Properties

Label 5445.2.a.e
Level $5445$
Weight $2$
Character orbit 5445.a
Self dual yes
Analytic conductor $43.479$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5445 = 3^{2} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5445.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(43.4785439006\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1815)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} - q^{4} + q^{5} + 2 q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} - q^{4} + q^{5} + 2 q^{7} + 3 q^{8} - q^{10} - 4 q^{13} - 2 q^{14} - q^{16} - 6 q^{17} + 6 q^{19} - q^{20} - 4 q^{23} + q^{25} + 4 q^{26} - 2 q^{28} + 6 q^{29} + 8 q^{31} - 5 q^{32} + 6 q^{34} + 2 q^{35} - 6 q^{37} - 6 q^{38} + 3 q^{40} - 6 q^{41} + 6 q^{43} + 4 q^{46} - 8 q^{47} - 3 q^{49} - q^{50} + 4 q^{52} - 6 q^{53} + 6 q^{56} - 6 q^{58} - 4 q^{61} - 8 q^{62} + 7 q^{64} - 4 q^{65} + 12 q^{67} + 6 q^{68} - 2 q^{70} - 8 q^{71} - 16 q^{73} + 6 q^{74} - 6 q^{76} - 2 q^{79} - q^{80} + 6 q^{82} - 6 q^{85} - 6 q^{86} - 10 q^{89} - 8 q^{91} + 4 q^{92} + 8 q^{94} + 6 q^{95} - 6 q^{97} + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 −1.00000 1.00000 0 2.00000 3.00000 0 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(-1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5445.2.a.e 1
3.b odd 2 1 1815.2.a.e yes 1
11.b odd 2 1 5445.2.a.j 1
15.d odd 2 1 9075.2.a.d 1
33.d even 2 1 1815.2.a.a 1
165.d even 2 1 9075.2.a.n 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1815.2.a.a 1 33.d even 2 1
1815.2.a.e yes 1 3.b odd 2 1
5445.2.a.e 1 1.a even 1 1 trivial
5445.2.a.j 1 11.b odd 2 1
9075.2.a.d 1 15.d odd 2 1
9075.2.a.n 1 165.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5445))\):

\( T_{2} + 1 \) Copy content Toggle raw display
\( T_{7} - 2 \) Copy content Toggle raw display
\( T_{23} + 4 \) Copy content Toggle raw display
\( T_{53} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 4 \) Copy content Toggle raw display
$17$ \( T + 6 \) Copy content Toggle raw display
$19$ \( T - 6 \) Copy content Toggle raw display
$23$ \( T + 4 \) Copy content Toggle raw display
$29$ \( T - 6 \) Copy content Toggle raw display
$31$ \( T - 8 \) Copy content Toggle raw display
$37$ \( T + 6 \) Copy content Toggle raw display
$41$ \( T + 6 \) Copy content Toggle raw display
$43$ \( T - 6 \) Copy content Toggle raw display
$47$ \( T + 8 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T + 4 \) Copy content Toggle raw display
$67$ \( T - 12 \) Copy content Toggle raw display
$71$ \( T + 8 \) Copy content Toggle raw display
$73$ \( T + 16 \) Copy content Toggle raw display
$79$ \( T + 2 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 10 \) Copy content Toggle raw display
$97$ \( T + 6 \) Copy content Toggle raw display
show more
show less