Properties

Label 5415.2.a.y.1.1
Level $5415$
Weight $2$
Character 5415.1
Self dual yes
Analytic conductor $43.239$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5415,2,Mod(1,5415)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5415, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5415.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5415 = 3 \cdot 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5415.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.2389926945\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.8797896.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 8x^{3} + 5x^{2} + 13x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.69159\) of defining polynomial
Character \(\chi\) \(=\) 5415.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.69159 q^{2} -1.00000 q^{3} +5.24466 q^{4} +1.00000 q^{5} +2.69159 q^{6} -0.797044 q^{7} -8.73329 q^{8} +1.00000 q^{9} -2.69159 q^{10} +2.59225 q^{11} -5.24466 q^{12} -2.79704 q^{13} +2.14532 q^{14} -1.00000 q^{15} +13.0171 q^{16} -5.77247 q^{17} -2.69159 q^{18} +5.24466 q^{20} +0.797044 q^{21} -6.97727 q^{22} -3.10614 q^{23} +8.73329 q^{24} +1.00000 q^{25} +7.52850 q^{26} -1.00000 q^{27} -4.18023 q^{28} -4.79093 q^{29} +2.69159 q^{30} -9.48932 q^{31} -17.5702 q^{32} -2.59225 q^{33} +15.5371 q^{34} -0.797044 q^{35} +5.24466 q^{36} +7.69227 q^{37} +2.79704 q^{39} -8.73329 q^{40} +7.38318 q^{41} -2.14532 q^{42} -2.79704 q^{43} +13.5955 q^{44} +1.00000 q^{45} +8.36045 q^{46} -11.0773 q^{47} -13.0171 q^{48} -6.36472 q^{49} -2.69159 q^{50} +5.77247 q^{51} -14.6695 q^{52} -8.87861 q^{53} +2.69159 q^{54} +2.59225 q^{55} +6.96082 q^{56} +12.8952 q^{58} +1.08020 q^{59} -5.24466 q^{60} +4.07225 q^{61} +25.5414 q^{62} -0.797044 q^{63} +21.2575 q^{64} -2.79704 q^{65} +6.97727 q^{66} +13.7757 q^{67} -30.2747 q^{68} +3.10614 q^{69} +2.14532 q^{70} -11.9754 q^{71} -8.73329 q^{72} +8.50778 q^{73} -20.7045 q^{74} -1.00000 q^{75} -2.06614 q^{77} -7.52850 q^{78} +6.48184 q^{79} +13.0171 q^{80} +1.00000 q^{81} -19.8725 q^{82} -2.79520 q^{83} +4.18023 q^{84} -5.77247 q^{85} +7.52850 q^{86} +4.79093 q^{87} -22.6389 q^{88} -13.3586 q^{89} -2.69159 q^{90} +2.22937 q^{91} -16.2906 q^{92} +9.48932 q^{93} +29.8155 q^{94} +17.5702 q^{96} +2.00000 q^{97} +17.1312 q^{98} +2.59225 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} - 5 q^{3} + 7 q^{4} + 5 q^{5} + q^{6} + 2 q^{7} - 6 q^{8} + 5 q^{9} - q^{10} + 5 q^{11} - 7 q^{12} - 8 q^{13} - 4 q^{14} - 5 q^{15} + 7 q^{16} + 10 q^{17} - q^{18} + 7 q^{20} - 2 q^{21}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.69159 −1.90324 −0.951621 0.307274i \(-0.900583\pi\)
−0.951621 + 0.307274i \(0.900583\pi\)
\(3\) −1.00000 −0.577350
\(4\) 5.24466 2.62233
\(5\) 1.00000 0.447214
\(6\) 2.69159 1.09884
\(7\) −0.797044 −0.301254 −0.150627 0.988591i \(-0.548129\pi\)
−0.150627 + 0.988591i \(0.548129\pi\)
\(8\) −8.73329 −3.08769
\(9\) 1.00000 0.333333
\(10\) −2.69159 −0.851156
\(11\) 2.59225 0.781592 0.390796 0.920477i \(-0.372200\pi\)
0.390796 + 0.920477i \(0.372200\pi\)
\(12\) −5.24466 −1.51400
\(13\) −2.79704 −0.775760 −0.387880 0.921710i \(-0.626793\pi\)
−0.387880 + 0.921710i \(0.626793\pi\)
\(14\) 2.14532 0.573360
\(15\) −1.00000 −0.258199
\(16\) 13.0171 3.25428
\(17\) −5.77247 −1.40003 −0.700015 0.714128i \(-0.746823\pi\)
−0.700015 + 0.714128i \(0.746823\pi\)
\(18\) −2.69159 −0.634414
\(19\) 0 0
\(20\) 5.24466 1.17274
\(21\) 0.797044 0.173929
\(22\) −6.97727 −1.48756
\(23\) −3.10614 −0.647674 −0.323837 0.946113i \(-0.604973\pi\)
−0.323837 + 0.946113i \(0.604973\pi\)
\(24\) 8.73329 1.78268
\(25\) 1.00000 0.200000
\(26\) 7.52850 1.47646
\(27\) −1.00000 −0.192450
\(28\) −4.18023 −0.789988
\(29\) −4.79093 −0.889654 −0.444827 0.895617i \(-0.646735\pi\)
−0.444827 + 0.895617i \(0.646735\pi\)
\(30\) 2.69159 0.491415
\(31\) −9.48932 −1.70433 −0.852166 0.523272i \(-0.824711\pi\)
−0.852166 + 0.523272i \(0.824711\pi\)
\(32\) −17.5702 −3.10600
\(33\) −2.59225 −0.451252
\(34\) 15.5371 2.66460
\(35\) −0.797044 −0.134725
\(36\) 5.24466 0.874110
\(37\) 7.69227 1.26460 0.632301 0.774723i \(-0.282111\pi\)
0.632301 + 0.774723i \(0.282111\pi\)
\(38\) 0 0
\(39\) 2.79704 0.447886
\(40\) −8.73329 −1.38086
\(41\) 7.38318 1.15306 0.576530 0.817076i \(-0.304407\pi\)
0.576530 + 0.817076i \(0.304407\pi\)
\(42\) −2.14532 −0.331030
\(43\) −2.79704 −0.426545 −0.213273 0.976993i \(-0.568412\pi\)
−0.213273 + 0.976993i \(0.568412\pi\)
\(44\) 13.5955 2.04959
\(45\) 1.00000 0.149071
\(46\) 8.36045 1.23268
\(47\) −11.0773 −1.61579 −0.807895 0.589327i \(-0.799393\pi\)
−0.807895 + 0.589327i \(0.799393\pi\)
\(48\) −13.0171 −1.87886
\(49\) −6.36472 −0.909246
\(50\) −2.69159 −0.380648
\(51\) 5.77247 0.808308
\(52\) −14.6695 −2.03430
\(53\) −8.87861 −1.21957 −0.609785 0.792567i \(-0.708744\pi\)
−0.609785 + 0.792567i \(0.708744\pi\)
\(54\) 2.69159 0.366279
\(55\) 2.59225 0.349539
\(56\) 6.96082 0.930179
\(57\) 0 0
\(58\) 12.8952 1.69323
\(59\) 1.08020 0.140630 0.0703149 0.997525i \(-0.477600\pi\)
0.0703149 + 0.997525i \(0.477600\pi\)
\(60\) −5.24466 −0.677083
