Properties

Label 5415.2.a.z.1.2
Level $5415$
Weight $2$
Character 5415.1
Self dual yes
Analytic conductor $43.239$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5415,2,Mod(1,5415)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5415, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5415.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5415 = 3 \cdot 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5415.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.2389926945\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.8797896.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 8x^{3} + 5x^{2} + 13x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.38140\) of defining polynomial
Character \(\chi\) \(=\) 5415.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.38140 q^{2} +1.00000 q^{3} -0.0917248 q^{4} +1.00000 q^{5} -1.38140 q^{6} -4.36264 q^{7} +2.88952 q^{8} +1.00000 q^{9} -1.38140 q^{10} -4.31625 q^{11} -0.0917248 q^{12} +6.36264 q^{13} +6.02657 q^{14} +1.00000 q^{15} -3.80814 q^{16} +5.71641 q^{17} -1.38140 q^{18} -0.0917248 q^{20} -4.36264 q^{21} +5.96248 q^{22} -0.579357 q^{23} +2.88952 q^{24} +1.00000 q^{25} -8.78938 q^{26} +1.00000 q^{27} +0.400163 q^{28} +3.55344 q^{29} -1.38140 q^{30} -1.18345 q^{31} -0.518458 q^{32} -4.31625 q^{33} -7.89667 q^{34} -4.36264 q^{35} -0.0917248 q^{36} +6.54609 q^{37} +6.36264 q^{39} +2.88952 q^{40} +0.762807 q^{41} +6.02657 q^{42} -6.36264 q^{43} +0.395907 q^{44} +1.00000 q^{45} +0.800326 q^{46} -2.73264 q^{47} -3.80814 q^{48} +12.0327 q^{49} -1.38140 q^{50} +5.71641 q^{51} -0.583613 q^{52} -5.13706 q^{53} -1.38140 q^{54} -4.31625 q^{55} -12.6059 q^{56} -4.90874 q^{58} -3.82968 q^{59} -0.0917248 q^{60} -12.0211 q^{61} +1.63482 q^{62} -4.36264 q^{63} +8.33247 q^{64} +6.36264 q^{65} +5.96248 q^{66} +4.00426 q^{67} -0.524337 q^{68} -0.579357 q^{69} +6.02657 q^{70} -3.07906 q^{71} +2.88952 q^{72} +8.08640 q^{73} -9.04280 q^{74} +1.00000 q^{75} +18.8303 q^{77} -8.78938 q^{78} -11.3367 q^{79} -3.80814 q^{80} +1.00000 q^{81} -1.05374 q^{82} +7.67889 q^{83} +0.400163 q^{84} +5.71641 q^{85} +8.78938 q^{86} +3.55344 q^{87} -12.4719 q^{88} -9.84186 q^{89} -1.38140 q^{90} -27.7579 q^{91} +0.0531414 q^{92} -1.18345 q^{93} +3.77487 q^{94} -0.518458 q^{96} -2.00000 q^{97} -16.6220 q^{98} -4.31625 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + 5 q^{3} + 7 q^{4} + 5 q^{5} + q^{6} + 2 q^{7} + 6 q^{8} + 5 q^{9} + q^{10} + 5 q^{11} + 7 q^{12} + 8 q^{13} + 4 q^{14} + 5 q^{15} + 7 q^{16} + 10 q^{17} + q^{18} + 7 q^{20} + 2 q^{21}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38140 −0.976800 −0.488400 0.872620i \(-0.662419\pi\)
−0.488400 + 0.872620i \(0.662419\pi\)
\(3\) 1.00000 0.577350
\(4\) −0.0917248 −0.0458624
\(5\) 1.00000 0.447214
\(6\) −1.38140 −0.563956
\(7\) −4.36264 −1.64892 −0.824462 0.565917i \(-0.808522\pi\)
−0.824462 + 0.565917i \(0.808522\pi\)
\(8\) 2.88952 1.02160
\(9\) 1.00000 0.333333
\(10\) −1.38140 −0.436838
\(11\) −4.31625 −1.30140 −0.650699 0.759336i \(-0.725524\pi\)
−0.650699 + 0.759336i \(0.725524\pi\)
\(12\) −0.0917248 −0.0264787
\(13\) 6.36264 1.76468 0.882340 0.470613i \(-0.155967\pi\)
0.882340 + 0.470613i \(0.155967\pi\)
\(14\) 6.02657 1.61067
\(15\) 1.00000 0.258199
\(16\) −3.80814 −0.952034
\(17\) 5.71641 1.38643 0.693217 0.720729i \(-0.256193\pi\)
0.693217 + 0.720729i \(0.256193\pi\)
\(18\) −1.38140 −0.325600
\(19\) 0 0
\(20\) −0.0917248 −0.0205103
\(21\) −4.36264 −0.952007
\(22\) 5.96248 1.27121
\(23\) −0.579357 −0.120804 −0.0604021 0.998174i \(-0.519238\pi\)
−0.0604021 + 0.998174i \(0.519238\pi\)
\(24\) 2.88952 0.589820
\(25\) 1.00000 0.200000
\(26\) −8.78938 −1.72374
\(27\) 1.00000 0.192450
\(28\) 0.400163 0.0756237
\(29\) 3.55344 0.659858 0.329929 0.944006i \(-0.392975\pi\)
0.329929 + 0.944006i \(0.392975\pi\)
\(30\) −1.38140 −0.252209
\(31\) −1.18345 −0.212554 −0.106277 0.994337i \(-0.533893\pi\)
−0.106277 + 0.994337i \(0.533893\pi\)
\(32\) −0.518458 −0.0916514
\(33\) −4.31625 −0.751363
\(34\) −7.89667 −1.35427
\(35\) −4.36264 −0.737421
\(36\) −0.0917248 −0.0152875
\(37\) 6.54609 1.07617 0.538086 0.842890i \(-0.319148\pi\)
0.538086 + 0.842890i \(0.319148\pi\)
\(38\) 0 0
\(39\) 6.36264 1.01884
\(40\) 2.88952 0.456873
\(41\) 0.762807 0.119130 0.0595652 0.998224i \(-0.481029\pi\)
0.0595652 + 0.998224i \(0.481029\pi\)
\(42\) 6.02657 0.929920
\(43\) −6.36264 −0.970294 −0.485147 0.874433i \(-0.661234\pi\)
−0.485147 + 0.874433i \(0.661234\pi\)
\(44\) 0.395907 0.0596853
\(45\) 1.00000 0.149071
\(46\) 0.800326 0.118002
\(47\) −2.73264 −0.398596 −0.199298 0.979939i \(-0.563866\pi\)
−0.199298 + 0.979939i \(0.563866\pi\)
\(48\) −3.80814 −0.549657
\(49\) 12.0327 1.71895
\(50\) −1.38140 −0.195360
\(51\) 5.71641 0.800458
\(52\) −0.583613 −0.0809325
\(53\) −5.13706 −0.705629 −0.352814 0.935693i \(-0.614775\pi\)
−0.352814 + 0.935693i \(0.614775\pi\)
\(54\) −1.38140 −0.187985
\(55\) −4.31625 −0.582003
\(56\) −12.6059 −1.68454
\(57\) 0 0
\(58\) −4.90874 −0.644549
\(59\) −3.82968 −0.498582 −0.249291 0.968429i \(-0.580198\pi\)
−0.249291 + 0.968429i \(0.580198\pi\)
\(60\) −0.0917248 −0.0118416
