Properties

Label 5415.2.a.z.1.4
Level $5415$
Weight $2$
Character 5415.1
Self dual yes
Analytic conductor $43.239$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5415,2,Mod(1,5415)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5415, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5415.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5415 = 3 \cdot 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5415.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.2389926945\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.8797896.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 8x^{3} + 5x^{2} + 13x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.64661\) of defining polynomial
Character \(\chi\) \(=\) 5415.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.64661 q^{2} +1.00000 q^{3} +0.711327 q^{4} +1.00000 q^{5} +1.64661 q^{6} +4.47988 q^{7} -2.12194 q^{8} +1.00000 q^{9} +1.64661 q^{10} -3.44134 q^{11} +0.711327 q^{12} -2.47988 q^{13} +7.37662 q^{14} +1.00000 q^{15} -4.91667 q^{16} +7.62799 q^{17} +1.64661 q^{18} +0.711327 q^{20} +4.47988 q^{21} -5.66654 q^{22} +3.87057 q^{23} -2.12194 q^{24} +1.00000 q^{25} -4.08340 q^{26} +1.00000 q^{27} +3.18666 q^{28} +8.73456 q^{29} +1.64661 q^{30} +0.422654 q^{31} -3.85195 q^{32} -3.44134 q^{33} +12.5603 q^{34} +4.47988 q^{35} +0.711327 q^{36} -3.90253 q^{37} -2.47988 q^{39} -2.12194 q^{40} -5.29322 q^{41} +7.37662 q^{42} +2.47988 q^{43} -2.44791 q^{44} +1.00000 q^{45} +6.37332 q^{46} -0.677330 q^{47} -4.91667 q^{48} +13.0693 q^{49} +1.64661 q^{50} +7.62799 q^{51} -1.76401 q^{52} -11.4986 q^{53} +1.64661 q^{54} -3.44134 q^{55} -9.50605 q^{56} +14.3824 q^{58} +8.53053 q^{59} +0.711327 q^{60} +8.20233 q^{61} +0.695946 q^{62} +4.47988 q^{63} +3.49067 q^{64} -2.47988 q^{65} -5.66654 q^{66} +9.63457 q^{67} +5.42600 q^{68} +3.87057 q^{69} +7.37662 q^{70} +3.85189 q^{71} -2.12194 q^{72} +16.7852 q^{73} -6.42595 q^{74} +1.00000 q^{75} -15.4168 q^{77} -4.08340 q^{78} -12.1252 q^{79} -4.91667 q^{80} +1.00000 q^{81} -8.71588 q^{82} -2.03855 q^{83} +3.18666 q^{84} +7.62799 q^{85} +4.08340 q^{86} +8.73456 q^{87} +7.30232 q^{88} +3.14511 q^{89} +1.64661 q^{90} -11.1096 q^{91} +2.75324 q^{92} +0.422654 q^{93} -1.11530 q^{94} -3.85195 q^{96} -2.00000 q^{97} +21.5201 q^{98} -3.44134 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + 5 q^{3} + 7 q^{4} + 5 q^{5} + q^{6} + 2 q^{7} + 6 q^{8} + 5 q^{9} + q^{10} + 5 q^{11} + 7 q^{12} + 8 q^{13} + 4 q^{14} + 5 q^{15} + 7 q^{16} + 10 q^{17} + q^{18} + 7 q^{20} + 2 q^{21}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.64661 1.16433 0.582165 0.813071i \(-0.302206\pi\)
0.582165 + 0.813071i \(0.302206\pi\)
\(3\) 1.00000 0.577350
\(4\) 0.711327 0.355663
\(5\) 1.00000 0.447214
\(6\) 1.64661 0.672226
\(7\) 4.47988 1.69324 0.846618 0.532201i \(-0.178635\pi\)
0.846618 + 0.532201i \(0.178635\pi\)
\(8\) −2.12194 −0.750220
\(9\) 1.00000 0.333333
\(10\) 1.64661 0.520704
\(11\) −3.44134 −1.03760 −0.518801 0.854895i \(-0.673621\pi\)
−0.518801 + 0.854895i \(0.673621\pi\)
\(12\) 0.711327 0.205342
\(13\) −2.47988 −0.687795 −0.343898 0.939007i \(-0.611747\pi\)
−0.343898 + 0.939007i \(0.611747\pi\)
\(14\) 7.37662 1.97148
\(15\) 1.00000 0.258199
\(16\) −4.91667 −1.22917
\(17\) 7.62799 1.85006 0.925030 0.379894i \(-0.124039\pi\)
0.925030 + 0.379894i \(0.124039\pi\)
\(18\) 1.64661 0.388110
\(19\) 0 0
\(20\) 0.711327 0.159058
\(21\) 4.47988 0.977590
\(22\) −5.66654 −1.20811
\(23\) 3.87057 0.807069 0.403535 0.914964i \(-0.367782\pi\)
0.403535 + 0.914964i \(0.367782\pi\)
\(24\) −2.12194 −0.433140
\(25\) 1.00000 0.200000
\(26\) −4.08340 −0.800820
\(27\) 1.00000 0.192450
\(28\) 3.18666 0.602222
\(29\) 8.73456 1.62197 0.810983 0.585069i \(-0.198933\pi\)
0.810983 + 0.585069i \(0.198933\pi\)
\(30\) 1.64661 0.300629
\(31\) 0.422654 0.0759108 0.0379554 0.999279i \(-0.487916\pi\)
0.0379554 + 0.999279i \(0.487916\pi\)
\(32\) −3.85195 −0.680935
\(33\) −3.44134 −0.599060
\(34\) 12.5603 2.15408
\(35\) 4.47988 0.757238
\(36\) 0.711327 0.118554
\(37\) −3.90253 −0.641573 −0.320786 0.947152i \(-0.603947\pi\)
−0.320786 + 0.947152i \(0.603947\pi\)
\(38\) 0 0
\(39\) −2.47988 −0.397099
\(40\) −2.12194 −0.335509
\(41\) −5.29322 −0.826662 −0.413331 0.910581i \(-0.635635\pi\)
−0.413331 + 0.910581i \(0.635635\pi\)
\(42\) 7.37662 1.13824
\(43\) 2.47988 0.378178 0.189089 0.981960i \(-0.439446\pi\)
0.189089 + 0.981960i \(0.439446\pi\)
\(44\) −2.44791 −0.369037
\(45\) 1.00000 0.149071
\(46\) 6.37332 0.939695
\(47\) −0.677330 −0.0987987 −0.0493994 0.998779i \(-0.515731\pi\)
−0.0493994 + 0.998779i \(0.515731\pi\)
\(48\) −4.91667 −0.709660
\(49\) 13.0693 1.86705
\(50\) 1.64661 0.232866
\(51\) 7.62799 1.06813
\(52\) −1.76401 −0.244624
\(53\) −11.4986 −1.57945 −0.789725 0.613462i \(-0.789777\pi\)
−0.789725 + 0.613462i \(0.789777\pi\)
\(54\) 1.64661 0.224075
\(55\) −3.44134 −0.464030
\(56\) −9.50605 −1.27030
\(57\) 0 0
\(58\) 14.3824 1.88850
\(59\) 8.53053 1.11058 0.555290 0.831657i \(-0.312607\pi\)
0.555290 + 0.831657i \(0.312607\pi\)
\(60\) 0.711327 0.0918319
\(61\) 8.20233 1.05020 0.525101 0.851040i \(-0.324028\pi\)