\(61\) 4.07225 0.521398 0.260699 0.965420i \(-0.416047\pi\)
0.260699 + 0.965420i \(0.416047\pi\)
\(62\) 25.5414 3.24376
\(63\) −0.797044 −0.100418
\(64\) 21.2575 2.65719
\(65\) −2.79704 −0.346931
\(66\) 6.97727 0.858842
\(67\) 13.7757 1.68297 0.841484 0.540283i \(-0.181683\pi\)
0.841484 + 0.540283i \(0.181683\pi\)
\(68\) −30.2747 −3.67134
\(69\) 3.10614 0.373935
\(70\) 2.14532 0.256414
\(71\) −11.9754 −1.42122 −0.710611 0.703585i \(-0.751581\pi\)
−0.710611 + 0.703585i \(0.751581\pi\)
\(72\) −8.73329 −1.02923
\(73\) 8.50778 0.995760 0.497880 0.867246i \(-0.334112\pi\)
0.497880 + 0.867246i \(0.334112\pi\)
\(74\) −20.7045 −2.40684
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) −2.06614 −0.235458
\(78\) −7.52850 −0.852434
\(79\) 6.48184 0.729264 0.364632 0.931152i \(-0.381195\pi\)
0.364632 + 0.931152i \(0.381195\pi\)
\(80\) 13.0171 1.45536
\(81\) 1.00000 0.111111
\(82\) −19.8725 −2.19455
\(83\) −2.79520 −0.306813 −0.153407 0.988163i \(-0.549024\pi\)
−0.153407 + 0.988163i \(0.549024\pi\)
\(84\) 4.18023 0.456100
\(85\) −5.77247 −0.626113
\(86\) 7.52850 0.811819
\(87\) 4.79093 0.513642
\(88\) −22.6389 −2.41331
\(89\) −13.3586 −1.41601 −0.708005 0.706208i \(-0.750405\pi\)
−0.708005 + 0.706208i \(0.750405\pi\)
\(90\) −2.69159 −0.283719
\(91\) 2.22937 0.233701
\(92\) −16.2906 −1.69842
\(93\) 9.48932 0.983996
\(94\) 29.8155 3.07524
\(95\) 0 0
\(96\) 17.5702 1.79325
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 17.1312 1.73051
\(99\) 2.59225 0.260531
\(100\) 5.24466 0.524466
\(101\) 13.0816 1.30166 0.650832 0.759222i \(-0.274420\pi\)
0.650832 + 0.759222i \(0.274420\pi\)
\(102\) −15.5371 −1.53841
\(103\) 14.4586 1.42465 0.712326 0.701849i \(-0.247642\pi\)
0.712326 + 0.701849i \(0.247642\pi\)
\(104\) 24.4274 2.39530
\(105\) 0.797044 0.0777835
\(106\) 23.8976 2.32114
\(107\) 3.20480 0.309819 0.154910 0.987929i \(-0.450491\pi\)
0.154910 + 0.987929i \(0.450491\pi\)
\(108\) −5.24466 −0.504668
\(109\) 7.79841 0.746952 0.373476 0.927640i \(-0.378166\pi\)
0.373476 + 0.927640i \(0.378166\pi\)
\(110\) −6.97727 −0.665257
\(111\) −7.69227 −0.730118
\(112\) −10.3752 −0.980367
\(113\) 8.26042 0.777075 0.388538 0.921433i \(-0.372980\pi\)
0.388538 + 0.921433i \(0.372980\pi\)
\(114\) 0 0
\(115\) −3.10614 −0.289649
\(116\) −25.1268 −2.33297
\(117\) −2.79704 −0.258587
\(118\) −2.90745 −0.267653
\(119\) 4.60092 0.421765
\(120\) 8.73329 0.797237
\(121\) −4.28025 −0.389114
\(122\) −10.9608 −0.992346
\(123\) −7.38318 −0.665719
\(124\) −49.7682 −4.46932
\(125\) 1.00000 0.0894427
\(126\) 2.14532 0.191120
\(127\) 4.48932 0.398363 0.199181 0.979963i \(-0.436172\pi\)
0.199181 + 0.979963i \(0.436172\pi\)
\(128\) −22.0761 −1.95127
\(129\) 2.79704 0.246266
\(130\) 7.52850 0.660293
\(131\) 19.4788 1.70187 0.850936 0.525270i \(-0.176036\pi\)
0.850936 + 0.525270i \(0.176036\pi\)
\(132\) −13.5955 −1.18333
\(133\) 0 0
\(134\) −37.0785 −3.20309
\(135\) −1.00000 −0.0860663
\(136\) 50.4127 4.32285
\(137\) 4.22753 0.361182 0.180591 0.983558i \(-0.442199\pi\)
0.180591 + 0.983558i \(0.442199\pi\)
\(138\) −8.36045 −0.711689
\(139\) 7.79093 0.660818 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(140\) −4.18023 −0.353294
\(141\) 11.0773 0.932877
\(142\) 32.2329 2.70493
\(143\) −7.25063 −0.606328
\(144\) 13.0171 1.08476
\(145\) −4.79093 −0.397865
\(146\) −22.8995 −1.89517
\(147\) 6.36472 0.524953
\(148\) 40.3434 3.31620
\(149\) −0.0907073 −0.00743103 −0.00371552 0.999993i \(-0.501183\pi\)
−0.00371552 + 0.999993i \(0.501183\pi\)
\(150\) 2.69159 0.219767
\(151\) −4.49727 −0.365983 −0.182991 0.983115i \(-0.558578\pi\)
−0.182991 + 0.983115i \(0.558578\pi\)
\(152\) 0 0
\(153\) −5.77247 −0.466677
\(154\) 5.56119 0.448134
\(155\) −9.48932 −0.762200
\(156\) 14.6695 1.17450
\(157\) 17.6468 1.40837 0.704184 0.710017i \(-0.251313\pi\)
0.704184 + 0.710017i \(0.251313\pi\)
\(158\) −17.4465 −1.38797
\(159\) 8.87861 0.704120
\(160\) −17.5702 −1.38905
\(161\) 2.47573 0.195115
\(162\) −2.69159 −0.211471
\(163\) 4.25858 0.333558 0.166779 0.985994i \(-0.446663\pi\)
0.166779 + 0.985994i \(0.446663\pi\)
\(164\) 38.7223 3.02370
\(165\) −2.59225 −0.201806
\(166\) 7.52354 0.583940
\(167\) 3.97970 0.307958 0.153979 0.988074i \(-0.450791\pi\)
0.153979 + 0.988074i \(0.450791\pi\)
\(168\) −6.96082 −0.537039
\(169\) −5.17654 −0.398196
\(170\) 15.5371 1.19164
\(171\) 0 0
\(172\) −14.6695 −1.11854
\(173\) 11.1723 0.849412 0.424706 0.905331i \(-0.360377\pi\)
0.424706 + 0.905331i \(0.360377\pi\)
\(174\) −12.8952 −0.977585
\(175\) −0.797044 −0.0602509
\(176\) 33.7436 2.54352
\(177\) −1.08020 −0.0811927
\(178\) 35.9559 2.69501
\(179\) 9.63565 0.720203 0.360101 0.932913i \(-0.382742\pi\)
0.360101 + 0.932913i \(0.382742\pi\)
\(180\) 5.24466 0.390914
\(181\) 4.10003 0.304753 0.152376 0.988323i \(-0.451307\pi\)
0.152376 + 0.988323i \(0.451307\pi\)
\(182\) −6.00055 −0.444790
\(183\) −4.07225 −0.301029
\(184\) 27.1268 1.99982
\(185\) 7.69227 0.565547
\(186\) −25.5414 −1.87278
\(187\) −14.9637 −1.09425
\(188\) −58.0966 −4.23713
\(189\) 0.797044 0.0579764
\(190\) 0 0
