Properties

Label 546.2.bg.a.311.11
Level $546$
Weight $2$
Character 546.311
Analytic conductor $4.360$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bg (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 311.11
Character \(\chi\) \(=\) 546.311
Dual form 546.2.bg.a.467.11

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.658943 + 1.60181i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.00187 + 0.578432i) q^{5} +(1.05774 - 1.37157i) q^{6} +(-0.296298 - 2.62911i) q^{7} +1.00000 q^{8} +(-2.13159 + 2.11100i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.658943 + 1.60181i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.00187 + 0.578432i) q^{5} +(1.05774 - 1.37157i) q^{6} +(-0.296298 - 2.62911i) q^{7} +1.00000 q^{8} +(-2.13159 + 2.11100i) q^{9} +(1.00187 + 0.578432i) q^{10} +(-1.85690 + 3.21624i) q^{11} +(-1.71668 - 0.230243i) q^{12} +(-0.361803 + 3.58735i) q^{13} +(-2.12873 + 1.57116i) q^{14} +(-1.58672 - 1.22366i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.0128016 + 0.0221731i) q^{17} +(2.89398 + 0.790508i) q^{18} +(-0.122255 - 0.211752i) q^{19} -1.15686i q^{20} +(4.01609 - 2.20705i) q^{21} +3.71379 q^{22} +(-2.36531 + 1.36561i) q^{23} +(0.658943 + 1.60181i) q^{24} +(-1.83083 + 3.17109i) q^{25} +(3.28764 - 1.48035i) q^{26} +(-4.78602 - 2.02337i) q^{27} +(2.42502 + 1.05795i) q^{28} -3.51946i q^{29} +(-0.266360 + 1.98597i) q^{30} +(-2.24622 + 3.89056i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(-6.37539 - 0.855076i) q^{33} +0.0256033 q^{34} +(1.81761 + 2.46265i) q^{35} +(-0.762388 - 2.90151i) q^{36} +(-8.29815 + 4.79094i) q^{37} +(-0.122255 + 0.211752i) q^{38} +(-5.98466 + 1.78432i) q^{39} +(-1.00187 + 0.578432i) q^{40} +0.471512i q^{41} +(-3.91940 - 2.37451i) q^{42} -1.24061 q^{43} +(-1.85690 - 3.21624i) q^{44} +(0.914511 - 3.34794i) q^{45} +(2.36531 + 1.36561i) q^{46} +(-0.203606 + 0.117552i) q^{47} +(1.05774 - 1.37157i) q^{48} +(-6.82442 + 1.55800i) q^{49} +3.66166 q^{50} +(-0.0439526 - 0.00589498i) q^{51} +(-2.92584 - 2.10701i) q^{52} +(6.44560 + 3.72137i) q^{53} +(0.640722 + 5.15650i) q^{54} -4.29635i q^{55} +(-0.296298 - 2.62911i) q^{56} +(0.258628 - 0.335362i) q^{57} +(-3.04794 + 1.75973i) q^{58} +(-2.80431 - 1.61907i) q^{59} +(1.85308 - 0.762308i) q^{60} +(10.2453 - 5.91511i) q^{61} +4.49243 q^{62} +(6.18164 + 4.97869i) q^{63} +1.00000 q^{64} +(-1.71256 - 3.80335i) q^{65} +(2.44718 + 5.94879i) q^{66} +(6.24108 + 3.60329i) q^{67} +(-0.0128016 - 0.0221731i) q^{68} +(-3.74606 - 2.88892i) q^{69} +(1.22391 - 2.80542i) q^{70} +14.6757 q^{71} +(-2.13159 + 2.11100i) q^{72} +(-0.784266 + 1.35839i) q^{73} +(8.29815 + 4.79094i) q^{74} +(-6.28590 - 0.843074i) q^{75} +0.244511 q^{76} +(9.00603 + 3.92901i) q^{77} +(4.53760 + 4.29071i) q^{78} +(3.01266 + 5.21808i) q^{79} +(1.00187 + 0.578432i) q^{80} +(0.0873358 - 8.99958i) q^{81} +(0.408341 - 0.235756i) q^{82} -3.64267i q^{83} +(-0.0966863 + 4.58156i) q^{84} -0.0296195i q^{85} +(0.620304 + 1.07440i) q^{86} +(5.63751 - 2.31913i) q^{87} +(-1.85690 + 3.21624i) q^{88} +(-8.11911 + 4.68757i) q^{89} +(-3.35666 + 0.881980i) q^{90} +(9.53874 - 0.111706i) q^{91} -2.73122i q^{92} +(-7.71207 - 1.03435i) q^{93} +(0.203606 + 0.117552i) q^{94} +(0.244969 + 0.141433i) q^{95} +(-1.71668 - 0.230243i) q^{96} -12.7955 q^{97} +(4.76147 + 5.13112i) q^{98} +(-2.83135 - 10.7756i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q - 18q^{2} - 18q^{4} + 36q^{8} + 4q^{9} + O(q^{10}) \) \( 36q - 18q^{2} - 18q^{4} + 36q^{8} + 4q^{9} - 14q^{15} - 18q^{16} + 4q^{18} + 23q^{21} + 14q^{25} - 6q^{26} + 7q^{30} - 18q^{32} + 24q^{33} - 8q^{36} - 10q^{39} - 16q^{42} - 16q^{43} - 9q^{45} + 72q^{47} + 12q^{49} - 28q^{50} - 3q^{51} + 6q^{52} + 9q^{54} - 8q^{57} + 24q^{59} + 7q^{60} - 36q^{61} - 39q^{63} + 36q^{64} + 18q^{65} - 24q^{66} - 72q^{71} + 4q^{72} + 54q^{75} + 20q^{78} + 20q^{79} - 20q^{81} - 24q^{82} - 7q^{84} + 8q^{86} - 24q^{87} - 72q^{89} - 2q^{91} - 14q^{93} - 72q^{94} - 12q^{98} + 72q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0.658943 + 1.60181i 0.380441 + 0.924805i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.00187 + 0.578432i −0.448052 + 0.258683i −0.707007 0.707206i \(-0.749955\pi\)
0.258955 + 0.965889i \(0.416622\pi\)
\(6\) 1.05774 1.37157i 0.431819 0.559940i
\(7\) −0.296298 2.62911i −0.111990 0.993709i
\(8\) 1.00000 0.353553
\(9\) −2.13159 + 2.11100i −0.710529 + 0.703668i
\(10\) 1.00187 + 0.578432i 0.316820 + 0.182916i
\(11\) −1.85690 + 3.21624i −0.559875 + 0.969732i 0.437631 + 0.899155i \(0.355818\pi\)
−0.997506 + 0.0705774i \(0.977516\pi\)
\(12\) −1.71668 0.230243i −0.495563 0.0664655i
\(13\) −0.361803 + 3.58735i −0.100346 + 0.994953i
\(14\) −2.12873 + 1.57116i −0.568926 + 0.419909i
\(15\) −1.58672 1.22366i −0.409688 0.315947i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.0128016 + 0.0221731i −0.00310485 + 0.00537776i −0.867574 0.497309i \(-0.834322\pi\)
0.864469 + 0.502686i \(0.167655\pi\)
\(18\) 2.89398 + 0.790508i 0.682117 + 0.186325i
\(19\) −0.122255 0.211752i −0.0280473 0.0485793i 0.851661 0.524093i \(-0.175596\pi\)
−0.879708 + 0.475514i \(0.842262\pi\)
\(20\) 1.15686i 0.258683i
\(21\) 4.01609 2.20705i 0.876382 0.481617i
\(22\) 3.71379 0.791783
\(23\) −2.36531 + 1.36561i −0.493201 + 0.284750i −0.725902 0.687799i \(-0.758577\pi\)
0.232700 + 0.972548i \(0.425244\pi\)
\(24\) 0.658943 + 1.60181i 0.134506 + 0.326968i
\(25\) −1.83083 + 3.17109i −0.366166 + 0.634219i
\(26\) 3.28764 1.48035i 0.644759 0.290320i
\(27\) −4.78602 2.02337i −0.921070 0.389397i
\(28\) 2.42502 + 1.05795i 0.458286 + 0.199934i
\(29\) 3.51946i 0.653548i −0.945103 0.326774i \(-0.894038\pi\)
0.945103 0.326774i \(-0.105962\pi\)
\(30\) −0.266360 + 1.98597i −0.0486305 + 0.362586i
\(31\) −2.24622 + 3.89056i −0.403432 + 0.698765i −0.994138 0.108122i \(-0.965516\pi\)
0.590705 + 0.806887i \(0.298850\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) −6.37539 0.855076i −1.10981 0.148850i
\(34\) 0.0256033 0.00439092
\(35\) 1.81761 + 2.46265i 0.307233 + 0.416263i
\(36\) −0.762388 2.90151i −0.127065 0.483585i
