211\) −16.2218 −1.11676 −0.558379 0.829586i \(-0.688577\pi\)
−0.558379 + 0.829586i \(0.688577\pi\)
\(212\) −12.1291 7.00275i −0.833031 0.480951i
\(213\) 4.30757 + 1.62458i 0.295150 + 0.111314i
\(214\) 2.33402 1.34755i 0.159551 0.0921166i
\(215\) −0.736316 0.425112i −0.0502163 0.0289924i
\(216\) −2.44015 4.58756i −0.166031 0.312144i
\(217\) 1.43464 + 1.84655i 0.0973896 + 0.125352i
\(218\) 7.67003i 0.519480i
\(219\) 2.31070 + 14.0548i 0.156142 + 0.949735i
\(220\) 0.429968 0.248242i 0.0289884 0.0167365i
\(221\) −2.90615 + 9.18268i −0.195489 + 0.617694i
\(222\) 0.900351 0.148023i 0.0604276 0.00993467i
\(223\) 18.4233 1.23371 0.616856 0.787076i \(-0.288406\pi\)
0.616856 + 0.787076i \(0.288406\pi\)
\(224\) 1.62323 + 2.08929i 0.108456 + 0.139597i
\(225\) 2.94171 14.6852i 0.196114 0.979013i
\(226\) −6.86710 3.96472i −0.456793 0.263729i
\(227\) −3.73888 + 2.15864i −0.248158 + 0.143274i −0.618921 0.785454i \(-0.712430\pi\)
0.370762 + 0.928728i \(0.379096\pi\)
\(228\) 10.7834 + 4.06689i 0.714146 + 0.269337i
\(229\) −6.51189 + 11.2789i −0.430317 + 0.745332i −0.996900 0.0786729i \(-0.974932\pi\)
0.566583 + 0.824005i \(0.308265\pi\)
\(230\) 0.107622 0.00709638
\(231\) 7.66519 + 24.7915i 0.504332 + 1.63116i
\(232\) 5.84765i 0.383917i
\(233\) 14.2073 + 8.20260i 0.930753 + 0.537370i 0.887050 0.461674i \(-0.152751\pi\)
0.0437031 + 0.999045i \(0.486084\pi\)
\(234\) 9.47059 + 5.22570i 0.619112 + 0.341614i
\(235\) 0.377225 + 0.653372i 0.0246074 + 0.0426213i
\(236\) 3.11423 + 1.79800i 0.202719 + 0.117040i
\(237\) −19.2739 + 15.7959i −1.25197 + 1.02605i
\(238\) −7.00150 + 0.964645i −0.453840 + 0.0625287i
\(239\) 15.3927 0.995673 0.497836 0.867271i \(-0.334128\pi\)
0.497836 + 0.867271i \(0.334128\pi\)
\(240\) 0.149850 0.0246363i 0.00967277 0.00159026i
\(241\) −3.89705 6.74990i −0.251031 0.434799i 0.712779 0.701389i \(-0.247436\pi\)
−0.963810 + 0.266590i \(0.914103\pi\)
\(242\) −10.5327 18.2431i −0.677065 1.17271i
\(243\) 3.59106 15.1692i 0.230367 0.973104i
\(244\) 2.32372i 0.148761i
\(245\) 0.594696 + 0.151705i 0.0379938 + 0.00969205i
\(246\) −9.87395 12.0480i −0.629540 0.768155i
\(247\) −23.4276 + 5.16735i −1.49066 + 0.328791i
\(248\) −0.441909 0.765409i −0.0280613 0.0486035i
\(249\) 1.74891 4.63722i 0.110832 0.293872i
\(250\) 0.758724 + 0.438049i 0.0479859 + 0.0277047i
\(251\) −7.91930 −0.499862 −0.249931 0.968264i \(-0.580408\pi\)
−0.249931 + 0.968264i \(0.580408\pi\)
\(252\) −0.482183 + 7.92259i −0.0303747 + 0.499077i
\(253\) 6.95075i 0.436990i
\(254\) −2.40415 + 4.16411i −0.150850 + 0.261279i
\(255\) −0.143154 + 0.379573i −0.00896466 + 0.0237698i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 4.92741 8.53452i 0.307363 0.532369i −0.670421 0.741981i \(-0.733887\pi\)
0.977785 + 0.209612i \(0.0672200\pi\)
\(258\) −12.9907 + 10.6465i −0.808767 + 0.662823i
\(259\) −1.29086 0.525618i −0.0802102 0.0326603i
\(260\) −0.233301 + 0.213320i −0.0144687 + 0.0132296i
\(261\) 11.5847 13.1738i 0.717074 0.815440i
\(262\) −9.89815 17.1441i −0.611510 1.05917i
\(263\) 20.2604 11.6974i 1.24931 0.721290i 0.278340 0.960483i \(-0.410216\pi\)
0.970972 + 0.239192i \(0.0768826\pi\)
\(264\) −1.59113 9.67803i −0.0979272 0.595642i
\(265\) 1.22796 0.0754333
\(266\) −10.8007 13.9018i −0.662233 0.852373i
\(267\) 3.72205 + 4.54159i 0.227786 + 0.277941i
\(268\) 6.54039 + 3.77610i 0.399518 + 0.230662i
\(269\) −0.859882 1.48936i −0.0524279 0.0908078i 0.838620 0.544716i \(-0.183363\pi\)
−0.891048 + 0.453908i \(0.850029\pi\)
\(270\) 0.386395 + 0.241364i 0.0235152 + 0.0146889i
\(271\) −8.00242 + 13.8606i −0.486113 + 0.841972i −0.999873 0.0159623i \(-0.994919\pi\)
0.513760 + 0.857934i \(0.328252\pi\)
\(272\) 2.67132 0.161972
\(273\) −8.16609 14.3637i −0.494234 0.869329i
\(274\) 12.5824 0.760132
\(275\) 14.1348 24.4822i 0.852360 1.47633i
\(276\) 0.750248 1.98928i 0.0451596 0.119741i
\(277\) 6.12127 + 10.6023i 0.367791 + 0.637033i 0.989220 0.146438i \(-0.0467808\pi\)
−0.621429 + 0.783471i \(0.713447\pi\)
\(278\) 16.9753 + 9.80069i 1.01811 + 0.587806i
