Newspace parameters
Level: | \( N \) | \(=\) | \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 546.bg (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.35983195036\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
311.1 | −0.500000 | − | 0.866025i | −1.71076 | − | 0.270722i | −0.500000 | + | 0.866025i | 2.20332 | − | 1.27209i | 0.620929 | + | 1.61693i | 2.32714 | − | 1.25873i | 1.00000 | 2.85342 | + | 0.926282i | −2.20332 | − | 1.27209i | ||
311.2 | −0.500000 | − | 0.866025i | −1.63622 | − | 0.568150i | −0.500000 | + | 0.866025i | −1.08726 | + | 0.627730i | 0.326076 | + | 1.70108i | 1.14208 | − | 2.38656i | 1.00000 | 2.35441 | + | 1.85923i | 1.08726 | + | 0.627730i | ||
311.3 | −0.500000 | − | 0.866025i | −1.62062 | + | 0.611211i | −0.500000 | + | 0.866025i | 0.0759308 | − | 0.0438386i | 1.33964 | + | 1.09790i | −2.62099 | − | 0.361112i | 1.00000 | 2.25284 | − | 1.98109i | −0.0759308 | − | 0.0438386i | ||
311.4 | −0.500000 | − | 0.866025i | −1.34147 | + | 1.09565i | −0.500000 | + | 0.866025i | −2.44950 | + | 1.41422i | 1.61960 | + | 0.613923i | −2.60728 | + | 0.449563i | 1.00000 | 0.599095 | − | 2.93957i | 2.44950 | + | 1.41422i | ||
311.5 | −0.500000 | − | 0.866025i | −1.31014 | − | 1.13293i | −0.500000 | + | 0.866025i | −1.08726 | + | 0.627730i | −0.326076 | + | 1.70108i | −1.14208 | + | 2.38656i | 1.00000 | 0.432936 | + | 2.96860i | 1.08726 | + | 0.627730i | ||
311.6 | −0.500000 | − | 0.866025i | −1.08983 | − | 1.34620i | −0.500000 | + | 0.866025i | 2.20332 | − | 1.27209i | −0.620929 | + | 1.61693i | −2.32714 | + | 1.25873i | 1.00000 | −0.624526 | + | 2.93427i | −2.20332 | − | 1.27209i | ||
311.7 | −0.500000 | − | 0.866025i | −0.924091 | + | 1.46494i | −0.500000 | + | 0.866025i | 3.23425 | − | 1.86729i | 1.73072 | + | 0.0678152i | −0.481958 | − | 2.60148i | 1.00000 | −1.29211 | − | 2.70748i | −3.23425 | − | 1.86729i | ||
311.8 | −0.500000 | − | 0.866025i | −0.418670 | + | 1.68069i | −0.500000 | + | 0.866025i | 0.0916492 | − | 0.0529137i | 1.66485 | − | 0.477766i | 2.29863 | + | 1.31008i | 1.00000 | −2.64943 | − | 1.40731i | −0.0916492 | − | 0.0529137i | ||
311.9 | −0.500000 | − | 0.866025i | −0.280988 | − | 1.70911i | −0.500000 | + | 0.866025i | 0.0759308 | − | 0.0438386i | −1.33964 | + | 1.09790i | 2.62099 | + | 0.361112i | 1.00000 | −2.84209 | + | 0.960476i | −0.0759308 | − | 0.0438386i | ||
311.10 | −0.500000 | − | 0.866025i | 0.278126 | − | 1.70957i | −0.500000 | + | 0.866025i | −2.44950 | + | 1.41422i | −1.61960 | + | 0.613923i | 2.60728 | − | 0.449563i | 1.00000 | −2.84529 | − | 0.950954i | 2.44950 | + | 1.41422i | ||
311.11 | −0.500000 | − | 0.866025i | 0.658943 | + | 1.60181i | −0.500000 | + | 0.866025i | −1.00187 | + | 0.578432i | 1.05774 | − | 1.37157i | −0.296298 | − | 2.62911i | 1.00000 | −2.13159 | + | 2.11100i | 1.00187 | + | 0.578432i | ||
311.12 | −0.500000 | − | 0.866025i | 0.806632 | − | 1.53276i | −0.500000 | + | 0.866025i | 3.23425 | − | 1.86729i | −1.73072 | + | 0.0678152i | 0.481958 | + | 2.60148i | 1.00000 | −1.69869 | − | 2.47274i | −3.23425 | − | 1.86729i | ||