\(61\) −12.0211 −1.53914 −0.769569 0.638563i \(-0.779529\pi\)
−0.769569 + 0.638563i \(0.779529\pi\)
\(62\) 1.63482 0.207623
\(63\) −4.36264 −0.549641
\(64\) 8.33247 1.04156
\(65\) 6.36264 0.789189
\(66\) 5.96248 0.733931
\(67\) 4.00426 0.489198 0.244599 0.969624i \(-0.421344\pi\)
0.244599 + 0.969624i \(0.421344\pi\)
\(68\) −0.524337 −0.0635852
\(69\) −0.579357 −0.0697464
\(70\) 6.02657 0.720313
\(71\) −3.07906 −0.365417 −0.182708 0.983167i \(-0.558486\pi\)
−0.182708 + 0.983167i \(0.558486\pi\)
\(72\) 2.88952 0.340533
\(73\) 8.08640 0.946442 0.473221 0.880944i \(-0.343091\pi\)
0.473221 + 0.880944i \(0.343091\pi\)
\(74\) −9.04280 −1.05120
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 18.8303 2.14591
\(78\) −8.78938 −0.995201
\(79\) −11.3367 −1.27548 −0.637741 0.770251i \(-0.720131\pi\)
−0.637741 + 0.770251i \(0.720131\pi\)
\(80\) −3.80814 −0.425763
\(81\) 1.00000 0.111111
\(82\) −1.05374 −0.116367
\(83\) 7.67889 0.842868 0.421434 0.906859i \(-0.361527\pi\)
0.421434 + 0.906859i \(0.361527\pi\)
\(84\) 0.400163 0.0436613
\(85\) 5.71641 0.620032
\(86\) 8.78938 0.947783
\(87\) 3.55344 0.380969
\(88\) −12.4719 −1.32951
\(89\) −9.84186 −1.04324 −0.521618 0.853179i \(-0.674671\pi\)
−0.521618 + 0.853179i \(0.674671\pi\)
\(90\) −1.38140 −0.145613
\(91\) −27.7579 −2.90982
\(92\) 0.0531414 0.00554038
\(93\) −1.18345 −0.122718
\(94\) 3.77487 0.389348
\(95\) 0 0
\(96\) −0.518458 −0.0529149
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) −16.6220 −1.67907
\(99\) −4.31625 −0.433799
\(100\) −0.0917248 −0.00917248
\(101\) −4.49970 −0.447737 −0.223868 0.974619i \(-0.571869\pi\)
−0.223868 + 0.974619i \(0.571869\pi\)
\(102\) −7.89667 −0.781887
\(103\) 16.0717 1.58359 0.791796 0.610785i \(-0.209146\pi\)
0.791796 + 0.610785i \(0.209146\pi\)
\(104\) 18.3850 1.80279
\(105\) −4.36264 −0.425750
\(106\) 7.09634 0.689258
\(107\) −13.6789 −1.32239 −0.661194 0.750215i \(-0.729950\pi\)
−0.661194 + 0.750215i \(0.729950\pi\)
\(108\) −0.0917248 −0.00882623
\(109\) 8.96674 0.858858 0.429429 0.903101i \(-0.358715\pi\)
0.429429 + 0.903101i \(0.358715\pi\)
\(110\) 5.96248 0.568500
\(111\) 6.54609 0.621328
\(112\) 16.6135 1.56983
\(113\) −6.42952 −0.604838 −0.302419 0.953175i \(-0.597794\pi\)
−0.302419 + 0.953175i \(0.597794\pi\)
\(114\) 0 0
\(115\) −0.579357 −0.0540253
\(116\) −0.325939 −0.0302627
\(117\) 6.36264 0.588227
\(118\) 5.29033 0.487015
\(119\) −24.9387 −2.28612
\(120\) 2.88952 0.263775
\(121\) 7.63001 0.693637
\(122\) 16.6059 1.50343
\(123\) 0.762807 0.0687800
\(124\) 0.108552 0.00974823
\(125\) 1.00000 0.0894427
\(126\) 6.02657 0.536890
\(127\) 6.18345 0.548692 0.274346 0.961631i \(-0.411539\pi\)
0.274346 + 0.961631i \(0.411539\pi\)
\(128\) −10.4736 −0.925743
\(129\) −6.36264 −0.560200
\(130\) −8.78938 −0.770879
\(131\) 17.3974 1.52002 0.760010 0.649911i \(-0.225194\pi\)
0.760010 + 0.649911i \(0.225194\pi\)
\(132\) 0.395907 0.0344593
\(133\) 0 0
\(134\) −5.53149 −0.477848
\(135\) 1.00000 0.0860663
\(136\) 16.5177 1.41638
\(137\) 15.7164 1.34274 0.671372 0.741121i \(-0.265705\pi\)
0.671372 + 0.741121i \(0.265705\pi\)
\(138\) 0.800326 0.0681282
\(139\) 6.55344 0.555856 0.277928 0.960602i \(-0.410352\pi\)
0.277928 + 0.960602i \(0.410352\pi\)
\(140\) 0.400163 0.0338199
\(141\) −2.73264 −0.230130
\(142\) 4.25342 0.356939
\(143\) −27.4628 −2.29655
\(144\) −3.80814 −0.317345
\(145\) 3.55344 0.295097
\(146\) −11.1706 −0.924484
\(147\) 12.0327 0.992437
\(148\) −0.600439 −0.0493558
\(149\) 5.75120 0.471157 0.235578 0.971855i \(-0.424302\pi\)
0.235578 + 0.971855i \(0.424302\pi\)
\(150\) −1.38140 −0.112791
\(151\) 12.6673 1.03085 0.515425 0.856935i \(-0.327634\pi\)
0.515425 + 0.856935i \(0.327634\pi\)
\(152\) 0 0
\(153\) 5.71641 0.462145
\(154\) −26.0122 −2.09612
\(155\) −1.18345 −0.0950570
\(156\) −0.583613 −0.0467264
\(157\) 1.37887 0.110046 0.0550228 0.998485i \(-0.482477\pi\)
0.0550228 + 0.998485i \(0.482477\pi\)
\(158\) 15.6606 1.24589
\(159\) −5.13706 −0.407395
\(160\) −0.518458 −0.0409877
\(161\) 2.52753 0.199197
\(162\) −1.38140 −0.108533
\(163\) −11.6120 −0.909523 −0.454762 0.890613i \(-0.650276\pi\)
−0.454762 + 0.890613i \(0.650276\pi\)
\(164\) −0.0699683 −0.00546361
\(165\) −4.31625 −0.336020
\(166\) −10.6076 −0.823313
\(167\) 20.3114 1.57174 0.785871 0.618390i \(-0.212215\pi\)
0.785871 + 0.618390i \(0.212215\pi\)
\(168\) −12.6059 −0.972568
\(169\) 27.4832 2.11410
\(170\) −7.89667 −0.605647
\(171\) 0 0
\(172\) 0.583613 0.0445000
\(173\) 12.2509 0.931419 0.465709 0.884938i \(-0.345799\pi\)
0.465709 + 0.884938i \(0.345799\pi\)
\(174\) −4.90874 −0.372130
\(175\) −4.36264 −0.329785
\(176\) 16.4369 1.23898
\(177\) −3.82968 −0.287856
\(178\) 13.5956 1.01903
\(179\) 19.1840 1.43388 0.716941 0.697134i \(-0.245542\pi\)
0.716941 + 0.697134i \(0.245542\pi\)
\(180\) −0.0917248 −0.00683677
\(181\) 3.22984 0.240072 0.120036 0.992770i \(-0.461699\pi\)
0.120036 + 0.992770i \(0.461699\pi\)
\(182\) 38.3449 2.84231
\(183\) −12.0211 −0.888622
\(184\) −1.67406 −0.123413
\(185\) 6.54609 0.481278
\(186\) 1.63482 0.119871
\(187\) −24.6735 −1.80430
\(188\) 0.250651 0.0182806
\(189\) −4.36264 −0.317336
\(190\) 0 0