\(37\) −8.29815 + 4.79094i −1.36421 + 0.787625i −0.990181 0.139793i \(-0.955356\pi\)
−0.374026 + 0.927418i \(0.622023\pi\)
\(38\) −0.122255 + 0.211752i −0.0198324 + 0.0343508i
\(39\) −5.98466 + 1.78432i −0.958313 + 0.285720i
\(40\) −1.00187 + 0.578432i −0.158410 + 0.0914582i
\(41\) 0.471512i 0.0736377i 0.999322 + 0.0368189i \(0.0117225\pi\)
−0.999322 + 0.0368189i \(0.988278\pi\)
\(42\) −3.91940 2.37451i −0.604777 0.366395i
\(43\) −1.24061 −0.189191 −0.0945955 0.995516i \(-0.530156\pi\)
−0.0945955 + 0.995516i \(0.530156\pi\)
\(44\) −1.85690 3.21624i −0.279937 0.484866i
\(45\) 0.914511 3.34794i 0.136327 0.499081i
\(46\) 2.36531 + 1.36561i 0.348746 + 0.201349i
\(47\) −0.203606 + 0.117552i −0.0296990 + 0.0171467i −0.514776 0.857325i \(-0.672125\pi\)
0.485077 + 0.874471i \(0.338792\pi\)
\(48\) 1.05774 1.37157i 0.152671 0.197969i
\(49\) −6.82442 + 1.55800i −0.974916 + 0.222571i
\(50\) 3.66166 0.517837
\(51\) −0.0439526 0.00589498i −0.00615460 0.000825463i
\(52\) −2.92584 2.10701i −0.405741 0.292189i
\(53\) 6.44560 + 3.72137i 0.885372 + 0.511170i 0.872426 0.488747i \(-0.162546\pi\)
0.0129459 + 0.999916i \(0.495879\pi\)
\(54\) 0.640722 + 5.15650i 0.0871912 + 0.701711i
\(55\) 4.29635i 0.579320i
\(56\) −0.296298 2.62911i −0.0395945 0.351329i
\(57\) 0.258628 0.335362i 0.0342561 0.0444198i
\(58\) −3.04794 + 1.75973i −0.400215 + 0.231064i
\(59\) −2.80431 1.61907i −0.365090 0.210785i 0.306221 0.951960i \(-0.400935\pi\)
−0.671311 + 0.741176i \(0.734269\pi\)
\(60\) 1.85308 0.762308i 0.239231 0.0984135i
\(61\) 10.2453 5.91511i 1.31177 0.757353i 0.329384 0.944196i \(-0.393159\pi\)
0.982390 + 0.186844i \(0.0598258\pi\)
\(62\) 4.49243 0.570539
\(63\) 6.18164 + 4.97869i 0.778813 + 0.627256i
\(64\) 1.00000 0.125000
\(65\) −1.71256 3.80335i −0.212417 0.471748i
\(66\) 2.44718 + 5.94879i 0.301227 + 0.732245i
\(67\) 6.24108 + 3.60329i 0.762469 + 0.440212i 0.830182 0.557493i \(-0.188237\pi\)
−0.0677122 + 0.997705i \(0.521570\pi\)
\(68\) −0.0128016 0.0221731i −0.00155243 0.00268888i
\(69\) −3.74606 2.88892i −0.450972 0.347785i
\(70\) 1.22391 2.80542i 0.146285 0.335312i
\(71\) 14.6757 1.74168 0.870841 0.491564i \(-0.163575\pi\)
0.870841 + 0.491564i \(0.163575\pi\)
\(72\) −2.13159 + 2.11100i −0.251210 + 0.248784i
\(73\) −0.784266 + 1.35839i −0.0917914 + 0.158987i −0.908265 0.418395i \(-0.862593\pi\)
0.816474 + 0.577383i \(0.195926\pi\)
\(74\) 8.29815 + 4.79094i 0.964640 + 0.556935i
\(75\) −6.28590 0.843074i −0.725834 0.0973498i
\(76\) 0.244511 0.0280473
\(77\) 9.00603 + 3.92901i 1.02633 + 0.447753i
\(78\) 4.53760 + 4.29071i 0.513782 + 0.485827i
\(79\) 3.01266 + 5.21808i 0.338951 + 0.587080i 0.984236 0.176862i \(-0.0565946\pi\)
−0.645285 + 0.763942i \(0.723261\pi\)
\(80\) 1.00187 + 0.578432i 0.112013 + 0.0646707i
\(81\) 0.0873358 8.99958i 0.00970398 0.999953i
\(82\) 0.408341 0.235756i 0.0450937 0.0260349i
\(83\) 3.64267i 0.399835i −0.979813 0.199917i \(-0.935933\pi\)
0.979813 0.199917i \(-0.0640673\pi\)
\(84\) −0.0966863 + 4.58156i −0.0105493 + 0.499889i
\(85\) 0.0296195i 0.00321269i
\(86\) 0.620304 + 1.07440i 0.0668891 + 0.115855i
\(87\) 5.63751 2.31913i 0.604405 0.248636i
\(88\) −1.85690 + 3.21624i −0.197946 + 0.342852i
\(89\) −8.11911 + 4.68757i −0.860623 + 0.496881i −0.864221 0.503112i \(-0.832188\pi\)
0.00359755 + 0.999994i \(0.498855\pi\)
\(90\) −3.35666 + 0.881980i −0.353823 + 0.0929688i
\(91\) 9.53874 0.111706i 0.999931 0.0117100i
\(92\) 2.73122i 0.284750i
\(93\) −7.71207 1.03435i −0.799704 0.107257i
\(94\) 0.203606 + 0.117552i 0.0210004 + 0.0121246i
\(95\) 0.244969 + 0.141433i 0.0251333 + 0.0145107i
\(96\) −1.71668 0.230243i −0.175208 0.0234991i
\(97\) −12.7955 −1.29918 −0.649591 0.760284i \(-0.725060\pi\)
−0.649591 + 0.760284i \(0.725060\pi\)
\(98\) 4.76147 + 5.13112i 0.480981 + 0.518321i
\(99\) −2.83135 10.7756i −0.284561 1.08299i
\(100\) −1.83083 3.17109i −0.183083 0.317109i
\(101\) 5.03494 8.72077i 0.500995 0.867749i −0.499004 0.866600i \(-0.666301\pi\)
0.999999 0.00114938i \(-0.000365859\pi\)
\(102\) 0.0168711 + 0.0410116i 0.00167049 + 0.00406075i
\(103\) 8.82256 5.09371i 0.869313 0.501898i 0.00219314 0.999998i \(-0.499302\pi\)
0.867120 + 0.498099i \(0.165969\pi\)
\(104\) −0.361803 + 3.58735i −0.0354777 + 0.351769i
\(105\) −2.74699 + 4.53422i −0.268079 + 0.442494i
\(106\) 7.44274i 0.722903i
\(107\) 15.7423 9.08881i 1.52186 0.878648i 0.522197 0.852825i \(-0.325113\pi\)
0.999667 0.0258233i \(-0.00822071\pi\)
\(108\) 4.14530 3.13313i 0.398881 0.301486i
\(109\) 2.40616 + 1.38920i 0.230469 + 0.133061i 0.610788 0.791794i \(-0.290853\pi\)
−0.380320 + 0.924855i \(0.624186\pi\)
\(110\) −3.72075 + 2.14818i −0.354760 + 0.204821i
\(111\) −13.1422 10.1351i −1.24740 0.961981i
\(112\) −2.12873 + 1.57116i −0.201146 + 0.148460i
\(113\) 18.6367i 1.75319i 0.481229 + 0.876595i \(0.340191\pi\)
−0.481229 + 0.876595i \(0.659809\pi\)
\(114\) −0.419746 0.0562970i −0.0393128 0.00527269i
\(115\) 1.57983 2.73634i 0.147320 0.255165i
\(116\) 3.04794 + 1.75973i 0.282995 + 0.163387i
\(117\) −6.80170 8.41052i −0.628817 0.777553i
\(118\) 3.23814i 0.298095i
\(119\) 0.0620885 + 0.0270870i 0.00569164 + 0.00248306i
\(120\) −1.58672 1.22366i −0.144847 0.111704i
\(121\) −1.39612 2.41815i −0.126920 0.219832i
\(122\) −10.2453 5.91511i −0.927564 0.535529i
\(123\) −0.755272 + 0.310699i −0.0681006 + 0.0280148i
\(124\) −2.24622 3.89056i −0.201716 0.349383i
\(125\) 10.0204i 0.896249i
\(126\) 1.22085 7.84280i 0.108762 0.698692i
\(127\) −8.83042 −0.783573 −0.391787 0.920056i \(-0.628143\pi\)
−0.391787 + 0.920056i \(0.628143\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −0.817490 1.98722i −0.0719760 0.174965i
\(130\) −2.43752 + 3.38480i −0.213785 + 0.296866i
\(131\) 7.07051 + 12.2465i 0.617753 + 1.06998i 0.989895 + 0.141804i \(0.0452904\pi\)
−0.372141 + 0.928176i \(0.621376\pi\)
\(132\) 3.92821 5.09371i 0.341907 0.443351i
\(133\) −0.520496 + 0.384164i −0.0451327 + 0.0333113i
\(134\) 7.20658i 0.622554i
\(135\) 5.96537 0.741228i 0.513417 0.0637948i
\(136\) −0.0128016 + 0.0221731i −0.00109773 + 0.00190133i
\(137\) −6.70701 + 11.6169i −0.573019 + 0.992498i 0.423235 + 0.906020i \(0.360894\pi\)