\(279\) 0.520789 2.59981i 0.0311788 0.155646i
\(280\) −0.214845 0.0874812i −0.0128394 0.00522800i
\(281\) 8.09237 0.482751 0.241375 0.970432i \(-0.422402\pi\)
0.241375 + 0.970432i \(0.422402\pi\)
\(282\) 14.7066 2.41786i 0.875765 0.143981i
\(283\) −2.90561 + 1.67755i −0.172721 + 0.0997203i −0.583868 0.811849i \(-0.698461\pi\)
0.411147 + 0.911569i \(0.365128\pi\)
\(284\) 1.32899 + 2.30187i 0.0788608 + 0.136591i
\(285\) −0.997076 + 0.163926i −0.0590617 + 0.00971011i
\(286\) 13.7772 + 15.0677i 0.814666 + 0.890974i
\(287\) 3.24767 + 23.5719i 0.191704 + 1.39141i
\(288\) 0.589249 2.94156i 0.0347218 0.173333i
\(289\) 4.93203 8.54252i 0.290119 0.502501i
\(290\) 0.256353 + 0.444016i 0.0150536 + 0.0260735i
\(291\) 16.9807 + 6.40419i 0.995427 + 0.375421i
\(292\) −4.11174 + 7.12173i −0.240621 + 0.416768i
\(293\) 21.2050i 1.23881i −0.785072 0.619404i \(-0.787374\pi\)
0.785072 0.619404i \(-0.212626\pi\)
\(294\) 6.94981 9.93479i 0.405321 0.579409i
\(295\) −0.315288 −0.0183568
\(296\) 0.456219 + 0.263398i 0.0265172 + 0.0153097i
\(297\) 15.5884 24.9552i 0.904533 1.44805i
\(298\) −6.40667 11.0967i −0.371129 0.642813i
\(299\) 0.953256 + 4.32185i 0.0551282 + 0.249939i
\(300\) 6.68788 5.48104i 0.386125 0.316448i
\(301\) 25.4163 3.50178i 1.46497 0.201839i
\(302\) 4.11415i 0.236743i
\(303\) 0.939988 + 5.71747i 0.0540009 + 0.328460i
\(304\) 3.32692 + 5.76239i 0.190812 + 0.330496i
\(305\) 0.101869 + 0.176442i 0.00583298 + 0.0101030i
\(306\) 6.01806 + 5.29211i 0.344030 + 0.302530i
\(307\) −19.0700 −1.08838 −0.544192 0.838961i \(-0.683164\pi\)
−0.544192 + 0.838961i \(0.683164\pi\)
\(308\) −5.64996 + 13.8757i −0.321936 + 0.790642i
\(309\) −13.6512 16.6570i −0.776589 0.947582i
\(310\) 0.0671090 + 0.0387454i 0.00381153 + 0.00220059i
\(311\) −1.91162 3.31103i −0.108398 0.187751i 0.806723 0.590929i \(-0.201239\pi\)
−0.915121 + 0.403178i \(0.867905\pi\)
\(312\) 2.31662 + 5.79942i 0.131153 + 0.328327i
\(313\) −16.6808 9.63067i −0.942855 0.544358i −0.0520010 0.998647i \(-0.516560\pi\)
−0.890854 + 0.454289i \(0.849893\pi\)
\(314\) 19.3419i 1.09153i
\(315\) −0.310703 0.622707i −0.0175061 0.0350856i
\(316\) −14.3874 −0.809355
\(317\) −12.3152 + 21.3306i −0.691692 + 1.19805i 0.279591 + 0.960119i \(0.409801\pi\)
−0.971283 + 0.237927i \(0.923532\pi\)
\(318\) 8.56031 22.6977i 0.480039 1.27282i
\(319\) 28.6767 16.5565i 1.60559 0.926987i
\(320\) 0.0759308 + 0.0438386i 0.00424466 + 0.00245065i
\(321\) 2.95894 + 3.61045i 0.165152 + 0.201516i
\(322\) −2.56456 + 1.99248i −0.142917 + 0.111036i
\(323\) −17.7745 −0.989000
\(324\) 7.15497 5.45952i 0.397498 0.303307i
\(325\) −5.43118 + 17.1611i −0.301268 + 0.951927i
\(326\) 15.2764 8.81983i 0.846081 0.488485i
\(327\) −13.1089 + 2.15519i −0.724924 + 0.119182i
\(328\) 8.99352i 0.496584i
\(329\) −21.0853 8.58560i −1.16247 0.473339i
\(330\) 0.545087 + 0.665107i 0.0300061 + 0.0366130i
\(331\) 3.59847 + 2.07757i 0.197790 + 0.114194i 0.595624 0.803263i \(-0.296905\pi\)
−0.397834 + 0.917457i \(0.630238\pi\)
\(332\) 2.47803 1.43069i 0.135999 0.0785193i
\(333\) 0.505975 + 1.49720i 0.0277273 + 0.0820462i
\(334\) 13.4535 + 7.76738i 0.736143 + 0.425012i
\(335\) −0.662156 −0.0361774
\(336\) −3.11471 + 3.36134i −0.169921 + 0.183376i
\(337\) −1.62397 −0.0884634 −0.0442317 0.999021i \(-0.514084\pi\)
−0.0442317 + 0.999021i \(0.514084\pi\)
\(338\) −10.6329 7.47939i −0.578354 0.406825i
\(339\) 4.84656 12.8506i 0.263229 0.697951i
\(340\) −0.202835 + 0.117107i −0.0110003 + 0.00635102i
\(341\) 2.50237 4.33422i 0.135511 0.234711i
\(342\) −3.92076 + 19.5727i −0.212011 + 1.05837i
\(343\) −16.9798 + 7.39499i −0.916824 + 0.399292i
\(344\) −9.69720 −0.522838
\(345\) 0.0302405 + 0.183937i 0.00162809 + 0.00990286i
\(346\) −8.15099 14.1179i −0.438200 0.758984i
\(347\) 4.31492 2.49122i 0.231637 0.133736i −0.379690 0.925114i \(-0.623969\pi\)
0.611327 + 0.791378i \(0.290636\pi\)
\(348\) 9.99425 1.64312i 0.535748 0.0880804i
\(349\) −18.4655 −0.988437 −0.494218 0.869338i \(-0.664546\pi\)
−0.494218 + 0.869338i \(0.664546\pi\)