\(191\) 27.5509 1.99352 0.996758 0.0804642i \(-0.0256403\pi\)
0.996758 + 0.0804642i \(0.0256403\pi\)
\(192\) 8.33247 0.601345
\(193\) −22.2466 −1.60135 −0.800674 0.599100i \(-0.795525\pi\)
−0.800674 + 0.599100i \(0.795525\pi\)
\(194\) 2.76281 0.198358
\(195\) 6.36264 0.455638
\(196\) −1.10369 −0.0788353
\(197\) 12.6627 0.902178 0.451089 0.892479i \(-0.351036\pi\)
0.451089 + 0.892479i \(0.351036\pi\)
\(198\) 5.96248 0.423735
\(199\) −8.76955 −0.621657 −0.310829 0.950466i \(-0.600607\pi\)
−0.310829 + 0.950466i \(0.600607\pi\)
\(200\) 2.88952 0.204320
\(201\) 4.00426 0.282438
\(202\) 6.21590 0.437349
\(203\) −15.5024 −1.08806
\(204\) −0.524337 −0.0367109
\(205\) 0.762807 0.0532767
\(206\) −22.2015 −1.54685
\(207\) −0.579357 −0.0402681
\(208\) −24.2298 −1.68004
\(209\) 0 0
\(210\) 6.02657 0.415873
\(211\) −7.86778 −0.541640 −0.270820 0.962630i \(-0.587295\pi\)
−0.270820 + 0.962630i \(0.587295\pi\)
\(212\) 0.471196 0.0323618
\(213\) −3.07906 −0.210973
\(214\) 18.8961 1.29171
\(215\) −6.36264 −0.433929
\(216\) 2.88952 0.196607
\(217\) 5.16297 0.350485
\(218\) −12.3867 −0.838932
\(219\) 8.08640 0.546429
\(220\) 0.395907 0.0266921
\(221\) 36.3715 2.44661
\(222\) −9.04280 −0.606913
\(223\) 27.3535 1.83173 0.915864 0.401489i \(-0.131507\pi\)
0.915864 + 0.401489i \(0.131507\pi\)
\(224\) 2.26185 0.151126
\(225\) 1.00000 0.0666667
\(226\) 8.88176 0.590806
\(227\) 25.0922 1.66543 0.832713 0.553704i \(-0.186786\pi\)
0.832713 + 0.553704i \(0.186786\pi\)
\(228\) 0 0
\(229\) 4.98530 0.329438 0.164719 0.986341i \(-0.447328\pi\)
0.164719 + 0.986341i \(0.447328\pi\)
\(230\) 0.800326 0.0527719
\(231\) 18.8303 1.23894
\(232\) 10.2677 0.674109
\(233\) 12.7964 0.838321 0.419161 0.907912i \(-0.362324\pi\)
0.419161 + 0.907912i \(0.362324\pi\)
\(234\) −8.78938 −0.574580
\(235\) −2.73264 −0.178258
\(236\) 0.351277 0.0228662
\(237\) −11.3367 −0.736400
\(238\) 34.4504 2.23309
\(239\) 12.8049 0.828283 0.414142 0.910212i \(-0.364082\pi\)
0.414142 + 0.910212i \(0.364082\pi\)
\(240\) −3.80814 −0.245814
\(241\) 1.09279 0.0703927 0.0351964 0.999380i \(-0.488794\pi\)
0.0351964 + 0.999380i \(0.488794\pi\)
\(242\) −10.5401 −0.677544
\(243\) 1.00000 0.0641500
\(244\) 1.10263 0.0705886
\(245\) 12.0327 0.768739
\(246\) −1.05374 −0.0671842
\(247\) 0 0
\(248\) −3.41960 −0.217145
\(249\) 7.67889 0.486630
\(250\) −1.38140 −0.0873676
\(251\) 6.09528 0.384731 0.192365 0.981323i \(-0.438384\pi\)
0.192365 + 0.981323i \(0.438384\pi\)
\(252\) 0.400163 0.0252079
\(253\) 2.50065 0.157214
\(254\) −8.54184 −0.535963
\(255\) 5.71641 0.357976
\(256\) −2.19670 −0.137293
\(257\) −4.62032 −0.288207 −0.144104 0.989563i \(-0.546030\pi\)
−0.144104 + 0.989563i \(0.546030\pi\)
\(258\) 8.78938 0.547203
\(259\) −28.5583 −1.77452
\(260\) −0.583613 −0.0361941
\(261\) 3.55344 0.219953
\(262\) −24.0329 −1.48476
\(263\) −30.0495 −1.85293 −0.926465 0.376382i \(-0.877168\pi\)
−0.926465 + 0.376382i \(0.877168\pi\)
\(264\) −12.4719 −0.767591
\(265\) −5.13706 −0.315567
\(266\) 0 0
\(267\) −9.84186 −0.602312
\(268\) −0.367290 −0.0224358
\(269\) 0.211279 0.0128819 0.00644095 0.999979i \(-0.497950\pi\)
0.00644095 + 0.999979i \(0.497950\pi\)
\(270\) −1.38140 −0.0840695
\(271\) −7.40727 −0.449960 −0.224980 0.974363i \(-0.572232\pi\)
−0.224980 + 0.974363i \(0.572232\pi\)
\(272\) −21.7689 −1.31993
\(273\) −27.7579 −1.67999
\(274\) −21.7107 −1.31159
\(275\) −4.31625 −0.260280
\(276\) 0.0531414 0.00319874
\(277\) −29.0668 −1.74646 −0.873229 0.487310i \(-0.837978\pi\)
−0.873229 + 0.487310i \(0.837978\pi\)
\(278\) −9.05295 −0.542960
\(279\) −1.18345 −0.0708513
\(280\) −12.6059 −0.753348
\(281\) −11.4759 −0.684596 −0.342298 0.939592i \(-0.611205\pi\)
−0.342298 + 0.939592i \(0.611205\pi\)
\(282\) 3.77487 0.224790
\(283\) −27.3324 −1.62475 −0.812373 0.583139i \(-0.801824\pi\)
−0.812373 + 0.583139i \(0.801824\pi\)
\(284\) 0.282426 0.0167589
\(285\) 0 0
\(286\) 37.9371 2.24327
\(287\) −3.32785 −0.196437
\(288\) −0.518458 −0.0305505
\(289\) 15.6774 0.922198
\(290\) −4.90874 −0.288251
\(291\) −2.00000 −0.117242
\(292\) −0.741724 −0.0434061
\(293\) −13.0211 −0.760698 −0.380349 0.924843i \(-0.624196\pi\)
−0.380349 + 0.924843i \(0.624196\pi\)
\(294\) −16.6220 −0.969412
\(295\) −3.82968 −0.222973
\(296\) 18.9150 1.09941
\(297\) −4.31625 −0.250454
\(298\) −7.94473 −0.460226
\(299\) −3.68624 −0.213181
\(300\) −0.0917248 −0.00529574
\(301\) 27.7579 1.59994
\(302\) −17.4986 −1.00693
\(303\) −4.49970 −0.258501
\(304\) 0 0
\(305\) −12.0211 −0.688324
\(306\) −7.89667 −0.451423
\(307\) −4.02534 −0.229738 −0.114869 0.993381i \(-0.536645\pi\)
−0.114869 + 0.993381i \(0.536645\pi\)
\(308\) −1.72720 −0.0984165
\(309\) 16.0717 0.914287
\(310\) 1.63482 0.0928516
\(311\) 15.3578 0.870860 0.435430 0.900223i \(-0.356596\pi\)
0.435430 + 0.900223i \(0.356596\pi\)
\(312\) 18.3850 1.04084
\(313\) 21.9600 1.24125 0.620625 0.784107i \(-0.286879\pi\)
0.620625 + 0.784107i \(0.286879\pi\)
\(314\) −1.90477 −0.107493
\(315\) −4.36264 −0.245807
\(316\) 1.03986 0.0584967
\(317\) 24.1279 1.35516 0.677580 0.735449i \(-0.263029\pi\)
0.677580 + 0.735449i \(0.263029\pi\)
\(318\) 7.09634 0.397943