0.525101 + 0.851040i \(0.324028\pi\)
\(62\) 0.695946 0.0883852
\(63\) 4.47988 0.564412
\(64\) 3.49067 0.436334
\(65\) −2.47988 −0.307591
\(66\) −5.66654 −0.697503
\(67\) 9.63457 1.17705 0.588525 0.808479i \(-0.299709\pi\)
0.588525 + 0.808479i \(0.299709\pi\)
\(68\) 5.42600 0.657999
\(69\) 3.87057 0.465962
\(70\) 7.37662 0.881675
\(71\) 3.85189 0.457135 0.228567 0.973528i \(-0.426596\pi\)
0.228567 + 0.973528i \(0.426596\pi\)
\(72\) −2.12194 −0.250073
\(73\) 16.7852 1.96456 0.982280 0.187420i \(-0.0600126\pi\)
0.982280 + 0.187420i \(0.0600126\pi\)
\(74\) −6.42595 −0.747002
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) −15.4168 −1.75690
\(78\) −4.08340 −0.462354
\(79\) −12.1252 −1.36420 −0.682098 0.731261i \(-0.738932\pi\)
−0.682098 + 0.731261i \(0.738932\pi\)
\(80\) −4.91667 −0.549700
\(81\) 1.00000 0.111111
\(82\) −8.71588 −0.962507
\(83\) −2.03855 −0.223759 −0.111880 0.993722i \(-0.535687\pi\)
−0.111880 + 0.993722i \(0.535687\pi\)
\(84\) 3.18666 0.347693
\(85\) 7.62799 0.827372
\(86\) 4.08340 0.440324
\(87\) 8.73456 0.936443
\(88\) 7.30232 0.778430
\(89\) 3.14511 0.333381 0.166690 0.986009i \(-0.446692\pi\)
0.166690 + 0.986009i \(0.446692\pi\)
\(90\) 1.64661 0.173568
\(91\) −11.1096 −1.16460
\(92\) 2.75324 0.287045
\(93\) 0.422654 0.0438271
\(94\) −1.11530 −0.115034
\(95\) 0 0
\(96\) −3.85195 −0.393138
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 21.5201 2.17386
\(99\) −3.44134 −0.345867
\(100\) 0.711327 0.0711327
\(101\) −2.01868 −0.200866 −0.100433 0.994944i \(-0.532023\pi\)
−0.100433 + 0.994944i \(0.532023\pi\)
\(102\) 12.5603 1.24366
\(103\) −6.48898 −0.639378 −0.319689 0.947523i \(-0.603578\pi\)
−0.319689 + 0.947523i \(0.603578\pi\)
\(104\) 5.26217 0.515998
\(105\) 4.47988 0.437192
\(106\) −18.9337 −1.83900
\(107\) −3.96145 −0.382968 −0.191484 0.981496i \(-0.561330\pi\)
−0.191484 + 0.981496i \(0.561330\pi\)
\(108\) 0.711327 0.0684475
\(109\) 2.96803 0.284286 0.142143 0.989846i \(-0.454601\pi\)
0.142143 + 0.989846i \(0.454601\pi\)
\(110\) −5.66654 −0.540283
\(111\) −3.90253 −0.370412
\(112\) −22.0261 −2.08127
\(113\) 8.71719 0.820044 0.410022 0.912076i \(-0.365521\pi\)
0.410022 + 0.912076i \(0.365521\pi\)
\(114\) 0 0
\(115\) 3.87057 0.360932
\(116\) 6.21312 0.576874
\(117\) −2.47988 −0.229265
\(118\) 14.0465 1.29308
\(119\) 34.1725 3.13259
\(120\) −2.12194 −0.193706
\(121\) 0.842790 0.0766172
\(122\) 13.5061 1.22278
\(123\) −5.29322 −0.477274
\(124\) 0.300645 0.0269987
\(125\) 1.00000 0.0894427
\(126\) 7.37662 0.657161
\(127\) 4.57735 0.406174 0.203087 0.979161i \(-0.434903\pi\)
0.203087 + 0.979161i \(0.434903\pi\)
\(128\) 13.4517 1.18897
\(129\) 2.47988 0.218341
\(130\) −4.08340 −0.358138
\(131\) −20.6728 −1.80619 −0.903094 0.429443i \(-0.858710\pi\)
−0.903094 + 0.429443i \(0.858710\pi\)
\(132\) −2.44791 −0.213064
\(133\) 0 0
\(134\) 15.8644 1.37047
\(135\) 1.00000 0.0860663
\(136\) −16.1862 −1.38795
\(137\) 17.6280 1.50606 0.753031 0.657985i \(-0.228591\pi\)
0.753031 + 0.657985i \(0.228591\pi\)
\(138\) 6.37332 0.542533
\(139\) 11.7346 0.995312 0.497656 0.867374i \(-0.334194\pi\)
0.497656 + 0.867374i \(0.334194\pi\)
\(140\) 3.18666 0.269322
\(141\) −0.677330 −0.0570415
\(142\) 6.34256 0.532256
\(143\) 8.53410 0.713657
\(144\) −4.91667 −0.409722
\(145\) 8.73456 0.725365
\(146\) 27.6387 2.28739
\(147\) 13.0693 1.07794
\(148\) −2.77598 −0.228184
\(149\) −21.5649 −1.76666 −0.883332 0.468748i \(-0.844705\pi\)
−0.883332 + 0.468748i \(0.844705\pi\)
\(150\) 1.64661 0.134445
\(151\) −18.3102 −1.49006 −0.745032 0.667029i \(-0.767566\pi\)
−0.745032 + 0.667029i \(0.767566\pi\)
\(152\) 0 0
\(153\) 7.62799 0.616687
\(154\) −25.3854 −2.04562
\(155\) 0.422654 0.0339484
\(156\) −1.76401 −0.141233
\(157\) −11.4305 −0.912257 −0.456128 0.889914i \(-0.650764\pi\)
−0.456128 + 0.889914i \(0.650764\pi\)
\(158\) −19.9656 −1.58837
\(159\) −11.4986 −0.911895
\(160\) −3.85195 −0.304524
\(161\) 17.3397 1.36656
\(162\) 1.64661 0.129370
\(163\) −8.19876 −0.642177 −0.321088 0.947049i \(-0.604049\pi\)
−0.321088 + 0.947049i \(0.604049\pi\)
\(164\) −3.76521 −0.294014
\(165\) −3.44134 −0.267908
\(166\) −3.35669 −0.260530
\(167\) 8.84413 0.684379 0.342189 0.939631i \(-0.388832\pi\)
0.342189 + 0.939631i \(0.388832\pi\)
\(168\) −9.50605 −0.733408
\(169\) −6.85019 −0.526938
\(170\) 12.5603 0.963334
\(171\) 0 0
\(172\) 1.76401 0.134504
\(173\) −17.5462 −1.33401 −0.667007 0.745052i \(-0.732425\pi\)
−0.667007 + 0.745052i \(0.732425\pi\)
\(174\) 14.3824 1.09033
\(175\) 4.47988 0.338647
\(176\) 16.9199 1.27539
\(177\) 8.53053 0.641194
\(178\) 5.17877 0.388165
\(179\) −4.30890 −0.322062 −0.161031 0.986949i \(-0.551482\pi\)
−0.161031 + 0.986949i \(0.551482\pi\)
\(180\) 0.711327 0.0530192
\(181\) −6.34387 −0.471536 −0.235768 0.971809i \(-0.575761\pi\)
−0.235768 + 0.971809i \(0.575761\pi\)
\(182\) −18.2931 −1.35598
\(183\) 8.20233 0.606334
\(184\) −8.21312 −0.605480
\(185\) −3.90253 −0.286920
\(186\) 0.695946 0.0510292
\(187\) −26.2505 −1.91963
\(188\) −0.481803 −0.0351391
\(189\) 4.47988 0.325863
\(190\) 0 0
\(191\) 0.845796 0.0611997 0.0305998 0.999532i \(-0.490258\pi\)