\(191\) −22.6143 −1.63631 −0.818156 0.574996i \(-0.805004\pi\)
−0.818156 + 0.574996i \(0.805004\pi\)
\(192\) −21.2575 −1.53413
\(193\) 16.6034 1.19514 0.597570 0.801817i \(-0.296133\pi\)
0.597570 + 0.801817i \(0.296133\pi\)
\(194\) −5.38318 −0.386490
\(195\) 2.79704 0.200300
\(196\) −33.3808 −2.38434
\(197\) −17.6450 −1.25715 −0.628576 0.777748i \(-0.716362\pi\)
−0.628576 + 0.777748i \(0.716362\pi\)
\(198\) −6.97727 −0.495853
\(199\) 19.0631 1.35135 0.675674 0.737201i \(-0.263853\pi\)
0.675674 + 0.737201i \(0.263853\pi\)
\(200\) −8.73329 −0.617537
\(201\) −13.7757 −0.971662
\(202\) −35.2102 −2.47738
\(203\) 3.81859 0.268012
\(204\) 30.2747 2.11965
\(205\) 7.38318 0.515664
\(206\) −38.9167 −2.71146
\(207\) −3.10614 −0.215891
\(208\) −36.4095 −2.52454
\(209\) 0 0
\(210\) −2.14532 −0.148041
\(211\) −14.0434 −0.966788 −0.483394 0.875403i \(-0.660596\pi\)
−0.483394 + 0.875403i \(0.660596\pi\)
\(212\) −46.5653 −3.19812
\(213\) 11.9754 0.820543
\(214\) −8.62600 −0.589661
\(215\) −2.79704 −0.190757
\(216\) 8.73329 0.594225
\(217\) 7.56341 0.513437
\(218\) −20.9901 −1.42163
\(219\) −8.50778 −0.574902
\(220\) 13.5955 0.916605
\(221\) 16.1459 1.08609
\(222\) 20.7045 1.38959
\(223\) −24.1853 −1.61957 −0.809783 0.586730i \(-0.800415\pi\)
−0.809783 + 0.586730i \(0.800415\pi\)
\(224\) 14.0042 0.935697
\(225\) 1.00000 0.0666667
\(226\) −22.2337 −1.47896
\(227\) 3.38455 0.224640 0.112320 0.993672i \(-0.464172\pi\)
0.112320 + 0.993672i \(0.464172\pi\)
\(228\) 0 0
\(229\) −25.9664 −1.71591 −0.857955 0.513726i \(-0.828265\pi\)
−0.857955 + 0.513726i \(0.828265\pi\)
\(230\) 8.36045 0.551272
\(231\) 2.06614 0.135942
\(232\) 41.8406 2.74697
\(233\) −6.71821 −0.440125 −0.220062 0.975486i \(-0.570626\pi\)
−0.220062 + 0.975486i \(0.570626\pi\)
\(234\) 7.52850 0.492153
\(235\) −11.0773 −0.722603
\(236\) 5.66527 0.368778
\(237\) −6.48184 −0.421041
\(238\) −12.3838 −0.802721
\(239\) 25.7818 1.66769 0.833843 0.552002i \(-0.186136\pi\)
0.833843 + 0.552002i \(0.186136\pi\)
\(240\) −13.0171 −0.840252
\(241\) −7.77858 −0.501063 −0.250531 0.968108i \(-0.580605\pi\)
−0.250531 + 0.968108i \(0.580605\pi\)
\(242\) 11.5207 0.740578
\(243\) −1.00000 −0.0641500
\(244\) 21.3575 1.36728
\(245\) −6.36472 −0.406627
\(246\) 19.8725 1.26702
\(247\) 0 0
\(248\) 82.8730 5.26244
\(249\) 2.79520 0.177139
\(250\) −2.69159 −0.170231
\(251\) 10.8743 0.686382 0.343191 0.939266i \(-0.388492\pi\)
0.343191 + 0.939266i \(0.388492\pi\)
\(252\) −4.18023 −0.263329
\(253\) −8.05188 −0.506217
\(254\) −12.0834 −0.758180
\(255\) 5.77247 0.361486
\(256\) 16.9049 1.05656
\(257\) 11.2543 0.702025 0.351012 0.936371i \(-0.385838\pi\)
0.351012 + 0.936371i \(0.385838\pi\)
\(258\) −7.52850 −0.468704
\(259\) −6.13108 −0.380967
\(260\) −14.6695 −0.909766
\(261\) −4.79093 −0.296551
\(262\) −52.4290 −3.23907
\(263\) −13.3387 −0.822500 −0.411250 0.911523i \(-0.634908\pi\)
−0.411250 + 0.911523i \(0.634908\pi\)
\(264\) 22.6389 1.39333
\(265\) −8.87861 −0.545409
\(266\) 0 0
\(267\) 13.3586 0.817534
\(268\) 72.2488 4.41330
\(269\) −7.06798 −0.430942 −0.215471 0.976510i \(-0.569129\pi\)
−0.215471 + 0.976510i \(0.569129\pi\)
\(270\) 2.69159 0.163805
\(271\) −23.0578 −1.40066 −0.700330 0.713819i \(-0.746964\pi\)
−0.700330 + 0.713819i \(0.746964\pi\)
\(272\) −75.1410 −4.55609
\(273\) −2.22937 −0.134927
\(274\) −11.3788 −0.687417
\(275\) 2.59225 0.156318
\(276\) 16.2906 0.980581
\(277\) 18.8461 1.13235 0.566176 0.824284i \(-0.308422\pi\)
0.566176 + 0.824284i \(0.308422\pi\)
\(278\) −20.9700 −1.25770
\(279\) −9.48932 −0.568111
\(280\) 6.96082 0.415989
\(281\) 16.6497 0.993239 0.496619 0.867968i \(-0.334574\pi\)
0.496619 + 0.867968i \(0.334574\pi\)
\(282\) −29.8155 −1.77549
\(283\) 13.0519 0.775858 0.387929 0.921689i \(-0.373191\pi\)
0.387929 + 0.921689i \(0.373191\pi\)
\(284\) −62.8070 −3.72691
\(285\) 0 0
\(286\) 19.5157 1.15399
\(287\) −5.88472 −0.347364
\(288\) −17.5702 −1.03533
\(289\) 16.3214 0.960085
\(290\) 12.8952 0.757234
\(291\) −2.00000 −0.117242
\(292\) 44.6204 2.61121
\(293\) −3.07225 −0.179483 −0.0897413 0.995965i \(-0.528604\pi\)
−0.0897413 + 0.995965i \(0.528604\pi\)
\(294\) −17.1312 −0.999113
\(295\) 1.08020 0.0628916
\(296\) −67.1789 −3.90469
\(297\) −2.59225 −0.150417
\(298\) 0.244147 0.0141430
\(299\) 8.68800 0.502440
\(300\) −5.24466 −0.302801
\(301\) 2.22937 0.128499
\(302\) 12.1048 0.696554
\(303\) −13.0816 −0.751516
\(304\) 0 0
\(305\) 4.07225 0.233176
\(306\) 15.5371 0.888199
\(307\) 23.4615 1.33902 0.669510 0.742803i \(-0.266504\pi\)
0.669510 + 0.742803i \(0.266504\pi\)
\(308\) −10.8362 −0.617449
\(309\) −14.4586 −0.822523
\(310\) 25.5414 1.45065
\(311\) −5.59041 −0.317003 −0.158501 0.987359i \(-0.550666\pi\)
−0.158501 + 0.987359i \(0.550666\pi\)
\(312\) −24.4274 −1.38293
\(313\) −28.4280 −1.60684 −0.803421 0.595411i \(-0.796989\pi\)
−0.803421 + 0.595411i \(0.796989\pi\)
\(314\) −47.4980 −2.68047
\(315\) −0.797044 −0.0449084
\(316\) 33.9950 1.91237
\(317\) −10.5096 −0.590279 −0.295140 0.955454i \(-0.595366\pi\)
−0.295140 + 0.955454i \(0.595366\pi\)
\(318\) −23.8976 −1.34011