\(319\) −15.3375 −0.858738
\(320\) 8.33247 0.465799
\(321\) −13.6789 −0.763481
\(322\) −3.49154 −0.194576
\(323\) 0 0
\(324\) −0.0917248 −0.00509582
\(325\) 6.36264 0.352936
\(326\) 16.0409 0.888422
\(327\) 8.96674 0.495862
\(328\) 2.20414 0.121703
\(329\) 11.9215 0.657255
\(330\) 5.96248 0.328224
\(331\) 24.8416 1.36542 0.682710 0.730690i \(-0.260801\pi\)
0.682710 + 0.730690i \(0.260801\pi\)
\(332\) −0.704345 −0.0386560
\(333\) 6.54609 0.358724
\(334\) −28.0582 −1.53528
\(335\) 4.00426 0.218776
\(336\) 16.6135 0.906343
\(337\) −0.569303 −0.0310119 −0.0155059 0.999880i \(-0.504936\pi\)
−0.0155059 + 0.999880i \(0.504936\pi\)
\(338\) −37.9654 −2.06505
\(339\) −6.42952 −0.349204
\(340\) −0.524337 −0.0284362
\(341\) 5.10806 0.276617
\(342\) 0 0
\(343\) −21.9557 −1.18550
\(344\) −18.3850 −0.991251
\(345\) −0.579357 −0.0311915
\(346\) −16.9234 −0.909810
\(347\) 9.37365 0.503204 0.251602 0.967831i \(-0.419043\pi\)
0.251602 + 0.967831i \(0.419043\pi\)
\(348\) −0.325939 −0.0174722
\(349\) 14.8297 0.793815 0.396907 0.917859i \(-0.370083\pi\)
0.396907 + 0.917859i \(0.370083\pi\)
\(350\) 6.02657 0.322134
\(351\) 6.36264 0.339613
\(352\) 2.23780 0.119275
\(353\) 31.2650 1.66407 0.832034 0.554725i \(-0.187176\pi\)
0.832034 + 0.554725i \(0.187176\pi\)
\(354\) 5.29033 0.281178
\(355\) −3.07906 −0.163419
\(356\) 0.902743 0.0478453
\(357\) −24.9387 −1.31989
\(358\) −26.5009 −1.40061
\(359\) 10.8712 0.573761 0.286880 0.957966i \(-0.407382\pi\)
0.286880 + 0.957966i \(0.407382\pi\)
\(360\) 2.88952 0.152291
\(361\) 0 0
\(362\) −4.46172 −0.234503
\(363\) 7.63001 0.400472
\(364\) 2.54609 0.133452
\(365\) 8.08640 0.423262
\(366\) 16.6059 0.868006
\(367\) −18.7295 −0.977674 −0.488837 0.872375i \(-0.662579\pi\)
−0.488837 + 0.872375i \(0.662579\pi\)
\(368\) 2.20627 0.115010
\(369\) 0.762807 0.0397101
\(370\) −9.04280 −0.470113
\(371\) 22.4111 1.16353
\(372\) 0.108552 0.00562815
\(373\) −29.3275 −1.51852 −0.759259 0.650788i \(-0.774439\pi\)
−0.759259 + 0.650788i \(0.774439\pi\)
\(374\) 34.0840 1.76244
\(375\) 1.00000 0.0516398
\(376\) −7.89600 −0.407205
\(377\) 22.6093 1.16444
\(378\) 6.02657 0.309973
\(379\) 10.6486 0.546980 0.273490 0.961875i \(-0.411822\pi\)
0.273490 + 0.961875i \(0.411822\pi\)
\(380\) 0 0
\(381\) 6.18345 0.316788
\(382\) −38.0589 −1.94726
\(383\) −9.27954 −0.474163 −0.237081 0.971490i \(-0.576191\pi\)
−0.237081 + 0.971490i \(0.576191\pi\)
\(384\) −10.4736 −0.534478
\(385\) 18.8303 0.959679
\(386\) 30.7316 1.56420
\(387\) −6.36264 −0.323431
\(388\) 0.183450 0.00931325
\(389\) 1.33247 0.0675591 0.0337796 0.999429i \(-0.489246\pi\)
0.0337796 + 0.999429i \(0.489246\pi\)
\(390\) −8.78938 −0.445067
\(391\) −3.31184 −0.167487
\(392\) 34.7686 1.75608
\(393\) 17.3974 0.877584
\(394\) −17.4923 −0.881247
\(395\) −11.3367 −0.570413
\(396\) 0.395907 0.0198951
\(397\) −31.6648 −1.58921 −0.794605 0.607127i \(-0.792322\pi\)
−0.794605 + 0.607127i \(0.792322\pi\)
\(398\) 12.1143 0.607235
\(399\) 0 0
\(400\) −3.80814 −0.190407
\(401\) 4.88849 0.244120 0.122060 0.992523i \(-0.461050\pi\)
0.122060 + 0.992523i \(0.461050\pi\)
\(402\) −5.53149 −0.275886
\(403\) −7.52987 −0.375089
\(404\) 0.412734 0.0205343
\(405\) 1.00000 0.0496904
\(406\) 21.4151 1.06281
\(407\) −28.2546 −1.40053
\(408\) 16.5177 0.817746
\(409\) 22.7881 1.12680 0.563400 0.826184i \(-0.309493\pi\)
0.563400 + 0.826184i \(0.309493\pi\)
\(410\) −1.05374 −0.0520407
\(411\) 15.7164 0.775233
\(412\) −1.47417 −0.0726274
\(413\) 16.7075 0.822124
\(414\) 0.800326 0.0393339
\(415\) 7.67889 0.376942
\(416\) −3.29877 −0.161735
\(417\) 6.55344 0.320923
\(418\) 0 0
\(419\) 30.8809 1.50863 0.754316 0.656512i \(-0.227969\pi\)
0.754316 + 0.656512i \(0.227969\pi\)
\(420\) 0.400163 0.0195259
\(421\) −26.5782 −1.29534 −0.647671 0.761920i \(-0.724257\pi\)
−0.647671 + 0.761920i \(0.724257\pi\)
\(422\) 10.8686 0.529074
\(423\) −2.73264 −0.132865
\(424\) −14.8436 −0.720869
\(425\) 5.71641 0.277287
\(426\) 4.25342 0.206079
\(427\) 52.4436 2.53792
\(428\) 1.25469 0.0606479
\(429\) −27.4628 −1.32591
\(430\) 8.78938 0.423861
\(431\) −16.4744 −0.793542 −0.396771 0.917918i \(-0.629869\pi\)
−0.396771 + 0.917918i \(0.629869\pi\)
\(432\) −3.80814 −0.183219
\(433\) 36.8041 1.76869 0.884346 0.466832i \(-0.154605\pi\)
0.884346 + 0.466832i \(0.154605\pi\)
\(434\) −7.13214 −0.342354
\(435\) 3.55344 0.170375
\(436\) −0.822473 −0.0393893
\(437\) 0 0
\(438\) −11.1706 −0.533751
\(439\) −9.58280 −0.457362 −0.228681 0.973501i \(-0.573441\pi\)
−0.228681 + 0.973501i \(0.573441\pi\)
\(440\) −12.4719 −0.594573
\(441\) 12.0327 0.572984
\(442\) −50.2437 −2.38985
\(443\) −22.2436 −1.05682 −0.528412 0.848988i \(-0.677212\pi\)
−0.528412 + 0.848988i \(0.677212\pi\)
\(444\) −0.600439 −0.0284956
\(445\) −9.84186 −0.466549
\(446\) −37.7863 −1.78923
\(447\) 5.75120 0.272023
\(448\) −36.3516 −1.71745
\(449\) 0.491188 0.0231806 0.0115903 0.999933i \(-0.496311\pi\)
0.0115903 + 0.999933i \(0.496311\pi\)
\(450\) −1.38140 −0.0651200
\(451\) −3.29246 −0.155036
\(452\) 0.589747 0.0277393
\(453\) 12.6673 0.595161
\(454\) −34.6624 −1.62679
\(455\) −27.7579 −1.30131
\(456\) 0 0