−0.996254 + 0.0864777i \(0.972439\pi\)
\(138\) −0.628846 + 4.68864i −0.0535310 + 0.399123i
\(139\) 15.0565i 1.27708i −0.769589 0.638539i \(-0.779539\pi\)
0.769589 0.638539i \(-0.220461\pi\)
\(140\) −3.04152 + 0.342777i −0.257056 + 0.0289699i
\(141\) −0.322461 0.248678i −0.0271561 0.0209425i
\(142\) −7.33784 12.7095i −0.615778 1.06656i
\(143\) −10.8659 7.82498i −0.908656 0.654358i
\(144\) 2.89398 + 0.790508i 0.241165 + 0.0658757i
\(145\) 2.03577 + 3.52606i 0.169062 + 0.292823i
\(146\) 1.56853 0.129813
\(147\) −6.99252 9.90478i −0.576733 0.816933i
\(148\) 9.58187i 0.787625i
\(149\) 4.72601 + 8.18569i 0.387170 + 0.670598i 0.992068 0.125705i \(-0.0401193\pi\)
−0.604898 + 0.796303i \(0.706786\pi\)
\(150\) 2.41283 + 5.86529i 0.197007 + 0.478899i
\(151\) 12.9798 + 7.49388i 1.05628 + 0.609843i 0.924401 0.381423i \(-0.124566\pi\)
0.131878 + 0.991266i \(0.457899\pi\)
\(152\) −0.122255 0.211752i −0.00991621 0.0171754i
\(153\) −0.0195196 0.0742882i −0.00157807 0.00600584i
\(154\) −1.10039 9.76396i −0.0886718 0.786802i
\(155\) 5.19714i 0.417444i
\(156\) 1.44706 6.07503i 0.115858 0.486392i
\(157\) 1.50376 + 0.868197i 0.120013 + 0.0692896i 0.558805 0.829299i \(-0.311260\pi\)
−0.438792 + 0.898589i \(0.644593\pi\)
\(158\) 3.01266 5.21808i 0.239674 0.415128i
\(159\) −1.71364 + 12.7768i −0.135901 + 1.01327i
\(160\) 1.15686i 0.0914582i
\(161\) 4.29118 + 5.81403i 0.338192 + 0.458210i
\(162\) −7.83753 + 4.42415i −0.615774 + 0.347594i
\(163\) 11.0173 6.36085i 0.862943 0.498221i −0.00205345 0.999998i \(-0.500654\pi\)
0.864997 + 0.501777i \(0.167320\pi\)
\(164\) −0.408341 0.235756i −0.0318861 0.0184094i
\(165\) 6.88194 2.83105i 0.535758 0.220397i
\(166\) −3.15464 + 1.82133i −0.244848 + 0.141363i
\(167\) 6.85544i 0.530490i −0.964181 0.265245i \(-0.914547\pi\)
0.964181 0.265245i \(-0.0854528\pi\)
\(168\) 4.01609 2.20705i 0.309848 0.170277i
\(169\) −12.7382 2.59583i −0.979861 0.199679i
\(170\) −0.0256513 + 0.0148098i −0.00196736 + 0.00113586i
\(171\) 0.707608 + 0.193288i 0.0541121 + 0.0147811i
\(172\) 0.620304 1.07440i 0.0472977 0.0819221i
\(173\) −7.79711 13.5050i −0.592803 1.02677i −0.993853 0.110709i \(-0.964688\pi\)
0.401049 0.916056i \(-0.368646\pi\)
\(174\) −4.82718 3.72266i −0.365947 0.282214i
\(175\) 8.87962 + 3.87387i 0.671236 + 0.292837i
\(176\) 3.71379 0.279937
\(177\) 0.745560 5.55884i 0.0560397 0.417828i
\(178\) 8.11911 + 4.68757i 0.608553 + 0.351348i
\(179\) −3.42830 1.97933i −0.256243 0.147942i 0.366377 0.930467i \(-0.380598\pi\)
−0.622620 + 0.782525i \(0.713932\pi\)
\(180\) 2.44214 + 2.46596i 0.182027 + 0.183802i
\(181\) 0.429161i 0.0318992i −0.999873 0.0159496i \(-0.994923\pi\)
0.999873 0.0159496i \(-0.00507714\pi\)
\(182\) −4.86611 8.20494i −0.360700 0.608190i
\(183\) 16.2259 + 12.5133i 1.19946 + 0.925007i
\(184\) −2.36531 + 1.36561i −0.174373 + 0.100674i
\(185\) 5.54247 9.59983i 0.407490 0.705794i
\(186\) 2.96026 + 7.19602i 0.217057 + 0.527638i
\(187\) −0.0475426 0.0823462i −0.00347666 0.00602175i
\(188\) 0.235104i 0.0171467i
\(189\) −3.90156 + 13.1825i −0.283797 + 0.958884i
\(190\) 0.282866i 0.0205212i
\(191\) 1.57425 0.908893i 0.113909 0.0657652i −0.441963 0.897033i \(-0.645718\pi\)
0.555872 + 0.831268i \(0.312385\pi\)
\(192\) 0.658943 + 1.60181i 0.0475551 + 0.115601i
\(193\) −17.1426 9.89729i −1.23395 0.712422i −0.266100 0.963945i \(-0.585735\pi\)
−0.967851 + 0.251523i \(0.919069\pi\)
\(194\) 6.39773 + 11.0812i 0.459330 + 0.795583i
\(195\) 4.96377 5.24939i 0.355463 0.375917i
\(196\) 2.06294 6.68912i 0.147353 0.477794i
\(197\) 25.2444 1.79859 0.899296 0.437341i \(-0.144080\pi\)
0.899296 + 0.437341i \(0.144080\pi\)
\(198\) −7.91627 + 7.83982i −0.562585 + 0.557152i
\(199\) −5.33963 3.08284i −0.378517 0.218537i 0.298656 0.954361i \(-0.403462\pi\)
−0.677173 + 0.735824i \(0.736795\pi\)
\(200\) −1.83083 + 3.17109i −0.129459 + 0.224230i
\(201\) −1.65927 + 12.3714i −0.117036 + 0.872610i
\(202\) −10.0699 −0.708514
\(203\) −9.25305 + 1.04281i −0.649437 + 0.0731909i
\(204\) 0.0270815 0.0351166i 0.00189608 0.00245865i
\(205\) −0.272738 0.472395i −0.0190488 0.0329935i
\(206\) −8.82256 5.09371i −0.614697 0.354896i
\(207\) 2.15906 7.90410i 0.150065 0.549373i
\(208\) 3.28764 1.48035i 0.227957 0.102644i
\(209\) 0.908061 0.0628119
\(210\) 5.30024 + 0.111853i 0.365751 + 0.00771859i
\(211\) −3.98179 −0.274117 −0.137059 0.990563i \(-0.543765\pi\)
−0.137059 + 0.990563i \(0.543765\pi\)
\(212\) −6.44560 + 3.72137i −0.442686 + 0.255585i
\(213\) 9.67044 + 23.5076i 0.662607 + 1.61072i
\(214\) −15.7423 9.08881i −1.07612 0.621298i
\(215\) 1.24293 0.717608i 0.0847673 0.0489405i
\(216\) −4.78602 2.02337i −0.325647 0.137673i
\(217\) 10.8943 + 4.75278i 0.739550 + 0.322640i
\(218\) 2.77840i 0.188177i
\(219\) −2.69267 0.361144i −0.181954 0.0244039i
\(220\) 3.72075 + 2.14818i 0.250853 + 0.144830i
\(221\) −0.0749110 0.0539463i −0.00503906 0.00362882i
\(222\) −2.20616 + 16.4490i −0.148068 + 1.10398i
\(223\) 2.03477 0.136258 0.0681291 0.997677i \(-0.478297\pi\)
0.0681291 + 0.997677i \(0.478297\pi\)
\(224\) 2.42502 + 1.05795i 0.162029 + 0.0706874i
\(225\) −2.79161 10.6244i −0.186107 0.708290i
\(226\) 16.1398 9.31833i 1.07361 0.619846i
\(227\) −15.6005 9.00694i −1.03544 0.597812i −0.116902 0.993143i \(-0.537296\pi\)
−0.918538 + 0.395332i \(0.870630\pi\)
\(228\) 0.161119 + 0.391659i 0.0106703 + 0.0259383i
\(229\) 9.36691 + 16.2240i 0.618983 + 1.07211i 0.989672 + 0.143353i \(0.0457884\pi\)
−0.370688 + 0.928757i \(0.620878\pi\)
\(230\) −3.15966 −0.208342
\(231\) −0.359073 + 17.0149i −0.0236252 + 1.11950i
\(232\) 3.51946i 0.231064i
\(233\) −17.0834 + 9.86309i −1.11917 + 0.646152i −0.941189 0.337882i \(-0.890290\pi\)
−0.177980 + 0.984034i \(0.556956\pi\)
\(234\) −3.88288 + 10.0957i −0.253832 + 0.659977i
\(235\) 0.135992 0.235545i 0.00887112 0.0153652i
\(236\) 2.80431 1.61907i 0.182545 0.105392i
\(237\) −6.37320 + 8.26413i −0.413984 + 0.536813i
\(238\) −0.00758619 0.0673137i −0.000491740 0.00436330i
\(239\) 20.1417 1.30286 0.651428 0.758711i \(-0.274170\pi\)
0.651428 + 0.758711i \(0.274170\pi\)
\(240\) −0.266360 + 1.98597i −0.0171935 + 0.128194i
