Properties

Label 5415.2.a.y
Level $5415$
Weight $2$
Character orbit 5415.a
Self dual yes
Analytic conductor $43.239$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5415,2,Mod(1,5415)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5415, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5415.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5415 = 3 \cdot 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5415.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.2389926945\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.8797896.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 8x^{3} + 5x^{2} + 13x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - q^{3} + (\beta_{2} + 1) q^{4} + q^{5} + \beta_1 q^{6} - \beta_{3} q^{7} + ( - \beta_{3} - \beta_{2} - \beta_1 - 1) q^{8} + q^{9} - \beta_1 q^{10} + (\beta_{4} + 1) q^{11} + ( - \beta_{2} - 1) q^{12}+ \cdots + (\beta_{4} + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} - 5 q^{3} + 7 q^{4} + 5 q^{5} + q^{6} + 2 q^{7} - 6 q^{8} + 5 q^{9} - q^{10} + 5 q^{11} - 7 q^{12} - 8 q^{13} - 4 q^{14} - 5 q^{15} + 7 q^{16} + 10 q^{17} - q^{18} + 7 q^{20} - 2 q^{21}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 8x^{3} + 5x^{2} + 13x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 5\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - \nu^{3} - 6\nu^{2} + 3\nu + 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + \beta_{3} + 7\beta_{2} + 2\beta _1 + 15 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.69159
1.64661
0.290697
−1.38140
−2.24750
−2.69159 −1.00000 5.24466 1.00000 2.69159 −0.797044 −8.73329 1.00000 −2.69159
1.2 −1.64661 −1.00000 0.711327 1.00000 1.64661 4.47988 2.12194 1.00000 −1.64661
1.3 −0.290697 −1.00000 −1.91550 1.00000 0.290697 −0.486575 1.13822 1.00000 −0.290697
1.4 1.38140 −1.00000 −0.0917248 1.00000 −1.38140 −4.36264 −2.88952 1.00000 1.38140
1.5 2.24750 −1.00000 3.05123 1.00000 −2.24750 3.16638 2.36264 1.00000 2.24750
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5415.2.a.y 5
19.b odd 2 1 5415.2.a.z 5
19.c even 3 2 285.2.i.f 10
57.h odd 6 2 855.2.k.i 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
285.2.i.f 10 19.c even 3 2
855.2.k.i 10 57.h odd 6 2
5415.2.a.y 5 1.a even 1 1 trivial
5415.2.a.z 5 19.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5415))\):

\( T_{2}^{5} + T_{2}^{4} - 8T_{2}^{3} - 5T_{2}^{2} + 13T_{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{5} - 2T_{7}^{4} - 23T_{7}^{3} + 36T_{7}^{2} + 72T_{7} + 24 \) Copy content Toggle raw display
\( T_{11}^{5} - 5T_{11}^{4} - 32T_{11}^{3} + 148T_{11}^{2} + 256T_{11} - 992 \) Copy content Toggle raw display
\( T_{13}^{5} + 8T_{13}^{4} + T_{13}^{3} - 70T_{13}^{2} - 44T_{13} + 128 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + T^{4} - 8 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( (T + 1)^{5} \) Copy content Toggle raw display
$5$ \( (T - 1)^{5} \) Copy content Toggle raw display
$7$ \( T^{5} - 2 T^{4} + \cdots + 24 \) Copy content Toggle raw display
$11$ \( T^{5} - 5 T^{4} + \cdots - 992 \) Copy content Toggle raw display
$13$ \( T^{5} + 8 T^{4} + \cdots + 128 \) Copy content Toggle raw display
$17$ \( T^{5} - 10 T^{4} + \cdots - 5024 \) Copy content Toggle raw display
$19$ \( T^{5} \) Copy content Toggle raw display
$23$ \( T^{5} + 2 T^{4} + \cdots + 384 \) Copy content Toggle raw display
$29$ \( T^{5} + 7 T^{4} + \cdots + 3008 \) Copy content Toggle raw display
$31$ \( T^{5} + 9 T^{4} + \cdots + 117 \) Copy content Toggle raw display
$37$ \( T^{5} - 6 T^{4} + \cdots - 9024 \) Copy content Toggle raw display
$41$ \( T^{5} - 12 T^{4} + \cdots - 192 \) Copy content Toggle raw display
$43$ \( T^{5} + 8 T^{4} + \cdots + 128 \) Copy content Toggle raw display
$47$ \( T^{5} - 6 T^{4} + \cdots + 2136 \) Copy content Toggle raw display
$53$ \( T^{5} - 8 T^{4} + \cdots - 4328 \) Copy content Toggle raw display
$59$ \( T^{5} + T^{4} + \cdots - 4544 \) Copy content Toggle raw display
$61$ \( T^{5} - 7 T^{4} + \cdots - 24316 \) Copy content Toggle raw display
$67$ \( T^{5} + 14 T^{4} + \cdots + 8376 \) Copy content Toggle raw display
$71$ \( T^{5} + 27 T^{4} + \cdots - 6096 \) Copy content Toggle raw display
$73$ \( T^{5} - 26 T^{4} + \cdots + 46208 \) Copy content Toggle raw display
$79$ \( T^{5} - 23 T^{4} + \cdots + 109248 \) Copy content Toggle raw display
$83$ \( T^{5} + 12 T^{4} + \cdots - 2304 \) Copy content Toggle raw display
$89$ \( T^{5} + 9 T^{4} + \cdots + 11232 \) Copy content Toggle raw display
$97$ \( (T - 2)^{5} \) Copy content Toggle raw display
show more
show less