Properties

Label 546.2.a
Level $546$
Weight $2$
Character orbit 546.a
Rep. character $\chi_{546}(1,\cdot)$
Character field $\Q$
Dimension $13$
Newform subspaces $10$
Sturm bound $224$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(224\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(546))\).

Total New Old
Modular forms 120 13 107
Cusp forms 105 13 92
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)\(13\)FrickeDim.
\(+\)\(+\)\(+\)\(-\)\(-\)\(1\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(2\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(1\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(2\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(2\)
Plus space\(+\)\(1\)
Minus space\(-\)\(12\)

Trace form

\( 13q + q^{2} + q^{3} + 13q^{4} + 6q^{5} + q^{6} + q^{7} + q^{8} + 13q^{9} + O(q^{10}) \) \( 13q + q^{2} + q^{3} + 13q^{4} + 6q^{5} + q^{6} + q^{7} + q^{8} + 13q^{9} + 6q^{10} + 12q^{11} + q^{12} + q^{13} + q^{14} + 6q^{15} + 13q^{16} + 2q^{17} + q^{18} + 4q^{19} + 6q^{20} - 3q^{21} + 4q^{22} + q^{24} + 27q^{25} + q^{26} + q^{27} + q^{28} + 6q^{29} - 2q^{30} + 16q^{31} + q^{32} - 4q^{33} + 18q^{34} - 2q^{35} + 13q^{36} - 10q^{37} + 4q^{38} + q^{39} + 6q^{40} + 10q^{41} + q^{42} + 4q^{43} + 12q^{44} + 6q^{45} - 16q^{46} - 16q^{47} + q^{48} + 13q^{49} - q^{50} + 2q^{51} + q^{52} + 14q^{53} + q^{54} + 8q^{55} + q^{56} - 28q^{57} + 6q^{58} + 28q^{59} + 6q^{60} - 18q^{61} - 32q^{62} + q^{63} + 13q^{64} - 2q^{65} - 4q^{66} - 4q^{67} + 2q^{68} + 8q^{69} - 10q^{70} - 8q^{71} + q^{72} - 38q^{73} + 6q^{74} - 33q^{75} + 4q^{76} + 12q^{77} - 3q^{78} + 6q^{80} + 13q^{81} - 14q^{82} - 12q^{83} - 3q^{84} - 36q^{85} - 20q^{86} - 10q^{87} + 4q^{88} - 6q^{89} + 6q^{90} - 3q^{91} - 32q^{93} - 24q^{94} - 40q^{95} + q^{96} - 30q^{97} + q^{98} + 12q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(546))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3 7 13
546.2.a.a \(1\) \(4.360\) \(\Q\) None \(-1\) \(-1\) \(-1\) \(-1\) \(+\) \(+\) \(+\) \(-\) \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
546.2.a.b \(1\) \(4.360\) \(\Q\) None \(-1\) \(1\) \(-2\) \(-1\) \(+\) \(-\) \(+\) \(-\) \(q-q^{2}+q^{3}+q^{4}-2q^{5}-q^{6}-q^{7}+\cdots\)
546.2.a.c \(1\) \(4.360\) \(\Q\) None \(-1\) \(1\) \(1\) \(-1\) \(+\) \(-\) \(+\) \(+\) \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\)
546.2.a.d \(1\) \(4.360\) \(\Q\) None \(-1\) \(1\) \(3\) \(1\) \(+\) \(-\) \(-\) \(-\) \(q-q^{2}+q^{3}+q^{4}+3q^{5}-q^{6}+q^{7}+\cdots\)
546.2.a.e \(1\) \(4.360\) \(\Q\) None \(1\) \(-1\) \(3\) \(-1\) \(-\) \(+\) \(+\) \(+\) \(q+q^{2}-q^{3}+q^{4}+3q^{5}-q^{6}-q^{7}+\cdots\)
546.2.a.f \(1\) \(4.360\) \(\Q\) None \(1\) \(1\) \(-1\) \(1\) \(-\) \(-\) \(-\) \(+\) \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\)
546.2.a.g \(1\) \(4.360\) \(\Q\) None \(1\) \(1\) \(2\) \(1\) \(-\) \(-\) \(-\) \(+\) \(q+q^{2}+q^{3}+q^{4}+2q^{5}+q^{6}+q^{7}+\cdots\)
546.2.a.h \(2\) \(4.360\) \(\Q(\sqrt{57}) \) None \(-2\) \(-2\) \(-1\) \(2\) \(+\) \(+\) \(-\) \(+\) \(q-q^{2}-q^{3}+q^{4}-\beta q^{5}+q^{6}+q^{7}+\cdots\)
546.2.a.i \(2\) \(4.360\) \(\Q(\sqrt{41}) \) None \(2\) \(-2\) \(-1\) \(2\) \(-\) \(+\) \(-\) \(-\) \(q+q^{2}-q^{3}+q^{4}-\beta q^{5}-q^{6}+q^{7}+\cdots\)
546.2.a.j \(2\) \(4.360\) \(\Q(\sqrt{17}) \) None \(2\) \(2\) \(3\) \(-2\) \(-\) \(-\) \(+\) \(-\) \(q+q^{2}+q^{3}+q^{4}+(2-\beta )q^{5}+q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(546))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(546)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(273))\)\(^{\oplus 2}\)