311.13 | −0.500000 | − | 0.866025i | 0.909476 | + | 1.47406i | −0.500000 | + | 0.866025i | −3.26421 | + | 1.88459i | 0.821836 | − | 1.52466i | −0.385108 | + | 2.61757i | 1.00000 | −1.34571 | + | 2.68124i | 3.26421 | + | 1.88459i | ||
311.14 | −0.500000 | − | 0.866025i | 1.24618 | − | 1.20292i | −0.500000 | + | 0.866025i | 0.0916492 | − | 0.0529137i | −1.66485 | − | 0.477766i | −2.29863 | − | 1.31008i | 1.00000 | 0.105953 | − | 2.99813i | −0.0916492 | − | 0.0529137i | ||
311.15 | −0.500000 | − | 0.866025i | 1.40752 | + | 1.00940i | −0.500000 | + | 0.866025i | 2.19770 | − | 1.26884i | 0.170404 | − | 1.72365i | −2.61925 | − | 0.373536i | 1.00000 | 0.962231 | + | 2.84150i | −2.19770 | − | 1.26884i | ||
311.16 | −0.500000 | − | 0.866025i | 1.57792 | + | 0.714250i | −0.500000 | + | 0.866025i | 2.19770 | − | 1.26884i | −0.170404 | − | 1.72365i | 2.61925 | + | 0.373536i | 1.00000 | 1.97969 | + | 2.25407i | −2.19770 | − | 1.26884i | ||
311.17 | −0.500000 | − | 0.866025i | 1.71668 | − | 0.230243i | −0.500000 | + | 0.866025i | −1.00187 | + | 0.578432i | −1.05774 | − | 1.37157i | 0.296298 | + | 2.62911i | 1.00000 | 2.89398 | − | 0.790508i | 1.00187 | + | 0.578432i | ||
311.18 | −0.500000 | − | 0.866025i | 1.73131 | + | 0.0505991i | −0.500000 | + | 0.866025i | −3.26421 | + | 1.88459i | −0.821836 | − | 1.52466i | 0.385108 | − | 2.61757i | 1.00000 | 2.99488 | + | 0.175206i | 3.26421 | + | 1.88459i | ||
467.1 | −0.500000 | + | 0.866025i | −1.71076 | + | 0.270722i | −0.500000 | − | 0.866025i | 2.20332 | + | 1.27209i | 0.620929 | − | 1.61693i | 2.32714 | + | 1.25873i | 1.00000 | 2.85342 | − | 0.926282i | −2.20332 | + | 1.27209i | ||
467.2 | −0.500000 | + | 0.866025i | −1.63622 | + | 0.568150i | −0.500000 | − | 0.866025i | −1.08726 | − | 0.627730i | 0.326076 | − | 1.70108i | 1.14208 | + | 2.38656i | 1.00000 | 2.35441 | − | 1.85923i | 1.08726 | − | 0.627730i | ||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
39.d | odd | 2 | 1 | inner |
273.ba | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 546.2.bg.a | ✓ | 36 |
3.b | odd | 2 | 1 | 546.2.bg.b | yes | 36 | |
7.d | odd | 6 | 1 | inner | 546.2.bg.a | ✓ | 36 |
13.b | even | 2 | 1 | 546.2.bg.b | yes | 36 | |
21.g | even | 6 | 1 | 546.2.bg.b | yes | 36 | |
39.d | odd | 2 | 1 | inner | 546.2.bg.a | ✓ | 36 |
91.s | odd | 6 | 1 | 546.2.bg.b | yes | 36 | |
273.ba | even | 6 | 1 | inner | 546.2.bg.a | ✓ | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
546.2.bg.a | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
546.2.bg.a | ✓ | 36 | 7.d | odd | 6 | 1 | inner |
546.2.bg.a | ✓ | 36 | 39.d | odd | 2 | 1 | inner |
546.2.bg.a | ✓ | 36 | 273.ba | even | 6 | 1 | inner |
546.2.bg.b | yes | 36 | 3.b | odd | 2 | 1 | |
546.2.bg.b | yes | 36 | 13.b | even | 2 | 1 | |
546.2.bg.b | yes | 36 | 21.g | even | 6 | 1 | |
546.2.bg.b | yes | 36 | 91.s | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{18} - 26 T_{5}^{16} + 475 T_{5}^{14} - 3 T_{5}^{13} - 4279 T_{5}^{12} - 111 T_{5}^{11} + 27980 T_{5}^{10} + 3489 T_{5}^{9} - 89641 T_{5}^{8} - 38184 T_{5}^{7} + 195820 T_{5}^{6} + 233430 T_{5}^{5} + 48754 T_{5}^{4} + \cdots + 12 \)
acting on \(S_{2}^{\mathrm{new}}(546, [\chi])\).