Properties

Label 546.2.a.c
Level $546$
Weight $2$
Character orbit 546.a
Self dual yes
Analytic conductor $4.360$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{7} - q^{8} + q^{9} - q^{10} + 3q^{11} + q^{12} - q^{13} + q^{14} + q^{15} + q^{16} + 5q^{17} - q^{18} + q^{19} + q^{20} - q^{21} - 3q^{22} + 3q^{23} - q^{24} - 4q^{25} + q^{26} + q^{27} - q^{28} + 5q^{29} - q^{30} + 4q^{31} - q^{32} + 3q^{33} - 5q^{34} - q^{35} + q^{36} - 5q^{37} - q^{38} - q^{39} - q^{40} - 8q^{41} + q^{42} - q^{43} + 3q^{44} + q^{45} - 3q^{46} + 8q^{47} + q^{48} + q^{49} + 4q^{50} + 5q^{51} - q^{52} + 6q^{53} - q^{54} + 3q^{55} + q^{56} + q^{57} - 5q^{58} + q^{60} + 13q^{61} - 4q^{62} - q^{63} + q^{64} - q^{65} - 3q^{66} - 10q^{67} + 5q^{68} + 3q^{69} + q^{70} + 8q^{71} - q^{72} - 15q^{73} + 5q^{74} - 4q^{75} + q^{76} - 3q^{77} + q^{78} + 6q^{79} + q^{80} + q^{81} + 8q^{82} - 2q^{83} - q^{84} + 5q^{85} + q^{86} + 5q^{87} - 3q^{88} - 2q^{89} - q^{90} + q^{91} + 3q^{92} + 4q^{93} - 8q^{94} + q^{95} - q^{96} - 2q^{97} - q^{98} + 3q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 1.00000 −1.00000 −1.00000 −1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(7\) \(1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 546.2.a.c 1
3.b odd 2 1 1638.2.a.o 1
4.b odd 2 1 4368.2.a.h 1
7.b odd 2 1 3822.2.a.e 1
13.b even 2 1 7098.2.a.z 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.a.c 1 1.a even 1 1 trivial
1638.2.a.o 1 3.b odd 2 1
3822.2.a.e 1 7.b odd 2 1
4368.2.a.h 1 4.b odd 2 1
7098.2.a.z 1 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(546))\):

\( T_{5} - 1 \)
\( T_{11} - 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( -1 + T \)
$5$ \( -1 + T \)
$7$ \( 1 + T \)
$11$ \( -3 + T \)
$13$ \( 1 + T \)
$17$ \( -5 + T \)
$19$ \( -1 + T \)
$23$ \( -3 + T \)
$29$ \( -5 + T \)
$31$ \( -4 + T \)
$37$ \( 5 + T \)
$41$ \( 8 + T \)
$43$ \( 1 + T \)
$47$ \( -8 + T \)
$53$ \( -6 + T \)
$59$ \( T \)
$61$ \( -13 + T \)
$67$ \( 10 + T \)
$71$ \( -8 + T \)
$73$ \( 15 + T \)
$79$ \( -6 + T \)
$83$ \( 2 + T \)
$89$ \( 2 + T \)
$97$ \( 2 + T \)
show more
show less