\(241\) −11.1359 + 19.2880i −0.717327 + 1.24245i 0.244729 + 0.969592i \(0.421301\pi\)
−0.962055 + 0.272855i \(0.912032\pi\)
\(242\) −1.39612 + 2.41815i −0.0897460 + 0.155445i
\(243\) 14.4732 5.79031i 0.928453 0.371449i
\(244\) 11.8302i 0.757353i
\(245\) 5.93601 5.50838i 0.379238 0.351918i
\(246\) 0.646709 + 0.498735i 0.0412327 + 0.0317982i
\(247\) 0.803863 0.361960i 0.0511486 0.0230310i
\(248\) −2.24622 + 3.89056i −0.142635 + 0.247051i
\(249\) 5.83486 2.40031i 0.369769 0.152113i
\(250\) −8.67790 + 5.01019i −0.548838 + 0.316872i
\(251\) −20.5563 −1.29750 −0.648752 0.761000i \(-0.724709\pi\)
−0.648752 + 0.761000i \(0.724709\pi\)
\(252\) −7.40249 + 2.86411i −0.466313 + 0.180422i
\(253\) 10.1432i 0.637697i
\(254\) 4.41521 + 7.64737i 0.277035 + 0.479839i
\(255\) 0.0474448 0.0195176i 0.00297111 0.00122224i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −5.10857 8.84830i −0.318664 0.551942i 0.661546 0.749905i \(-0.269901\pi\)
−0.980210 + 0.197963i \(0.936567\pi\)
\(258\) −1.31224 + 1.70158i −0.0816963 + 0.105936i
\(259\) 15.0546 + 20.3972i 0.935448 + 1.26742i
\(260\) 4.15008 + 0.418557i 0.257377 + 0.0259578i
\(261\) 7.42960 + 7.50205i 0.459881 + 0.464365i
\(262\) 7.07051 12.2465i 0.436818 0.756590i
\(263\) −24.3841 14.0782i −1.50359 0.868097i −0.999991 0.00415905i \(-0.998676\pi\)
−0.503598 0.863938i \(-0.667991\pi\)
\(264\) −6.37539 0.855076i −0.392378 0.0526263i
\(265\) −8.61025 −0.528923
\(266\) 0.592944 + 0.258681i 0.0363557 + 0.0158607i
\(267\) −12.8586 9.91642i −0.786935 0.606875i
\(268\) −6.24108 + 3.60329i −0.381235 + 0.220106i
\(269\) −14.6822 + 25.4302i −0.895187 + 1.55051i −0.0616140 + 0.998100i \(0.519625\pi\)
−0.833573 + 0.552409i \(0.813709\pi\)
\(270\) −3.62461 4.79555i −0.220587 0.291848i
\(271\) 14.2082 + 24.6093i 0.863085 + 1.49491i 0.868937 + 0.494923i \(0.164804\pi\)
−0.00585211 + 0.999983i \(0.501863\pi\)
\(272\) 0.0256033 0.00155243
\(273\) 6.46442 + 15.2056i 0.391244 + 0.920287i
\(274\) 13.4140 0.810371
\(275\) −6.79933 11.7768i −0.410015 0.710166i
\(276\) 4.37490 1.79972i 0.263338 0.108331i
\(277\) −13.8268 + 23.9486i −0.830769 + 1.43893i 0.0666595 + 0.997776i \(0.478766\pi\)
−0.897429 + 0.441159i \(0.854567\pi\)
\(278\) −13.0393 + 7.52827i −0.782048 + 0.451516i
\(279\) −3.42498 13.0348i −0.205048 0.780375i
\(280\) 1.81761 + 2.46265i 0.108623 + 0.147171i
\(281\) 12.3610 0.737394 0.368697 0.929550i \(-0.379804\pi\)
0.368697 + 0.929550i \(0.379804\pi\)
\(282\) −0.0541311 + 0.403598i −0.00322346 + 0.0240339i
\(283\) 11.8406 + 6.83616i 0.703849 + 0.406367i 0.808779 0.588112i \(-0.200129\pi\)
−0.104930 + 0.994480i \(0.533462\pi\)
\(284\) −7.33784 + 12.7095i −0.435421 + 0.754171i
\(285\) −0.0651280 + 0.485590i −0.00385785 + 0.0287639i
\(286\) −1.34366 + 13.3227i −0.0794523 + 0.787786i
\(287\) 1.23965 0.139708i 0.0731745 0.00824669i
\(288\) −0.762388 2.90151i −0.0449241 0.170973i
\(289\) 8.49967 + 14.7219i 0.499981 + 0.865992i
\(290\) 2.03577 3.52606i 0.119545 0.207057i
\(291\) −8.43148 20.4959i −0.494262 1.20149i
\(292\) −0.784266 1.35839i −0.0458957 0.0794937i
\(293\) 4.20649i 0.245746i 0.992422 + 0.122873i \(0.0392107\pi\)
−0.992422 + 0.122873i \(0.960789\pi\)
\(294\) −5.08153 + 11.0081i −0.296361 + 0.642005i
\(295\) 3.74609 0.218106
\(296\) −8.29815 + 4.79094i −0.482320 + 0.278468i
\(297\) 15.3948 11.6358i 0.893295 0.675177i
\(298\) 4.72601 8.18569i 0.273771 0.474184i
\(299\) −4.04316 8.97928i −0.233822 0.519285i
\(300\) 3.87307 5.02221i 0.223612 0.289958i
\(301\) 0.367590 + 3.26169i 0.0211875 + 0.188001i
\(302\) 14.9878i 0.862448i
\(303\) 17.2867 + 2.31852i 0.993098 + 0.133196i
\(304\) −0.122255 + 0.211752i −0.00701182 + 0.0121448i
\(305\) −6.84299 + 11.8524i −0.391828 + 0.678666i
\(306\) −0.0545756 + 0.0540486i −0.00311988 + 0.00308975i
\(307\) 21.1492 1.20705 0.603524 0.797345i \(-0.293763\pi\)
0.603524 + 0.797345i \(0.293763\pi\)
\(308\) −7.90564 + 5.83494i −0.450466 + 0.332477i
\(309\) 13.9727 + 10.7756i 0.794880 + 0.613003i
\(310\) −4.50085 + 2.59857i −0.255631 + 0.147589i
\(311\) −15.6755 + 27.1507i −0.888874 + 1.53957i −0.0476652 + 0.998863i \(0.515178\pi\)
−0.841208 + 0.540711i \(0.818155\pi\)
\(312\) −5.98466 + 1.78432i −0.338815 + 0.101017i
\(313\) 28.3855 16.3884i 1.60444 0.926325i 0.613858 0.789417i \(-0.289617\pi\)
0.990584 0.136908i \(-0.0437165\pi\)
\(314\) 1.73639i 0.0979903i
\(315\) −9.07306 1.41236i −0.511209 0.0795775i
\(316\) −6.02532 −0.338951
\(317\) 11.1137 + 19.2495i 0.624209 + 1.08116i 0.988693 + 0.149952i \(0.0479120\pi\)
−0.364484 + 0.931210i \(0.618755\pi\)
\(318\) 11.9219 4.90434i 0.668544 0.275022i
\(319\) 11.3194 + 6.53528i 0.633766 + 0.365905i
\(320\) −1.00187 + 0.578432i −0.0560065 + 0.0323354i
\(321\) 24.9318 + 19.2271i 1.39156 + 1.07315i
\(322\) 2.88951 6.62328i 0.161026 0.369101i
\(323\) 0.00626027 0.000348331
\(324\) 7.75019 + 4.57542i 0.430566 + 0.254190i
\(325\) −10.7134 7.71515i −0.594274 0.427960i
\(326\) −11.0173 6.36085i −0.610193 0.352295i
\(327\) −0.639708 + 4.76962i −0.0353759 + 0.263760i
\(328\) 0.471512i 0.0260349i
\(329\) 0.369385 + 0.500472i 0.0203648 + 0.0275919i
\(330\) −5.89273 4.54441i −0.324384 0.250161i
\(331\) 16.0419 9.26179i 0.881742 0.509074i 0.0105099 0.999945i \(-0.496655\pi\)
0.871233 + 0.490871i \(0.163321\pi\)
\(332\) 3.15464 + 1.82133i 0.173133 + 0.0999586i
\(333\) 7.57455 27.7297i 0.415083 1.51958i
\(334\) −5.93699 + 3.42772i −0.324857 + 0.187557i
\(335\) −8.33704 −0.455501
\(336\) −3.91940 2.37451i −0.213821 0.129540i
\(337\) −17.9572 −0.978191 −0.489095 0.872230i \(-0.662673\pi\)
−0.489095 + 0.872230i \(0.662673\pi\)
\(338\) 4.12105 + 12.3295i 0.224155 + 0.670637i
\(339\) −29.8524 + 12.2805i −1.62136 + 0.666985i
\(340\) 0.0256513 + 0.0148098i 0.00139113 + 0.000803172i
\(341\) −8.34198 14.4487i −0.451743 0.782442i
\(342\) −0.186412 0.709450i −0.0100800 0.0383627i
\(343\) 6.11820 + 17.4805i 0.330352 + 0.943858i
\(344\) −1.24061 −0.0668891
\(345\) 5.42412 + 0.727490i 0.292025 + 0.0391668i
\(346\) −7.79711 + 13.5050i −0.419175 + 0.726033i
\(347\) −0.436830 0.252204i −0.0234503 0.0135390i 0.488229 0.872716i \(-0.337643\pi\)