0.0305998 + 0.999532i \(0.490258\pi\)
\(192\) 3.49067 0.251917
\(193\) 13.1808 0.948773 0.474387 0.880317i \(-0.342670\pi\)
0.474387 + 0.880317i \(0.342670\pi\)
\(194\) −3.29322 −0.236440
\(195\) −2.47988 −0.177588
\(196\) 9.29656 0.664040
\(197\) 6.91212 0.492468 0.246234 0.969210i \(-0.420807\pi\)
0.246234 + 0.969210i \(0.420807\pi\)
\(198\) −5.66654 −0.402703
\(199\) −13.3812 −0.948570 −0.474285 0.880371i \(-0.657293\pi\)
−0.474285 + 0.880371i \(0.657293\pi\)
\(200\) −2.12194 −0.150044
\(201\) 9.63457 0.679570
\(202\) −3.32398 −0.233875
\(203\) 39.1298 2.74637
\(204\) 5.42600 0.379896
\(205\) −5.29322 −0.369695
\(206\) −10.6848 −0.744447
\(207\) 3.87057 0.269023
\(208\) 12.1927 0.845415
\(209\) 0 0
\(210\) 7.37662 0.509035
\(211\) 14.7502 1.01545 0.507724 0.861520i \(-0.330487\pi\)
0.507724 + 0.861520i \(0.330487\pi\)
\(212\) −8.17924 −0.561752
\(213\) 3.85189 0.263927
\(214\) −6.52297 −0.445901
\(215\) 2.47988 0.169126
\(216\) −2.12194 −0.144380
\(217\) 1.89344 0.128535
\(218\) 4.88720 0.331003
\(219\) 16.7852 1.13424
\(220\) −2.44791 −0.165038
\(221\) −18.9165 −1.27246
\(222\) −6.42595 −0.431282
\(223\) 2.28834 0.153238 0.0766192 0.997060i \(-0.475587\pi\)
0.0766192 + 0.997060i \(0.475587\pi\)
\(224\) −17.2563 −1.15298
\(225\) 1.00000 0.0666667
\(226\) 14.3538 0.954802
\(227\) 4.19493 0.278427 0.139214 0.990262i \(-0.455543\pi\)
0.139214 + 0.990262i \(0.455543\pi\)
\(228\) 0 0
\(229\) −26.2742 −1.73625 −0.868123 0.496348i \(-0.834674\pi\)
−0.868123 + 0.496348i \(0.834674\pi\)
\(230\) 6.37332 0.420244
\(231\) −15.4168 −1.01435
\(232\) −18.5342 −1.21683
\(233\) −5.56250 −0.364411 −0.182206 0.983260i \(-0.558324\pi\)
−0.182206 + 0.983260i \(0.558324\pi\)
\(234\) −4.08340 −0.266940
\(235\) −0.677330 −0.0441841
\(236\) 6.06799 0.394993
\(237\) −12.1252 −0.787619
\(238\) 56.2688 3.64737
\(239\) −6.84901 −0.443026 −0.221513 0.975157i \(-0.571099\pi\)
−0.221513 + 0.975157i \(0.571099\pi\)
\(240\) −4.91667 −0.317370
\(241\) −14.8424 −0.956085 −0.478043 0.878337i \(-0.658654\pi\)
−0.478043 + 0.878337i \(0.658654\pi\)
\(242\) 1.38775 0.0892077
\(243\) 1.00000 0.0641500
\(244\) 5.83454 0.373518
\(245\) 13.0693 0.834969
\(246\) −8.71588 −0.555704
\(247\) 0 0
\(248\) −0.896847 −0.0569498
\(249\) −2.03855 −0.129188
\(250\) 1.64661 0.104141
\(251\) −4.80255 −0.303134 −0.151567 0.988447i \(-0.548432\pi\)
−0.151567 + 0.988447i \(0.548432\pi\)
\(252\) 3.18666 0.200741
\(253\) −13.3199 −0.837416
\(254\) 7.53711 0.472920
\(255\) 7.62799 0.477684
\(256\) 15.1683 0.948021
\(257\) −3.49725 −0.218152 −0.109076 0.994033i \(-0.534789\pi\)
−0.109076 + 0.994033i \(0.534789\pi\)
\(258\) 4.08340 0.254221
\(259\) −17.4829 −1.08633
\(260\) −1.76401 −0.109399
\(261\) 8.73456 0.540655
\(262\) −34.0400 −2.10300
\(263\) −5.23242 −0.322645 −0.161322 0.986902i \(-0.551576\pi\)
−0.161322 + 0.986902i \(0.551576\pi\)
\(264\) 7.30232 0.449427
\(265\) −11.4986 −0.706351
\(266\) 0 0
\(267\) 3.14511 0.192477
\(268\) 6.85333 0.418634
\(269\) 15.8983 0.969339 0.484670 0.874697i \(-0.338940\pi\)
0.484670 + 0.874697i \(0.338940\pi\)
\(270\) 1.64661 0.100210
\(271\) 9.99579 0.607201 0.303600 0.952799i \(-0.401811\pi\)
0.303600 + 0.952799i \(0.401811\pi\)
\(272\) −37.5043 −2.27403
\(273\) −11.1096 −0.672382
\(274\) 29.0264 1.75355
\(275\) −3.44134 −0.207520
\(276\) 2.75324 0.165725
\(277\) 4.08619 0.245515 0.122758 0.992437i \(-0.460826\pi\)
0.122758 + 0.992437i \(0.460826\pi\)
\(278\) 19.3222 1.15887
\(279\) 0.422654 0.0253036
\(280\) −9.50605 −0.568095
\(281\) 11.6384 0.694289 0.347144 0.937812i \(-0.387151\pi\)
0.347144 + 0.937812i \(0.387151\pi\)
\(282\) −1.11530 −0.0664151
\(283\) 4.35821 0.259069 0.129534 0.991575i \(-0.458652\pi\)
0.129534 + 0.991575i \(0.458652\pi\)
\(284\) 2.73995 0.162586
\(285\) 0 0
\(286\) 14.0523 0.830932
\(287\) −23.7130 −1.39973
\(288\) −3.85195 −0.226978
\(289\) 41.1863 2.42272
\(290\) 14.3824 0.844564
\(291\) −2.00000 −0.117242
\(292\) 11.9398 0.698722
\(293\) 7.20233 0.420765 0.210382 0.977619i \(-0.432529\pi\)
0.210382 + 0.977619i \(0.432529\pi\)
\(294\) 21.5201 1.25508
\(295\) 8.53053 0.496667
\(296\) 8.28096 0.481321
\(297\) −3.44134 −0.199687
\(298\) −35.5090 −2.05698
\(299\) −9.59855 −0.555098
\(300\) 0.711327 0.0410685
\(301\) 11.1096 0.640345
\(302\) −30.1498 −1.73493
\(303\) −2.01868 −0.115970
\(304\) 0 0
\(305\) 8.20233 0.469664
\(306\) 12.5603 0.718027
\(307\) −16.2811 −0.929213 −0.464606 0.885517i \(-0.653804\pi\)
−0.464606 + 0.885517i \(0.653804\pi\)
\(308\) −10.9664 −0.624867
\(309\) −6.48898 −0.369145
\(310\) 0.695946 0.0395271
\(311\) −4.07709 −0.231191 −0.115595 0.993296i \(-0.536878\pi\)
−0.115595 + 0.993296i \(0.536878\pi\)
\(312\) 5.26217 0.297911
\(313\) −21.5553 −1.21838 −0.609189 0.793025i \(-0.708505\pi\)
−0.609189 + 0.793025i \(0.708505\pi\)
\(314\) −18.8217 −1.06217
\(315\) 4.47988 0.252413
\(316\) −8.62501 −0.485195
\(317\) 14.2668 0.801302 0.400651 0.916231i \(-0.368784\pi\)
0.400651 + 0.916231i \(0.368784\pi\)
\(318\) −18.9337 −1.06175
\(319\) −30.0585 −1.68296
\(320\) 3.49067 0.195134