\(319\) −12.4193 −0.695347
\(320\) 21.2575 1.18833
\(321\) −3.20480 −0.178874
\(322\) −6.66365 −0.371351
\(323\) 0 0
\(324\) 5.24466 0.291370
\(325\) −2.79704 −0.155152
\(326\) −11.4624 −0.634841
\(327\) −7.79841 −0.431253
\(328\) −64.4795 −3.56028
\(329\) 8.82909 0.486764
\(330\) 6.97727 0.384086
\(331\) −6.39618 −0.351566 −0.175783 0.984429i \(-0.556246\pi\)
−0.175783 + 0.984429i \(0.556246\pi\)
\(332\) −14.6599 −0.804566
\(333\) 7.69227 0.421534
\(334\) −10.7117 −0.586119
\(335\) 13.7757 0.752646
\(336\) 10.3752 0.566015
\(337\) −18.2772 −0.995624 −0.497812 0.867285i \(-0.665863\pi\)
−0.497812 + 0.867285i \(0.665863\pi\)
\(338\) 13.9331 0.757863
\(339\) −8.26042 −0.448645
\(340\) −30.2747 −1.64187
\(341\) −24.5987 −1.33209
\(342\) 0 0
\(343\) 10.6523 0.575169
\(344\) 24.4274 1.31704
\(345\) 3.10614 0.167229
\(346\) −30.0712 −1.61664
\(347\) −31.6586 −1.69952 −0.849760 0.527169i \(-0.823253\pi\)
−0.849760 + 0.527169i \(0.823253\pi\)
\(348\) 25.1268 1.34694
\(349\) 12.0802 0.646638 0.323319 0.946290i \(-0.395201\pi\)
0.323319 + 0.946290i \(0.395201\pi\)
\(350\) 2.14532 0.114672
\(351\) 2.79704 0.149295
\(352\) −45.5463 −2.42763
\(353\) 3.63101 0.193259 0.0966296 0.995320i \(-0.469194\pi\)
0.0966296 + 0.995320i \(0.469194\pi\)
\(354\) 2.90745 0.154529
\(355\) −11.9754 −0.635590
\(356\) −70.0614 −3.71324
\(357\) −4.60092 −0.243506
\(358\) −25.9352 −1.37072
\(359\) −5.91796 −0.312338 −0.156169 0.987730i \(-0.549914\pi\)
−0.156169 + 0.987730i \(0.549914\pi\)
\(360\) −8.73329 −0.460285
\(361\) 0 0
\(362\) −11.0356 −0.580018
\(363\) 4.28025 0.224655
\(364\) 11.6923 0.612842
\(365\) 8.50778 0.445317
\(366\) 10.9608 0.572931
\(367\) 6.18159 0.322677 0.161338 0.986899i \(-0.448419\pi\)
0.161338 + 0.986899i \(0.448419\pi\)
\(368\) −40.4330 −2.10772
\(369\) 7.38318 0.384353
\(370\) −20.7045 −1.07637
\(371\) 7.07664 0.367401
\(372\) 49.7682 2.58036
\(373\) −7.24346 −0.375052 −0.187526 0.982260i \(-0.560047\pi\)
−0.187526 + 0.982260i \(0.560047\pi\)
\(374\) 40.2761 2.08263
\(375\) −1.00000 −0.0516398
\(376\) 96.7413 4.98905
\(377\) 13.4005 0.690158
\(378\) −2.14532 −0.110343
\(379\) 15.4483 0.793524 0.396762 0.917922i \(-0.370134\pi\)
0.396762 + 0.917922i \(0.370134\pi\)
\(380\) 0 0
\(381\) −4.48932 −0.229995
\(382\) 60.8684 3.11430
\(383\) −19.5161 −0.997226 −0.498613 0.866825i \(-0.666157\pi\)
−0.498613 + 0.866825i \(0.666157\pi\)
\(384\) 22.0761 1.12657
\(385\) −2.06614 −0.105300
\(386\) −44.6896 −2.27464
\(387\) −2.79704 −0.142182
\(388\) 10.4893 0.532514
\(389\) 14.2575 0.722885 0.361443 0.932394i \(-0.382284\pi\)
0.361443 + 0.932394i \(0.382284\pi\)
\(390\) −7.52850 −0.381220
\(391\) 17.9301 0.906764
\(392\) 55.5850 2.80747
\(393\) −19.4788 −0.982576
\(394\) 47.4930 2.39266
\(395\) 6.48184 0.326137
\(396\) 13.5955 0.683197
\(397\) 27.9080 1.40066 0.700330 0.713819i \(-0.253036\pi\)
0.700330 + 0.713819i \(0.253036\pi\)
\(398\) −51.3101 −2.57194
\(399\) 0 0
\(400\) 13.0171 0.650857
\(401\) 19.7241 0.984975 0.492487 0.870320i \(-0.336088\pi\)
0.492487 + 0.870320i \(0.336088\pi\)
\(402\) 37.0785 1.84931
\(403\) 26.5420 1.32215
\(404\) 68.6084 3.41339
\(405\) 1.00000 0.0496904
\(406\) −10.2781 −0.510092
\(407\) 19.9403 0.988403
\(408\) −50.4127 −2.49580
\(409\) 19.2311 0.950917 0.475459 0.879738i \(-0.342282\pi\)
0.475459 + 0.879738i \(0.342282\pi\)
\(410\) −19.8725 −0.981433
\(411\) −4.22753 −0.208529
\(412\) 75.8306 3.73591
\(413\) −0.860966 −0.0423654
\(414\) 8.36045 0.410894
\(415\) −2.79520 −0.137211
\(416\) 49.1446 2.40951
\(417\) −7.79093 −0.381524
\(418\) 0 0
\(419\) −4.45253 −0.217520 −0.108760 0.994068i \(-0.534688\pi\)
−0.108760 + 0.994068i \(0.534688\pi\)
\(420\) 4.18023 0.203974
\(421\) 12.0893 0.589198 0.294599 0.955621i \(-0.404814\pi\)
0.294599 + 0.955621i \(0.404814\pi\)
\(422\) 37.7991 1.84003
\(423\) −11.0773 −0.538597
\(424\) 77.5395 3.76565
\(425\) −5.77247 −0.280006
\(426\) −32.2329 −1.56169
\(427\) −3.24576 −0.157073
\(428\) 16.8081 0.812449
\(429\) 7.25063 0.350064
\(430\) 7.52850 0.363056
\(431\) −20.5431 −0.989527 −0.494763 0.869028i \(-0.664745\pi\)
−0.494763 + 0.869028i \(0.664745\pi\)
\(432\) −13.0171 −0.626287
\(433\) −19.3735 −0.931029 −0.465514 0.885040i \(-0.654131\pi\)
−0.465514 + 0.885040i \(0.654131\pi\)
\(434\) −20.3576 −0.977196
\(435\) 4.79093 0.229708
\(436\) 40.9000 1.95876
\(437\) 0 0
\(438\) 22.8995 1.09418
\(439\) 17.2316 0.822419 0.411209 0.911541i \(-0.365107\pi\)
0.411209 + 0.911541i \(0.365107\pi\)
\(440\) −22.6389 −1.07927
\(441\) −6.36472 −0.303082
\(442\) −43.4580 −2.06709
\(443\) 16.6555 0.791326 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(444\) −40.3434 −1.91461
\(445\) −13.3586 −0.633259
\(446\) 65.0969 3.08243
\(447\) 0.0907073 0.00429031
\(448\) −16.9432 −0.800490
\(449\) −18.4698 −0.871644 −0.435822 0.900033i \(-0.643542\pi\)
−0.435822 + 0.900033i \(0.643542\pi\)
\(450\) −2.69159 −0.126883
\(451\) 19.1390 0.901222
\(452\) 43.3231 2.03775
\(453\) 4.49727 0.211300
\(454\) −9.10982 −0.427545
\(455\) 2.22937 0.104514
\(456\) 0 0
\(457\) 3.40669 0.159358 0.0796791 0.996821i \(-0.474610\pi\)