−0.511679 + 0.859177i \(0.670976\pi\)
\(348\) −0.810333 + 6.04179i −0.0434384 + 0.323874i
\(349\) −22.5405 −1.20656 −0.603282 0.797528i \(-0.706141\pi\)
−0.603282 + 0.797528i \(0.706141\pi\)
\(350\) −1.08494 9.62691i −0.0579927 0.514580i
\(351\) 8.99013 16.4371i 0.479858 0.877346i
\(352\) −1.85690 3.21624i −0.0989728 0.171426i
\(353\) −13.8668 8.00600i −0.738055 0.426116i 0.0833068 0.996524i \(-0.473452\pi\)
−0.821362 + 0.570408i \(0.806785\pi\)
\(354\) −5.18688 + 2.13375i −0.275679 + 0.113407i
\(355\) −14.7032 + 8.48889i −0.780364 + 0.450543i
\(356\) 9.37514i 0.496881i
\(357\) −0.00247548 + 0.117303i −0.000131017 + 0.00620832i
\(358\) 3.95866i 0.209222i
\(359\) −7.67875 13.3000i −0.405269 0.701947i 0.589084 0.808072i \(-0.299489\pi\)
−0.994353 + 0.106125i \(0.966156\pi\)
\(360\) 0.914511 3.34794i 0.0481990 0.176452i
\(361\) 9.47011 16.4027i 0.498427 0.863300i
\(362\) −0.371664 + 0.214580i −0.0195342 + 0.0112781i
\(363\) 2.95345 3.82974i 0.155016 0.201009i
\(364\) −4.67263 + 8.31664i −0.244912 + 0.435911i
\(365\) 1.81458i 0.0949795i
\(366\) 2.72383 20.3087i 0.142377 1.06155i
\(367\) −27.0095 15.5939i −1.40988 0.813996i −0.414506 0.910047i \(-0.636045\pi\)
−0.995376 + 0.0960509i \(0.969379\pi\)
\(368\) 2.36531 + 1.36561i 0.123300 + 0.0711875i
\(369\) −0.995362 1.00507i −0.0518165 0.0523218i
\(370\) −11.0849 −0.576278
\(371\) 7.87407 18.0488i 0.408801 0.937048i
\(372\) 4.75181 6.16167i 0.246370 0.319468i
\(373\) 2.30810 + 3.99775i 0.119509 + 0.206996i 0.919573 0.392919i \(-0.128535\pi\)
−0.800064 + 0.599914i \(0.795201\pi\)
\(374\) −0.0475426 + 0.0823462i −0.00245837 + 0.00425802i
\(375\) 16.0507 6.60286i 0.828856 0.340970i
\(376\) −0.203606 + 0.117552i −0.0105002 + 0.00606228i
\(377\) 12.6256 + 1.27335i 0.650249 + 0.0655809i
\(378\) 13.3671 3.21239i 0.687532 0.165227i
\(379\) 3.52362i 0.180996i −0.995897 0.0904982i \(-0.971154\pi\)
0.995897 0.0904982i \(-0.0288459\pi\)
\(380\) −0.244969 + 0.141433i −0.0125666 + 0.00725535i
\(381\) −5.81875 14.1447i −0.298103 0.724653i
\(382\) −1.57425 0.908893i −0.0805456 0.0465030i
\(383\) 1.24813 0.720607i 0.0637763 0.0368213i −0.467773 0.883849i \(-0.654943\pi\)
0.531549 + 0.847027i \(0.321610\pi\)
\(384\) 1.05774 1.37157i 0.0539774 0.0699924i
\(385\) −11.2956 + 1.27300i −0.575676 + 0.0648781i
\(386\) 19.7946i 1.00752i
\(387\) 2.64447 2.61893i 0.134426 0.133128i
\(388\) 6.39773 11.0812i 0.324795 0.562562i
\(389\) 7.08963 + 4.09320i 0.359459 + 0.207533i 0.668843 0.743403i \(-0.266790\pi\)
−0.309385 + 0.950937i \(0.600123\pi\)
\(390\) −7.02799 1.67406i −0.355876 0.0847692i
\(391\) 0.0699283i 0.00353643i
\(392\) −6.82442 + 1.55800i −0.344685 + 0.0786908i
\(393\) −14.9575 + 19.3953i −0.754505 + 0.978366i
\(394\) −12.6222 21.8623i −0.635898 1.10141i
\(395\) −6.03661 3.48524i −0.303735 0.175362i
\(396\) 10.7476 + 2.93578i 0.540088 + 0.147529i
\(397\) −6.43999 11.1544i −0.323214 0.559823i 0.657935 0.753074i \(-0.271430\pi\)
−0.981149 + 0.193252i \(0.938097\pi\)
\(398\) 6.16568i 0.309058i
\(399\) −0.958335 0.580593i −0.0479768 0.0290660i
\(400\) 3.66166 0.183083
\(401\) 4.27201 + 7.39934i 0.213334 + 0.369505i 0.952756 0.303737i \(-0.0982344\pi\)
−0.739422 + 0.673242i \(0.764901\pi\)
\(402\) 11.5436 4.74873i 0.575741 0.236845i
\(403\) −13.1441 9.46558i −0.654755 0.471514i
\(404\) 5.03494 + 8.72077i 0.250498 + 0.433874i
\(405\) 5.11815 + 9.06696i 0.254323 + 0.450541i
\(406\) 5.52962 + 7.49197i 0.274431 + 0.371820i
\(407\) 35.5851i 1.76389i
\(408\) −0.0439526 0.00589498i −0.00217598 0.000291845i
\(409\) 10.1026 17.4982i 0.499542 0.865232i −0.500458 0.865761i \(-0.666835\pi\)
1.00000 0.000529035i \(0.000168397\pi\)
\(410\) −0.272738 + 0.472395i −0.0134695 + 0.0233299i
\(411\) −23.0276 3.08849i −1.13587 0.152344i
\(412\) 10.1874i 0.501898i
\(413\) −3.42579 + 7.85256i −0.168572 + 0.386399i
\(414\) −7.92468 + 2.08225i −0.389477 + 0.102337i
\(415\) 2.10704 + 3.64949i 0.103430 + 0.179147i
\(416\) −2.92584 2.10701i −0.143451 0.103305i
\(417\) 24.1177 9.92140i 1.18105 0.485853i
\(418\) −0.454031 0.786404i −0.0222074 0.0384643i
\(419\) −2.16600 −0.105816 −0.0529081 0.998599i \(-0.516849\pi\)
−0.0529081 + 0.998599i \(0.516849\pi\)
\(420\) −2.55325 4.64607i −0.124586 0.226705i
\(421\) 14.2671i 0.695334i 0.937618 + 0.347667i \(0.113026\pi\)
−0.937618 + 0.347667i \(0.886974\pi\)
\(422\) 1.99089 + 3.44833i 0.0969152 + 0.167862i
\(423\) 0.185852 0.680385i 0.00903641 0.0330815i
\(424\) 6.44560 + 3.72137i 0.313026 + 0.180726i
\(425\) −0.0468753 0.0811904i −0.00227379 0.00393831i
\(426\) 15.5230 20.1287i 0.752092 0.975237i
\(427\) −18.5871 25.1833i −0.899494 1.21871i
\(428\) 18.1776i 0.878648i
\(429\) 5.37409 22.5614i 0.259464 1.08927i
\(430\) −1.24293 0.717608i −0.0599396 0.0346061i
\(431\) −17.2738 + 29.9190i −0.832048 + 1.44115i 0.0643642 + 0.997926i \(0.479498\pi\)
−0.896412 + 0.443222i \(0.853835\pi\)
\(432\) 0.640722 + 5.15650i 0.0308267 + 0.248092i
\(433\) 0.715483i 0.0343839i −0.999852 0.0171920i \(-0.994527\pi\)
0.999852 0.0171920i \(-0.00547264\pi\)
\(434\) −1.33110 11.8111i −0.0638947 0.566950i
\(435\) −4.30662 + 5.58439i −0.206487 + 0.267751i
\(436\) −2.40616 + 1.38920i −0.115234 + 0.0665306i
\(437\) 0.578343 + 0.333907i 0.0276659 + 0.0159729i
\(438\) 1.03357 + 2.51249i 0.0493861 + 0.120051i
\(439\) 15.5035 8.95097i 0.739944 0.427207i −0.0821052 0.996624i \(-0.526164\pi\)
0.822049 + 0.569417i \(0.192831\pi\)
\(440\) 4.29635i 0.204821i
\(441\) 11.2579 17.7274i 0.536091 0.844160i
\(442\) −0.00926333 + 0.0918479i −0.000440612 + 0.00436876i
\(443\) 14.3289 8.27278i 0.680785 0.393052i −0.119366 0.992850i \(-0.538086\pi\)
0.800151 + 0.599799i \(0.204753\pi\)
\(444\) 15.3483 6.31391i 0.728400 0.299645i
\(445\) 5.42288 9.39271i 0.257069 0.445257i
\(446\) −1.01738 1.76216i −0.0481745 0.0834407i
\(447\) −9.99775 + 12.9641i −0.472877 + 0.613180i
\(448\) −0.296298 2.62911i −0.0139988 0.124214i
\(449\) −26.7037 −1.26023 −0.630113 0.776503i \(-0.716991\pi\)
−0.630113 + 0.776503i \(0.716991\pi\)
\(450\) −7.80516 + 7.72978i −0.367939 + 0.364385i
\(451\) −1.51649 0.875548i −0.0714089 0.0412279i