\(321\) −3.96145 −0.221107
\(322\) 28.5517 1.59112
\(323\) 0 0
\(324\) 0.711327 0.0395182
\(325\) −2.47988 −0.137559
\(326\) −13.5002 −0.747705
\(327\) 2.96803 0.164133
\(328\) 11.2319 0.620179
\(329\) −3.03436 −0.167290
\(330\) −5.66654 −0.311933
\(331\) −23.9646 −1.31722 −0.658608 0.752486i \(-0.728854\pi\)
−0.658608 + 0.752486i \(0.728854\pi\)
\(332\) −1.45007 −0.0795830
\(333\) −3.90253 −0.213858
\(334\) 14.5628 0.796843
\(335\) 9.63457 0.526393
\(336\) −22.0261 −1.20162
\(337\) −32.6408 −1.77806 −0.889029 0.457851i \(-0.848619\pi\)
−0.889029 + 0.457851i \(0.848619\pi\)
\(338\) −11.2796 −0.613529
\(339\) 8.71719 0.473453
\(340\) 5.42600 0.294266
\(341\) −1.45449 −0.0787652
\(342\) 0 0
\(343\) 27.1899 1.46812
\(344\) −5.26217 −0.283717
\(345\) 3.87057 0.208384
\(346\) −28.8918 −1.55323
\(347\) 16.8291 0.903436 0.451718 0.892161i \(-0.350811\pi\)
0.451718 + 0.892161i \(0.350811\pi\)
\(348\) 6.21312 0.333058
\(349\) 2.46947 0.132188 0.0660939 0.997813i \(-0.478946\pi\)
0.0660939 + 0.997813i \(0.478946\pi\)
\(350\) 7.37662 0.394297
\(351\) −2.47988 −0.132366
\(352\) 13.2559 0.706540
\(353\) 27.7653 1.47780 0.738900 0.673815i \(-0.235346\pi\)
0.738900 + 0.673815i \(0.235346\pi\)
\(354\) 14.0465 0.746561
\(355\) 3.85189 0.204437
\(356\) 2.23720 0.118571
\(357\) 34.1725 1.80860
\(358\) −7.09508 −0.374986
\(359\) −20.0490 −1.05814 −0.529072 0.848577i \(-0.677460\pi\)
−0.529072 + 0.848577i \(0.677460\pi\)
\(360\) −2.12194 −0.111836
\(361\) 0 0
\(362\) −10.4459 −0.549023
\(363\) 0.842790 0.0442350
\(364\) −7.90253 −0.414205
\(365\) 16.7852 0.878578
\(366\) 13.5061 0.705973
\(367\) −6.67481 −0.348422 −0.174211 0.984708i \(-0.555738\pi\)
−0.174211 + 0.984708i \(0.555738\pi\)
\(368\) −19.0303 −0.992023
\(369\) −5.29322 −0.275554
\(370\) −6.42595 −0.334069
\(371\) −51.5122 −2.67438
\(372\) 0.300645 0.0155877
\(373\) 12.4380 0.644014 0.322007 0.946737i \(-0.395643\pi\)
0.322007 + 0.946737i \(0.395643\pi\)
\(374\) −43.2243 −2.23508
\(375\) 1.00000 0.0516398
\(376\) 1.43726 0.0741208
\(377\) −21.6607 −1.11558
\(378\) 7.37662 0.379412
\(379\) −21.3994 −1.09921 −0.549607 0.835423i \(-0.685223\pi\)
−0.549607 + 0.835423i \(0.685223\pi\)
\(380\) 0 0
\(381\) 4.57735 0.234505
\(382\) 1.39270 0.0712566
\(383\) −10.7081 −0.547158 −0.273579 0.961850i \(-0.588207\pi\)
−0.273579 + 0.961850i \(0.588207\pi\)
\(384\) 13.4517 0.686453
\(385\) −15.4168 −0.785711
\(386\) 21.7036 1.10468
\(387\) 2.47988 0.126059
\(388\) −1.42265 −0.0722243
\(389\) −3.50933 −0.177930 −0.0889650 0.996035i \(-0.528356\pi\)
−0.0889650 + 0.996035i \(0.528356\pi\)
\(390\) −4.08340 −0.206771
\(391\) 29.5247 1.49313
\(392\) −27.7324 −1.40070
\(393\) −20.6728 −1.04280
\(394\) 11.3816 0.573395
\(395\) −12.1252 −0.610087
\(396\) −2.44791 −0.123012
\(397\) 31.1990 1.56583 0.782916 0.622128i \(-0.213732\pi\)
0.782916 + 0.622128i \(0.213732\pi\)
\(398\) −22.0337 −1.10445
\(399\) 0 0
\(400\) −4.91667 −0.245833
\(401\) 19.7532 0.986429 0.493214 0.869908i \(-0.335822\pi\)
0.493214 + 0.869908i \(0.335822\pi\)
\(402\) 15.8644 0.791244
\(403\) −1.04813 −0.0522111
\(404\) −1.43594 −0.0714408
\(405\) 1.00000 0.0496904
\(406\) 64.4315 3.19768
\(407\) 13.4299 0.665697
\(408\) −16.1862 −0.801335
\(409\) 2.13902 0.105768 0.0528838 0.998601i \(-0.483159\pi\)
0.0528838 + 0.998601i \(0.483159\pi\)
\(410\) −8.71588 −0.430446
\(411\) 17.6280 0.869525
\(412\) −4.61578 −0.227403
\(413\) 38.2158 1.88047
\(414\) 6.37332 0.313232
\(415\) −2.03855 −0.100068
\(416\) 9.55238 0.468344
\(417\) 11.7346 0.574644
\(418\) 0 0
\(419\) −5.70341 −0.278630 −0.139315 0.990248i \(-0.544490\pi\)
−0.139315 + 0.990248i \(0.544490\pi\)
\(420\) 3.18666 0.155493
\(421\) −39.0530 −1.90333 −0.951664 0.307140i \(-0.900628\pi\)
−0.951664 + 0.307140i \(0.900628\pi\)
\(422\) 24.2879 1.18232
\(423\) −0.677330 −0.0329329
\(424\) 24.3993 1.18493
\(425\) 7.62799 0.370012
\(426\) 6.34256 0.307298
\(427\) 36.7455 1.77824
\(428\) −2.81789 −0.136208
\(429\) 8.53410 0.412030
\(430\) 4.08340 0.196919
\(431\) −1.73756 −0.0836955 −0.0418477 0.999124i \(-0.513324\pi\)
−0.0418477 + 0.999124i \(0.513324\pi\)
\(432\) −4.91667 −0.236553
\(433\) −23.6312 −1.13564 −0.567821 0.823152i \(-0.692213\pi\)
−0.567821 + 0.823152i \(0.692213\pi\)
\(434\) 3.11775 0.149657
\(435\) 8.73456 0.418790
\(436\) 2.11124 0.101110
\(437\) 0 0
\(438\) 27.6387 1.32063
\(439\) 3.16929 0.151262 0.0756310 0.997136i \(-0.475903\pi\)
0.0756310 + 0.997136i \(0.475903\pi\)
\(440\) 7.30232 0.348124
\(441\) 13.0693 0.622349
\(442\) −31.1481 −1.48157
\(443\) 23.1833 1.10147 0.550736 0.834680i \(-0.314347\pi\)
0.550736 + 0.834680i \(0.314347\pi\)
\(444\) −2.77598 −0.131742
\(445\) 3.14511 0.149092
\(446\) 3.76800 0.178420
\(447\) −21.5649 −1.01998
\(448\) 15.6378 0.738816
\(449\) −13.2505 −0.625328 −0.312664 0.949864i \(-0.601221\pi\)
−0.312664 + 0.949864i \(0.601221\pi\)
\(450\) 1.64661 0.0776220
\(451\) 18.2158 0.857746
\(452\) 6.20077 0.291660
\(453\) −18.3102 −0.860289
\(454\) 6.90742 0.324181
\(455\) −11.1096 −0.520825
\(456\) 0 0
\(457\) 4.13077 0.193229 0.0966146 0.995322i \(-0.469199\pi\)