\(350\) −13.0848 + 1.80278i −0.699413 + 0.0963629i
\(351\) −6.27015 + 17.6546i −0.334676 + 0.942333i
\(352\) 2.83131 4.90398i 0.150909 0.261383i
\(353\) −17.6657 + 10.1993i −0.940249 + 0.542853i −0.890038 0.455885i \(-0.849323\pi\)
−0.0502108 + 0.998739i \(0.515989\pi\)
\(354\) −2.19792 + 5.82777i −0.116818 + 0.309742i
\(355\) −0.201822 0.116522i −0.0107116 0.00618434i
\(356\) 3.39016i 0.179678i
\(357\) −3.61602 11.6953i −0.191380 0.618979i
\(358\) 8.99291i 0.475290i
\(359\) −1.49774 + 2.59416i −0.0790477 + 0.136915i −0.902839 0.429978i \(-0.858521\pi\)
0.823792 + 0.566893i \(0.191855\pi\)
\(360\) 0.0842120 + 0.249187i 0.00443836 + 0.0131333i
\(361\) −12.6368 21.8875i −0.665092 1.15197i
\(362\) 6.15572 + 3.55401i 0.323538 + 0.186795i
\(363\) 28.2199 23.1275i 1.48116 1.21388i
\(364\) 1.61007 9.40253i 0.0843908 0.492827i
\(365\) 0.721012i 0.0377395i
\(366\) 3.97148 0.652936i 0.207593 0.0341295i
\(367\) 0.373545 0.215666i 0.0194989 0.0112577i −0.490219 0.871599i \(-0.663083\pi\)
0.509718 + 0.860342i \(0.329750\pi\)
\(368\) 1.06303 0.613739i 0.0554141 0.0319934i
\(369\) 17.8169 20.2610i 0.927513 1.05475i
\(370\) −0.0461880 −0.00240120
\(371\) −29.2615 + 22.7341i −1.51918 + 1.18030i
\(372\) 1.18399 0.970340i 0.0613872 0.0503098i
\(373\) 5.60905 9.71516i 0.290425 0.503032i −0.683485 0.729965i \(-0.739536\pi\)
0.973910 + 0.226933i \(0.0728698\pi\)
\(374\) 7.56334 + 13.1001i 0.391091 + 0.677389i
\(375\) −0.535481 + 1.41983i −0.0276521 + 0.0733195i
\(376\) 7.45201 + 4.30242i 0.384308 + 0.221880i
\(377\) −15.5601 + 14.2274i −0.801384 + 0.732749i
\(378\) −13.6760 + 1.40205i −0.703420 + 0.0721137i
\(379\) 11.4767i 0.589518i −0.955572 0.294759i \(-0.904761\pi\)
0.955572 0.294759i \(-0.0952393\pi\)
\(380\) −0.505231 0.291695i −0.0259178 0.0149636i
\(381\) −7.79244 2.93888i −0.399219 0.150563i
\(382\) −12.3294 + 7.11841i −0.630829 + 0.364209i
\(383\) 0.325127 + 0.187712i 0.0166132 + 0.00959165i 0.508284 0.861190i \(-0.330280\pi\)
−0.491670 + 0.870781i \(0.663614\pi\)
\(384\) 1.33964 1.09790i 0.0683630 0.0560268i
\(385\) −0.179286 1.30128i −0.00913727 0.0663194i
\(386\) 14.9132i 0.759061i
\(387\) −21.8463 19.2110i −1.11051 0.976549i
\(388\) 5.23894 + 9.07411i 0.265967 + 0.460668i
\(389\) −28.3112 + 16.3455i −1.43544 + 0.828750i −0.997528 0.0702694i \(-0.977614\pi\)
−0.437909 + 0.899019i \(0.644281\pi\)
\(390\) −0.430142 0.338797i −0.0217811 0.0171556i
\(391\) 3.27898i 0.165825i
\(392\) 6.73920 1.89294i 0.340381 0.0956081i
\(393\) 26.5198 21.7343i 1.33775 1.09635i
\(394\) 2.79871 4.84751i 0.140997 0.244214i
\(395\) 1.09245 0.630724i 0.0549669 0.0317352i
\(396\) 16.0937 5.43882i 0.808739 0.273311i
\(397\) 9.57692 16.5877i 0.480652 0.832514i −0.519102 0.854713i \(-0.673733\pi\)
0.999754 + 0.0221990i \(0.00706673\pi\)
\(398\) 0.587979i 0.0294727i
\(399\) 20.7248 22.3658i 1.03754 1.11969i
\(400\) 4.99231 0.249616
\(401\) 2.06325 3.57365i 0.103034 0.178459i −0.809900 0.586569i \(-0.800478\pi\)
0.912933 + 0.408109i \(0.133812\pi\)
\(402\) −4.61598 + 12.2393i −0.230224 + 0.610439i
\(403\) −0.961513 + 3.03813i −0.0478964 + 0.151340i
\(404\) −1.67265 + 2.89711i −0.0832174 + 0.144137i
\(405\) −0.303944 + 0.728210i −0.0151031 + 0.0361850i
\(406\) −14.3291 5.83457i −0.711140 0.289565i
\(407\) 2.98305i 0.147864i
\(408\) 0.750608 + 4.56557i 0.0371606 + 0.226029i
\(409\) 16.1361 + 27.9486i 0.797879 + 1.38197i 0.920995 + 0.389575i \(0.127378\pi\)
−0.123116 + 0.992392i \(0.539289\pi\)
\(410\) 0.394264 + 0.682885i 0.0194713 + 0.0337253i
\(411\) 3.53551 + 21.5047i 0.174394 + 1.06075i
\(412\) 12.4339i 0.612577i
\(413\) 7.51309 5.83713i 0.369695 0.287227i
\(414\) 3.61070 + 0.723290i 0.177456 + 0.0355478i
\(415\) −0.125439 + 0.217267i −0.00615756 + 0.0106652i
\(416\) −1.08791 + 3.43751i −0.0533391 + 0.168538i
\(417\) −11.9806 + 31.7665i −0.586691 + 1.55561i
\(418\) −18.8391 + 32.6303i −0.921450 + 1.59600i
\(419\) −4.72613 −0.230886 −0.115443 0.993314i \(-0.536829\pi\)
−0.115443 + 0.993314i \(0.536829\pi\)
\(420\) 0.0891460 0.391773i 0.00434988 0.0191166i