\(452\) −16.1398 9.31833i −0.759153 0.438297i
\(453\) −3.45083 + 25.7292i −0.162134 + 1.20886i
\(454\) 18.0139i 0.845433i
\(455\) −9.49200 + 5.62943i −0.444992 + 0.263912i
\(456\) 0.258628 0.335362i 0.0121114 0.0157048i
\(457\) −32.4759 + 18.7500i −1.51916 + 0.877087i −0.519413 + 0.854523i \(0.673849\pi\)
−0.999745 + 0.0225635i \(0.992817\pi\)
\(458\) 9.36691 16.2240i 0.437687 0.758096i
\(459\) 0.106133 0.0802184i 0.00495387 0.00374427i
\(460\) 1.57983 + 2.73634i 0.0736599 + 0.127583i
\(461\) 8.31097i 0.387080i −0.981092 0.193540i \(-0.938003\pi\)
0.981092 0.193540i \(-0.0619970\pi\)
\(462\) 14.9149 8.19650i 0.693904 0.381336i
\(463\) 28.8122i 1.33902i −0.742805 0.669508i \(-0.766505\pi\)
0.742805 0.669508i \(-0.233495\pi\)
\(464\) −3.04794 + 1.75973i −0.141497 + 0.0816935i
\(465\) 8.32482 3.42462i 0.386054 0.158813i
\(466\) 17.0834 + 9.86309i 0.791372 + 0.456899i
\(467\) 10.3800 + 17.9787i 0.480328 + 0.831953i 0.999745 0.0225677i \(-0.00718413\pi\)
−0.519417 + 0.854521i \(0.673851\pi\)
\(468\) 10.6846 1.68518i 0.493895 0.0778974i
\(469\) 7.62422 17.4761i 0.352054 0.806972i
\(470\) −0.271983 −0.0125457
\(471\) −0.399793 + 2.98083i −0.0184215 + 0.137349i
\(472\) −2.80431 1.61907i −0.129079 0.0745237i
\(473\) 2.30368 3.99009i 0.105923 0.183465i
\(474\) 10.3435 + 1.38729i 0.475095 + 0.0637204i
\(475\) 0.895316 0.0410799
\(476\) −0.0545023 + 0.0402267i −0.00249811 + 0.00184379i
\(477\) −21.5952 + 5.67426i −0.988776 + 0.259806i
\(478\) −10.0708 17.4432i −0.460629 0.797833i
\(479\) 15.1644 + 8.75519i 0.692881 + 0.400035i 0.804690 0.593695i \(-0.202331\pi\)
−0.111809 + 0.993730i \(0.535665\pi\)
\(480\) 1.85308 0.762308i 0.0845810 0.0347944i
\(481\) −14.1845 31.5017i −0.646757 1.43636i
\(482\) 22.2718 1.01445
\(483\) −6.48532 + 10.7048i −0.295092 + 0.487084i
\(484\) 2.79224 0.126920
\(485\) 12.8194 7.40130i 0.582101 0.336076i
\(486\) −12.2511 9.63897i −0.555723 0.437232i
\(487\) −0.122893 0.0709520i −0.00556879 0.00321514i 0.497213 0.867628i \(-0.334357\pi\)
−0.502782 + 0.864413i \(0.667690\pi\)
\(488\) 10.2453 5.91511i 0.463782 0.267765i
\(489\) 17.4487 + 13.4562i 0.789056 + 0.608511i
\(490\) −7.73840 2.38654i −0.349585 0.107813i
\(491\) 10.0187i 0.452138i 0.974111 + 0.226069i \(0.0725875\pi\)
−0.974111 + 0.226069i \(0.927413\pi\)
\(492\) 0.108562 0.809434i 0.00489437 0.0364921i
\(493\) 0.0780373 + 0.0450549i 0.00351463 + 0.00202917i
\(494\) −0.715398 0.515185i −0.0321873 0.0231793i
\(495\) 9.06961 + 9.15806i 0.407649 + 0.411624i
\(496\) 4.49243 0.201716
\(497\) −4.34837 38.5839i −0.195051 1.73073i
\(498\) −4.99616 3.85298i −0.223883 0.172656i
\(499\) 9.05469 5.22772i 0.405343 0.234025i −0.283444 0.958989i \(-0.591477\pi\)
0.688787 + 0.724964i \(0.258144\pi\)
\(500\) 8.67790 + 5.01019i 0.388087 + 0.224062i
\(501\) 10.9811 4.51734i 0.490600 0.201820i
\(502\) 10.2782 + 17.8023i 0.458737 + 0.794556i
\(503\) 13.6155 0.607083 0.303542 0.952818i \(-0.401831\pi\)
0.303542 + 0.952818i \(0.401831\pi\)
\(504\) 6.18164 + 4.97869i 0.275352 + 0.221768i
\(505\) 11.6495i 0.518395i
\(506\) −8.78427 + 5.07160i −0.390508 + 0.225460i
\(507\) −4.23572 22.1147i −0.188115 0.982147i
\(508\) 4.41521 7.64737i 0.195893 0.339297i
\(509\) 8.06558 4.65666i 0.357500 0.206403i −0.310483 0.950579i \(-0.600491\pi\)
0.667984 + 0.744176i \(0.267158\pi\)
\(510\) −0.0406251 0.0313296i −0.00179891 0.00138730i
\(511\) 3.80373 + 1.65943i 0.168267 + 0.0734090i
\(512\) 1.00000 0.0441942
\(513\) 0.156663 + 1.26082i 0.00691685 + 0.0556665i
\(514\) −5.10857 + 8.84830i −0.225329 + 0.390282i
\(515\) −5.89273 + 10.2065i −0.259665 + 0.449753i
\(516\) 2.12973 + 0.285642i 0.0937560 + 0.0125747i
\(517\) 0.873127i 0.0384001i
\(518\) 10.1372 23.2363i 0.445401 1.02094i
\(519\) 16.4946 21.3885i 0.724032 0.938851i
\(520\) −1.71256 3.80335i −0.0751007 0.166788i
\(521\) −6.86110 + 11.8838i −0.300590 + 0.520637i −0.976270 0.216558i \(-0.930517\pi\)
0.675680 + 0.737195i \(0.263850\pi\)
\(522\) 2.78216 10.1852i 0.121772 0.445796i
\(523\) −23.6617 + 13.6611i −1.03465 + 0.597358i −0.918315 0.395851i \(-0.870450\pi\)
−0.116340 + 0.993209i \(0.537116\pi\)
\(524\) −14.1410 −0.617753
\(525\) −0.354033 + 16.7761i −0.0154513 + 0.732170i
\(526\) 28.1563i 1.22768i
\(527\) −0.0575105 0.0996111i −0.00250520 0.00433913i
\(528\) 2.44718 + 5.94879i 0.106500 + 0.258888i
\(529\) −7.77021 + 13.4584i −0.337835 + 0.585147i
\(530\) 4.30512 + 7.45669i 0.187003 + 0.323898i
\(531\) 9.39549 2.46872i 0.407729 0.107133i
\(532\) −0.0724480 0.642845i −0.00314102 0.0278709i
\(533\) −1.69148 0.170594i −0.0732661 0.00738925i
\(534\) −2.15856 + 16.0941i −0.0934102 + 0.696460i
\(535\) −10.5145 + 18.2117i −0.454582 + 0.787360i
\(536\) 6.24108 + 3.60329i 0.269574 + 0.155638i
\(537\) 0.911455 6.79574i 0.0393322 0.293258i
\(538\) 29.3643 1.26599
\(539\) 7.66133 24.8420i 0.329997 1.07002i
\(540\) −2.34076 + 5.53678i −0.100730 + 0.238265i
\(541\) −5.89940 + 3.40602i −0.253635 + 0.146436i −0.621428 0.783472i \(-0.713447\pi\)
0.367793 + 0.929908i \(0.380114\pi\)
\(542\) 14.2082 24.6093i 0.610293 1.05706i
\(543\) 0.687433 0.282792i 0.0295006 0.0121358i
\(544\) −0.0128016 0.0221731i −0.000548866 0.000950663i
\(545\) −3.21423 −0.137682
\(546\) 9.93626 13.2012i 0.425233 0.564958i
\(547\) 14.2644 0.609901 0.304951 0.952368i \(-0.401360\pi\)
0.304951 + 0.952368i \(0.401360\pi\)
\(548\) −6.70701 11.6169i −0.286509 0.496249i
\(549\) −9.35189 + 34.2364i −0.399129 + 1.46117i
\(550\) −6.79933 + 11.7768i −0.289924 + 0.502164i
\(551\) −0.745255 + 0.430273i −0.0317489 + 0.0183302i
\(552\) −3.74606 2.88892i −0.159443 0.122960i
\(553\) 12.8263 9.46672i 0.545428 0.402566i
\(554\) 27.6535 1.17489
\(555\) 19.0293 + 2.55223i 0.807748 + 0.108336i
\(556\) 13.0393 + 7.52827i 0.552991 + 0.319270i
\(557\) −10.8866 + 18.8561i −0.461279 + 0.798958i −0.999025 0.0441487i \(-0.985942\pi\)
0.537746 + 0.843107i \(0.319276\pi\)
\(558\) −9.57601 + 9.48354i −0.405385 + 0.401470i
\(559\) 0.448855 4.45050i 0.0189846 0.188236i
\(560\) 1.22391 2.80542i 0.0517195 0.118551i
\(561\) 0.100575 0.130416i 0.00424628 0.00550615i