0.0796791 + 0.996821i \(0.474610\pi\)
\(458\) 69.8910 3.26579
\(459\) 5.77247 0.269436
\(460\) −16.2906 −0.759555
\(461\) 40.4057 1.88188 0.940940 0.338572i \(-0.109944\pi\)
0.940940 + 0.338572i \(0.109944\pi\)
\(462\) −5.56119 −0.258730
\(463\) −22.9724 −1.06762 −0.533809 0.845605i \(-0.679240\pi\)
−0.533809 + 0.845605i \(0.679240\pi\)
\(464\) −62.3642 −2.89519
\(465\) 9.48932 0.440057
\(466\) 18.0827 0.837664
\(467\) 7.02174 0.324927 0.162464 0.986715i \(-0.448056\pi\)
0.162464 + 0.986715i \(0.448056\pi\)
\(468\) −14.6695 −0.678100
\(469\) −10.9798 −0.507001
\(470\) 29.8155 1.37529
\(471\) −17.6468 −0.813122
\(472\) −9.43369 −0.434221
\(473\) −7.25063 −0.333384
\(474\) 17.4465 0.801342
\(475\) 0 0
\(476\) 24.1302 1.10601
\(477\) −8.87861 −0.406524
\(478\) −69.3940 −3.17401
\(479\) −2.92117 −0.133472 −0.0667358 0.997771i \(-0.521258\pi\)
−0.0667358 + 0.997771i \(0.521258\pi\)
\(480\) 17.5702 0.801966
\(481\) −21.5156 −0.981028
\(482\) 20.9368 0.953643
\(483\) −2.47573 −0.112650
\(484\) −22.4485 −1.02038
\(485\) 2.00000 0.0908153
\(486\) 2.69159 0.122093
\(487\) 19.2038 0.870207 0.435104 0.900380i \(-0.356712\pi\)
0.435104 + 0.900380i \(0.356712\pi\)
\(488\) −35.5641 −1.60991
\(489\) −4.25858 −0.192580
\(490\) 17.1312 0.773910
\(491\) 10.4369 0.471011 0.235505 0.971873i \(-0.424325\pi\)
0.235505 + 0.971873i \(0.424325\pi\)
\(492\) −38.7223 −1.74573
\(493\) 27.6555 1.24554
\(494\) 0 0
\(495\) 2.59225 0.116513
\(496\) −123.524 −5.54638
\(497\) 9.54495 0.428149
\(498\) −7.52354 −0.337138
\(499\) 26.1700 1.17153 0.585766 0.810481i \(-0.300794\pi\)
0.585766 + 0.810481i \(0.300794\pi\)
\(500\) 5.24466 0.234548
\(501\) −3.97970 −0.177800
\(502\) −29.2693 −1.30635
\(503\) 5.35094 0.238586 0.119293 0.992859i \(-0.461937\pi\)
0.119293 + 0.992859i \(0.461937\pi\)
\(504\) 6.96082 0.310060
\(505\) 13.0816 0.582122
\(506\) 21.6724 0.963454
\(507\) 5.17654 0.229898
\(508\) 23.5449 1.04464
\(509\) 9.78909 0.433894 0.216947 0.976183i \(-0.430390\pi\)
0.216947 + 0.976183i \(0.430390\pi\)
\(510\) −15.5371 −0.687996
\(511\) −6.78108 −0.299977
\(512\) −1.34875 −0.0596067
\(513\) 0 0
\(514\) −30.2920 −1.33612
\(515\) 14.4586 0.637124
\(516\) 14.6695 0.645791
\(517\) −28.7151 −1.26289
\(518\) 16.5024 0.725072
\(519\) −11.1723 −0.490408
\(520\) 24.4274 1.07121
\(521\) 26.4315 1.15799 0.578993 0.815333i \(-0.303446\pi\)
0.578993 + 0.815333i \(0.303446\pi\)
\(522\) 12.8952 0.564409
\(523\) 28.6624 1.25332 0.626659 0.779294i \(-0.284422\pi\)
0.626659 + 0.779294i \(0.284422\pi\)
\(524\) 102.160 4.46287
\(525\) 0.797044 0.0347859
\(526\) 35.9024 1.56542
\(527\) 54.7768 2.38612
\(528\) −33.7436 −1.46850
\(529\) −13.3519 −0.580518
\(530\) 23.8976 1.03804
\(531\) 1.08020 0.0468766
\(532\) 0 0
\(533\) −20.6511 −0.894498
\(534\) −35.9559 −1.55596
\(535\) 3.20480 0.138555
\(536\) −120.307 −5.19647
\(537\) −9.63565 −0.415809
\(538\) 19.0241 0.820187
\(539\) −16.4989 −0.710659
\(540\) −5.24466 −0.225694
\(541\) −24.1946 −1.04021 −0.520103 0.854103i \(-0.674107\pi\)
−0.520103 + 0.854103i \(0.674107\pi\)
\(542\) 62.0621 2.66579
\(543\) −4.10003 −0.175949
\(544\) 101.424 4.34850
\(545\) 7.79841 0.334047
\(546\) 6.00055 0.256800
\(547\) 30.9917 1.32511 0.662555 0.749013i \(-0.269472\pi\)
0.662555 + 0.749013i \(0.269472\pi\)
\(548\) 22.1719 0.947138
\(549\) 4.07225 0.173799
\(550\) −6.97727 −0.297512
\(551\) 0 0
\(552\) −27.1268 −1.15459
\(553\) −5.16631 −0.219694
\(554\) −50.7259 −2.15514
\(555\) −7.69227 −0.326519
\(556\) 40.8608 1.73288
\(557\) 12.7664 0.540928 0.270464 0.962730i \(-0.412823\pi\)
0.270464 + 0.962730i \(0.412823\pi\)
\(558\) 25.5414 1.08125
\(559\) 7.82346 0.330897
\(560\) −10.3752 −0.438433
\(561\) 14.9637 0.631767
\(562\) −44.8142 −1.89037
\(563\) −8.11088 −0.341833 −0.170916 0.985286i \(-0.554673\pi\)
−0.170916 + 0.985286i \(0.554673\pi\)
\(564\) 58.0966 2.44631
\(565\) 8.26042 0.347519
\(566\) −35.1305 −1.47664
\(567\) −0.797044 −0.0334727
\(568\) 104.585 4.38829
\(569\) 21.0412 0.882091 0.441046 0.897485i \(-0.354608\pi\)
0.441046 + 0.897485i \(0.354608\pi\)
\(570\) 0 0
\(571\) −8.45300 −0.353747 −0.176873 0.984234i \(-0.556598\pi\)
−0.176873 + 0.984234i \(0.556598\pi\)
\(572\) −38.0271 −1.58999
\(573\) 22.6143 0.944726
\(574\) 15.8393 0.661118
\(575\) −3.10614 −0.129535
\(576\) 21.2575 0.885730
\(577\) 23.4005 0.974174 0.487087 0.873354i \(-0.338060\pi\)
0.487087 + 0.873354i \(0.338060\pi\)
\(578\) −43.9306 −1.82727
\(579\) −16.6034 −0.690014
\(580\) −25.1268 −1.04333
\(581\) 2.22790 0.0924289
\(582\) 5.38318 0.223140
\(583\) −23.0156 −0.953207
\(584\) −74.3009 −3.07459
\(585\) −2.79704 −0.115644
\(586\) 8.26923 0.341599
\(587\) 30.1675 1.24515 0.622574 0.782561i \(-0.286087\pi\)
0.622574 + 0.782561i \(0.286087\pi\)
\(588\) 33.3808 1.37660
\(589\) 0 0
\(590\) −2.90745 −0.119698
\(591\) 17.6450 0.725817
\(592\) 100.131 4.11537
\(593\) 22.6992 0.932146 0.466073 0.884746i \(-0.345668\pi\)
0.466073 + 0.884746i \(0.345668\pi\)
\(594\) 6.97727 0.286281
\(595\) 4.60092 0.188619
\(596\) −0.475729 −0.0194866