\(421\) 28.1593i 1.37240i 0.727413 + 0.686200i \(0.240723\pi\)
−0.727413 + 0.686200i \(0.759277\pi\)
\(422\) 8.11092 14.0485i 0.394834 0.683872i
\(423\) 8.26475 + 24.4557i 0.401846 + 1.18908i
\(424\) 12.1291 7.00275i 0.589042 0.340084i
\(425\) −6.66803 + 11.5494i −0.323447 + 0.560226i
\(426\) −3.56071 + 2.91818i −0.172517 + 0.141386i
\(427\) −5.69404 2.31852i −0.275554 0.112201i
\(428\) 2.69510i 0.130272i
\(429\) −21.8811 + 27.7806i −1.05643 + 1.34126i
\(430\) 0.736316 0.425112i 0.0355083 0.0205007i
\(431\) −18.2440 31.5996i −0.878783 1.52210i −0.852677 0.522438i \(-0.825022\pi\)
−0.0261063 0.999659i \(-0.508311\pi\)
\(432\) 5.19301 + 0.180546i 0.249849 + 0.00868652i
\(433\) 4.54367i 0.218355i 0.994022 + 0.109177i \(0.0348216\pi\)
−0.994022 + 0.109177i \(0.965178\pi\)
\(434\) −2.31648 + 0.319157i −0.111195 + 0.0153200i
\(435\) −0.686839 + 0.562898i −0.0329314 + 0.0269889i
\(436\) −6.64244 3.83502i −0.318115 0.183664i
\(437\) −7.07321 + 4.08372i −0.338357 + 0.195351i
\(438\) −13.3272 5.02627i −0.636796 0.240165i
\(439\) −19.3010 11.1434i −0.921185 0.531847i −0.0371724 0.999309i \(-0.511835\pi\)
−0.884013 + 0.467462i \(0.845168\pi\)
\(440\) 0.496484i 0.0236689i
\(441\) 18.9324 + 9.08642i 0.901544 + 0.432687i
\(442\) −6.49936 7.10814i −0.309143 0.338100i
\(443\) 22.9471 + 13.2485i 1.09025 + 0.629457i 0.933643 0.358204i \(-0.116611\pi\)
0.156608 + 0.987661i \(0.449944\pi\)
\(444\) −0.321983 + 0.853738i −0.0152807 + 0.0405166i
\(445\) −0.148620 0.257418i −0.00704527 0.0122028i
\(446\) −9.21163 + 15.9550i −0.436183 + 0.755491i
\(447\) 17.1652 14.0677i 0.811887 0.665380i
\(448\) −2.62099 + 0.361112i −0.123830 + 0.0170609i
\(449\) 41.7613 1.97084 0.985420 0.170141i \(-0.0544222\pi\)
0.985420 + 0.170141i \(0.0544222\pi\)
\(450\) 11.2469 + 9.89020i 0.530184 + 0.466228i
\(451\) 44.1040 25.4635i 2.07678 1.19903i
\(452\) 6.86710 3.96472i 0.323001 0.186485i
\(453\) 7.03152 1.15603i 0.330369 0.0543148i
\(454\) 4.31729i 0.202620i
\(455\) 0.289940 + 0.784525i 0.0135926 + 0.0367791i
\(456\) −8.91371 + 7.30522i −0.417423 + 0.342098i
\(457\) −17.3505 10.0173i −0.811621 0.468590i 0.0358974 0.999355i \(-0.488571\pi\)
−0.847519 + 0.530766i \(0.821904\pi\)
\(458\) −6.51189 11.2789i −0.304280 0.527029i
\(459\) −7.35378 + 11.7725i −0.343245 + 0.549495i
\(460\) −0.0538110 + 0.0932033i −0.00250895 + 0.00434563i
\(461\) 8.77765i 0.408816i 0.978886 + 0.204408i \(0.0655269\pi\)
−0.978886 + 0.204408i \(0.934473\pi\)
\(462\) −25.3026 5.75748i −1.17719 0.267862i
\(463\) 17.9312i 0.833334i −0.909059 0.416667i \(-0.863198\pi\)
0.909059 0.416667i \(-0.136802\pi\)
\(464\) 5.06421 + 2.92382i 0.235100 + 0.135735i
\(465\) −0.0473632 + 0.125583i −0.00219642 + 0.00582379i
\(466\) −14.2073 + 8.20260i −0.658142 + 0.379978i
\(467\) −8.47219 + 14.6743i −0.392046 + 0.679044i −0.992719 0.120451i \(-0.961566\pi\)
0.600673 + 0.799495i \(0.294899\pi\)
\(468\) −9.26088 + 5.58892i −0.428084 + 0.258348i
\(469\) 15.7787 12.2589i 0.728593 0.566065i
\(470\) −0.754449 −0.0348001
\(471\) −33.0574 + 5.43484i −1.52320 + 0.250424i
\(472\) −3.11423 + 1.79800i −0.143344 + 0.0827597i
\(473\) −27.4558 47.5549i −1.26242 2.18658i
\(474\) −4.04268 24.5896i −0.185687 1.12944i
\(475\) −33.2180 −1.52415
\(476\) 2.66534 6.54580i 0.122166 0.300026i
\(477\) 41.1981 + 8.25273i 1.88633 + 0.377866i
\(478\) −7.69636 + 13.3305i −0.352023 + 0.609723i
\(479\) −7.22604 + 4.17195i −0.330166 + 0.190621i −0.655915 0.754835i \(-0.727717\pi\)
0.325749 + 0.945456i \(0.394384\pi\)
\(480\) −0.0535893 + 0.142092i −0.00244601 + 0.00648558i
\(481\) −0.409108 1.85481i −0.0186537 0.0845720i
\(482\) 7.79411 0.355012
\(483\) −4.12596 3.82324i −0.187738 0.173963i
\(484\) 21.0653 0.957515
\(485\) −0.795594 0.459336i −0.0361260 0.0208574i
\(486\) 11.3414 + 10.6945i 0.514455 + 0.485115i
\(487\) −12.4028 + 7.16075i −0.562023 + 0.324484i −0.753957 0.656924i \(-0.771857\pi\)
0.191934 + 0.981408i \(0.438524\pi\)
\(488\) 2.01240 + 1.16186i 0.0910970 + 0.0525949i
\(489\) 19.3665 + 23.6307i 0.875784 + 1.06862i