0.0966146 + 0.995322i \(0.469199\pi\)
\(458\) −43.2633 −2.02156
\(459\) 7.62799 0.356044
\(460\) 2.75324 0.128370
\(461\) 21.8585 1.01805 0.509026 0.860751i \(-0.330006\pi\)
0.509026 + 0.860751i \(0.330006\pi\)
\(462\) −25.3854 −1.18104
\(463\) 30.9461 1.43819 0.719094 0.694913i \(-0.244557\pi\)
0.719094 + 0.694913i \(0.244557\pi\)
\(464\) −42.9449 −1.99367
\(465\) 0.422654 0.0196001
\(466\) −9.15926 −0.424295
\(467\) 0.394259 0.0182441 0.00912207 0.999958i \(-0.497096\pi\)
0.00912207 + 0.999958i \(0.497096\pi\)
\(468\) −1.76401 −0.0815412
\(469\) 43.1617 1.99302
\(470\) −1.11530 −0.0514449
\(471\) −11.4305 −0.526692
\(472\) −18.1013 −0.833180
\(473\) −8.53410 −0.392398
\(474\) −19.9656 −0.917048
\(475\) 0 0
\(476\) 24.3078 1.11415
\(477\) −11.4986 −0.526483
\(478\) −11.2777 −0.515828
\(479\) −7.04238 −0.321774 −0.160887 0.986973i \(-0.551436\pi\)
−0.160887 + 0.986973i \(0.551436\pi\)
\(480\) −3.85195 −0.175817
\(481\) 9.67782 0.441271
\(482\) −24.4397 −1.11320
\(483\) 17.3397 0.788983
\(484\) 0.599499 0.0272499
\(485\) −2.00000 −0.0908153
\(486\) 1.64661 0.0746918
\(487\) −0.689174 −0.0312295 −0.0156147 0.999878i \(-0.504971\pi\)
−0.0156147 + 0.999878i \(0.504971\pi\)
\(488\) −17.4049 −0.787882
\(489\) −8.19876 −0.370761
\(490\) 21.5201 0.972179
\(491\) 9.09472 0.410439 0.205219 0.978716i \(-0.434209\pi\)
0.205219 + 0.978716i \(0.434209\pi\)
\(492\) −3.76521 −0.169749
\(493\) 66.6272 3.00074
\(494\) 0 0
\(495\) −3.44134 −0.154677
\(496\) −2.07805 −0.0933071
\(497\) 17.2560 0.774037
\(498\) −3.35669 −0.150417
\(499\) −23.0808 −1.03324 −0.516619 0.856215i \(-0.672810\pi\)
−0.516619 + 0.856215i \(0.672810\pi\)
\(500\) 0.711327 0.0318115
\(501\) 8.84413 0.395126
\(502\) −7.90793 −0.352948
\(503\) −21.1965 −0.945103 −0.472552 0.881303i \(-0.656667\pi\)
−0.472552 + 0.881303i \(0.656667\pi\)
\(504\) −9.50605 −0.423433
\(505\) −2.01868 −0.0898302
\(506\) −21.9327 −0.975029
\(507\) −6.85019 −0.304228
\(508\) 3.25599 0.144461
\(509\) −18.2530 −0.809049 −0.404525 0.914527i \(-0.632563\pi\)
−0.404525 + 0.914527i \(0.632563\pi\)
\(510\) 12.5603 0.556181
\(511\) 75.1957 3.32646
\(512\) −1.92701 −0.0851627
\(513\) 0 0
\(514\) −5.75861 −0.254001
\(515\) −6.48898 −0.285938
\(516\) 1.76401 0.0776560
\(517\) 2.33092 0.102514
\(518\) −28.7875 −1.26485
\(519\) −17.5462 −0.770193
\(520\) 5.26217 0.230761
\(521\) 34.4874 1.51092 0.755461 0.655194i \(-0.227413\pi\)
0.755461 + 0.655194i \(0.227413\pi\)
\(522\) 14.3824 0.629501
\(523\) −16.1399 −0.705747 −0.352874 0.935671i \(-0.614795\pi\)
−0.352874 + 0.935671i \(0.614795\pi\)
\(524\) −14.7051 −0.642395
\(525\) 4.47988 0.195518
\(526\) −8.61576 −0.375665
\(527\) 3.22400 0.140440
\(528\) 16.9199 0.736344
\(529\) −8.01871 −0.348639
\(530\) −18.9337 −0.822425
\(531\) 8.53053 0.370193
\(532\) 0 0
\(533\) 13.1266 0.568574
\(534\) 5.17877 0.224107
\(535\) −3.96145 −0.171269
\(536\) −20.4440 −0.883047
\(537\) −4.30890 −0.185943
\(538\) 26.1784 1.12863
\(539\) −44.9759 −1.93725
\(540\) 0.711327 0.0306106
\(541\) 16.9327 0.727993 0.363996 0.931400i \(-0.381412\pi\)
0.363996 + 0.931400i \(0.381412\pi\)
\(542\) 16.4592 0.706982
\(543\) −6.34387 −0.272242
\(544\) −29.3827 −1.25977
\(545\) 2.96803 0.127137
\(546\) −18.2931 −0.782874
\(547\) 29.3743 1.25595 0.627977 0.778232i \(-0.283883\pi\)
0.627977 + 0.778232i \(0.283883\pi\)
\(548\) 12.5393 0.535651
\(549\) 8.20233 0.350067
\(550\) −5.66654 −0.241622
\(551\) 0 0
\(552\) −8.21312 −0.349574
\(553\) −54.3196 −2.30991
\(554\) 6.72836 0.285861
\(555\) −3.90253 −0.165653
\(556\) 8.34710 0.353996
\(557\) 8.58644 0.363819 0.181910 0.983315i \(-0.441772\pi\)
0.181910 + 0.983315i \(0.441772\pi\)
\(558\) 0.695946 0.0294617
\(559\) −6.14981 −0.260109
\(560\) −22.0261 −0.930772
\(561\) −26.2505 −1.10830
\(562\) 19.1639 0.808381
\(563\) −2.59685 −0.109444 −0.0547221 0.998502i \(-0.517427\pi\)
−0.0547221 + 0.998502i \(0.517427\pi\)
\(564\) −0.481803 −0.0202876
\(565\) 8.71719 0.366735
\(566\) 7.17627 0.301641
\(567\) 4.47988 0.188137
\(568\) −8.17348 −0.342952
\(569\) 33.8768 1.42019 0.710094 0.704107i \(-0.248652\pi\)
0.710094 + 0.704107i \(0.248652\pi\)
\(570\) 0 0
\(571\) −10.6731 −0.446657 −0.223329 0.974743i \(-0.571692\pi\)
−0.223329 + 0.974743i \(0.571692\pi\)
\(572\) 6.07053 0.253822
\(573\) 0.845796 0.0353336
\(574\) −39.0461 −1.62975
\(575\) 3.87057 0.161414
\(576\) 3.49067 0.145445
\(577\) −11.6607 −0.485440 −0.242720 0.970096i \(-0.578040\pi\)
−0.242720 + 0.970096i \(0.578040\pi\)
\(578\) 67.8178 2.82085
\(579\) 13.1808 0.547774
\(580\) 6.21312 0.257986
\(581\) −9.13244 −0.378877
\(582\) −3.29322 −0.136508
\(583\) 39.5704 1.63884
\(584\) −35.6172 −1.47385
\(585\) −2.47988 −0.102530
\(586\) 11.8594 0.489909
\(587\) 40.2725 1.66222 0.831112 0.556105i \(-0.187705\pi\)
0.831112 + 0.556105i \(0.187705\pi\)
\(588\) 9.29656 0.383384
\(589\) 0 0
\(590\) 14.0465 0.578284
\(591\) 6.91212 0.284327
\(592\) 19.1875 0.788600
\(593\) −14.1026 −0.579125 −0.289562 0.957159i \(-0.593510\pi\)
−0.289562 + 0.957159i \(0.593510\pi\)
\(594\) −5.66654 −0.232501
\(595\) 34.1725 1.40094
\(596\) −15.3397 −0.628338