\(597\) −19.0631 −0.780201
\(598\) −23.3845 −0.956265
\(599\) −19.9267 −0.814183 −0.407091 0.913387i \(-0.633457\pi\)
−0.407091 + 0.913387i \(0.633457\pi\)
\(600\) 8.73329 0.356535
\(601\) 24.8942 1.01545 0.507727 0.861518i \(-0.330486\pi\)
0.507727 + 0.861518i \(0.330486\pi\)
\(602\) −6.00055 −0.244564
\(603\) 13.7757 0.560989
\(604\) −23.5866 −0.959727
\(605\) −4.28025 −0.174017
\(606\) 35.2102 1.43032
\(607\) −11.3318 −0.459945 −0.229972 0.973197i \(-0.573864\pi\)
−0.229972 + 0.973197i \(0.573864\pi\)
\(608\) 0 0
\(609\) −3.81859 −0.154737
\(610\) −10.9608 −0.443791
\(611\) 30.9837 1.25347
\(612\) −30.2747 −1.22378
\(613\) −6.96854 −0.281457 −0.140728 0.990048i \(-0.544944\pi\)
−0.140728 + 0.990048i \(0.544944\pi\)
\(614\) −63.1489 −2.54848
\(615\) −7.38318 −0.297719
\(616\) 18.0442 0.727020
\(617\) −4.93998 −0.198876 −0.0994380 0.995044i \(-0.531704\pi\)
−0.0994380 + 0.995044i \(0.531704\pi\)
\(618\) 38.9167 1.56546
\(619\) −17.7750 −0.714439 −0.357219 0.934021i \(-0.616275\pi\)
−0.357219 + 0.934021i \(0.616275\pi\)
\(620\) −49.7682 −1.99874
\(621\) 3.10614 0.124645
\(622\) 15.0471 0.603333
\(623\) 10.6474 0.426579
\(624\) 36.4095 1.45755
\(625\) 1.00000 0.0400000
\(626\) 76.5164 3.05821
\(627\) 0 0
\(628\) 92.5515 3.69321
\(629\) −44.4034 −1.77048
\(630\) 2.14532 0.0854715
\(631\) −10.2984 −0.409973 −0.204987 0.978765i \(-0.565715\pi\)
−0.204987 + 0.978765i \(0.565715\pi\)
\(632\) −56.6078 −2.25174
\(633\) 14.0434 0.558175
\(634\) 28.2876 1.12344
\(635\) 4.48932 0.178153
\(636\) 46.5653 1.84643
\(637\) 17.8024 0.705357
\(638\) 33.4276 1.32341
\(639\) −11.9754 −0.473741
\(640\) −22.0761 −0.872636
\(641\) 24.9490 0.985427 0.492713 0.870192i \(-0.336005\pi\)
0.492713 + 0.870192i \(0.336005\pi\)
\(642\) 8.62600 0.340441
\(643\) −5.69227 −0.224481 −0.112241 0.993681i \(-0.535803\pi\)
−0.112241 + 0.993681i \(0.535803\pi\)
\(644\) 12.9844 0.511655
\(645\) 2.79704 0.110134
\(646\) 0 0
\(647\) −19.9379 −0.783840 −0.391920 0.919999i \(-0.628189\pi\)
−0.391920 + 0.919999i \(0.628189\pi\)
\(648\) −8.73329 −0.343076
\(649\) 2.80014 0.109915
\(650\) 7.52850 0.295292
\(651\) −7.56341 −0.296433
\(652\) 22.3348 0.874699
\(653\) 21.5636 0.843848 0.421924 0.906631i \(-0.361355\pi\)
0.421924 + 0.906631i \(0.361355\pi\)
\(654\) 20.9901 0.820779
\(655\) 19.4788 0.761100
\(656\) 96.1078 3.75238
\(657\) 8.50778 0.331920
\(658\) −23.7643 −0.926429
\(659\) −40.6511 −1.58354 −0.791771 0.610818i \(-0.790841\pi\)
−0.791771 + 0.610818i \(0.790841\pi\)
\(660\) −13.5955 −0.529202
\(661\) −39.5102 −1.53677 −0.768384 0.639989i \(-0.778939\pi\)
−0.768384 + 0.639989i \(0.778939\pi\)
\(662\) 17.2159 0.669115
\(663\) −16.1459 −0.627053
\(664\) 24.4113 0.947343
\(665\) 0 0
\(666\) −20.7045 −0.802281
\(667\) 14.8813 0.576206
\(668\) 20.8722 0.807568
\(669\) 24.1853 0.935057
\(670\) −37.0785 −1.43247
\(671\) 10.5563 0.407520
\(672\) −14.0042 −0.540225
\(673\) 6.47351 0.249536 0.124768 0.992186i \(-0.460181\pi\)
0.124768 + 0.992186i \(0.460181\pi\)
\(674\) 49.1948 1.89491
\(675\) −1.00000 −0.0384900
\(676\) −27.1492 −1.04420
\(677\) 45.8593 1.76252 0.881258 0.472636i \(-0.156697\pi\)
0.881258 + 0.472636i \(0.156697\pi\)
\(678\) 22.2337 0.853879
\(679\) −1.59409 −0.0611755
\(680\) 50.4127 1.93324
\(681\) −3.38455 −0.129696
\(682\) 66.2095 2.53529
\(683\) −7.04406 −0.269533 −0.134767 0.990877i \(-0.543028\pi\)
−0.134767 + 0.990877i \(0.543028\pi\)
\(684\) 0 0
\(685\) 4.22753 0.161526
\(686\) −28.6716 −1.09469
\(687\) 25.9664 0.990681
\(688\) −36.4095 −1.38810
\(689\) 24.8339 0.946095
\(690\) −8.36045 −0.318277
\(691\) 6.01990 0.229008 0.114504 0.993423i \(-0.463472\pi\)
0.114504 + 0.993423i \(0.463472\pi\)
\(692\) 58.5948 2.22744
\(693\) −2.06614 −0.0784860
\(694\) 85.2119 3.23460
\(695\) 7.79093 0.295527
\(696\) −41.8406 −1.58596
\(697\) −42.6192 −1.61432
\(698\) −32.5149 −1.23071
\(699\) 6.71821 0.254106
\(700\) −4.18023 −0.157998
\(701\) 0.537093 0.0202857 0.0101429 0.999949i \(-0.496771\pi\)
0.0101429 + 0.999949i \(0.496771\pi\)
\(702\) −7.52850 −0.284145
\(703\) 0 0
\(704\) 55.1048 2.07684
\(705\) 11.0773 0.417195
\(706\) −9.77319 −0.367819
\(707\) −10.4266 −0.392132
\(708\) −5.66527 −0.212914
\(709\) 22.7572 0.854665 0.427333 0.904094i \(-0.359453\pi\)
0.427333 + 0.904094i \(0.359453\pi\)
\(710\) 32.2329 1.20968
\(711\) 6.48184 0.243088
\(712\) 116.665 4.37219
\(713\) 29.4751 1.10385
\(714\) 12.3838 0.463451
\(715\) −7.25063 −0.271158
\(716\) 50.5357 1.88861
\(717\) −25.7818 −0.962839
\(718\) 15.9287 0.594455
\(719\) 2.59593 0.0968118 0.0484059 0.998828i \(-0.484586\pi\)
0.0484059 + 0.998828i \(0.484586\pi\)
\(720\) 13.0171 0.485120
\(721\) −11.5242 −0.429183
\(722\) 0 0
\(723\) 7.77858 0.289289
\(724\) 21.5032 0.799162
\(725\) −4.79093 −0.177931
\(726\) −11.5207 −0.427573
\(727\) 24.1511 0.895714 0.447857 0.894105i \(-0.352187\pi\)
0.447857 + 0.894105i \(0.352187\pi\)
\(728\) −19.4697 −0.721596
\(729\) 1.00000 0.0370370
\(730\) −22.8995 −0.847547
\(731\) 16.1459 0.597176
\(732\) −21.3575 −0.789398
\(733\) 0.0870881 0.00321667 0.00160834 0.999999i \(-0.499488\pi\)