\(490\) −0.428728 + 0.439170i −0.0193680 + 0.0198397i
\(491\) 7.65264i 0.345359i 0.984978 + 0.172679i \(0.0552424\pi\)
−0.984978 + 0.172679i \(0.944758\pi\)
\(492\) 15.3709 2.52707i 0.692973 0.113929i
\(493\) −13.5281 + 7.81046i −0.609276 + 0.351766i
\(494\) 7.23876 22.8726i 0.325687 1.02909i
\(495\) −0.983577 + 1.11850i −0.0442085 + 0.0502728i
\(496\) 0.883818 0.0396846
\(497\) 6.96652 0.959825i 0.312491 0.0430540i
\(498\) 3.14150 + 3.83321i 0.140774 + 0.171770i
\(499\) −23.5183 13.5783i −1.05283 0.607849i −0.129386 0.991594i \(-0.541301\pi\)
−0.923439 + 0.383745i \(0.874634\pi\)
\(500\) −0.758724 + 0.438049i −0.0339312 + 0.0195902i
\(501\) −9.49501 + 25.1760i −0.424206 + 1.12478i
\(502\) 3.95965 6.85831i 0.176728 0.306101i
\(503\) −27.6274 −1.23185 −0.615923 0.787806i \(-0.711217\pi\)
−0.615923 + 0.787806i \(0.711217\pi\)
\(504\) −6.62008 4.37888i −0.294882 0.195051i
\(505\) 0.293307i 0.0130520i
\(506\) 6.01952 + 3.47537i 0.267600 + 0.154499i
\(507\) 9.79535 20.2744i 0.435027 0.900418i
\(508\) −2.40415 4.16411i −0.106667 0.184752i
\(509\) −12.2242 7.05762i −0.541826 0.312823i 0.203993 0.978972i \(-0.434608\pi\)
−0.745819 + 0.666149i \(0.767942\pi\)
\(510\) −0.257143 0.313761i −0.0113865 0.0138936i
\(511\) 13.3486 + 17.1812i 0.590506 + 0.760052i
\(512\) 1.00000 0.0441942
\(513\) −34.5535 1.20132i −1.52557 0.0530397i
\(514\) 4.92741 + 8.53452i 0.217339 + 0.376442i
\(515\) 0.545087 + 0.944119i 0.0240194 + 0.0416029i
\(516\) −2.72480 16.5736i −0.119952 0.729610i
\(517\) 48.7260i 2.14297i
\(518\) 1.10063 0.855110i 0.0483589 0.0375714i
\(519\) 21.8387 17.8979i 0.958613 0.785629i
\(520\) −0.0680900 0.308705i −0.00298594 0.0135376i
\(521\) −3.15726 5.46854i −0.138322 0.239581i 0.788539 0.614984i \(-0.210838\pi\)
−0.926862 + 0.375403i \(0.877504\pi\)
\(522\) 5.61653 + 16.6195i 0.245829 + 0.727418i
\(523\) 29.7281 + 17.1636i 1.29992 + 0.750510i 0.980390 0.197066i \(-0.0631414\pi\)
0.319531 + 0.947576i \(0.396475\pi\)
\(524\) 19.7963 0.864805
\(525\) −6.75782 21.8568i −0.294936 0.953908i
\(526\) 23.3947i 1.02006i
\(527\) −1.18048 + 2.04465i −0.0514225 + 0.0890664i
\(528\) 9.17699 + 3.46106i 0.399377 + 0.150623i
\(529\) −10.7466 18.6137i −0.467246 0.809293i
\(530\) −0.613982 + 1.06345i −0.0266697 + 0.0461933i
\(531\) −10.5779 2.11894i −0.459040 0.0919542i
\(532\) 17.4396 2.40278i 0.756104 0.104174i
\(533\) −23.9310 + 21.8814i −1.03656 + 0.947787i
\(534\) −5.79415 + 0.952595i −0.250738 + 0.0412228i
\(535\) −0.118149 0.204641i −0.00510805 0.00884740i
\(536\) −6.54039 + 3.77610i −0.282502 + 0.163103i
\(537\) 15.3699 2.52690i 0.663258 0.109044i
\(538\) 1.71976 0.0741443
\(539\) 28.3637 + 27.6894i 1.22171 + 1.19266i
\(540\) −0.402224 + 0.213946i −0.0173090 + 0.00920676i
\(541\) 8.13741 + 4.69814i 0.349855 + 0.201989i 0.664621 0.747180i \(-0.268593\pi\)
−0.314767 + 0.949169i \(0.601926\pi\)
\(542\) −8.00242 13.8606i −0.343733 0.595364i
\(543\) −4.34450 + 11.5194i −0.186440 + 0.494346i
\(544\) −1.33566 + 2.31343i −0.0572659 + 0.0991875i
\(545\) 0.672488 0.0288062
\(546\) 16.5223 + 0.109790i 0.707091 + 0.00469856i
\(547\) −11.4919 −0.491360 −0.245680 0.969351i \(-0.579011\pi\)
−0.245680 + 0.969351i \(0.579011\pi\)
\(548\) −6.29121 + 10.8967i −0.268747 + 0.465484i
\(549\) 2.23188 + 6.60422i 0.0952541 + 0.281861i
\(550\) 14.1348 + 24.4822i 0.602710 + 1.04392i
\(551\) −33.6964 19.4546i −1.43552 0.828795i
\(552\) 1.34764 + 1.64437i 0.0573595 + 0.0699892i
\(553\) −14.3552 + 35.2549i −0.610446 + 1.49919i
\(554\) −12.2425 −0.520135
\(555\) −0.0129783 0.0789403i −0.000550897 0.00335083i
\(556\) −16.9753 + 9.80069i −0.719913 + 0.415642i
\(557\) 3.51222 + 6.08334i 0.148818 + 0.257760i 0.930791 0.365553i \(-0.119120\pi\)
−0.781973 + 0.623312i \(0.785787\pi\)
\(558\) 1.99110 + 1.75092i 0.0842901 + 0.0741223i
\(559\) 23.5934 + 25.8034i 0.997896 + 1.09137i
\(560\) 0.183183 0.142320i 0.00774091 0.00601413i
\(561\) −20.2642 + 16.6075i −0.855557 + 0.701170i
\(562\) −4.04619 + 7.00820i −0.170678 + 0.295623i