\(457\) 13.2607 0.620311 0.310156 0.950686i \(-0.399619\pi\)
0.310156 + 0.950686i \(0.399619\pi\)
\(458\) −6.88671 −0.321795
\(459\) 5.71641 0.266819
\(460\) 0.0531414 0.00247773
\(461\) 23.3734 1.08861 0.544305 0.838888i \(-0.316794\pi\)
0.544305 + 0.838888i \(0.316794\pi\)
\(462\) −26.0122 −1.21020
\(463\) −0.981649 −0.0456211 −0.0228105 0.999740i \(-0.507261\pi\)
−0.0228105 + 0.999740i \(0.507261\pi\)
\(464\) −13.5320 −0.628207
\(465\) −1.18345 −0.0548812
\(466\) −17.6770 −0.818872
\(467\) −18.8498 −0.872264 −0.436132 0.899883i \(-0.643652\pi\)
−0.436132 + 0.899883i \(0.643652\pi\)
\(468\) −0.583613 −0.0269775
\(469\) −17.4691 −0.806650
\(470\) 3.77487 0.174122
\(471\) 1.37887 0.0635349
\(472\) −11.0659 −0.509350
\(473\) 27.4628 1.26274
\(474\) 15.6606 0.719315
\(475\) 0 0
\(476\) 2.28750 0.104847
\(477\) −5.13706 −0.235210
\(478\) −17.6888 −0.809067
\(479\) 20.1591 0.921091 0.460546 0.887636i \(-0.347654\pi\)
0.460546 + 0.887636i \(0.347654\pi\)
\(480\) −0.518458 −0.0236643
\(481\) 41.6505 1.89910
\(482\) −1.50958 −0.0687596
\(483\) 2.52753 0.115007
\(484\) −0.699861 −0.0318119
\(485\) −2.00000 −0.0908153
\(486\) −1.38140 −0.0626617
\(487\) −2.79159 −0.126499 −0.0632494 0.997998i \(-0.520146\pi\)
−0.0632494 + 0.997998i \(0.520146\pi\)
\(488\) −34.7350 −1.57238
\(489\) −11.6120 −0.525114
\(490\) −16.6220 −0.750904
\(491\) 5.77808 0.260761 0.130381 0.991464i \(-0.458380\pi\)
0.130381 + 0.991464i \(0.458380\pi\)
\(492\) −0.0699683 −0.00315442
\(493\) 20.3129 0.914849
\(494\) 0 0
\(495\) −4.31625 −0.194001
\(496\) 4.50674 0.202359
\(497\) 13.4328 0.602545
\(498\) −10.6076 −0.475340
\(499\) 12.7958 0.572820 0.286410 0.958107i \(-0.407538\pi\)
0.286410 + 0.958107i \(0.407538\pi\)
\(500\) −0.0917248 −0.00410206
\(501\) 20.3114 0.907446
\(502\) −8.42004 −0.375805
\(503\) 31.6679 1.41200 0.706000 0.708212i \(-0.250498\pi\)
0.706000 + 0.708212i \(0.250498\pi\)
\(504\) −12.6059 −0.561513
\(505\) −4.49970 −0.200234
\(506\) −3.45440 −0.153567
\(507\) 27.4832 1.22057
\(508\) −0.567176 −0.0251644
\(509\) 5.48809 0.243256 0.121628 0.992576i \(-0.461189\pi\)
0.121628 + 0.992576i \(0.461189\pi\)
\(510\) −7.89667 −0.349670
\(511\) −35.2781 −1.56061
\(512\) 23.9817 1.05985
\(513\) 0 0
\(514\) 6.38252 0.281521
\(515\) 16.0717 0.708204
\(516\) 0.583613 0.0256921
\(517\) 11.7947 0.518732
\(518\) 39.4505 1.73336
\(519\) 12.2509 0.537755
\(520\) 18.3850 0.806234
\(521\) −8.28086 −0.362791 −0.181396 0.983410i \(-0.558061\pi\)
−0.181396 + 0.983410i \(0.558061\pi\)
\(522\) −4.90874 −0.214850
\(523\) −11.5517 −0.505120 −0.252560 0.967581i \(-0.581272\pi\)
−0.252560 + 0.967581i \(0.581272\pi\)
\(524\) −1.59578 −0.0697118
\(525\) −4.36264 −0.190401
\(526\) 41.5104 1.80994
\(527\) −6.76509 −0.294692
\(528\) 16.4369 0.715323
\(529\) −22.6643 −0.985406
\(530\) 7.09634 0.308246
\(531\) −3.82968 −0.166194
\(532\) 0 0
\(533\) 4.85347 0.210227
\(534\) 13.5956 0.588338
\(535\) −13.6789 −0.591390
\(536\) 11.5704 0.499763
\(537\) 19.1840 0.827852
\(538\) −0.291861 −0.0125830
\(539\) −51.9360 −2.23704
\(540\) −0.0917248 −0.00394721
\(541\) −25.8749 −1.11245 −0.556224 0.831032i \(-0.687750\pi\)
−0.556224 + 0.831032i \(0.687750\pi\)
\(542\) 10.2324 0.439521
\(543\) 3.22984 0.138606
\(544\) −2.96372 −0.127069
\(545\) 8.96674 0.384093
\(546\) 38.3449 1.64101
\(547\) −6.40573 −0.273889 −0.136945 0.990579i \(-0.543728\pi\)
−0.136945 + 0.990579i \(0.543728\pi\)
\(548\) −1.44159 −0.0615815
\(549\) −12.0211 −0.513046
\(550\) 5.96248 0.254241
\(551\) 0 0
\(552\) −1.67406 −0.0712528
\(553\) 49.4581 2.10317
\(554\) 40.1530 1.70594
\(555\) 6.54609 0.277866
\(556\) −0.601113 −0.0254929
\(557\) −3.52561 −0.149385 −0.0746925 0.997207i \(-0.523798\pi\)
−0.0746925 + 0.997207i \(0.523798\pi\)
\(558\) 1.63482 0.0692075
\(559\) −40.4832 −1.71226
\(560\) 16.6135 0.702050
\(561\) −24.6735 −1.04171
\(562\) 15.8529 0.668713
\(563\) 30.7179 1.29461 0.647303 0.762232i \(-0.275897\pi\)
0.647303 + 0.762232i \(0.275897\pi\)
\(564\) 0.250651 0.0105543
\(565\) −6.42952 −0.270492
\(566\) 37.7571 1.58705
\(567\) −4.36264 −0.183214
\(568\) −8.89698 −0.373309
\(569\) −9.17896 −0.384802 −0.192401 0.981316i \(-0.561627\pi\)
−0.192401 + 0.981316i \(0.561627\pi\)
\(570\) 0 0
\(571\) −7.49001 −0.313447 −0.156724 0.987643i \(-0.550093\pi\)
−0.156724 + 0.987643i \(0.550093\pi\)
\(572\) 2.51902 0.105325
\(573\) 27.5509 1.15096
\(574\) 4.59711 0.191880
\(575\) −0.579357 −0.0241609
\(576\) 8.33247 0.347186
\(577\) 32.6093 1.35754 0.678771 0.734350i \(-0.262513\pi\)
0.678771 + 0.734350i \(0.262513\pi\)
\(578\) −21.6568 −0.900803
\(579\) −22.2466 −0.924539
\(580\) −0.325939 −0.0135339
\(581\) −33.5003 −1.38983
\(582\) 2.76281 0.114522
\(583\) 22.1728 0.918304
\(584\) 23.3658 0.966883
\(585\) 6.36264 0.263063
\(586\) 17.9873 0.743050
\(587\) −18.3895 −0.759015 −0.379508 0.925189i \(-0.623907\pi\)
−0.379508 + 0.925189i \(0.623907\pi\)
\(588\) −1.10369 −0.0455156
\(589\) 0 0
\(590\) 5.29033 0.217800
\(591\) 12.6627 0.520873
\(592\) −24.9284 −1.02455
\(593\) 0.417338 0.0171380 0.00856900 0.999963i \(-0.497272\pi\)
0.00856900 + 0.999963i \(0.497272\pi\)
\(594\) 5.96248 0.244644