\(562\) −6.18049 10.7049i −0.260708 0.451560i
\(563\) −5.19862 + 9.00428i −0.219096 + 0.379485i −0.954532 0.298109i \(-0.903644\pi\)
0.735436 + 0.677594i \(0.236977\pi\)
\(564\) 0.376592 0.154920i 0.0158574 0.00652331i
\(565\) −10.7800 18.6716i −0.453520 0.785520i
\(566\) 13.6723i 0.574690i
\(567\) −23.6867 + 2.43694i −0.994749 + 0.102342i
\(568\) 14.6757 0.615778
\(569\) 14.6618 8.46500i 0.614655 0.354871i −0.160130 0.987096i \(-0.551191\pi\)
0.774785 + 0.632225i \(0.217858\pi\)
\(570\) 0.453097 0.186392i 0.0189781 0.00780712i
\(571\) 8.19990 14.2026i 0.343155 0.594362i −0.641862 0.766820i \(-0.721838\pi\)
0.985017 + 0.172458i \(0.0551710\pi\)
\(572\) 12.2096 5.49769i 0.510509 0.229870i
\(573\) 2.49321 + 1.92274i 0.104156 + 0.0803236i
\(574\) −0.740818 1.00372i −0.0309211 0.0418944i
\(575\) 10.0008i 0.417063i
\(576\) −2.13159 + 2.11100i −0.0888162 + 0.0879584i
\(577\) −11.8397 + 20.5070i −0.492894 + 0.853718i −0.999966 0.00818553i \(-0.997394\pi\)
0.507072 + 0.861904i \(0.330728\pi\)
\(578\) 8.49967 14.7219i 0.353540 0.612349i
\(579\) 4.55757 33.9809i 0.189406 1.41220i
\(580\) −4.07154 −0.169062
\(581\) −9.57696 + 1.07931i −0.397319 + 0.0447775i
\(582\) −13.5342 + 17.5498i −0.561011 + 0.727463i
\(583\) −23.9376 + 13.8204i −0.991395 + 0.572382i
\(584\) −0.784266 + 1.35839i −0.0324532 + 0.0562106i
\(585\) 11.6794 + 4.49197i 0.482882 + 0.185720i
\(586\) 3.64292 2.10324i 0.150488 0.0868842i
\(587\) 43.3060i 1.78743i 0.448633 + 0.893716i \(0.351911\pi\)
−0.448633 + 0.893716i \(0.648089\pi\)
\(588\) 12.0741 1.10331i 0.497925 0.0454996i
\(589\) 1.09845 0.0452607
\(590\) −1.87304 3.24421i −0.0771120 0.133562i
\(591\) 16.6346 + 40.4368i 0.684258 + 1.66335i
\(592\) 8.29815 + 4.79094i 0.341052 + 0.196906i
\(593\) 18.9754 10.9554i 0.779226 0.449886i −0.0569301 0.998378i \(-0.518131\pi\)
0.836156 + 0.548492i \(0.184798\pi\)
\(594\) −17.7743 7.51436i −0.729287 0.308318i
\(595\) −0.0778729 + 0.00877620i −0.00319248 + 0.000359789i
\(596\) −9.45202 −0.387170
\(597\) 1.41961 10.5845i 0.0581006 0.433194i
\(598\) −5.75471 + 7.99112i −0.235328 + 0.326781i
\(599\) 39.3065 + 22.6936i 1.60602 + 0.927237i 0.990248 + 0.139314i \(0.0444896\pi\)
0.615773 + 0.787923i \(0.288844\pi\)
\(600\) −6.28590 0.843074i −0.256621 0.0344183i
\(601\) 8.20455i 0.334671i 0.985900 + 0.167335i \(0.0535163\pi\)
−0.985900 + 0.167335i \(0.946484\pi\)
\(602\) 2.64091 1.94919i 0.107636 0.0794430i
\(603\) −20.9100 + 5.49421i −0.851520 + 0.223741i
\(604\) −12.9798 + 7.49388i −0.528140 + 0.304922i
\(605\) 2.79747 + 1.61512i 0.113733 + 0.0656640i
\(606\) −6.63547 16.1300i −0.269548 0.655237i
\(607\) −24.0464 + 13.8832i −0.976012 + 0.563501i −0.901064 0.433687i \(-0.857212\pi\)
−0.0749481 + 0.997187i \(0.523879\pi\)
\(608\) 0.244511 0.00991621
\(609\) −7.76761 14.1345i −0.314760 0.572758i
\(610\) 13.6860 0.554129
\(611\) −0.348035 0.772937i −0.0140800 0.0312697i
\(612\) 0.0740952 + 0.0202396i 0.00299512 + 0.000818137i
\(613\) −15.8517 9.15200i −0.640245 0.369646i 0.144464 0.989510i \(-0.453854\pi\)
−0.784709 + 0.619864i \(0.787188\pi\)
\(614\) −10.5746 18.3157i −0.426756 0.739163i
\(615\) 0.576969 0.748155i 0.0232656 0.0301685i
\(616\) 9.00603 + 3.92901i 0.362863 + 0.158304i
\(617\) −22.1693 −0.892502 −0.446251 0.894908i \(-0.647241\pi\)
−0.446251 + 0.894908i \(0.647241\pi\)
\(618\) 2.34559 17.4885i 0.0943533 0.703492i
\(619\) 19.7675 34.2384i 0.794525 1.37616i −0.128616 0.991695i \(-0.541053\pi\)
0.923140 0.384463i \(-0.125613\pi\)
\(620\) 4.50085 + 2.59857i 0.180759 + 0.104361i
\(621\) 14.0836 1.74996i 0.565154 0.0702233i
\(622\) 31.3509 1.25706
\(623\) 14.7298 + 19.9571i 0.590137 + 0.799564i
\(624\) 4.53760 + 4.29071i 0.181649 + 0.171766i
\(625\) −3.35805 5.81632i −0.134322 0.232653i
\(626\) −28.3855 16.3884i −1.13451 0.655011i
\(627\) 0.598361 + 1.45454i 0.0238962 + 0.0580888i
\(628\) −1.50376 + 0.868197i −0.0600066 + 0.0346448i
\(629\) 0.245327i 0.00978184i
\(630\) 3.31339 + 8.56368i 0.132009 + 0.341185i
\(631\) 38.3301i 1.52590i 0.646460 + 0.762948i \(0.276249\pi\)
−0.646460 + 0.762948i \(0.723751\pi\)
\(632\) 3.01266 + 5.21808i 0.119837 + 0.207564i
\(633\) −2.62377 6.37806i −0.104286 0.253505i
\(634\) 11.1137 19.2495i 0.441382 0.764497i
\(635\) 8.84697 5.10780i 0.351081 0.202697i
\(636\) −10.2082 7.87246i −0.404782 0.312163i
\(637\) −3.12000 25.0453i −0.123619 0.992330i
\(638\) 13.0706i 0.517468i
\(639\) −31.2825 + 30.9804i −1.23752 + 1.22557i
\(640\) 1.00187 + 0.578432i 0.0396026 + 0.0228645i
\(641\) −13.7967 7.96553i −0.544937 0.314620i 0.202140 0.979357i \(-0.435210\pi\)
−0.747077 + 0.664737i \(0.768544\pi\)
\(642\) 4.18528 31.2051i 0.165180 1.23157i
\(643\) 20.5219 0.809303 0.404652 0.914471i \(-0.367393\pi\)
0.404652 + 0.914471i \(0.367393\pi\)
\(644\) −7.18068 + 0.809256i −0.282959 + 0.0318892i
\(645\) 1.96849 + 1.51808i 0.0775094 + 0.0597743i
\(646\) −0.00313014 0.00542155i −0.000123154 0.000213308i
\(647\) 17.2187 29.8237i 0.676938 1.17249i −0.298960 0.954266i \(-0.596640\pi\)
0.975898 0.218226i \(-0.0700269\pi\)
\(648\) 0.0873358 8.99958i 0.00343088 0.353537i
\(649\) 10.4146 6.01288i 0.408809 0.236026i
\(650\) −1.32480 + 13.1357i −0.0519629 + 0.515224i
\(651\) −0.434357 + 20.5823i −0.0170238 + 0.806685i
\(652\) 12.7217i 0.498221i
\(653\) 15.3842 8.88210i 0.602032 0.347583i −0.167808 0.985820i \(-0.553669\pi\)
0.769841 + 0.638236i \(0.220336\pi\)
\(654\) 4.45046 1.83081i 0.174027 0.0715902i
\(655\) −14.1675 8.17963i −0.553571 0.319604i
\(656\) 0.408341 0.235756i 0.0159430 0.00920472i
\(657\) −1.19583 4.55112i −0.0466538 0.177556i
\(658\) 0.248729 0.570132i 0.00969646 0.0222261i
\(659\) 9.50676i 0.370331i 0.982707 + 0.185165i \(0.0592821\pi\)
−0.982707 + 0.185165i \(0.940718\pi\)
\(660\) −0.989207 + 7.37546i −0.0385048 + 0.287089i
\(661\) 17.2613 29.8975i 0.671387 1.16288i −0.306124 0.951992i \(-0.599032\pi\)
0.977511 0.210885i \(-0.0676345\pi\)
\(662\) −16.0419 9.26179i −0.623486 0.359970i
\(663\) 0.0370496 0.155541i 0.00143889 0.00604070i
\(664\) 3.64267i 0.141363i
\(665\) 0.299258 0.685956i 0.0116047 0.0266002i
\(666\) −27.8019 + 7.30510i −1.07730 + 0.283067i