\(563\) −19.9568 34.5661i −0.841078 1.45679i −0.888985 0.457937i \(-0.848588\pi\)
0.0479070 0.998852i \(-0.484745\pi\)
\(564\) −5.25937 + 13.9452i −0.221459 + 0.587199i
\(565\) −0.347616 + 0.602089i −0.0146243 + 0.0253301i
\(566\) 3.35511i 0.141026i
\(567\) −6.23906 22.9799i −0.262016 0.965064i
\(568\) −2.65797 −0.111526
\(569\) 31.7330 + 18.3210i 1.33032 + 0.768058i 0.985348 0.170557i \(-0.0545566\pi\)
0.344968 + 0.938615i \(0.387890\pi\)
\(570\) 0.356574 0.945456i 0.0149353 0.0396008i
\(571\) −2.72588 4.72136i −0.114075 0.197583i 0.803335 0.595528i \(-0.203057\pi\)
−0.917409 + 0.397945i \(0.869724\pi\)
\(572\) −19.9377 + 4.39758i −0.833636 + 0.183872i
\(573\) −15.6305 19.0721i −0.652975 0.796750i
\(574\) −22.0377 8.97341i −0.919837 0.374543i
\(575\) 6.12795i 0.255553i
\(576\) 2.25284 + 1.98109i 0.0938685 + 0.0825452i
\(577\) 12.5609 + 21.7561i 0.522917 + 0.905719i 0.999644 + 0.0266678i \(0.00848964\pi\)
−0.476727 + 0.879051i \(0.658177\pi\)
\(578\) 4.93203 + 8.54252i 0.205145 + 0.355322i
\(579\) −25.4882 + 4.19042i −1.05925 + 0.174148i
\(580\) −0.512706 −0.0212890
\(581\) −1.03328 7.49965i −0.0428676 0.311138i
\(582\) −14.0365 + 11.5036i −0.581834 + 0.476841i
\(583\) 68.6827 + 39.6540i 2.84455 + 1.64230i
\(584\) −4.11174 7.12173i −0.170145 0.294699i
\(585\) 0.458175 0.830356i 0.0189432 0.0343310i
\(586\) 18.3641 + 10.6025i 0.758612 + 0.437985i
\(587\) 22.1376i 0.913717i 0.889539 + 0.456859i \(0.151025\pi\)
−0.889539 + 0.456859i \(0.848975\pi\)
\(588\) 5.12887 + 10.9861i 0.211511 + 0.453060i
\(589\) −5.88078 −0.242313
\(590\) 0.157644 0.273047i 0.00649010 0.0112412i
\(591\) 9.07132 + 3.42121i 0.373144 + 0.140730i
\(592\) −0.456219 + 0.263398i −0.0187505 + 0.0108256i
\(593\) 6.33623 + 3.65823i 0.260198 + 0.150225i 0.624425 0.781085i \(-0.285333\pi\)
−0.364227 + 0.931310i \(0.618667\pi\)
\(594\) 13.8177 + 25.9776i 0.566945 + 1.06587i
\(595\) 0.0845775 + 0.613873i 0.00346734 + 0.0251663i
\(596\) 12.8133 0.524855
\(597\) −1.00492 + 0.165215i −0.0411286 + 0.00676179i
\(598\) −4.21946 1.33538i −0.172547 0.0546079i
\(599\) 35.3925 20.4339i 1.44610 0.834906i 0.447854 0.894107i \(-0.352189\pi\)
0.998246 + 0.0592009i \(0.0188552\pi\)
\(600\) 1.40278 + 8.53240i 0.0572682 + 0.348334i
\(601\) 6.67453i 0.272260i −0.990691 0.136130i \(-0.956534\pi\)
0.990691 0.136130i \(-0.0434664\pi\)
\(602\) −9.67552 + 23.7620i −0.394345 + 0.968469i
\(603\) −22.2152 4.45012i −0.904674 0.181223i
\(604\) 3.56296 + 2.05707i 0.144975 + 0.0837011i
\(605\) −1.59951 + 0.923476i −0.0650292 + 0.0375446i
\(606\) −5.42147 2.04468i −0.220232 0.0830595i
\(607\) 19.4541 + 11.2318i 0.789617 + 0.455886i 0.839828 0.542853i \(-0.182656\pi\)
−0.0502106 + 0.998739i \(0.515989\pi\)
\(608\) −6.65383 −0.269849
\(609\) 5.94560 26.1294i 0.240928 1.05882i
\(610\) −0.203737 −0.00824908
\(611\) −6.68250 30.2970i −0.270345 1.22568i
\(612\) −7.59213 + 2.56574i −0.306894 + 0.103714i
\(613\) 7.57215 4.37178i 0.305836 0.176575i −0.339225 0.940705i \(-0.610165\pi\)
0.645062 + 0.764130i \(0.276832\pi\)
\(614\) 9.53501 16.5151i 0.384802 0.666496i
\(615\) −1.05634 + 0.865721i −0.0425957 + 0.0349093i
\(616\) −9.19173 11.8309i −0.370345 0.476679i
\(617\) 33.2275 1.33769 0.668845 0.743402i \(-0.266789\pi\)
0.668845 + 0.743402i \(0.266789\pi\)
\(618\) 21.2509 3.49379i 0.854838 0.140541i
\(619\) −9.75542 16.8969i −0.392103 0.679143i 0.600623 0.799532i \(-0.294919\pi\)
−0.992727 + 0.120389i \(0.961586\pi\)
\(620\) −0.0671090 + 0.0387454i −0.00269516 + 0.00155605i
\(621\) −0.221616 + 6.37431i −0.00889315 + 0.255792i
\(622\) 3.82324 0.153298
\(623\) 8.30726 + 3.38258i 0.332824 + 0.135520i
\(624\) −6.18076 0.893454i −0.247428 0.0357668i
\(625\) −12.4424 + 21.5508i −0.497695 + 0.862033i
\(626\) 16.6808 9.63067i 0.666699 0.384919i
\(627\) −61.0621 23.0293i −2.43859 0.919702i
\(628\) −16.7506 9.67095i −0.668421 0.385913i
\(629\) 1.40724i 0.0561103i
\(630\) 0.694632 + 0.0422765i 0.0276748 + 0.00168434i
\(631\) 44.3163i 1.76421i −0.471057 0.882103i \(-0.656128\pi\)
0.471057 0.882103i \(-0.343872\pi\)