\(595\) −24.9387 −1.02239
\(596\) −0.527528 −0.0216084
\(597\) −8.76955 −0.358914
\(598\) 5.09219 0.208235
\(599\) 38.9655 1.59209 0.796045 0.605238i \(-0.206922\pi\)
0.796045 + 0.605238i \(0.206922\pi\)
\(600\) 2.88952 0.117964
\(601\) −10.0358 −0.409367 −0.204683 0.978828i \(-0.565617\pi\)
−0.204683 + 0.978828i \(0.565617\pi\)
\(602\) −38.3449 −1.56282
\(603\) 4.00426 0.163066
\(604\) −1.16191 −0.0472772
\(605\) 7.63001 0.310204
\(606\) 6.21590 0.252504
\(607\) 6.25423 0.253851 0.126926 0.991912i \(-0.459489\pi\)
0.126926 + 0.991912i \(0.459489\pi\)
\(608\) 0 0
\(609\) −15.5024 −0.628189
\(610\) 16.6059 0.672354
\(611\) −17.3868 −0.703394
\(612\) −0.524337 −0.0211951
\(613\) 29.8743 1.20661 0.603306 0.797510i \(-0.293850\pi\)
0.603306 + 0.797510i \(0.293850\pi\)
\(614\) 5.56062 0.224408
\(615\) 0.762807 0.0307593
\(616\) 54.4103 2.19225
\(617\) −30.6395 −1.23350 −0.616749 0.787160i \(-0.711551\pi\)
−0.616749 + 0.787160i \(0.711551\pi\)
\(618\) −22.2015 −0.893076
\(619\) 21.1480 0.850011 0.425006 0.905191i \(-0.360272\pi\)
0.425006 + 0.905191i \(0.360272\pi\)
\(620\) 0.108552 0.00435954
\(621\) −0.579357 −0.0232488
\(622\) −21.2153 −0.850656
\(623\) 42.9365 1.72022
\(624\) −24.2298 −0.969969
\(625\) 1.00000 0.0400000
\(626\) −30.3356 −1.21245
\(627\) 0 0
\(628\) −0.126476 −0.00504696
\(629\) 37.4202 1.49204
\(630\) 6.02657 0.240104
\(631\) −26.0247 −1.03603 −0.518014 0.855372i \(-0.673329\pi\)
−0.518014 + 0.855372i \(0.673329\pi\)
\(632\) −32.7577 −1.30303
\(633\) −7.86778 −0.312716
\(634\) −33.3304 −1.32372
\(635\) 6.18345 0.245383
\(636\) 0.471196 0.0186841
\(637\) 76.5595 3.03340
\(638\) 21.1873 0.838815
\(639\) −3.07906 −0.121806
\(640\) −10.4736 −0.414005
\(641\) 19.1996 0.758341 0.379170 0.925327i \(-0.376209\pi\)
0.379170 + 0.925327i \(0.376209\pi\)
\(642\) 18.8961 0.745768
\(643\) 8.54609 0.337025 0.168513 0.985700i \(-0.446104\pi\)
0.168513 + 0.985700i \(0.446104\pi\)
\(644\) −0.231837 −0.00913566
\(645\) −6.36264 −0.250529
\(646\) 0 0
\(647\) −21.6966 −0.852983 −0.426492 0.904492i \(-0.640251\pi\)
−0.426492 + 0.904492i \(0.640251\pi\)
\(648\) 2.88952 0.113511
\(649\) 16.5299 0.648854
\(650\) −8.78938 −0.344748
\(651\) 5.16297 0.202353
\(652\) 1.06511 0.0417129
\(653\) −4.39011 −0.171798 −0.0858991 0.996304i \(-0.527376\pi\)
−0.0858991 + 0.996304i \(0.527376\pi\)
\(654\) −12.3867 −0.484358
\(655\) 17.3974 0.679774
\(656\) −2.90487 −0.113416
\(657\) 8.08640 0.315481
\(658\) −16.4684 −0.642006
\(659\) 15.1465 0.590025 0.295013 0.955493i \(-0.404676\pi\)
0.295013 + 0.955493i \(0.404676\pi\)
\(660\) 0.395907 0.0154107
\(661\) −7.31588 −0.284555 −0.142277 0.989827i \(-0.545443\pi\)
−0.142277 + 0.989827i \(0.545443\pi\)
\(662\) −34.3163 −1.33374
\(663\) 36.3715 1.41255
\(664\) 22.1883 0.861072
\(665\) 0 0
\(666\) −9.04280 −0.350401
\(667\) −2.05871 −0.0797136
\(668\) −1.86306 −0.0720839
\(669\) 27.3535 1.05755
\(670\) −5.53149 −0.213700
\(671\) 51.8859 2.00303
\(672\) 2.26185 0.0872527
\(673\) −39.7027 −1.53043 −0.765213 0.643777i \(-0.777366\pi\)
−0.765213 + 0.643777i \(0.777366\pi\)
\(674\) 0.786437 0.0302924
\(675\) 1.00000 0.0384900
\(676\) −2.52090 −0.0969575
\(677\) 9.45197 0.363269 0.181634 0.983366i \(-0.441861\pi\)
0.181634 + 0.983366i \(0.441861\pi\)
\(678\) 8.88176 0.341102
\(679\) 8.72529 0.334846
\(680\) 16.5177 0.633423
\(681\) 25.0922 0.961535
\(682\) −7.05630 −0.270200
\(683\) 6.27600 0.240145 0.120072 0.992765i \(-0.461687\pi\)
0.120072 + 0.992765i \(0.461687\pi\)
\(684\) 0 0
\(685\) 15.7164 0.600493
\(686\) 30.3297 1.15799
\(687\) 4.98530 0.190201
\(688\) 24.2298 0.923753
\(689\) −32.6853 −1.24521
\(690\) 0.800326 0.0304679
\(691\) −33.8913 −1.28929 −0.644643 0.764483i \(-0.722994\pi\)
−0.644643 + 0.764483i \(0.722994\pi\)
\(692\) −1.12371 −0.0427171
\(693\) 18.8303 0.715302
\(694\) −12.9488 −0.491529
\(695\) 6.55344 0.248586
\(696\) 10.2677 0.389197
\(697\) 4.36052 0.165166
\(698\) −20.4858 −0.775398
\(699\) 12.7964 0.484005
\(700\) 0.400163 0.0151247
\(701\) 40.3040 1.52226 0.761131 0.648598i \(-0.224644\pi\)
0.761131 + 0.648598i \(0.224644\pi\)
\(702\) −8.78938 −0.331734
\(703\) 0 0
\(704\) −35.9650 −1.35548
\(705\) −2.73264 −0.102917
\(706\) −43.1896 −1.62546
\(707\) 19.6306 0.738284
\(708\) 0.351277 0.0132018
\(709\) −5.27411 −0.198073 −0.0990367 0.995084i \(-0.531576\pi\)
−0.0990367 + 0.995084i \(0.531576\pi\)
\(710\) 4.25342 0.159628
\(711\) −11.3367 −0.425161
\(712\) −28.4382 −1.06577
\(713\) 0.685640 0.0256774
\(714\) 34.4504 1.28927
\(715\) −27.4628 −1.02705
\(716\) −1.75965 −0.0657613
\(717\) 12.8049 0.478209
\(718\) −15.0175 −0.560450
\(719\) 23.7668 0.886353 0.443176 0.896434i \(-0.353851\pi\)
0.443176 + 0.896434i \(0.353851\pi\)
\(720\) −3.80814 −0.141921
\(721\) −70.1151 −2.61122
\(722\) 0 0
\(723\) 1.09279 0.0406413
\(724\) −0.296257 −0.0110103
\(725\) 3.55344 0.131972
\(726\) −10.5401 −0.391180
\(727\) −33.8449 −1.25524 −0.627620 0.778520i \(-0.715971\pi\)
−0.627620 + 0.778520i \(0.715971\pi\)
\(728\) −80.2070 −2.97267
\(729\) 1.00000 0.0370370
\(730\) −11.1706 −0.413442
\(731\) −36.3715 −1.34525
\(732\) 1.10263 0.0407544