0.00160834 + 0.999999i \(0.499488\pi\)
\(734\) −16.6383 −0.614131
\(735\) 6.36472 0.234766
\(736\) 54.5755 2.01168
\(737\) 35.7100 1.31539
\(738\) −19.8725 −0.731517
\(739\) −21.3761 −0.786332 −0.393166 0.919468i \(-0.628620\pi\)
−0.393166 + 0.919468i \(0.628620\pi\)
\(740\) 40.3434 1.48305
\(741\) 0 0
\(742\) −19.0474 −0.699253
\(743\) −20.7233 −0.760263 −0.380131 0.924933i \(-0.624121\pi\)
−0.380131 + 0.924933i \(0.624121\pi\)
\(744\) −82.8730 −3.03827
\(745\) −0.0907073 −0.00332326
\(746\) 19.4964 0.713815
\(747\) −2.79520 −0.102271
\(748\) −78.4794 −2.86949
\(749\) −2.55436 −0.0933344
\(750\) 2.69159 0.0982830
\(751\) 13.6338 0.497505 0.248752 0.968567i \(-0.419979\pi\)
0.248752 + 0.968567i \(0.419979\pi\)
\(752\) −144.195 −5.25824
\(753\) −10.8743 −0.396283
\(754\) −36.0685 −1.31354
\(755\) −4.49727 −0.163672
\(756\) 4.18023 0.152033
\(757\) −8.81200 −0.320278 −0.160139 0.987095i \(-0.551194\pi\)
−0.160139 + 0.987095i \(0.551194\pi\)
\(758\) −41.5804 −1.51027
\(759\) 8.05188 0.292265
\(760\) 0 0
\(761\) 36.5972 1.32665 0.663323 0.748333i \(-0.269145\pi\)
0.663323 + 0.748333i \(0.269145\pi\)
\(762\) 12.0834 0.437736
\(763\) −6.21568 −0.225023
\(764\) −118.604 −4.29095
\(765\) −5.77247 −0.208704
\(766\) 52.5294 1.89796
\(767\) −3.02136 −0.109095
\(768\) −16.9049 −0.610002
\(769\) 11.8277 0.426519 0.213259 0.976996i \(-0.431592\pi\)
0.213259 + 0.976996i \(0.431592\pi\)
\(770\) 5.56119 0.200411
\(771\) −11.2543 −0.405314
\(772\) 87.0792 3.13405
\(773\) −13.1564 −0.473202 −0.236601 0.971607i \(-0.576033\pi\)
−0.236601 + 0.971607i \(0.576033\pi\)
\(774\) 7.52850 0.270606
\(775\) −9.48932 −0.340866
\(776\) −17.4666 −0.627014
\(777\) 6.13108 0.219951
\(778\) −38.3754 −1.37583
\(779\) 0 0
\(780\) 14.6695 0.525254
\(781\) −31.0433 −1.11082
\(782\) −48.2605 −1.72579
\(783\) 4.79093 0.171214
\(784\) −82.8504 −2.95894
\(785\) 17.6468 0.629842
\(786\) 52.4290 1.87008
\(787\) 4.59331 0.163734 0.0818669 0.996643i \(-0.473912\pi\)
0.0818669 + 0.996643i \(0.473912\pi\)
\(788\) −92.5419 −3.29667
\(789\) 13.3387 0.474871
\(790\) −17.4465 −0.620717
\(791\) −6.58392 −0.234097
\(792\) −22.6389 −0.804437
\(793\) −11.3903 −0.404480
\(794\) −75.1168 −2.66579
\(795\) 8.87861 0.314892
\(796\) 99.9795 3.54368
\(797\) 10.1848 0.360764 0.180382 0.983597i \(-0.442267\pi\)
0.180382 + 0.983597i \(0.442267\pi\)
\(798\) 0 0
\(799\) 63.9434 2.26215
\(800\) −17.5702 −0.621200
\(801\) −13.3586 −0.472003
\(802\) −53.0892 −1.87465
\(803\) 22.0543 0.778278
\(804\) −72.2488 −2.54802
\(805\) 2.47573 0.0872580
\(806\) −71.4403 −2.51638
\(807\) 7.06798 0.248805
\(808\) −114.245 −4.01913
\(809\) 31.9669 1.12390 0.561948 0.827173i \(-0.310052\pi\)
0.561948 + 0.827173i \(0.310052\pi\)
\(810\) −2.69159 −0.0945728
\(811\) 22.2359 0.780806 0.390403 0.920644i \(-0.372336\pi\)
0.390403 + 0.920644i \(0.372336\pi\)
\(812\) 20.0272 0.702816
\(813\) 23.0578 0.808671
\(814\) −53.6711 −1.88117
\(815\) 4.25858 0.149172
\(816\) 75.1410 2.63046
\(817\) 0 0
\(818\) −51.7623 −1.80983
\(819\) 2.22937 0.0779004
\(820\) 38.7223 1.35224
\(821\) 51.1209 1.78413 0.892065 0.451906i \(-0.149256\pi\)
0.892065 + 0.451906i \(0.149256\pi\)
\(822\) 11.3788 0.396880
\(823\) −34.2289 −1.19315 −0.596573 0.802559i \(-0.703471\pi\)
−0.596573 + 0.802559i \(0.703471\pi\)
\(824\) −126.272 −4.39888
\(825\) −2.59225 −0.0902505
\(826\) 2.31737 0.0806315
\(827\) 8.57712 0.298256 0.149128 0.988818i \(-0.452353\pi\)
0.149128 + 0.988818i \(0.452353\pi\)
\(828\) −16.2906 −0.566139
\(829\) −13.4230 −0.466199 −0.233099 0.972453i \(-0.574887\pi\)
−0.233099 + 0.972453i \(0.574887\pi\)
\(830\) 7.52354 0.261146
\(831\) −18.8461 −0.653764
\(832\) −59.4582 −2.06134
\(833\) 36.7402 1.27297
\(834\) 20.9700 0.726132
\(835\) 3.97970 0.137723
\(836\) 0 0
\(837\) 9.48932 0.327999
\(838\) 11.9844 0.413993
\(839\) 39.6388 1.36848 0.684242 0.729255i \(-0.260133\pi\)
0.684242 + 0.729255i \(0.260133\pi\)
\(840\) −6.96082 −0.240171
\(841\) −6.04696 −0.208516
\(842\) −32.5396 −1.12139
\(843\) −16.6497 −0.573447
\(844\) −73.6529 −2.53524
\(845\) −5.17654 −0.178079
\(846\) 29.8155 1.02508
\(847\) 3.41155 0.117222
\(848\) −115.574 −3.96883
\(849\) −13.0519 −0.447942
\(850\) 15.5371 0.532919
\(851\) −23.8933 −0.819050
\(852\) 62.8070 2.15173
\(853\) −6.04904 −0.207115 −0.103558 0.994623i \(-0.533023\pi\)
−0.103558 + 0.994623i \(0.533023\pi\)
\(854\) 8.73626 0.298949
\(855\) 0 0
\(856\) −27.9884 −0.956625
\(857\) 51.3361 1.75361 0.876803 0.480849i \(-0.159672\pi\)
0.876803 + 0.480849i \(0.159672\pi\)
\(858\) −19.5157 −0.666256
\(859\) 12.0743 0.411969 0.205984 0.978555i \(-0.433960\pi\)
0.205984 + 0.978555i \(0.433960\pi\)
\(860\) −14.6695 −0.500227
\(861\) 5.88472 0.200551
\(862\) 55.2936 1.88331
\(863\) −12.8023 −0.435797 −0.217898 0.975971i \(-0.569920\pi\)
−0.217898 + 0.975971i \(0.569920\pi\)
\(864\) 17.5702 0.597750
\(865\) 11.1723 0.379869
\(866\) 52.1454 1.77197
\(867\) −16.3214 −0.554305
\(868\) 39.6675 1.34640
\(869\) 16.8025 0.569987
\(870\) −12.8952 −0.437189
\(871\) −38.5312 −1.30558