\(597\) −13.3812 −0.547657
\(598\) −15.8051 −0.646317
\(599\) 10.4871 0.428491 0.214246 0.976780i \(-0.431271\pi\)
0.214246 + 0.976780i \(0.431271\pi\)
\(600\) −2.12194 −0.0866280
\(601\) −21.0718 −0.859539 −0.429769 0.902939i \(-0.641405\pi\)
−0.429769 + 0.902939i \(0.641405\pi\)
\(602\) 18.2931 0.745573
\(603\) 9.63457 0.392350
\(604\) −13.0245 −0.529961
\(605\) 0.842790 0.0342643
\(606\) −3.32398 −0.135028
\(607\) 22.2759 0.904149 0.452074 0.891980i \(-0.350684\pi\)
0.452074 + 0.891980i \(0.350684\pi\)
\(608\) 0 0
\(609\) 39.1298 1.58562
\(610\) 13.5061 0.546844
\(611\) 1.67970 0.0679533
\(612\) 5.42600 0.219333
\(613\) −17.8953 −0.722785 −0.361393 0.932414i \(-0.617699\pi\)
−0.361393 + 0.932414i \(0.617699\pi\)
\(614\) −26.8087 −1.08191
\(615\) −5.29322 −0.213443
\(616\) 32.7135 1.31806
\(617\) 17.6312 0.709806 0.354903 0.934903i \(-0.384514\pi\)
0.354903 + 0.934903i \(0.384514\pi\)
\(618\) −10.6848 −0.429806
\(619\) −49.2003 −1.97753 −0.988763 0.149490i \(-0.952237\pi\)
−0.988763 + 0.149490i \(0.952237\pi\)
\(620\) 0.300645 0.0120742
\(621\) 3.87057 0.155321
\(622\) −6.71338 −0.269182
\(623\) 14.0897 0.564492
\(624\) 12.1927 0.488101
\(625\) 1.00000 0.0400000
\(626\) −35.4932 −1.41859
\(627\) 0 0
\(628\) −8.13085 −0.324456
\(629\) −29.7685 −1.18695
\(630\) 7.37662 0.293892
\(631\) −33.3185 −1.32639 −0.663194 0.748448i \(-0.730800\pi\)
−0.663194 + 0.748448i \(0.730800\pi\)
\(632\) 25.7291 1.02345
\(633\) 14.7502 0.586269
\(634\) 23.4918 0.932980
\(635\) 4.57735 0.181646
\(636\) −8.17924 −0.324328
\(637\) −32.4104 −1.28415
\(638\) −49.4947 −1.95951
\(639\) 3.85189 0.152378
\(640\) 13.4517 0.531724
\(641\) −13.2222 −0.522245 −0.261123 0.965306i \(-0.584093\pi\)
−0.261123 + 0.965306i \(0.584093\pi\)
\(642\) −6.52297 −0.257441
\(643\) −1.90253 −0.0750286 −0.0375143 0.999296i \(-0.511944\pi\)
−0.0375143 + 0.999296i \(0.511944\pi\)
\(644\) 12.3342 0.486035
\(645\) 2.47988 0.0976452
\(646\) 0 0
\(647\) 27.2141 1.06989 0.534947 0.844885i \(-0.320331\pi\)
0.534947 + 0.844885i \(0.320331\pi\)
\(648\) −2.12194 −0.0833578
\(649\) −29.3564 −1.15234
\(650\) −4.08340 −0.160164
\(651\) 1.89344 0.0742097
\(652\) −5.83200 −0.228399
\(653\) −43.6980 −1.71004 −0.855018 0.518599i \(-0.826454\pi\)
−0.855018 + 0.518599i \(0.826454\pi\)
\(654\) 4.88720 0.191104
\(655\) −20.6728 −0.807752
\(656\) 26.0250 1.01611
\(657\) 16.7852 0.654853
\(658\) −4.99640 −0.194780
\(659\) 6.87344 0.267751 0.133876 0.990998i \(-0.457258\pi\)
0.133876 + 0.990998i \(0.457258\pi\)
\(660\) −2.44791 −0.0952849
\(661\) −37.2982 −1.45073 −0.725367 0.688363i \(-0.758330\pi\)
−0.725367 + 0.688363i \(0.758330\pi\)
\(662\) −39.4604 −1.53367
\(663\) −18.9165 −0.734657
\(664\) 4.32568 0.167869
\(665\) 0 0
\(666\) −6.42595 −0.249001
\(667\) 33.8077 1.30904
\(668\) 6.29106 0.243409
\(669\) 2.28834 0.0884722
\(670\) 15.8644 0.612895
\(671\) −28.2270 −1.08969
\(672\) −17.2563 −0.665676
\(673\) −50.6185 −1.95120 −0.975601 0.219553i \(-0.929540\pi\)
−0.975601 + 0.219553i \(0.929540\pi\)
\(674\) −53.7467 −2.07024
\(675\) 1.00000 0.0384900
\(676\) −4.87273 −0.187413
\(677\) −33.8725 −1.30182 −0.650912 0.759153i \(-0.725613\pi\)
−0.650912 + 0.759153i \(0.725613\pi\)
\(678\) 14.3538 0.551255
\(679\) −8.95976 −0.343844
\(680\) −16.1862 −0.620711
\(681\) 4.19493 0.160750
\(682\) −2.39498 −0.0917087
\(683\) −47.0846 −1.80164 −0.900822 0.434190i \(-0.857035\pi\)
−0.900822 + 0.434190i \(0.857035\pi\)
\(684\) 0 0
\(685\) 17.6280 0.673531
\(686\) 44.7711 1.70937
\(687\) −26.2742 −1.00242
\(688\) −12.1927 −0.464844
\(689\) 28.5151 1.08634
\(690\) 6.37332 0.242628
\(691\) 3.91269 0.148846 0.0744228 0.997227i \(-0.476289\pi\)
0.0744228 + 0.997227i \(0.476289\pi\)
\(692\) −12.4811 −0.474460
\(693\) −15.4168 −0.585635
\(694\) 27.7111 1.05190
\(695\) 11.7346 0.445117
\(696\) −18.5342 −0.702538
\(697\) −40.3767 −1.52938
\(698\) 4.06626 0.153910
\(699\) −5.56250 −0.210393
\(700\) 3.18666 0.120444
\(701\) 13.2070 0.498823 0.249411 0.968398i \(-0.419763\pi\)
0.249411 + 0.968398i \(0.419763\pi\)
\(702\) −4.08340 −0.154118
\(703\) 0 0
\(704\) −12.0126 −0.452741
\(705\) −0.677330 −0.0255097
\(706\) 45.7187 1.72065
\(707\) −9.04345 −0.340114
\(708\) 6.06799 0.228049
\(709\) −17.9971 −0.675896 −0.337948 0.941165i \(-0.609733\pi\)
−0.337948 + 0.941165i \(0.609733\pi\)
\(710\) 6.34256 0.238032
\(711\) −12.1252 −0.454732
\(712\) −6.67374 −0.250109
\(713\) 1.63591 0.0612653
\(714\) 56.2688 2.10581
\(715\) 8.53410 0.319157
\(716\) −3.06503 −0.114546
\(717\) −6.84901 −0.255781
\(718\) −33.0128 −1.23203
\(719\) −12.4782 −0.465358 −0.232679 0.972554i \(-0.574749\pi\)
−0.232679 + 0.972554i \(0.574749\pi\)
\(720\) −4.91667 −0.183233
\(721\) −29.0698 −1.08262
\(722\) 0 0
\(723\) −14.8424 −0.551996
\(724\) −4.51256 −0.167708
\(725\) 8.73456 0.324393
\(726\) 1.38775 0.0515041
\(727\) −43.4131 −1.61010 −0.805051 0.593206i \(-0.797862\pi\)
−0.805051 + 0.593206i \(0.797862\pi\)
\(728\) 23.5739 0.873706
\(729\) 1.00000 0.0370370
\(730\) 27.6387 1.02295
\(731\) 18.9165 0.699653
\(732\) 5.83454 0.215651
\(733\) −28.5740 −1.05540 −0.527702 0.849430i \(-0.676946\pi\)