\(733\) 24.6249 0.909542 0.454771 0.890608i \(-0.349721\pi\)
0.454771 + 0.890608i \(0.349721\pi\)
\(734\) 25.8731 0.954992
\(735\) 12.0327 0.443831
\(736\) 0.300372 0.0110719
\(737\) −17.2834 −0.636641
\(738\) −1.05374 −0.0387888
\(739\) 18.4593 0.679037 0.339518 0.940599i \(-0.389736\pi\)
0.339518 + 0.940599i \(0.389736\pi\)
\(740\) −0.600439 −0.0220726
\(741\) 0 0
\(742\) −30.9588 −1.13653
\(743\) 8.95728 0.328611 0.164305 0.986410i \(-0.447462\pi\)
0.164305 + 0.986410i \(0.447462\pi\)
\(744\) −3.41960 −0.125368
\(745\) 5.75120 0.210708
\(746\) 40.5131 1.48329
\(747\) 7.67889 0.280956
\(748\) 2.26317 0.0827497
\(749\) 59.6761 2.18052
\(750\) −1.38140 −0.0504417
\(751\) 29.2256 1.06646 0.533228 0.845972i \(-0.320979\pi\)
0.533228 + 0.845972i \(0.320979\pi\)
\(752\) 10.4063 0.379477
\(753\) 6.09528 0.222124
\(754\) −31.2325 −1.13742
\(755\) 12.6673 0.461010
\(756\) 0.400163 0.0145538
\(757\) 18.6777 0.678853 0.339427 0.940633i \(-0.389767\pi\)
0.339427 + 0.940633i \(0.389767\pi\)
\(758\) −14.7100 −0.534290
\(759\) 2.50065 0.0907678
\(760\) 0 0
\(761\) 41.5952 1.50782 0.753912 0.656975i \(-0.228164\pi\)
0.753912 + 0.656975i \(0.228164\pi\)
\(762\) −8.54184 −0.309438
\(763\) −39.1187 −1.41619
\(764\) −2.52710 −0.0914274
\(765\) 5.71641 0.206677
\(766\) 12.8188 0.463162
\(767\) −24.3669 −0.879838
\(768\) −2.19670 −0.0792664
\(769\) 35.2509 1.27118 0.635590 0.772027i \(-0.280757\pi\)
0.635590 + 0.772027i \(0.280757\pi\)
\(770\) −26.0122 −0.937414
\(771\) −4.62032 −0.166397
\(772\) 2.04057 0.0734417
\(773\) −47.9524 −1.72473 −0.862364 0.506290i \(-0.831017\pi\)
−0.862364 + 0.506290i \(0.831017\pi\)
\(774\) 8.78938 0.315928
\(775\) −1.18345 −0.0425108
\(776\) −5.77903 −0.207455
\(777\) −28.5583 −1.02452
\(778\) −1.84068 −0.0659917
\(779\) 0 0
\(780\) −0.583613 −0.0208967
\(781\) 13.2900 0.475553
\(782\) 4.57499 0.163601
\(783\) 3.55344 0.126990
\(784\) −45.8220 −1.63650
\(785\) 1.37887 0.0492139
\(786\) −24.0329 −0.857224
\(787\) 5.26074 0.187525 0.0937626 0.995595i \(-0.470111\pi\)
0.0937626 + 0.995595i \(0.470111\pi\)
\(788\) −1.16148 −0.0413761
\(789\) −30.0495 −1.06979
\(790\) 15.6606 0.557179
\(791\) 28.0497 0.997333
\(792\) −12.4719 −0.443169
\(793\) −76.4857 −2.71609
\(794\) 43.7418 1.55234
\(795\) −5.13706 −0.182193
\(796\) 0.804386 0.0285107
\(797\) 21.0174 0.744474 0.372237 0.928138i \(-0.378591\pi\)
0.372237 + 0.928138i \(0.378591\pi\)
\(798\) 0 0
\(799\) −15.6209 −0.552627
\(800\) −0.518458 −0.0183303
\(801\) −9.84186 −0.347745
\(802\) −6.75298 −0.238456
\(803\) −34.9029 −1.23170
\(804\) −0.367290 −0.0129533
\(805\) 2.52753 0.0890837
\(806\) 10.4018 0.366387
\(807\) 0.211279 0.00743737
\(808\) −13.0020 −0.457407
\(809\) 35.3856 1.24409 0.622046 0.782981i \(-0.286302\pi\)
0.622046 + 0.782981i \(0.286302\pi\)
\(810\) −1.38140 −0.0485376
\(811\) −5.35046 −0.187880 −0.0939401 0.995578i \(-0.529946\pi\)
−0.0939401 + 0.995578i \(0.529946\pi\)
\(812\) 1.42196 0.0499009
\(813\) −7.40727 −0.259784
\(814\) 39.0310 1.36803
\(815\) −11.6120 −0.406751
\(816\) −21.7689 −0.762063
\(817\) 0 0
\(818\) −31.4796 −1.10066
\(819\) −27.7579 −0.969941
\(820\) −0.0699683 −0.00244340
\(821\) 7.63772 0.266558 0.133279 0.991079i \(-0.457449\pi\)
0.133279 + 0.991079i \(0.457449\pi\)
\(822\) −21.7107 −0.757248
\(823\) 27.5732 0.961141 0.480570 0.876956i \(-0.340430\pi\)
0.480570 + 0.876956i \(0.340430\pi\)
\(824\) 46.4394 1.61779
\(825\) −4.31625 −0.150273
\(826\) −23.0798 −0.803051
\(827\) 19.0317 0.661797 0.330898 0.943666i \(-0.392648\pi\)
0.330898 + 0.943666i \(0.392648\pi\)
\(828\) 0.0531414 0.00184679
\(829\) 13.7455 0.477402 0.238701 0.971093i \(-0.423278\pi\)
0.238701 + 0.971093i \(0.423278\pi\)
\(830\) −10.6076 −0.368197
\(831\) −29.0668 −1.00832
\(832\) 53.0166 1.83802
\(833\) 68.7836 2.38321
\(834\) −9.05295 −0.313478
\(835\) 20.3114 0.702905
\(836\) 0 0
\(837\) −1.18345 −0.0409060
\(838\) −42.6590 −1.47363
\(839\) −34.3599 −1.18624 −0.593118 0.805115i \(-0.702103\pi\)
−0.593118 + 0.805115i \(0.702103\pi\)
\(840\) −12.6059 −0.434946
\(841\) −16.3730 −0.564588
\(842\) 36.7152 1.26529
\(843\) −11.4759 −0.395251
\(844\) 0.721671 0.0248409
\(845\) 27.4832 0.945452
\(846\) 3.77487 0.129783
\(847\) −33.2870 −1.14375
\(848\) 19.5626 0.671783
\(849\) −27.3324 −0.938047
\(850\) −7.89667 −0.270854
\(851\) −3.79252 −0.130006
\(852\) 0.282426 0.00967575
\(853\) 45.4295 1.55548 0.777738 0.628588i \(-0.216367\pi\)
0.777738 + 0.628588i \(0.216367\pi\)
\(854\) −72.4457 −2.47904
\(855\) 0 0
\(856\) −39.5254 −1.35095
\(857\) −13.8935 −0.474592 −0.237296 0.971437i \(-0.576261\pi\)
−0.237296 + 0.971437i \(0.576261\pi\)
\(858\) 37.9371 1.29515
\(859\) −3.20666 −0.109410 −0.0547049 0.998503i \(-0.517422\pi\)
−0.0547049 + 0.998503i \(0.517422\pi\)
\(860\) 0.583613 0.0199010
\(861\) −3.32785 −0.113413
\(862\) 22.7577 0.775132
\(863\) −51.7277 −1.76083 −0.880416 0.474201i \(-0.842737\pi\)
−0.880416 + 0.474201i \(0.842737\pi\)
\(864\) −0.518458 −0.0176383
\(865\) 12.2509 0.416543
\(866\) −50.8413 −1.72766
\(867\) 15.6774 0.532431
\(868\) −0.473573 −0.0160741
\(869\) 48.9321 1.65991
\(870\) −4.90874 −0.166422