\(872\) −68.1058 −2.30635
\(873\) 2.00000 0.0676897
\(874\) 0 0
\(875\) −0.797044 −0.0269450
\(876\) −44.6204 −1.50758
\(877\) −30.5367 −1.03115 −0.515575 0.856845i \(-0.672422\pi\)
−0.515575 + 0.856845i \(0.672422\pi\)
\(878\) −46.3804 −1.56526
\(879\) 3.07225 0.103624
\(880\) 33.7436 1.13750
\(881\) −6.79947 −0.229080 −0.114540 0.993419i \(-0.536539\pi\)
−0.114540 + 0.993419i \(0.536539\pi\)
\(882\) 17.1312 0.576838
\(883\) 27.0741 0.911116 0.455558 0.890206i \(-0.349440\pi\)
0.455558 + 0.890206i \(0.349440\pi\)
\(884\) 84.6795 2.84808
\(885\) −1.08020 −0.0363105
\(886\) −44.8297 −1.50608
\(887\) −11.2462 −0.377612 −0.188806 0.982014i \(-0.560462\pi\)
−0.188806 + 0.982014i \(0.560462\pi\)
\(888\) 67.1789 2.25438
\(889\) −3.57819 −0.120008
\(890\) 35.9559 1.20524
\(891\) 2.59225 0.0868436
\(892\) −126.844 −4.24704
\(893\) 0 0
\(894\) −0.244147 −0.00816549
\(895\) 9.63565 0.322084
\(896\) 17.5957 0.587830
\(897\) −8.68800 −0.290084
\(898\) 49.7131 1.65895
\(899\) 45.4627 1.51627
\(900\) 5.24466 0.174822
\(901\) 51.2515 1.70744
\(902\) −51.5144 −1.71524
\(903\) −2.22937 −0.0741887
\(904\) −72.1407 −2.39936
\(905\) 4.10003 0.136289
\(906\) −12.1048 −0.402155
\(907\) −42.8755 −1.42366 −0.711829 0.702353i \(-0.752133\pi\)
−0.711829 + 0.702353i \(0.752133\pi\)
\(908\) 17.7508 0.589081
\(909\) 13.0816 0.433888
\(910\) −6.00055 −0.198916
\(911\) 39.7951 1.31847 0.659235 0.751937i \(-0.270880\pi\)
0.659235 + 0.751937i \(0.270880\pi\)
\(912\) 0 0
\(913\) −7.24586 −0.239803
\(914\) −9.16941 −0.303297
\(915\) −4.07225 −0.134624
\(916\) −136.185 −4.49968
\(917\) −15.5255 −0.512696
\(918\) −15.5371 −0.512802
\(919\) −51.8927 −1.71178 −0.855891 0.517156i \(-0.826991\pi\)
−0.855891 + 0.517156i \(0.826991\pi\)
\(920\) 27.1268 0.894345
\(921\) −23.4615 −0.773084
\(922\) −108.756 −3.58167
\(923\) 33.4958 1.10253
\(924\) 10.8362 0.356484
\(925\) 7.69227 0.252920
\(926\) 61.8323 2.03194
\(927\) 14.4586 0.474884
\(928\) 84.1777 2.76327
\(929\) −26.1323 −0.857374 −0.428687 0.903453i \(-0.641024\pi\)
−0.428687 + 0.903453i \(0.641024\pi\)
\(930\) −25.5414 −0.837534
\(931\) 0 0
\(932\) −35.2347 −1.15415
\(933\) 5.59041 0.183022
\(934\) −18.8996 −0.618415
\(935\) −14.9637 −0.489365
\(936\) 24.4274 0.798435
\(937\) 32.2318 1.05297 0.526483 0.850186i \(-0.323510\pi\)
0.526483 + 0.850186i \(0.323510\pi\)
\(938\) 29.5532 0.964946
\(939\) 28.4280 0.927711
\(940\) −58.0966 −1.89490
\(941\) −33.9341 −1.10622 −0.553110 0.833109i \(-0.686559\pi\)
−0.553110 + 0.833109i \(0.686559\pi\)
\(942\) 47.4980 1.54757
\(943\) −22.9332 −0.746807
\(944\) 14.0611 0.457649
\(945\) 0.797044 0.0259278
\(946\) 19.5157 0.634511
\(947\) 0.896598 0.0291355 0.0145678 0.999894i \(-0.495363\pi\)
0.0145678 + 0.999894i \(0.495363\pi\)
\(948\) −33.9950 −1.10411
\(949\) −23.7966 −0.772471
\(950\) 0 0
\(951\) 10.5096 0.340798
\(952\) −40.1812 −1.30228
\(953\) −30.7219 −0.995180 −0.497590 0.867412i \(-0.665782\pi\)
−0.497590 + 0.867412i \(0.665782\pi\)
\(954\) 23.8976 0.773713
\(955\) −22.6143 −0.731781
\(956\) 135.217 4.37322
\(957\) 12.4193 0.401458
\(958\) 7.86259 0.254029
\(959\) −3.36953 −0.108808
\(960\) −21.2575 −0.686084
\(961\) 59.0472 1.90475
\(962\) 57.9113 1.86713
\(963\) 3.20480 0.103273
\(964\) −40.7960 −1.31395
\(965\) 16.6034 0.534483
\(966\) 6.66365 0.214399
\(967\) −13.6554 −0.439127 −0.219563 0.975598i \(-0.570463\pi\)
−0.219563 + 0.975598i \(0.570463\pi\)
\(968\) 37.3807 1.20146
\(969\) 0 0
\(970\) −5.38318 −0.172844
\(971\) 38.3313 1.23011 0.615055 0.788484i \(-0.289134\pi\)
0.615055 + 0.788484i \(0.289134\pi\)
\(972\) −5.24466 −0.168223
\(973\) −6.20972 −0.199074
\(974\) −51.6888 −1.65622
\(975\) 2.79704 0.0895771
\(976\) 53.0090 1.69678
\(977\) −57.0555 −1.82537 −0.912684 0.408666i \(-0.865994\pi\)
−0.912684 + 0.408666i \(0.865994\pi\)
\(978\) 11.4624 0.366526
\(979\) −34.6288 −1.10674
\(980\) −33.3808 −1.06631
\(981\) 7.79841 0.248984
\(982\) −28.0919 −0.896447
\(983\) −28.9251 −0.922567 −0.461284 0.887253i \(-0.652611\pi\)
−0.461284 + 0.887253i \(0.652611\pi\)
\(984\) 64.4795 2.05553
\(985\) −17.6450 −0.562216
\(986\) −74.4374 −2.37057
\(987\) −8.82909 −0.281033
\(988\) 0 0
\(989\) 8.68800 0.276262
\(990\) −6.97727 −0.221752
\(991\) 8.14129 0.258616 0.129308 0.991604i \(-0.458724\pi\)
0.129308 + 0.991604i \(0.458724\pi\)
\(992\) 166.729 5.29366
\(993\) 6.39618 0.202977
\(994\) −25.6911 −0.814872
\(995\) 19.0631 0.604341
\(996\) 14.6599 0.464516
\(997\) 43.7693 1.38619 0.693095 0.720847i \(-0.256247\pi\)
0.693095 + 0.720847i \(0.256247\pi\)
\(998\) −70.4390 −2.22971
\(999\) −7.69227 −0.243373
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5415.2.a.y.1.1 5
19.7 even 3 285.2.i.f.106.5 10
19.11 even 3 285.2.i.f.121.5 yes 10
19.18 odd 2 5415.2.a.z.1.5 5
57.11 odd 6 855.2.k.i.406.1 10
57.26 odd 6 855.2.k.i.676.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.i.f.106.5 10 19.7 even 3
285.2.i.f.121.5 yes 10 19.11 even 3
855.2.k.i.406.1 10 57.11 odd 6
855.2.k.i.676.1 10 57.26 odd 6
5415.2.a.y.1.1 5 1.1 even 1 trivial
5415.2.a.z.1.5 5 19.18 odd 2