\(632\) 7.19370 12.4599i 0.286150 0.495626i
\(633\) 26.2895 + 9.91497i 1.04491 + 0.394085i
\(634\) −12.3152 21.3306i −0.489100 0.847147i
\(635\) 0.365098 + 0.210789i 0.0144885 + 0.00836491i
\(636\) 15.3766 + 18.7623i 0.609721 + 0.743973i
\(637\) −21.4335 13.3268i −0.849227 0.528028i
\(638\) 33.1130i 1.31096i
\(639\) −5.98799 5.26567i −0.236881 0.208307i
\(640\) −0.0759308 + 0.0438386i −0.00300143 + 0.00173287i
\(641\) −5.36714 + 3.09872i −0.211989 + 0.122392i −0.602236 0.798318i \(-0.705723\pi\)
0.390246 + 0.920711i \(0.372390\pi\)
\(642\) −4.60621 + 0.757290i −0.181793 + 0.0298878i
\(643\) 21.2665 0.838669 0.419334 0.907832i \(-0.362263\pi\)
0.419334 + 0.907832i \(0.362263\pi\)
\(644\) −0.443257 3.21721i −0.0174668 0.126776i
\(645\) 0.933458 + 1.13899i 0.0367549 + 0.0448477i
\(646\) 8.88725 15.3932i 0.349664 0.605636i
\(647\) 3.77674 + 6.54151i 0.148479 + 0.257173i 0.930666 0.365871i \(-0.119229\pi\)
−0.782186 + 0.623044i \(0.785896\pi\)
\(648\) 1.15060 + 8.92615i 0.0451999 + 0.350652i
\(649\) −17.6347 10.1814i −0.692223 0.399655i
\(650\) −12.1464 13.2841i −0.476420 0.521045i
\(651\) −1.19638 3.86943i −0.0468897 0.151655i
\(652\) 17.6397i 0.690823i
\(653\) 27.7842 + 16.0412i 1.08728 + 0.627742i 0.932851 0.360262i \(-0.117313\pi\)
0.154430 + 0.988004i \(0.450646\pi\)
\(654\) 4.68801 12.4302i 0.183316 0.486061i
\(655\) −1.50315 + 0.867843i −0.0587329 + 0.0339094i
\(656\) 7.78862 + 4.49676i 0.304094 + 0.175569i
\(657\) 4.84567 24.1898i 0.189048 0.943736i
\(658\) 17.9780 13.9676i 0.700855 0.544514i
\(659\) 8.17705i 0.318533i 0.987236 + 0.159266i \(0.0509128\pi\)
−0.987236 + 0.159266i \(0.949087\pi\)
\(660\) −0.848544 + 0.139506i −0.0330295 + 0.00543026i
\(661\) −13.8904 24.0589i −0.540274 0.935782i −0.998888 0.0471464i \(-0.984987\pi\)
0.458614 0.888636i \(-0.348346\pi\)
\(662\) −3.59847 + 2.07757i −0.139858 + 0.0807472i
\(663\) 10.3223 13.1054i 0.400886 0.508971i
\(664\) 2.86138i 0.111043i
\(665\) −1.21887 + 0.946975i −0.0472658 + 0.0367221i
\(666\) −1.54960 0.310414i −0.0600459 0.0120283i
\(667\) −3.58893 + 6.21621i −0.138964 + 0.240693i
\(668\) −13.4535 + 7.76738i −0.520532 + 0.300529i
\(669\) −29.8572 11.2605i −1.15434 0.435356i
\(670\) 0.331078 0.573444i 0.0127907 0.0221541i
\(671\) 13.1583i 0.507972i
\(672\) −1.35365 4.37809i −0.0522180 0.168888i
\(673\) 36.4941 1.40674 0.703372 0.710822i \(-0.251677\pi\)
0.703372 + 0.710822i \(0.251677\pi\)
\(674\) 0.811986 1.40640i 0.0312765 0.0541725i
\(675\) −13.7432 + 22.0012i −0.528975 + 0.846825i
\(676\) 11.7938 5.46868i 0.453607 0.210334i
\(677\) 7.78434 13.4829i 0.299176 0.518189i −0.676771 0.736193i \(-0.736621\pi\)
0.975948 + 0.218004i \(0.0699547\pi\)
\(678\) 8.70570 + 10.6226i 0.334340 + 0.407957i
\(679\) 27.4624 3.78369i 1.05391 0.145205i
\(680\) 0.234214i 0.00898170i
\(681\) 7.37871 1.21311i 0.282753 0.0464863i
\(682\) 2.50237 + 4.33422i 0.0958205 + 0.165966i
\(683\) 6.05165 + 10.4818i 0.231560 + 0.401074i 0.958267 0.285873i \(-0.0922837\pi\)
−0.726707 + 0.686947i \(0.758950\pi\)
\(684\) −14.9900 13.1818i −0.573159 0.504019i
\(685\) 1.10319i 0.0421508i
\(686\) 2.08565 18.4024i 0.0796306 0.702609i
\(687\) 17.4471 14.2987i 0.665649 0.545531i
\(688\) 4.84860 8.39803i 0.184851 0.320172i
\(689\) −48.1440 15.2367i −1.83414 0.580472i
\(690\) −0.174415 0.0657797i −0.00663985 0.00250419i
\(691\) 7.19903 12.4691i 0.273864 0.474347i −0.695984 0.718057i \(-0.745031\pi\)
0.969848 + 0.243711i \(0.0783648\pi\)
\(692\) 16.3020 0.619708
\(693\) 2.73042 44.8627i 0.103720 1.70419i
\(694\) 4.98244i 0.189131i
\(695\) 0.859298 1.48835i 0.0325950 0.0564563i
\(696\) −3.57414 + 9.47684i −0.135478 + 0.359219i
\(697\) −20.8059 + 12.0123i −0.788079 + 0.454998i
\(698\) 9.23276 15.9916i 0.349465 0.605291i
\(699\) −18.0112 21.9770i −0.681246 0.831246i
\(700\) 4.98115 12.2332i 0.188270 0.462370i
\(701\) 33.4107i 1.26190i −0.775822 0.630952i \(-0.782665\pi\)
0.775822 0.630952i \(-0.217335\pi\)
\(702\) −12.1543 14.2574i −0.458733 0.538111i
\(703\) 3.03560 1.75261i 0.114490 0.0661008i