\(667\) 4.80622 + 8.32462i 0.186098 + 0.322331i
\(668\) 5.93699 + 3.42772i 0.229709 + 0.132622i
\(669\) 1.34080 + 3.25931i 0.0518382 + 0.126012i
\(670\) 4.16852 + 7.22009i 0.161044 + 0.278936i
\(671\) 43.9350i 1.69609i
\(672\) −0.0966863 + 4.58156i −0.00372975 + 0.176737i
\(673\) −30.8952 −1.19092 −0.595460 0.803385i \(-0.703030\pi\)
−0.595460 + 0.803385i \(0.703030\pi\)
\(674\) 8.97860 + 15.5514i 0.345843 + 0.599017i
\(675\) 15.1787 11.4725i 0.584228 0.441576i
\(676\) 8.61715 9.73369i 0.331429 0.374373i
\(677\) −23.5469 40.7844i −0.904979 1.56747i −0.820945 0.571007i \(-0.806553\pi\)
−0.0840345 0.996463i \(-0.526781\pi\)
\(678\) 25.5614 + 19.7127i 0.981680 + 0.757061i
\(679\) 3.79127 + 33.6406i 0.145495 + 1.29101i
\(680\) 0.0296195i 0.00113586i
\(681\) 4.14758 30.9241i 0.158935 1.18501i
\(682\) −8.34198 + 14.4487i −0.319431 + 0.553270i
\(683\) −7.64632 + 13.2438i −0.292578 + 0.506760i −0.974419 0.224741i \(-0.927847\pi\)
0.681840 + 0.731501i \(0.261180\pi\)
\(684\) −0.521196 + 0.516163i −0.0199284 + 0.0197360i
\(685\) 15.5182i 0.592920i
\(686\) 12.0794 14.0388i 0.461195 0.536003i
\(687\) −19.8155 + 25.6947i −0.756007 + 0.980313i
\(688\) 0.620304 + 1.07440i 0.0236489 + 0.0409610i
\(689\) −15.6819 + 21.7762i −0.597433 + 0.829609i
\(690\) −2.08203 5.06117i −0.0792617 0.192675i
\(691\) −6.72191 11.6427i −0.255713 0.442909i 0.709376 0.704831i \(-0.248977\pi\)
−0.965089 + 0.261922i \(0.915644\pi\)
\(692\) 15.5942 0.592803
\(693\) −27.4913 + 10.6367i −1.04431 + 0.404055i
\(694\) 0.504408i 0.0191471i
\(695\) 8.70919 + 15.0848i 0.330358 + 0.572197i
\(696\) 5.63751 2.31913i 0.213689 0.0879062i
\(697\) −0.0104549 0.00603612i −0.000396006 0.000228634i
\(698\) 11.2702 + 19.5206i 0.426585 + 0.738866i
\(699\) −27.0558 20.8651i −1.02334 0.789190i
\(700\) −7.79468 + 5.75304i −0.294611 + 0.217445i
\(701\) 44.2310i 1.67058i 0.549809 + 0.835290i \(0.314700\pi\)
−0.549809 + 0.835290i \(0.685300\pi\)
\(702\) −18.7300 + 0.432860i −0.706918 + 0.0163372i
\(703\) 2.02898 + 1.17143i 0.0765246 + 0.0441815i
\(704\) −1.85690 + 3.21624i −0.0699844 + 0.121216i
\(705\) 0.466908 + 0.0626224i 0.0175848 + 0.00235850i
\(706\) 16.0120i 0.602619i
\(707\) −24.4197 10.6534i −0.918397 0.400664i
\(708\) 4.44132 + 3.42509i 0.166915 + 0.128723i
\(709\) 34.4905 19.9131i 1.29532 0.747852i 0.315726 0.948850i \(-0.397752\pi\)
0.979592 + 0.200998i \(0.0644185\pi\)
\(710\) 14.7032 + 8.48889i 0.551801 + 0.318582i
\(711\) −17.4371 4.76307i −0.653944 0.178629i
\(712\) −8.11911 + 4.68757i −0.304276 + 0.175674i
\(713\) 12.2698i 0.459509i
\(714\) 0.102825 0.0565076i 0.00384813 0.00211474i
\(715\) 15.4125 + 1.55443i 0.576396 + 0.0581325i
\(716\) 3.42830 1.97933i 0.128121 0.0739710i
\(717\) 13.2722 + 32.2631i 0.495659 + 1.20489i
\(718\) −7.67875 + 13.3000i −0.286569 + 0.496351i
\(719\) 13.8793 + 24.0396i 0.517609 + 0.896525i 0.999791 + 0.0204540i \(0.00651117\pi\)
−0.482182 + 0.876071i \(0.660155\pi\)
\(720\) −3.35666 + 0.881980i −0.125095 + 0.0328694i
\(721\) −16.0060 21.6862i −0.596095 0.807637i
\(722\) −18.9402 −0.704882
\(723\) −38.2336 5.12794i −1.42192 0.190710i
\(724\) 0.371664 + 0.214580i 0.0138128 + 0.00797481i
\(725\) 11.1605 + 6.44355i 0.414492 + 0.239307i
\(726\) −4.79338 0.642895i −0.177899 0.0238601i
\(727\) 34.8578i 1.29281i −0.762996 0.646403i \(-0.776273\pi\)
0.762996 0.646403i \(-0.223727\pi\)
\(728\) 9.53874 0.111706i 0.353529 0.00414012i
\(729\) 18.8120 + 19.3678i 0.696739 + 0.717324i
\(730\) −1.57147 + 0.907290i −0.0581628 + 0.0335803i
\(731\) 0.0158818 0.0275081i 0.000587410 0.00101742i
\(732\) −18.9498 + 7.79545i −0.700404 + 0.288128i
\(733\) −17.9806 31.1434i −0.664130 1.15031i −0.979520 0.201345i \(-0.935469\pi\)
0.315390 0.948962i \(-0.397865\pi\)
\(734\) 31.1878i 1.15116i
\(735\) 12.7349 + 5.87865i 0.469733 + 0.216837i
\(736\) 2.73122i 0.100674i
\(737\) −23.1781 + 13.3819i −0.853775 + 0.492927i
\(738\) −0.372734 + 1.36454i −0.0137205 + 0.0502295i
\(739\) 23.0900 + 13.3310i 0.849378 + 0.490389i 0.860441 0.509550i \(-0.170188\pi\)
−0.0110630 + 0.999939i \(0.503522\pi\)
\(740\) 5.54247 + 9.59983i 0.203745 + 0.352897i
\(741\) 1.10949 + 1.04912i 0.0407582 + 0.0385405i
\(742\) −19.5678 + 2.20527i −0.718355 + 0.0809579i
\(743\) 24.5770 0.901644 0.450822 0.892614i \(-0.351131\pi\)
0.450822 + 0.892614i \(0.351131\pi\)
\(744\) −7.71207 1.03435i −0.282738 0.0379212i
\(745\) −9.46974 5.46736i −0.346944 0.200308i
\(746\) 2.30810 3.99775i 0.0845057 0.146368i
\(747\) 7.68968 + 7.76466i 0.281351 + 0.284094i
\(748\) 0.0950852 0.00347666
\(749\) −28.5599 38.6951i −1.04355 1.41389i
\(750\) −13.7436 10.5989i −0.501846 0.387018i
\(751\) −0.764556 1.32425i −0.0278990 0.0483226i 0.851739 0.523967i \(-0.175548\pi\)
−0.879638 + 0.475644i \(0.842215\pi\)
\(752\) 0.203606 + 0.117552i 0.00742475 + 0.00428668i
\(753\) −13.5455 32.9273i −0.493624 1.19994i
\(754\) −5.21002 11.5707i −0.189738 0.421381i
\(755\) −17.3388 −0.631024
\(756\) −9.46558 9.97009i −0.344260 0.362609i
\(757\) −20.0619 −0.729164 −0.364582 0.931171i \(-0.618788\pi\)
−0.364582 + 0.931171i \(0.618788\pi\)
\(758\) −3.05155 + 1.76181i −0.110837 + 0.0639919i
\(759\) 16.2475 6.68379i 0.589746 0.242606i
\(760\) 0.244969 + 0.141433i 0.00888596 + 0.00513031i
\(761\) 19.1290 11.0442i 0.693427 0.400350i −0.111468 0.993768i \(-0.535555\pi\)
0.804895 + 0.593418i \(0.202222\pi\)
\(762\) −9.34026 + 12.1115i −0.338362 + 0.438754i
\(763\) 2.93941 6.73768i 0.106414 0.243920i
\(764\) 1.81779i 0.0657652i
\(765\) 0.0625269 + 0.0631366i 0.00226066 + 0.00228271i
\(766\) −1.24813 0.720607i −0.0450967 0.0260366i
\(767\) 6.82278 9.47426i 0.246356 0.342096i
\(768\) −1.71668 0.230243i −0.0619453 0.00830819i
\(769\) 33.5491 1.20981 0.604906 0.796297i \(-0.293211\pi\)
0.604906 + 0.796297i \(0.293211\pi\)
\(770\) 6.75024 + 9.14576i 0.243262 + 0.329590i
\(771\) 10.8070 14.0135i 0.389206 0.504683i
\(772\) 17.1426 9.89729i 0.616976 0.356211i
\(773\) −39.2647 22.6695i −1.41225 0.815365i −0.416654 0.909065i \(-0.636797\pi\)
−0.995601 + 0.0936997i \(0.970131\pi\)
\(774\) −3.59029 0.980711i −0.129050