−0.527702 + 0.849430i \(0.676946\pi\)
\(734\) −10.9908 −0.405678
\(735\) 13.0693 0.482070
\(736\) −14.9092 −0.549562
\(737\) −33.1558 −1.22131
\(738\) −8.71588 −0.320836
\(739\) −9.23538 −0.339729 −0.169864 0.985467i \(-0.554333\pi\)
−0.169864 + 0.985467i \(0.554333\pi\)
\(740\) −2.77598 −0.102047
\(741\) 0 0
\(742\) −84.8205 −3.11386
\(743\) 5.03749 0.184808 0.0924038 0.995722i \(-0.470545\pi\)
0.0924038 + 0.995722i \(0.470545\pi\)
\(744\) −0.896847 −0.0328800
\(745\) −21.5649 −0.790076
\(746\) 20.4805 0.749844
\(747\) −2.03855 −0.0745865
\(748\) −18.6727 −0.682741
\(749\) −17.7468 −0.648456
\(750\) 1.64661 0.0601257
\(751\) −12.8273 −0.468076 −0.234038 0.972227i \(-0.575194\pi\)
−0.234038 + 0.972227i \(0.575194\pi\)
\(752\) 3.33021 0.121440
\(753\) −4.80255 −0.175015
\(754\) −35.6667 −1.29890
\(755\) −18.3102 −0.666377
\(756\) 3.18666 0.115898
\(757\) 25.8851 0.940809 0.470404 0.882451i \(-0.344108\pi\)
0.470404 + 0.882451i \(0.344108\pi\)
\(758\) −35.2365 −1.27985
\(759\) −13.3199 −0.483483
\(760\) 0 0
\(761\) −28.9722 −1.05024 −0.525121 0.851028i \(-0.675980\pi\)
−0.525121 + 0.851028i \(0.675980\pi\)
\(762\) 7.53711 0.273041
\(763\) 13.2964 0.481363
\(764\) 0.601637 0.0217665
\(765\) 7.62799 0.275791
\(766\) −17.6321 −0.637072
\(767\) −21.1547 −0.763852
\(768\) 15.1683 0.547340
\(769\) 5.45380 0.196669 0.0983345 0.995153i \(-0.468649\pi\)
0.0983345 + 0.995153i \(0.468649\pi\)
\(770\) −25.3854 −0.914827
\(771\) −3.49725 −0.125950
\(772\) 9.37584 0.337444
\(773\) 47.0119 1.69090 0.845451 0.534053i \(-0.179332\pi\)
0.845451 + 0.534053i \(0.179332\pi\)
\(774\) 4.08340 0.146775
\(775\) 0.422654 0.0151822
\(776\) 4.24389 0.152347
\(777\) −17.4829 −0.627195
\(778\) −5.77850 −0.207169
\(779\) 0 0
\(780\) −1.76401 −0.0631615
\(781\) −13.2556 −0.474324
\(782\) 48.6156 1.73849
\(783\) 8.73456 0.312148
\(784\) −64.2576 −2.29491
\(785\) −11.4305 −0.407974
\(786\) −34.0400 −1.21417
\(787\) −3.86923 −0.137923 −0.0689616 0.997619i \(-0.521969\pi\)
−0.0689616 + 0.997619i \(0.521969\pi\)
\(788\) 4.91678 0.175153
\(789\) −5.23242 −0.186279
\(790\) −19.9656 −0.710343
\(791\) 39.0520 1.38853
\(792\) 7.30232 0.259477
\(793\) −20.3408 −0.722323
\(794\) 51.3726 1.82314
\(795\) −11.4986 −0.407812
\(796\) −9.51843 −0.337372
\(797\) 12.6814 0.449198 0.224599 0.974451i \(-0.427893\pi\)
0.224599 + 0.974451i \(0.427893\pi\)
\(798\) 0 0
\(799\) −5.16667 −0.182784
\(800\) −3.85195 −0.136187
\(801\) 3.14511 0.111127
\(802\) 32.5259 1.14853
\(803\) −57.7635 −2.03843
\(804\) 6.85333 0.241698
\(805\) 17.3397 0.611143
\(806\) −1.72586 −0.0607909
\(807\) 15.8983 0.559648
\(808\) 4.28353 0.150694
\(809\) 33.2439 1.16879 0.584397 0.811468i \(-0.301331\pi\)
0.584397 + 0.811468i \(0.301331\pi\)
\(810\) 1.64661 0.0578560
\(811\) 2.86530 0.100614 0.0503072 0.998734i \(-0.483980\pi\)
0.0503072 + 0.998734i \(0.483980\pi\)
\(812\) 27.8341 0.976784
\(813\) 9.99579 0.350568
\(814\) 22.1139 0.775091
\(815\) −8.19876 −0.287190
\(816\) −37.5043 −1.31291
\(817\) 0 0
\(818\) 3.52213 0.123148
\(819\) −11.1096 −0.388200
\(820\) −3.76521 −0.131487
\(821\) −14.3770 −0.501762 −0.250881 0.968018i \(-0.580720\pi\)
−0.250881 + 0.968018i \(0.580720\pi\)
\(822\) 29.0264 1.01241
\(823\) 56.7277 1.97740 0.988702 0.149893i \(-0.0478931\pi\)
0.988702 + 0.149893i \(0.0478931\pi\)
\(824\) 13.7692 0.479674
\(825\) −3.44134 −0.119812
\(826\) 62.9265 2.18949
\(827\) −20.1954 −0.702263 −0.351131 0.936326i \(-0.614203\pi\)
−0.351131 + 0.936326i \(0.614203\pi\)
\(828\) 2.75324 0.0956817
\(829\) −38.0954 −1.32311 −0.661554 0.749898i \(-0.730103\pi\)
−0.661554 + 0.749898i \(0.730103\pi\)
\(830\) −3.35669 −0.116512
\(831\) 4.08619 0.141748
\(832\) −8.65645 −0.300108
\(833\) 99.6928 3.45415
\(834\) 19.3222 0.669075
\(835\) 8.84413 0.306064
\(836\) 0 0
\(837\) 0.422654 0.0146090
\(838\) −9.39130 −0.324417
\(839\) −38.2640 −1.32102 −0.660511 0.750817i \(-0.729660\pi\)
−0.660511 + 0.750817i \(0.729660\pi\)
\(840\) −9.50605 −0.327990
\(841\) 47.2925 1.63078
\(842\) −64.3052 −2.21610
\(843\) 11.6384 0.400848
\(844\) 10.4922 0.361158
\(845\) −6.85019 −0.235654
\(846\) −1.11530 −0.0383448
\(847\) 3.77560 0.129731
\(848\) 56.5346 1.94141
\(849\) 4.35821 0.149573
\(850\) 12.5603 0.430816
\(851\) −15.1050 −0.517794
\(852\) 2.73995 0.0938691
\(853\) 3.43393 0.117576 0.0587878 0.998271i \(-0.481276\pi\)
0.0587878 + 0.998271i \(0.481276\pi\)
\(854\) 60.5055 2.07046
\(855\) 0 0
\(856\) 8.40598 0.287311
\(857\) 27.3260 0.933439 0.466719 0.884405i \(-0.345436\pi\)
0.466719 + 0.884405i \(0.345436\pi\)
\(858\) 14.0523 0.479739
\(859\) −44.1207 −1.50538 −0.752689 0.658376i \(-0.771244\pi\)
−0.752689 + 0.658376i \(0.771244\pi\)
\(860\) 1.76401 0.0601521
\(861\) −23.7130 −0.808137
\(862\) −2.86109 −0.0974491
\(863\) 41.3721 1.40832 0.704161 0.710040i \(-0.251323\pi\)
0.704161 + 0.710040i \(0.251323\pi\)
\(864\) −3.85195 −0.131046
\(865\) −17.5462 −0.596589
\(866\) −38.9114 −1.32226
\(867\) 41.1863 1.39876
\(868\) 1.34685 0.0457152
\(869\) 41.7270 1.41549
\(870\) 14.3824 0.487610
\(871\) −23.8926 −0.809570
\(872\) −6.29800 −0.213277