\(704\) 2.83131 + 4.90398i 0.106709 + 0.184826i
\(705\) −0.211991 1.28943i −0.00798404 0.0485629i
\(706\) 20.3986i 0.767710i
\(707\) 5.43018 + 6.98929i 0.204223 + 0.262859i
\(708\) −3.94804 4.81734i −0.148376 0.181047i
\(709\) 25.6450 + 14.8062i 0.963119 + 0.556057i 0.897132 0.441764i \(-0.145647\pi\)
0.0659873 + 0.997820i \(0.478980\pi\)
\(710\) 0.201822 0.116522i 0.00757424 0.00437299i
\(711\) 40.8903 13.8188i 1.53351 0.518244i
\(712\) −2.93597 1.69508i −0.110030 0.0635259i
\(713\) 1.08487i 0.0406286i
\(714\) 11.9364 + 2.71607i 0.446709 + 0.101646i
\(715\) 1.32110 1.20795i 0.0494063 0.0451748i
\(716\) 7.78809 + 4.49646i 0.291055 + 0.168041i
\(717\) −24.9458 9.40820i −0.931619 0.351356i
\(718\) −1.49774 2.59416i −0.0558952 0.0968133i
\(719\) 14.5300 25.1667i 0.541877 0.938558i −0.456919 0.889508i \(-0.651047\pi\)
0.998796 0.0490503i \(-0.0156195\pi\)
\(720\) −0.257908 0.0516637i −0.00961167 0.00192539i
\(721\) −30.4682 12.4061i −1.13469 0.462029i
\(722\) 25.2735 0.940583
\(723\) 2.19005 + 13.3210i 0.0814488 + 0.495412i
\(724\) −6.15572 + 3.55401i −0.228776 + 0.132084i
\(725\) −25.2821 + 14.5966i −0.938955 + 0.542106i
\(726\) 5.91910 + 36.0029i 0.219678 + 1.33619i
\(727\) 10.8801i 0.403521i 0.979435 + 0.201761i \(0.0646663\pi\)
−0.979435 + 0.201761i \(0.935334\pi\)
\(728\) 7.33780 + 6.09563i 0.271957 + 0.225919i
\(729\) −15.0913 + 22.3886i −0.558938 + 0.829209i
\(730\) 0.624414 + 0.360506i 0.0231106 + 0.0133429i
\(731\) 12.9522 + 22.4338i 0.479053 + 0.829744i
\(732\) −1.42028 + 3.76587i −0.0524951 + 0.139191i
\(733\) 25.2212 43.6845i 0.931568 1.61352i 0.150925 0.988545i \(-0.451775\pi\)
0.780643 0.624978i \(-0.214892\pi\)
\(734\) 0.431332i 0.0159208i
\(735\) −0.871056 0.609341i −0.0321294 0.0224759i
\(736\) 1.22748i 0.0452454i
\(737\) −37.0358 21.3826i −1.36423 0.787639i
\(738\) 8.63807 + 25.5604i 0.317972 + 0.940892i
\(739\) −4.88879 + 2.82254i −0.179837 + 0.103829i −0.587216 0.809430i \(-0.699776\pi\)
0.407379 + 0.913259i \(0.366443\pi\)
\(740\) 0.0230940 0.0400000i 0.000848953 0.00147043i
\(741\) 41.1257 + 5.94489i 1.51079 + 0.218391i
\(742\) −5.05756 36.7083i −0.185669 1.34760i
\(743\) 12.6489 0.464041 0.232021 0.972711i \(-0.425466\pi\)
0.232021 + 0.972711i \(0.425466\pi\)
\(744\) 0.248342 + 1.51054i 0.00910466 + 0.0553791i
\(745\) −0.972927 + 0.561720i −0.0356453 + 0.0205798i
\(746\) 5.60905 + 9.71516i 0.205362 + 0.355697i
\(747\) −5.66863 + 6.44624i −0.207404 + 0.235855i
\(748\) −15.1267 −0.553086
\(749\) 6.60407 + 2.68907i 0.241308 + 0.0982565i
\(750\) −0.961866 1.17365i −0.0351224 0.0428558i
\(751\) −0.800219 + 1.38602i −0.0292004 + 0.0505766i −0.880256 0.474498i \(-0.842629\pi\)
0.851056 + 0.525075i \(0.175963\pi\)
\(752\) −7.45201 + 4.30242i −0.271747 + 0.156893i
\(753\) 12.8342 + 4.84036i 0.467704 + 0.176393i
\(754\) −4.54127 20.5891i −0.165383 0.749811i
\(755\) −0.360717 −0.0131278
\(756\) 5.62381 12.5448i 0.204536 0.456251i
\(757\) −46.2341 −1.68041 −0.840203 0.542272i \(-0.817564\pi\)
−0.840203 + 0.542272i \(0.817564\pi\)
\(758\) 9.93910 + 5.73834i 0.361004 + 0.208426i
\(759\) −4.24837 + 11.2645i −0.154206 + 0.408877i
\(760\) 0.505231 0.291695i 0.0183266 0.0105809i
\(761\) 29.1876 + 16.8515i 1.05805 + 0.610865i 0.924892 0.380230i \(-0.124155\pi\)
0.133157 + 0.991095i \(0.457488\pi\)
\(762\) 6.44136 5.27901i 0.233346 0.191238i
\(763\) −16.0249 + 12.4502i −0.580141 + 0.450728i
\(764\) 14.2368i 0.515070i
\(765\) 0.463998 0.527647i 0.0167759 0.0190771i
\(766\) −0.325127 + 0.187712i −0.0117473 + 0.00678232i
\(767\) 12.3613 + 3.91212i 0.446340 + 0.141259i
\(768\) 0.280988 + 1.70911i 0.0101393 + 0.0616721i
\(769\) 22.1719 0.799539 0.399769 0.916616i \(-0.369090\pi\)
0.399769 + 0.916616i \(0.369090\pi\)
\(770\) 1.21658 + 0.495373i 0.0438427 + 0.0178520i
\(771\) −13.2019 + 10.8196i −0.475454 + 0.389657i
\(772\) −12.9152 7.45659i −0.464828 0.268369i
\(773\) −1.94637 + 1.12374i −0.0700061 + 0.0404181i −0.534595 0.845109i \(-0.679536\pi\)
0.464588 + 0.885527i \(0.346202\pi\)
\(774\) 27.5603 9.31394i 0.990636 0.334783i