\(871\) 25.4777 0.863277
\(872\) 25.9095 0.877407
\(873\) −2.00000 −0.0676897
\(874\) 0 0
\(875\) −4.36264 −0.147484
\(876\) −0.741724 −0.0250605
\(877\) −17.0271 −0.574964 −0.287482 0.957786i \(-0.592818\pi\)
−0.287482 + 0.957786i \(0.592818\pi\)
\(878\) 13.2377 0.446751
\(879\) −13.0211 −0.439189
\(880\) 16.4369 0.554087
\(881\) 12.9112 0.434990 0.217495 0.976061i \(-0.430211\pi\)
0.217495 + 0.976061i \(0.430211\pi\)
\(882\) −16.6220 −0.559690
\(883\) 25.0205 0.842006 0.421003 0.907059i \(-0.361678\pi\)
0.421003 + 0.907059i \(0.361678\pi\)
\(884\) −3.33617 −0.112208
\(885\) −3.82968 −0.128733
\(886\) 30.7273 1.03230
\(887\) −10.0727 −0.338207 −0.169104 0.985598i \(-0.554087\pi\)
−0.169104 + 0.985598i \(0.554087\pi\)
\(888\) 18.9150 0.634747
\(889\) −26.9762 −0.904752
\(890\) 13.5956 0.455725
\(891\) −4.31625 −0.144600
\(892\) −2.50900 −0.0840075
\(893\) 0 0
\(894\) −7.94473 −0.265712
\(895\) 19.1840 0.641251
\(896\) 45.6925 1.52648
\(897\) −3.68624 −0.123080
\(898\) −0.678528 −0.0226428
\(899\) −4.20532 −0.140255
\(900\) −0.0917248 −0.00305749
\(901\) −29.3655 −0.978307
\(902\) 4.54822 0.151439
\(903\) 27.7579 0.923727
\(904\) −18.5782 −0.617902
\(905\) 3.22984 0.107364
\(906\) −17.4986 −0.581353
\(907\) 7.86462 0.261140 0.130570 0.991439i \(-0.458319\pi\)
0.130570 + 0.991439i \(0.458319\pi\)
\(908\) −2.30158 −0.0763805
\(909\) −4.49970 −0.149246
\(910\) 38.3449 1.27112
\(911\) 52.2665 1.73167 0.865833 0.500333i \(-0.166789\pi\)
0.865833 + 0.500333i \(0.166789\pi\)
\(912\) 0 0
\(913\) −33.1440 −1.09691
\(914\) −18.3184 −0.605920
\(915\) −12.0211 −0.397404
\(916\) −0.457276 −0.0151088
\(917\) −75.8988 −2.50640
\(918\) −7.89667 −0.260629
\(919\) 24.2225 0.799026 0.399513 0.916728i \(-0.369179\pi\)
0.399513 + 0.916728i \(0.369179\pi\)
\(920\) −1.67406 −0.0551922
\(921\) −4.02534 −0.132639
\(922\) −32.2881 −1.06335
\(923\) −19.5909 −0.644844
\(924\) −1.72720 −0.0568208
\(925\) 6.54609 0.215234
\(926\) 1.35605 0.0445627
\(927\) 16.0717 0.527864
\(928\) −1.84231 −0.0604769
\(929\) −42.7987 −1.40418 −0.702089 0.712089i \(-0.747749\pi\)
−0.702089 + 0.712089i \(0.747749\pi\)
\(930\) 1.63482 0.0536079
\(931\) 0 0
\(932\) −1.17375 −0.0384474
\(933\) 15.3578 0.502791
\(934\) 26.0392 0.852027
\(935\) −24.6735 −0.806908
\(936\) 18.3850 0.600931
\(937\) 11.3557 0.370973 0.185487 0.982647i \(-0.440614\pi\)
0.185487 + 0.982647i \(0.440614\pi\)
\(938\) 24.1319 0.787935
\(939\) 21.9600 0.716636
\(940\) 0.250651 0.00817532
\(941\) −44.1422 −1.43900 −0.719498 0.694495i \(-0.755628\pi\)
−0.719498 + 0.694495i \(0.755628\pi\)
\(942\) −1.90477 −0.0620609
\(943\) −0.441937 −0.0143915
\(944\) 14.5840 0.474667
\(945\) −4.36264 −0.141917
\(946\) −37.9371 −1.23344
\(947\) −37.2381 −1.21008 −0.605038 0.796197i \(-0.706842\pi\)
−0.605038 + 0.796197i \(0.706842\pi\)
\(948\) 1.03986 0.0337731
\(949\) 51.4509 1.67017
\(950\) 0 0
\(951\) 24.1279 0.782402
\(952\) −72.0607 −2.33550
\(953\) 39.2867 1.27262 0.636310 0.771434i \(-0.280460\pi\)
0.636310 + 0.771434i \(0.280460\pi\)
\(954\) 7.09634 0.229753
\(955\) 27.5509 0.891527
\(956\) −1.17453 −0.0379871
\(957\) −15.3375 −0.495792
\(958\) −27.8478 −0.899721
\(959\) −68.5651 −2.21408
\(960\) 8.33247 0.268929
\(961\) −29.5994 −0.954821
\(962\) −57.5361 −1.85504
\(963\) −13.6789 −0.440796
\(964\) −0.100236 −0.00322838
\(965\) −22.2466 −0.716145
\(966\) −3.49154 −0.112338
\(967\) 21.0858 0.678074 0.339037 0.940773i \(-0.389899\pi\)
0.339037 + 0.940773i \(0.389899\pi\)
\(968\) 22.0470 0.708618
\(969\) 0 0
\(970\) 2.76281 0.0887084
\(971\) 24.2451 0.778062 0.389031 0.921225i \(-0.372810\pi\)
0.389031 + 0.921225i \(0.372810\pi\)
\(972\) −0.0917248 −0.00294208
\(973\) −28.5903 −0.916564
\(974\) 3.85631 0.123564
\(975\) 6.36264 0.203768
\(976\) 45.7778 1.46531
\(977\) 51.4540 1.64616 0.823080 0.567926i \(-0.192254\pi\)
0.823080 + 0.567926i \(0.192254\pi\)
\(978\) 16.0409 0.512931
\(979\) 42.4799 1.35766
\(980\) −1.10369 −0.0352562
\(981\) 8.96674 0.286286
\(982\) −7.98186 −0.254711
\(983\) −9.13493 −0.291359 −0.145679 0.989332i \(-0.546537\pi\)
−0.145679 + 0.989332i \(0.546537\pi\)
\(984\) 2.20414 0.0702655
\(985\) 12.6627 0.403466
\(986\) −28.0604 −0.893624
\(987\) 11.9215 0.379466
\(988\) 0 0
\(989\) 3.68624 0.117216
\(990\) 5.96248 0.189500
\(991\) 17.7543 0.563983 0.281991 0.959417i \(-0.409005\pi\)
0.281991 + 0.959417i \(0.409005\pi\)
\(992\) 0.613569 0.0194808
\(993\) 24.8416 0.788325
\(994\) −18.5561 −0.588565
\(995\) −8.76955 −0.278014
\(996\) −0.704345 −0.0223180
\(997\) −56.2433 −1.78124 −0.890622 0.454745i \(-0.849730\pi\)
−0.890622 + 0.454745i \(0.849730\pi\)
\(998\) −17.6762 −0.559531
\(999\) 6.54609 0.207109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5415.2.a.z.1.2 5
19.8 odd 6 285.2.i.f.121.2 yes 10
19.12 odd 6 285.2.i.f.106.2 10
19.18 odd 2 5415.2.a.y.1.4 5
57.8 even 6 855.2.k.i.406.4 10
57.50 even 6 855.2.k.i.676.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.i.f.106.2 10 19.12 odd 6
285.2.i.f.121.2 yes 10 19.8 odd 6
855.2.k.i.406.4 10 57.8 even 6
855.2.k.i.676.4 10 57.50 even 6
5415.2.a.y.1.4 5 19.18 odd 2
5415.2.a.z.1.2 5 1.1 even 1 trivial