\(873\) −2.00000 −0.0676897
\(874\) 0 0
\(875\) 4.47988 0.151448
\(876\) 11.9398 0.403407
\(877\) −56.6303 −1.91227 −0.956134 0.292929i \(-0.905370\pi\)
−0.956134 + 0.292929i \(0.905370\pi\)
\(878\) 5.21859 0.176119
\(879\) 7.20233 0.242929
\(880\) 16.9199 0.570370
\(881\) −1.34253 −0.0452311 −0.0226156 0.999744i \(-0.507199\pi\)
−0.0226156 + 0.999744i \(0.507199\pi\)
\(882\) 21.5201 0.724619
\(883\) 26.6839 0.897985 0.448993 0.893536i \(-0.351783\pi\)
0.448993 + 0.893536i \(0.351783\pi\)
\(884\) −13.4558 −0.452568
\(885\) 8.53053 0.286751
\(886\) 38.1739 1.28248
\(887\) −27.7758 −0.932618 −0.466309 0.884622i \(-0.654417\pi\)
−0.466309 + 0.884622i \(0.654417\pi\)
\(888\) 8.28096 0.277891
\(889\) 20.5060 0.687748
\(890\) 5.17877 0.173593
\(891\) −3.44134 −0.115289
\(892\) 1.62776 0.0545013
\(893\) 0 0
\(894\) −35.5090 −1.18760
\(895\) −4.30890 −0.144031
\(896\) 60.2619 2.01321
\(897\) −9.59855 −0.320486
\(898\) −21.8184 −0.728088
\(899\) 3.69169 0.123125
\(900\) 0.711327 0.0237109
\(901\) −87.7110 −2.92208
\(902\) 29.9942 0.998699
\(903\) 11.1096 0.369703
\(904\) −18.4974 −0.615214
\(905\) −6.34387 −0.210877
\(906\) −30.1498 −1.00166
\(907\) −7.39198 −0.245447 −0.122723 0.992441i \(-0.539163\pi\)
−0.122723 + 0.992441i \(0.539163\pi\)
\(908\) 2.98397 0.0990264
\(909\) −2.01868 −0.0669554
\(910\) −18.2931 −0.606412
\(911\) −13.3084 −0.440926 −0.220463 0.975395i \(-0.570757\pi\)
−0.220463 + 0.975395i \(0.570757\pi\)
\(912\) 0 0
\(913\) 7.01532 0.232173
\(914\) 6.80177 0.224982
\(915\) 8.20233 0.271161
\(916\) −18.6895 −0.617519
\(917\) −92.6115 −3.05830
\(918\) 12.5603 0.414553
\(919\) −27.8298 −0.918022 −0.459011 0.888431i \(-0.651796\pi\)
−0.459011 + 0.888431i \(0.651796\pi\)
\(920\) −8.21312 −0.270779
\(921\) −16.2811 −0.536481
\(922\) 35.9924 1.18535
\(923\) −9.55222 −0.314415
\(924\) −10.9664 −0.360767
\(925\) −3.90253 −0.128315
\(926\) 50.9562 1.67452
\(927\) −6.48898 −0.213126
\(928\) −33.6451 −1.10445
\(929\) 6.34215 0.208079 0.104040 0.994573i \(-0.466823\pi\)
0.104040 + 0.994573i \(0.466823\pi\)
\(930\) 0.695946 0.0228210
\(931\) 0 0
\(932\) −3.95675 −0.129608
\(933\) −4.07709 −0.133478
\(934\) 0.649192 0.0212422
\(935\) −26.2505 −0.858483
\(936\) 5.26217 0.171999
\(937\) −43.9739 −1.43656 −0.718282 0.695752i \(-0.755071\pi\)
−0.718282 + 0.695752i \(0.755071\pi\)
\(938\) 71.0706 2.32054
\(939\) −21.5553 −0.703431
\(940\) −0.481803 −0.0157147
\(941\) −15.9457 −0.519813 −0.259907 0.965634i \(-0.583692\pi\)
−0.259907 + 0.965634i \(0.583692\pi\)
\(942\) −18.8217 −0.613243
\(943\) −20.4878 −0.667174
\(944\) −41.9418 −1.36509
\(945\) 4.47988 0.145731
\(946\) −14.0523 −0.456881
\(947\) −3.10574 −0.100923 −0.0504615 0.998726i \(-0.516069\pi\)
−0.0504615 + 0.998726i \(0.516069\pi\)
\(948\) −8.62501 −0.280127
\(949\) −41.6253 −1.35121
\(950\) 0 0
\(951\) 14.2668 0.462632
\(952\) −72.5121 −2.35013
\(953\) 20.5256 0.664891 0.332445 0.943122i \(-0.392126\pi\)
0.332445 + 0.943122i \(0.392126\pi\)
\(954\) −18.9337 −0.613000
\(955\) 0.845796 0.0273693
\(956\) −4.87188 −0.157568
\(957\) −30.0585 −0.971655
\(958\) −11.5961 −0.374651
\(959\) 78.9713 2.55012
\(960\) 3.49067 0.112661
\(961\) −30.8214 −0.994238
\(962\) 15.9356 0.513784
\(963\) −3.96145 −0.127656
\(964\) −10.5578 −0.340044
\(965\) 13.1808 0.424304
\(966\) 28.5517 0.918636
\(967\) 24.8226 0.798240 0.399120 0.916899i \(-0.369316\pi\)
0.399120 + 0.916899i \(0.369316\pi\)
\(968\) −1.78835 −0.0574798
\(969\) 0 0
\(970\) −3.29322 −0.105739
\(971\) 36.5997 1.17454 0.587271 0.809391i \(-0.300202\pi\)
0.587271 + 0.809391i \(0.300202\pi\)
\(972\) 0.711327 0.0228158
\(973\) 52.5694 1.68530
\(974\) −1.13480 −0.0363614
\(975\) −2.47988 −0.0794197
\(976\) −40.3282 −1.29087
\(977\) −31.6228 −1.01170 −0.505851 0.862621i \(-0.668822\pi\)
−0.505851 + 0.862621i \(0.668822\pi\)
\(978\) −13.5002 −0.431688
\(979\) −10.8234 −0.345916
\(980\) 9.29656 0.296968
\(981\) 2.96803 0.0947620
\(982\) 14.9755 0.477886
\(983\) −45.7608 −1.45954 −0.729771 0.683692i \(-0.760373\pi\)
−0.729771 + 0.683692i \(0.760373\pi\)
\(984\) 11.2319 0.358060
\(985\) 6.91212 0.220238
\(986\) 109.709 3.49385
\(987\) −3.03436 −0.0965846
\(988\) 0 0
\(989\) 9.59855 0.305216
\(990\) −5.66654 −0.180094
\(991\) −26.4112 −0.838981 −0.419490 0.907760i \(-0.637791\pi\)
−0.419490 + 0.907760i \(0.637791\pi\)
\(992\) −1.62804 −0.0516904
\(993\) −23.9646 −0.760495
\(994\) 28.4139 0.901234
\(995\) −13.3812 −0.424214
\(996\) −1.45007 −0.0459473
\(997\) −41.1562 −1.30343 −0.651714 0.758465i \(-0.725950\pi\)
−0.651714 + 0.758465i \(0.725950\pi\)
\(998\) −38.0051 −1.20303
\(999\) −3.90253 −0.123471
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5415.2.a.z.1.4 5
19.8 odd 6 285.2.i.f.121.4 yes 10
19.12 odd 6 285.2.i.f.106.4 10
19.18 odd 2 5415.2.a.y.1.2 5
57.8 even 6 855.2.k.i.406.2 10
57.50 even 6 855.2.k.i.676.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.i.f.106.4 10 19.12 odd 6
285.2.i.f.121.4 yes 10 19.8 odd 6
855.2.k.i.406.2 10 57.8 even 6
855.2.k.i.676.2 10 57.50 even 6
5415.2.a.y.1.2 5 19.18 odd 2
5415.2.a.z.1.4 5 1.1 even 1 trivial